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PLENARY LECTURES

Atiyah M. .
(University of E’dznbmyh )

Geometry and Physics in the 20th century

In the past twenty years the theoretical physics of qnantum field theories
and strings has developed into a remarkable structure. Although only partially
understood and by no means rigorous it has already used vast amounts of modern
geometry and has in return had a dramatic impact on the field. The challenge
for the 21st century is to understand the szgmﬁcance of this theory, to put it on
to firm foundations and of course to relate it “ultimately to the real world. I will
attempt to give an overvierw of these exciting ideas.

Faddeev L.D.
(Steklov Math. Institute, St. Petersbourg)
Topological selitons:in 341 dimensional space-time

The term soliton in general sence is used for localized static or periodic so-
Iutions of nonlinear evolution equa- tions. For one'dimensional space there exists
a very well developed theory of solitons in conniection with integrable models. For .
higher dimensions we know only examples. In my talk I want o concentrate on
a patticular model allowing for solitons, localized in the vicinity of a knot. Cor-
responding topological charge is the Hopf invariant. Some applications in physics -
will be indicated.

‘Novikov SP
(Moscow State Um’versity)

Topological Phenomeéna in the Quantum
Solid State Physics

Investigations of the conductivity tensor of normal metals in the strong mag-
netic field leads to the highly nomtrivial topological problems. New observable
interger-valued topological characteristics of this tensor were revealed as a result
of these investigations.



Palis J.
(Rio de Janeiro, Brazil)

A Scenario for Dissipative Dynamics
and Recent Resilts.”

Sadovnichii V.A.

(Moscow State University)

Ouistanding Mathematician and Head of MSU
(t6. Céntenary Anniversary of 1.G.Petrovskii)

KEY LECTURES

. BallJM.
 (University of Ozford)
Microgeometry and phase transformations

.- The talk will describe joint work:with C. Carstensen and with R.D. James
concerning compatibility of gradients Dy(z) for maps y : 2 — R™, where & C R®
is open. In particular; generalizations of:the-Hadamard jump condltxon will be
described, and:also: results. relating compatible and incompatible sets of matrices
to Young measures.. The:principal applications are to models of displacive phase

transformations in solids.

Bensoussan A., Boceardo L., Frehse J.
(France)

Nonlinear systems; of elllptlc equations with natural

growth condltlons and sign conditions

Followmg the work of Landeés, we present some new ideas to ireat the foliow-

ing system of equations

~div(a(z, u, Du)) + g(z,u,Du) = h



with Dirichlet boundary conditions. The first order nonlinear term has natural
growth conditions and the right hand side is not smooth. However sign conditions
permit to prove the existence of a solution.

Bojarski B.
{Math. Institute, Warsaw)

Geometry of the Riemann~Hilbert
transmission problem

Geometry of the Riemann-Hilbert problem of holomorphic function theory
— more generally the geometry of the Cauchy data for solutions of elliptic p.d.e. —
will be discussed in the context of T.Kato Fredholm pairs of subspaces of a Hilbert
space, Birman-Solomyak elliptic fans and relations with K-Theory and bordisims.

Bolibruch A.A.
(Stekiov Mathematical Institute)

The Riemann-Hilbert problem
and isomonodromic deformations

The problem of construction of a Fuchsian system of linear differential equa-

tions "
dy _ B;
dz (; z— a;) ¥

on the Riemann sphere from a given represehtat.ion
x:m(C\ {as,...,an},20) — GL(p;C)

(which is called the Riemann-Hilbert problem) has in general a negative solution
{see [1]}. Neveriheless, it turns out that every irreducible representation still can
be realized as the monodromy of some Fuchsian system ([1]}). We give new suffi-
cient conditions for the positive solvability of the RHP which generalize the one
mentioned above. It does not depend on the location of singular points, it has a
combinatorial nature, and ii is formulated in terms of stability of a vector bundie
F with a logarishmic connection V constructed from the representation x. Recall
that the pair (F, V) is called stable if for every subbundle F* C F invariant with
respect to V one has that the slope deg(F')/rk(F'} of this subbundle is smaller
than the slope of the whole bundle F. We prove that the Riemann-Hilbert problem
has a positive solution in the class of Fuchsian systems with irreducible sets of
coefficients if and only if at least one of vector bundles with logarithmic connec-
tions constructed from x is stable in the sense mentioned above. We also prove



that for every stable pair (F, V) there exists an isomonodromic deformation of the
pair which leads to a vector bundle with the splitting type (c1,. .. ,¢p), such that
Yiieg;—eiqn < 1.

