RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2018 Volume 25, Issue 2, Pages 177–187 (Mi adm653)

RESEARCH ARTICLE

On certain homological invariant and its relation with Poincaré duality pairs

Maria Gorete Carreira Andradea, Amanda Buosi Gazonb, Amanda Ferreira de Limab

a Universidade Estadual Paulista, Departamento de Matemática, Rua Cristovão Colombo, 2265, 15054-000, São José do Rio Preto - SP, Brazil
b Universidade Federal de São Carlos, Departamento de Estatística, Rodovia Washington Luíis, km 235, 13565-905, São Carlos - SP, Brazil

Abstract: Let $G$ be a group, $\mathcal{S} = \{ S_i, i \in I\}$ a non empty family of (not necessarily distinct) subgroups of infinite index in $G$ and $M$ a $\mathbb{Z}_2 G$-module. In [4] the authors defined a homological invariant $E_*(G, \mathcal{S}, M),$ which is “dual” to the cohomological invariant $E(G, \mathcal{S}, M)$, defined in [1]. In this paper we present a more general treatment of the invariant $E_*(G, \mathcal{S}, M)$ obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant $E(G, \mathcal{S}, M)$. We analyze, through the invariant $E_{*}(G, S,M)$, properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs.

Keywords: (co)homology of groups, duality groups, duality pairs, homological invariant.

MSC: 20J05, 20J06, 57P10

Received: 19.08.2016
Revised: 23.06.2017

Language: English



© Steklov Math. Inst. of RAS, 2026