RUS  ENG
Full version
JOURNALS // Annales de l'Institut Fourier // Archive

Ann. Inst. Fourier (Grenoble), 2019, Volume 69, Issue 3, Pages 1187–1228 (Mi aif6)

This article is cited in 4 papers

Volume geodesic distortion and ricci curvature for Hamiltonian dynamics

A. A. Agrachevab, D. Barilaric, E. Paolia

a SISSA, Via Bonomea 265, Trieste (Italy)
b Steklov Math. Inst., Moscow (Russia)
c IMJ-PRG, UMR CNRS 7586, Université Paris-Diderot, Batiment Sophie Germain, Case 7012, 75205 Paris Cedex 13 (France)

Abstract: We study the variation of a smooth volume form along extremals of a variational problem with nonholonomic constraints and an action-like Lagrangian. We introduce a new invariant, called volume geodesic derivative, describing the interaction of the volume with the dynamics and we study its basic properties. We then show how this invariant, together with curvature-like invariants of the dynamics, appear in the asymptotic expansion of the volume. This generalizes the well-known expansion of the Riemannian volume in terms of Ricci curvature to a wide class of Hamiltonian flows, including all sub-Riemannian geodesic flows.

MSC: 53C17, 53B21, 53B15

Received: 18.10.2016
Revised: 15.01.2018
Accepted: 13.03.2018

Language: English

DOI: 10.5802/aif.3268



Bibliographic databases:
ArXiv: 1602.08745


© Steklov Math. Inst. of RAS, 2026