REFERENCES

[1] D.V. Anosov and A.A. Bolibruch, The Riemann~Hilbert Problem, Aspects
of Mathematics, Vieweg, Braunschweig/Wiesbaden, 1994.

Bolsinov A.V.
(Moscow State University)
Integrability and non-integrability of geodesic
flows on smooth manifolds

The aim of the talk is to discuss the two following general problems in Rie-

mannian geometry: 1) Which smooth compact manifolds admit Riemannian met-
rics with integrable geodesic flows? 2) What are topological obstructions to inte-
grability of geodesic flows on compact Riemannian manifolds? In particular, we
want to mention two results recently obtained.
Theorem 1. (I.A.Taimanov & A.B. [1]) There exists a real analytic Riemannian 3-
manifold (M3, g) such that 1) the geodesic flow on (M3, g) is completely integrable;
2) the topological entropy of this geodesic flow is positive; 3) the growth of the
fundamental group m (M) is exponential.

This resuli shows that, in general, topological entropy cannot be considered
as a topological obstruction to integrability of geodesic flows.
Theorem 2. (B.Jovanovic & A.B. [2]) Let G/H be the homogeneous space of a
compact Lie group G endowed with the natural bi-invariant metric (i.e., the sub-
mersion metric corresponding to the bi-invariant metric on G). Then the geodesic
flow on G/H is completely integrable in non-commutative sense by means of poly-
nomial integrals and in Liouville sense by means of C® smooth integrals. Moreover,
the same result is true for any bi-quotient space K\G/H of a compact Lie group.

REFERENCES

[1] A.V_ Bolsinov, 1.A.Taimanov, Integrable geodesic flows with positive topo-
logical entropy, Invent. Math., 140, 2000, 639-650.

[2] A.V.Bolsinov, B.Jovanovic Integrable geodesic flows on homageneous
spaces, Matem. Sbornik, 2061 (to appear).



Dubrovin B.A.
(SISSA,. Trieste)

On Normal Forms of Integrable.-PDEs.

In the talk we will address the problem of classification of zntegmble systems
on the loop space £(M™) of a smooth manifold M™ of the form

@——ZA’( )— (%)

and their integrable perturbations in the class of 1-+1 evolutionary PDEs. The fol-
lowing two features of mtegrablhty are adopted as' the basis for the classification
programme developed recently by Youjin Zhang and the author: 1) bihamiltonian
structure and 2) existence of a-r-function. An appropriate extension of the group
of ‘diffeomorphisms of M™ naturally acting on the loop space £(M } is involved
in-the classification of deformations. The first elassification result says that, under
certain genericity assumption, hierarchies of integrable systems of the form (*) on
L(M™) arelabelled by Frobenius manifold structures on M™ or by . their degen-
erations. Frobenius manifolds were introduced by the author in the begmmng of
90s as the geometric setup of the so-called equations of associativity: discovered
by physycists .E.Witten, R.Dijkgraaf, E. and H.- Verlinde. For mathemat1c1ans it
is-best known appearancé: of Frobenius manifolds in the. theory of the genus Zero
Gromov - Witten invariants-of compact symplectic manifolds, although I Frobenius
manifolds arise-also in: 6ther branclies of mathematics. Remarkably, the relation-
Shlp between integrable hierarchies and: Gromov - Witten.invariants persists also
in the classification of .integrable deformations of systems (*), but the Gromov

Witten invariants of hlgherx genera become: involved. At the moment this con-
jectural relationship: remains to look tather misterious. However, -we found some
evidences supporting this conjectire: In particular, we proved.that.the first.order
deformation is always described in terms of the theory of elliptic Gromov - Wlt_t_gn
invariants. In certain cases we were able to go beyond the first order to reproduce
the known identities for the genus 2 Gromov - Witten mvanants starting from
integrable hierarchies.

