RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2016 Volume 22, Issue 1, Pages 116–128 (Mi adm578)

This article is cited in 1 paper

RESEARCH ARTICLE

On nilpotent Lie algebras of derivations of fraction fields

A. P. Petravchuk

Department of Algebra and Mathematical Logic, Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64, Volodymyrska street, 01033 Kyiv, Ukraine

Abstract: Let $\mathbb K$ be an arbitrary field of characteristic zero and $A$ an integral $\mathbb K$-domain. Denote by $R$ the fraction field of $A$ and by $W(A)=R\operatorname{Der}_{\mathbb K}A$, the Lie algebra of $\mathbb K$-derivations on $R$ obtained from $\operatorname{Der}_{\mathbb K}A$ via multiplication by elements of $R$. If $L\subseteq W(A)$ is a subalgebra of $W(A)$ denote by $\operatorname{rk}_{R}L$ the dimension of the vector space $RL$ over the field $R$ and by $F=R^{L}$ the field of constants of $L$ in $R$. Let $L$ be a nilpotent subalgebra $L\subseteq W(A)$ with $\operatorname{rk}_{R}L\leq 3$. It is proven that the Lie algebra $FL$ (as a Lie algebra over the field $F$) is isomorphic to a finite dimensional subalgebra of the triangular Lie subalgebra $u_{3}(F)$ of the Lie algebra $\operatorname{Der} F[x_{1}, x_{2}, x_{3}]$, where $u_{3}(F)=\{f(x_{2}, x_{3})\frac{\partial}{\partial x_{1}}+g(x_{3})\frac{\partial}{\partial x_{2}}+c\frac{\partial}{\partial x_{3}}\}$ with $f\in F[x_{2}, x_{3}]$, $g\in F[x_3]$, $c\in F$.

Keywords: Lie algebra, vector field, nilpotent algebra, derivation.

MSC: Primary 17B66; Secondary 17B05, 13N15

Received: 10.08.2016
Revised: 26.08.2016

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026