RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2018 Volume 26, Issue 1, Pages 19–33 (Mi adm667)

This article is cited in 2 papers

RESEARCH ARTICLE

Orthosymplectic Jordan superalgebras and the Wedderburn principal theorem

F. A. Gómez González, R. Velásquez

Universidad de Antioquia, Calle 67 No. 53-108 Bloque 6-7 of. 337, Medellín, Antioquia, Colombia

Abstract: An analogue of the Wedderburn Principal Theorem (WPT) is considered for finite-dimensional Jordan superalgebras $\mathcal{A}$ with solvable radical $\mathcal{N}$, $\mathcal{N}^2=0$, and such that $\mathcal{A}/\mathcal{N}\cong\mathfrak{J}\mathrm{osp}_{n|2m}(\mathbb{F})$, where $\mathbb{F}$ is a field of characteristic zero. We prove that the WPT is valid under some restrictions over the irreducible $\mathcal{A}/\mathcal{N}\cong\mathfrak{J}\mathrm{osp}_{n|2m}(\mathbb{F})$-bimodules contained in $\mathcal{N}$, and show with counter-examples that these restrictions cannot be weakened.

Keywords: Jordan superalgebras, Wedderburn theorem.

MSC: 17C70, 17C27, 17C55

Received: 02.11.2016
Revised: 19.01.2017

Language: English



© Steklov Math. Inst. of RAS, 2026