E Weinan
(Princeton University)
Mathematical Problems Related to the Theory
of Turbulence
Recently there has been major advance in the understanding of simple mod-
els of turbulerice. Two most notable examples aze the Burgers turbulence and the



passive scalar turbulence. Progress has' also been made on understanding the in-
. terplay between dissipation and the scahng behavior at small scales. In this talk,
we will review some of these results, with emphasis on the ofes that are likely to
be of direct relevance to hydrodynamic turbulence. We will end with a comparisen
between weak and sirong turbulence

Hida T.

(Meijo University, Japan)
 Laplacians in white noise analysis and
Petrovskii’s method of reducing the second
variation to canonical form.

Many Laplacians have appeared in white noise analysis and ‘those operators
play different 1mport.ant roles, respectively. Among othérs, the Levy:Laplacian,
which is- formally ‘speaking a Cesaro limit of ordinary second order differential
opperators, enjoys mgnlﬁcam. properties. One of its haracterizations is that it is
essentially infinite dimensional and entirely different. from neither the number op-
erator nor thé infinite dimensional Laplace-Beltrami operator. This fact can be
illustrated by observing the method of approximation of functionals, for which the
domain'of functions (in fact, they 'are the variables of functionals):is divided into
subintervals of equal length. The topology that defines the limit towards the Levy
Laplacianis is, of course, not the ordinary one. Note that this method is very much
different from the Fourier series expansion of functions: In. the course of such.an
approaximation we shall appeal to the Petrovskii’s method introduced in reducing
the second variation to canonical form by triangular transformations. We refer to
his paper appeared in Ucheniye Zepiski Moscow Univ. (1934), 5-16.. By doing'so,
we can see various profound. properties of the Levy Laplacian.'In particular, we
recognize the réason why it acts effectively on the space of generalized white noise
functionals, where interesting connection with quantum dynamics can.be found
explicitly.

Tlyashenko Yu.S.
(Steklov Mathematical Institute}

Restricted versions of the Hilbert 16th problem

The strongest. form of the Hilbert 16th problem (second part).is: what is
the maximal number limit cycles for a planar polynomial vector field of degree n?
There are some simplifications of the problem: the same question is asked not for all
polynomial vector fields but for some special class: say, Abel or Lienard equations.
Even in this setting the problem is still open..The restricted version considers the



c]ass that satisfies some additional assumptions.The talk presents upper estimates
on the number of limit cycles of Abel and Lienard equations through the degree of
the polynomlals in the right hand side and the magnitude of their coefficients. The
estimate for Lienard equation is obtained in & joint work with A.Panov. Another

. counterpart 'of Hilbert 16th problem is the ‘infinitesimal "one: how many limit

_cycles may be generated by the ovals of the Hamiltonian polynomial vector field
of degree n under a perturbation of the same degree. The estimate is obtained for
special Hamiltonians of arbitrary degree n. It is an exponential of a polynomial in
n. This resuit is obtained in a joint work with A.Glutsuk. and improves estimates
of Novikov and Yakovenko (unvublished).

Jaeger W.
(University of Heidelberg)

Navier Stokes Flow and Laws at Interfaces
A and Rough Boundaries

In this lecture a survey'is given covering the results of asymptotic analysis for
problems arising in flow along a.rapidly oscillatory surface or in a partially porous
“medium. The transmission laws connecting the free flow and the filirations flow
in a porous media will be discussed, effective boundary conditions on an approx-
imating ”smooth” boundary surface replacing a rough one will be derived. The
dependence .of the drag force on the scale of roughness is analysed in the nontur-
bulent situation.The effective terms and quantities can be numencal]y computed,
.errors of the approximations are estimated. The results are in agreement with ex-
-perimental measurements. The report is dealing with results obtained by Mikelic,
N.Neuss and Jaeger.

