RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2005 Volume 44, Number 4, Pages 389–398 (Mi al123)

This article is cited in 1 paper

Quasivariety Generated by Free Metabelian and 2-Nilpotent Groups

A. I. Budkin


Abstract: Let $qG$ be a quasivariety generated by a group $G$ and $\mathcal N$ be a non-Abelian quasivariety of groups with a finite lattice of subquasivarieties. Suppose $\mathcal N$ is contained in a quasivariety generated by the following two groups: a free $2$-nilpotent group $F_2(\mathcal N_2)$ of rank 2 and a free metabelian (i. e., with an Abelian commutant) group $F_2(\mathcal A^2)$ of rank 2. It is proved that either $\mathcal N=q F_2(\mathcal N_2)$ or $\mathcal N=q F_2(\mathcal A^2)$ in this instance.

Keywords: quasivariety, free group, metabelian group, 2-nilpotent group.

UDC: 512.54.01

Received: 28.06.2004


 English version:
Algebra and Logic, 2005, 44:4, 213–218

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026