RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2004 Issue 3, Pages 1–11 (Mi adm344)

RESEARCH ARTICLE

On wildness of idempotent generated algebras associated with extended Dynkin diagrams

Vitalij M. Bondarenko

Institute of Mathematics, Ukrainian National Academy of Sciences, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

Abstract: Let $\Lambda$ denote an extended Dynkin diagram with vertex set $\Lambda_0=\{0,1,\dots,n\}$. For a vertex $i$, denote by $S(i)$ the set of vertices $j$ such that there is an edge joining $i$ and $j$; one assumes the diagram has a unique vertex $p$, say $p=0$, with $|S(p)|=3$. Further, denote by $\Lambda\setminus 0$ the full subgraph of $\Lambda$ with vertex set $\Lambda_0\setminus\{0\}$. Let $\Delta=(\delta_i\,|\,i\in\Lambda_0)\in\mathbb{Z}^{|\Lambda_0|}$ be an imaginary root of $\Lambda$, and let $k$ be a field of arbitrary characteristic (with unit element 1). We prove that if $\Lambda$ is an extended Dynkin diagram of type $\tilde{D}_4$, $\tilde{E}_6$ or $\tilde{E}_7$, then the $k$-algebra $\mathcal{Q}_k(\Lambda,\Delta)$ with generators $e_i$, $i\in\Lambda_0\setminus\{0\}$, and relations $e_i^2=e_i$, $e_ie_j=0$ if $i$ and $j\ne i$ belong to the same connected component of $\Lambda\setminus 0$, and $\sum_{i=1}^n \delta_i\,e_i=\delta_0 1$ has wild representation type.

Keywords: idempotent, extended Dynkin diagram, representation, wild typ.

MSC: 16G60, 15A21, 46K10, 46L05

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026