Karasev M.B.
(MIEM, Moscow)

Quantum Method of Characteristics

There is the well known ‘asymptotical method of characteristics developed
by, Petrovskii, Lax, Keller, and in a general operator setting by Maslov, as well
as by many other mathematicians and physisists, for senuclassmal solving partial
differential equations. As it occures, this method has an exact nonasymptotical
versmn which could be called the gnantum method of characteristics. The quantum
version is ‘related to ‘the construction“of quantum’ submanifolds and mappings,
and also it uses the technigue of symplectic groupo:ds and membrane amplitudes.
‘An mterestmg ‘analitical Tesalt ‘which follows from!this quantum geometry is the
appearence of new formnulas for solutions of certain classes of differential-equations,
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e.g. The exact solutions and the global asymptotics obtained by this method are
based on model "special functions” (for instance, the hypergeometric or theta-
functions, or others), which are associated with irreducible leaves and polarizations
of a dynamical algebra of the equation. In the talk there will be explaned the
general ideas of the method, and examples of asymptotics associated with quantum
surfaces of revolution will be given.

Katok A.B.
(Pennsylvania State Univérsity)

Ergodic theory and dynainics for
muldimensional time

Kobelkoy G.M.
(Moscow State University)

Parabolic approximations
of the Navier—Stokes equations

A parabolic system of partial differential equations

v — vAv — l-—:l‘iﬂzliv*lr+v“‘1|r=,,,¢ + -;—divv v+ Veg=0

e2q; +eq —dive =0 (1)

Vhoaxp,11=0 v(z,0)=uo(z), 4a(z, 0) = qo(z)

with v > 0 and ¢ — 0 is proposed to approxunate the system of nonstationary
Navier—Stokes equations:

u —vAu+tubu;, + Vp=0
(2)

diva=0, ulagur =90 u(z,0)=muo(z)

For 4 > 0 and a small initial value of ug(z) in the norm of the Sobolev space H},
it is proved that

maxfv(t)~u(OIP+ [ Iv(e) -l < ce (ol + a7 + o) ()

here || - || means the norm.of Ly and || - ||, means the norm of H}. A comparison
with the classic approximation of problem (2} (ic get it we have to omit the term
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Vdiv in the first equation of (1), change the sign in the front of ”div” in the
second equation of (2) and omit the time derivative in the second equation of
(2}} is carried out. In particular, it is proved that the norm le - 2vdivv] is
uniformly bounded in time. So there is a hope that for a small perturf:ation in the

initial pressure function (ﬂq(()) - pO)i < 5), the uniform convergence of g to p
holds as well. Results of numerical experiments are discussed.

Kozlov V.V.
(Moscow State University)

Hamyltonian systems, statistical mechanics and
balanced thermodynamics

New ideas of heat balance theory connecied with modern theory of dynam-
ical systems will be discussed in the lecture. We develop a new approach to get
the canonical Gibbs disiribution using the results on nonintegrability of general
form canonical systems and not using ergodic hypothesis (which has not been
yet proved for systems of Bolzman-Gibbs gas type, and even not valid for some
cases). We obtain new criteria which garantee the absence of an additional integral
of the motion equation of mechanical systems with toric configuration space. In
particular, the system of connected pendulums does not admit integrals which are
independent from energy integral. These results allow to develop 2 thermodynam-
ical descrintion of mechanical systems with finite degree of freedom.

Ladyzhenskaya G.A.
(Stekiov Mathematical Institute, St.-Petersburg)
Known and unknown facts on the Navier-Stokes and
Modified Navier-Stokes equations

1) Known resulis on the solvability of the principal boundary-value problems
for the stationary Navier-Stokes equations in a fixed domain. 2) On some inter-
esting unsolved problems for the stationary Navier-Stokes equations. 3) What we
know and do not know on the solvability of the initial-boundary value problems
for the non-stationary Navier-Stokes equations. What new results on the Navier-
Stokes equations could merit for a high prize? 4) On results and problems for the
modifications of the Navier-Stokes equations giving a deterministic description of
the dynamics of fluids without any restrictions of the values of some norms of data.
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Manin Yu.l.
(Maz-Planck Institute for Mathematics in the Sciences)

