RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2004 Issue 1, Pages 17–36 (Mi adm326)

RESEARCH ARTICLE

Minimax sums of posets and the quadratic Tits form

Vitalij M. Bondarenko, Andrej M. Polishchuk

Institute of Mathematics, Tereshchenkivska 3, 01601 Kyiv, Ukraine

Abstract: Let $S$ be an infinite poset (partially ordered set) and $\mathbb{Z}_0^{S\cup{0}}$ the subset of the cartesian product $\mathbb{Z}^{S\cup{0}}$ consisting of all vectors $z=(z_i)$ with finite number of nonzero coordinates. We call the quadratic Tits form of $S$ (by analogy with the case of a finite poset) the form $q_S:\mathbb{Z}_0^{S\cup{0}}\to\mathbb{Z}$ defined by the equality $q_S(z)=z_0^2+\sum_{i\in S} z_i^2 +\sum_{i<j, i,j\in S}z_iz_j-z_0\sum_{i\in S}z_i$. In this paper we study the structure of infinite posets with positive Tits form. In particular, there arise posets of specific form which we call minimax sums of posets.

Keywords: poset, minimax sum, the rank of a sum, the Tits form.

MSC: 15A, 16G

Received: 18.11.2003
Revised: 09.02.2004

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026