RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2012 Volume 14, Issue 2, Pages 297–306 (Mi adm100)

This article is cited in 5 papers

RESEARCH ARTICLE

On radical square zero rings

Claus Michael Ringelab, B.-L. Xiongc

a Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
b King Abdulaziz University, P O Box 80200, Jeddah, Saudi Arabia
c Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, P. R. China

Abstract: Let $\Lambda$ be a connected left artinian ring with radical square zero and with $n$ simple modules. If $\Lambda$ is not self-injective, then we show that any module $M$ with $\operatorname{Ext}^i(M,\Lambda)=0$ for $1 \le i \le n+1$ is projective. We also determine the structure of the artin algebras with radical square zero and $n$ simple modules which have a non-projective module $M$ such that $\operatorname{Ext}^i(M,\Lambda) = 0$ for $1 \le i \le n$.

Keywords: Artin algebras; left artinian rings; representations, modules; Gorenstein modules, CM modules; self-injective algebras; radical square zero algebras.

MSC: 16D90, 16G10, 16G70

Received: 24.05.2012
Revised: 17.01.2013

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026