On the distribution of continued fractions
and modular symbols

This is a report on our joint work with Matilde Marcolli. We prove an exten-
sion of the classical Gauss—Kuzmin theorem about the distribution of continued
fractions, which in particular allows one to take into account some congruence
properties of consecutive convergents. Using this theorem, we study the statistical
behavior of geodesics on the modular surfaces (“asymptotic modular symbols”).
We also prove a series of identities which can be interpreted in terms of function
theory on the tower of “non-commutative modular curves”, in the spirit of Connes’
geometry.

Mitidieri E.
(Dipartimento di Scienze Matematiche, Universita di Trieste)
On Some Degenerate and Singular Evolution Problems

In recent years, many researchers have generalized the classical results of
Fujta-Hayakawa to several classes of equations and systems of partial differential
equations.

A common fact in many investigations is that the proof that the critical ex-
ponent of a given problem belongs to the blow-up case is based on the knowledge
of the fundamental solution of the differential operator or on its sharp asymp-
totic estimates. In general this fact does not allow to extend this kind of results
to quasilinear problems. In this talk we shall present an approach developed by
Stanislav 1. Pohozaev and the author that does not require any information on the
fundamental solution of the problem under investigation. We shall show that this
approach, when applied fo concrete PDE’s, gives sharp results.

Nikolski N. A
(Steklov Institute of Mathematics, St. Petersburg)

Recent results on the similarity problem

This is a survey of results and methods concerning the problem of similarity
to a normal operator: from Friedrichs I'-equations, the Wermer calculus approach
and the harmonic analysis approach (S.Naboko and van Casteren), to recent resulis
based on the function model for Hilbert space operators.
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A resolvent similarity criterion is obtained. It says that the linear growth of
the resolvent towards the.spectrum is necessary and sufficient for a Hilbert space
.contraction with finite rank defect operators and the specirum not covering the
unit dise to be similar to a normal operator. Similar resulis aze proved for operators
having a spectral set bounded by a Dini-smooth Jordan curve and possessing a
normal dilation of finite spectral multiplicity. In particular, a dissipative operator
with finite rank ‘imaginary part is'similar to a normal operator if-and only if
its resolvent grows lincarly towards the spectrum. The main technical tools nsed
for the proof are the Sz.-Nagy-Foias function model and estimates of spectral
projections via matrix valued corona theorem.

Relevans results on the insufficiency of linear resolvent growth which is not
followed by a smallness of defect operators or the contrartivity hypothesis are
presented.

. REFERENCES

[1] N. Benamara and N. Nikolski, Resolvent test for similarity to a normal
operator, J. London Math..Soc., (3) 78 (1999), 585-626 .

[2] N. Nikolski and S. Treil, Linear resolvent growth of a rank one perturbation
of a unitary operator does not imply its similarity to a normal operator, to appear.’
. [3] N."Nikolski, :Operators, Functions; andSystems; vol.1&2, AMS Mono-
graphs and Surveys, 2001.

Plotnikov P.I.
(Institute of Hydrodynamics, Novosibirsk})
Gradient flows of marginal functions and
nonlinear ellintic-parabelic equations

' We deal with mathematical problems concerned the slow dynamics.of a mul-
tiphase thermodynamical system. It is supposed that a continuum occupies a
bounded domain § C. B2 and its evolution.is described in terms of the ”inverse
temperature” ¥ : @ x (0, T) — R and the "order parameter ” ¢ : 2 x(0,T) — R"..
If the relaxation time is equal to.0, then the governing equations can be written
in- the form of a ”parabolic-elliptic” system of nonlinear equations )

Qx(0,7):, &(@+p) =AY, —e*Ap+V,2(p)=cdes,
which are Sup]ilémeﬁted with tﬁe Bﬁundéry and initial data

a0 x (0,7) %’E’-’rze:o,' %‘Ea,,@':ﬂ, '

Q: —-19(0) - @1(0)) =g € HQ(Q)
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Here the thermodynamical potential ® has the representation ® = g(p) — %Q(p- ©
in which @ is an arbitrary n x n matrix and g : R® — R! is a convex function
satisfying the conditions

cel* < gle) S cllel* + 1), |Vog(9)] < ellel® + 1).

