RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2013 Volume 16, Issue 1, Pages 20–32 (Mi adm431)

This article is cited in 1 paper

RESEARCH ARTICLE

On locally nilpotent derivations of Fermat rings

P. Brumattia, M. Velosob

a IMECC-Unicamp, Rua Sérgio Buarque de Holanda 651, Cx. P. 6065, 13083-859, Campinas-SP, Brazil
b Defim-UFSJ, Rodovia MG 443 Km 7, 36420-000, Ouro Branco-MG, Brazil

Abstract: Let $B_n^m =\frac{\mathbb{C}[X_1,\ldots, X_n]}{(X_1^m+\cdots +X_n^m)}$ (Fermat ring), where $m\geq2$ and $n\geq3$. In a recent paper D. Fiston and S. Maubach show that for $m\geq n^2-2n$ the unique locally nilpotent derivation of $B_n^m$ is the zero derivation. In this note we prove that the ring $B_n^2$ has non-zero irreducible locally nilpotent derivations, which are explicitly presented, and that its ML-invariant is $\mathbb{C}$.

Keywords: Locally Nilpotente Derivations, ML-invariant, Fermat ring.

MSC: 14R10, 13N15, 13A50

Received: 06.09.2010
Revised: 05.04.2013

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026