RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2012 Volume 24, Issue 1, Pages 157–222 (Mi aa1272)

This article is cited in 12 papers

Research Papers

Continuous symmetrization via polarization

A. Yu. Solynin

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA

Abstract: We discuss a one-parameter family of transformations that changes sets and functions continuously into their $(k,n)$-Steiner symmetrizations. Our construction consists of two stages. First, we employ a continuous symmetrization introduced by the author in 1990 to transform sets and functions into their one-dimensional Steiner symmetrization. Some of our proofs at this stage rely on a simple rearrangement called polarization. At the second stage, we use an approximation theorem due to Blaschke and Sarvas to give an inductive definition of the continuous $(k,n)$-Steiner symmetrization for any $2\le k\le n$. This transformation provides us with the desired continuous path along which all basic characteristics of sets and functions vary monotonically. In its turn, this leads to continuous versions of several convolution type inequalities and Dirichlet's type inequalities as well as to continuous versions of comparison theorems for solutions of some elliptic and parabolic partial differential equations.

Keywords: continuous symmetrization, Steiner symmetrization, rearrangement, polarization, integral inequality, boundary-value problem, comparison theorem.

Received: 07.02.2011

Language: English


 English version:
St. Petersburg Mathematical Journal, 2013, 24:1, 117–166

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026