RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2017 Volume 24, Issue 2, Pages 250–261 (Mi adm631)

RESEARCH ARTICLE

The edge chromatic number of $\Gamma_{I}(R)$

R. Kala, A. Mallika, K. Selvakumar

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012, Tamil Nadu, India

Abstract: For a commutative ring $R$ and an ideal $I$ of $R$, the ideal-based zero-divisor graph is the undirected graph $\Gamma_{I}(R)$ with vertices $\{x\in R-I\colon xy\in I \text{ for some } y\in R-I\}$, where distinct vertices $x$ and $y$ are adjacent if and only if $xy\in I$. In this paper, we discuss the nature of the edges of $\Gamma_{I}(R)$. We also find the edge chromatic number for the graph $\Gamma_{I}(R)$.

Keywords: zero-divisor graph, chromatic number, ideal-based zero-divisor graph.

MSC: 05C99, 13A15, 13F10

Received: 29.09.2015
Revised: 19.10.2017

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026