RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2020 Volume 30, Issue 1, Pages 143–149 (Mi adm770)

RESEARCH ARTICLE

Modules with minimax Cousin cohomologies

A. Vahidi

Department of Mathematics, Payame Noor University (PNU), P.O.~Box 19395-4697, Tehran, Iran

Abstract: Let $R$ be a commutative Noetherian ring with non-zero identity and let $X$ be an arbitrary $R$-module. In this paper, we show that if all the cohomology modules of the Cousin complex for $X$ are minimax, then the following hold for any prime ideal $\mathfrak{p}$ of $R$ and for every integer $n$ less than $X$—the height of $\mathfrak{p}$:

Keywords: Artinian modules, Bass numbers, Cousin complexes, local cohomology modules, minimax modules.

MSC: 13D02, 13D03, 13D45, 13E10

Received: 25.08.2017
Revised: 15.08.2018

Language: English

DOI: 10.12958/adm528



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026