RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2014 Volume 17, Issue 1, Pages 110–134 (Mi adm462)

SURVEY ARTICLE

Some combinatorial problems in the theory of partial transformation semigroups

A. Umar

Department of Mathematics and Statistics, Sultan Qaboos University, Al-Khod, PC 123, OMAN

Abstract: Let $X_n = \{1, 2, \ldots , n\}$. On a partial transformation $\alpha : \mathop{\rm Dom}\nolimits \alpha \subseteq X_n \rightarrow \mathop{\rm Im}\alpha \subseteq X_n$ of $X_n$ the following parameters are defined: the breadth or width of $\alpha$ is $\mid\mathop{\rm Dom}\nolimits \alpha\mid$, the collapse of $\alpha$ is $c(\alpha)=\mid\cup_{t \in \mathop{\rm Im}\alpha}\{t \alpha^{-1}: \mid t\alpha^{-1}\mid \geq 2\}\mid$, fix of $\alpha$ is $f(\alpha) = \mid\{x \in X_n: x\alpha = x\}\mid$, the height of $\alpha$ is $\mid\mathop{\rm Im}\alpha\mid$, and the right [left] waist of $\alpha$ is $\max(\mathop{\rm Im}\alpha)\, [\min(\mathop{\rm Im}\alpha)]$. The cardinalities of some equivalences defined by equalities of these parameters on $\mathcal{T}_n$, the semigroup of full transformations of $X_n$, and $\mathcal{P}_n$ the semigroup of partial transformations of $X_n$ and some of their notable subsemigroups that have been computed are gathered together and the open problems highlighted.

Keywords: full transformation, partial transformation, breadth, collapse, fix, height and right (left) waist of a transformation. Idempotents and nilpotents.

MSC: 20M17, 20M20, 05A10, 05A15

Received: 29.01.2012
Revised: 24.02.2012

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026