RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2021 Volume 31, Issue 2, Pages 227–250 (Mi adm798)

This article is cited in 3 papers

RESEARCH ARTICLE

Infinite transitivity on the Calogero–Moser space $\mathcal{C}_2$

J. Kestena, S. Mathersb, Z. Normatovc

a Department of Mathematics, Rice University, Houston, TX, 77005, USA
b Department of Mathematics, Princeton University, Princeton, NJ, 08544, USA
c V.~I.~Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, 100170, Uzbekistan

Abstract: We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of $\mathbb{C}[ x,y]$ acts in an infinitely-transitive way on the Calogero-Moser space $\mathcal{C}_2$.

Keywords: Calogero–Moser space, infinite transitivity.

MSC: 14R20, 14L30, 14J50

Received: 26.06.2020
Revised: 05.12.2020

Language: English

DOI: 10.12958/adm1656



© Steklov Math. Inst. of RAS, 2026