RUS
ENG
Full version
JOURNALS
// Algebra and Discrete Mathematics
// Archive
Algebra Discrete Math.,
2021
Volume 31,
Issue 2,
Pages
227–250
(Mi adm798)
This article is cited in
3
papers
RESEARCH ARTICLE
Infinite transitivity on the Calogero–Moser space
$\mathcal{C}_2$
J. Kesten
a
,
S. Mathers
b
,
Z. Normatov
c
a
Department of Mathematics, Rice University, Houston, TX, 77005, USA
b
Department of Mathematics, Princeton University, Princeton, NJ, 08544, USA
c
V.~I.~Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, 100170, Uzbekistan
Abstract:
We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of
$\mathbb{C}[ x,y]$
acts in an infinitely-transitive way on the Calogero-Moser space
$\mathcal{C}_2$
.
Keywords:
Calogero–Moser space, infinite transitivity.
MSC:
14R20
,
14L30
,
14J50
Received:
26.06.2020
Revised:
05.12.2020
Language:
English
DOI:
10.12958/adm1656
Fulltext:
PDF file (445 kB)
References
Cited by
©
Steklov Math. Inst. of RAS
, 2026