RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2003 Issue 2, Pages 1–13 (Mi adm375)

This article is cited in 2 papers

RESEARCH ARTICLE

On check character systems over quasigroups and loops

G. B. Belyavskaya

Institute of Mathematics and Computer, Science, Academy of Sciences of Moldova, str. Academiei, 5, MD–2028, Chishinau, Moldova

Abstract: In this article we study check character systems that is error detecting codes, which arise by appending a check digit $a_n$ to every word $a_1a_2\dots a_{n-1}: a_1a_2\dots a_{n-1}\rightarrow a_1a_2\dots a_{n-1}a_n$ with the check formula $ (\dots((a_1\cdot\delta a_2)\cdot \delta^2a_3)\dots)\cdot \delta^{n-2}a_{n-1})\cdot\delta^{n-1}a_n=c$, where $Q(\cdot)$ is a quasigroup or a loop, $\delta$ is a permutation of $Q$, $c\in Q$. We consider detection sets for such errors as transpositions $(ab\rightarrow ba)$, jump transpositions $(acb\rightarrow bca)$, twin errors $(aa\rightarrow bb)$ and jump twin errors $(aca\rightarrow bcb)$ and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types.

Keywords: quasigroup, loop, group, automorphism, check character system, code.

MSC: 20N05, 20N15, 94B60, 94B65

Received: 23.04.2003
Revised: 11.07.2003

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026