RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2003 Issue 3, Pages 46–53 (Mi adm383)

This article is cited in 2 papers

RESEARCH ARTICLE

On equivalence of some subcategories of modules in Morita contexts

A. I. Kashu

Str. Academiei,. 5, Inst. of Mathematics and Computer Science,. MD–2028 Chisinau, Rep. of Moldova

Abstract: A Morita context $(R,\,_RV_S,\,_SW_R,\,S)$ defines the isomorphism $\mathcal L_0(R)\cong\mathcal L_0(S)$ of lattices of torsions $r\geq r_I$ of $R$-$Mod$ and torsions $s\geq r_J$ of $S$-$Mod$, where $I$ and $J$ are the trace ideals of the given context. For every pair $(r,s)$ of corresponding torsions the modifications of functors $T^W=W\otimes_{R^-}$ and $T^V=V\otimes_{S^-}$ are considered:
\begin{equation*} R\textrm{-}Mod\supseteq\mathcal P(r) ???????????? \mathcal P(s)\subseteq S\textrm{-}Mod, \end{equation*}
where $\mathcal P(r)$ and $\mathcal P(s)$ are the classes of torsion free modules. It is proved that these functors define the equivalence
\begin{equation*} \mathcal P(r)\cap\mathcal J_I\approx\mathcal P(s)\cap\mathcal J_J, \end{equation*}
where $\mathcal P(r)=\{_RM\mid r(M)=0\}$ and $\mathcal J_I=\{_RM\mid IM=M\}$.

Keywords: torsion (torsion theory), Morita context, torsion free module, accessible module, equivalence.

MSC: 16S90, 16D90

Received: 04.06.2003
Revised: 27.10.2003

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026