Abstract:
Let $k$ be an infinite perfect field. Let $F$ be $\mathbb{A}^{1}$-invariant quasi-stable $\mathbb{Z}F_{\ast}$-presheaf on the category of $k$-smooth varieties. We prove that in this case Zariski sheaf $F_{Zar}$ coincides with Nisnevich sheaf $F_{\mathrm Nis}$. Moreover, for any $k$-smooth scheme $X\in Sm/k$ there are equalities $H^{n}_{\mathrm Zar}(X, F_{\mathrm Zar})=H^{n}_{\mathrm Nis}(X,F_{\mathrm Nis})$.