RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2009 Issue 3, Pages 28–48 (Mi adm131)

This article is cited in 15 papers

RESEARCH ARTICLE

Semisimple group codes and dihedral codes

Flaviana S. Dutraa, Raul A. Ferrazb, C. Polcino Miliesb

a Departamento de Matemática e Estatística (DME), Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500, Cep 30.535–901,Belo Horizonte, MG, Brazil
b Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, Cep 05311–970, São Paulo, SP, Brazil

Abstract: We consider codes that are given as two-sided ideals in a semisimple finite group algebra ${\mathbb F}_qG$ defined by idempotents constructed from subgroups of $G$ in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two-sided ideals of ${\mathbb F}_qG$ in the case when $G$ is a dihedral group and extend these results also to a family of quaternion group codes. In the final section, we give a method of decoding; i.e., of finding and correcting eventual transmission errors.

Keywords: group code, minimal code, group algebra, idempotent, dihedral group, quaternion group.

MSC: 94B15, 94B60, 16S34, 20C05

Received: 20.08.2009
Revised: 24.09.2009

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026