RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 1995 Volume 7, Issue 4, Pages 176–195 (Mi aa566)

This article is cited in 7 papers

Research Papers

Beredn transform and the Laplace–Beltrami operator

M. Engliš


Abstract: Let $\Omega$ be a domain in $\mathbf C,K(x,\bar y)$ its Bergman kernel, $\Delta$ the Laplace–Beltrami operator on $\Omega$, and $\mathcal B$ the Berezin transform on $\Omega$, i.e., the integral operator with the kernel $|K(x,\bar y)|^2/K(y,\bar y)$. For domains that are complete in the Riemannian metric $K(x,\bar x)^{1/2}|dx|$, it is shown that $\mathcal B$ is a function of $\Delta$ if and only if $\mathcal B$ commutes with $\Delta$ if and only if the above metric has constant curvature if and only if $\Omega$ is simply connected. This supplements the results of Berezin [5] and of Unterberger and Upmeier [19] for the unit disc. We also briefly treat the case of weighted Bergman spaces, and indicate a relationship with quantization on $\Omega$.

Keywords: Berezin transform, Laplace–Beltrami operator, Bergman kernel, curvature quantization.

Received: 25.03.1995

Language: English


 English version:
St. Petersburg Mathematical Journal, 1996, 7:4, 633–647

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026