RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2005 Volume 44, Number 2, Pages 211–237 (Mi al105)

This article is cited in 4 papers

Endomorphisms of Automorphism Groups of Free Groups

D. G. Khramtsov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: It is proved that any non-trivial endomorphism of an automorphism group $\operatorname{Aut}F_n$ of a free group $F_n$, for $n\geqslant3$, either is an automorphism or factorization over a proper automorphism subgroup. An endomorphism of $\operatorname{Aut}F_2$ is an automorphism, or else a homomorphism onto one of the groups $S_3$, $D_8$, $Z_2\times Z_2$, $Z_2$, or $S_3*_{Z_2}(Z_2\times Z_2)$. A non-trivial homomorphism of $\operatorname{Aut}F_n$ into $\operatorname{Aut}F_m$, for $n\geqslant3$, $m\geqslant2$, and $n>m$, is a homomorphism onto $Z_2$ with kernel $\operatorname{SAut}F_n$. As a consequence, we obtain that $\operatorname{Aut}F_n$ is co-Hopfian.

Keywords: endomorphism, automorphism group, free group.

UDC: 512.544.43:512.543.12

Received: 29.12.2003


 English version:
Algebra and Logic, 2005, 44:1, 117–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026