Note that the second equation is the Euler equation for the the ”free energy”
functional

elVel? 1 92
P = [ |25+ a0 - 5 - o de 4 £ [ 1o
Q an

We show that for any positive ¢ this problem has a solution which gener-

ates a gradient flow for marginal function S{u) = g}aicm W{u, ¢) of the entropy
L 4 1
functional

W(u,¢) = (O(u,p),u) — F(O(u, 2),¢), Ou,p) = —u—g;.

We also prove that this solution satisfies the maximum entropy and minimum en-
tropy production principles and investigate its behavior when the small parameter
€ tends to 0.

Pohozaev S.I.
(Steklov Mathematical Institute)

Blow-up solutions to nonlinear hyperbolic problems

The study of existence and nonexistence of global solution to semilinear wave
equations has been initiated in seventies and intensively developed. We prove the
nonexistence of global solutions of a very wide class of nonlinear hyperbolic type
inequalities and systems of such inequalities. Our approach is based on an ade-
quate choice of test functions and dimensional analysis. We do not use any facts
from corresponding linear theory such as comparison theorems and the explicit
form of fundamental solution. This approach was developed by the author jointly
with E. Mitidieri [1, 2, 3], A. Tesei [4], L. Veron [5]. As application of the ap-
proach we consider nonlinear higher-order hyperbolic equations and inequalities
and semilinear degenerate. hyperbolic inequalities. Using our approach, we obtain
for the first time the sufficient conditions of complete and instantaneous blow-up
for singular semilinear and nonlinear hyperbolic inequalities in 2 bounded domain.
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REFERENCES

(1] Mitidieri, E. & S.I. Pohozaev Nonexistence of positive solutions for quasilinear
elliptic problems on R, Proc. Steklov Inst. Math. 227 (1999), 192-222.

[2] Mitidieri, E. & S.1. Pohozaev Nonexistence of weak solutions for some degener-
ate and singular hyperbolic problems on Ri'“, Proc. Steklov Inst. Math. 232
(2001), 248-267.

[3] Mitidieri, E. & S.I. Pohozaev A priori Estimates and Nonexistence of Solutions
to Nonlinear Partial Differential Equations and Inequalities, Proc. Steklov Inst.
Math. 234 (2001) (in press).

[4] Pohozaev, S.0I. & A. Tesei Blow-up of nonnegative solutions to quasilinear
parabolic inequalities, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend.
Lincei (9) Mat. Appl. 11 (2000), 99-109.

[8] Veron, L. & S.1. Pohozaev Blow-up results for nonlinear hyperbolic inequalities,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). 29 (2000), 393-420.

Ramis J.P.
{Universite de Toulouse (Paul Sabatier) and Institut Universitaire de France)

Differential Galois theory and nonintegrability
of Hamiltonian Systems

Sinai Ya.G.
(Princeton University and Landau Institute)

New finite dimensional approximation
of hydrodynamic type equations

. The difficulties arising in proving the existence and uniqueness theorems for
equations of Navier-Stokes type are connected with the absence of the under-
standing of the diffusion mechanism. We propose a new approach to get finite
dimensional systems of ordinary differentional equations having a similar diffusion
mechanism. The lecture is based on the joint work with Dinaburg and Posvyanski.
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Skrypmik I.V.
(Institute of Applied Mathematics and Mechenics of NAS Ukraine)

Topological degree theories for (S5;)
operators and apphcatlons

The lecture is devoted to topological degree theories for different classes of
mappmgs mvolvmg operators of type (S5) - A degree theory for operators defined
on‘open set 'of Banach’spaces -was developed-in'the’ monograph [1] Extensive
applications of this degree to nonlinear elliptic problems were given in tmonograph
[2]. At last time [3] general initial-boundary value problem for essentialy nonlinear
parabolic equa.t.lons was studied by using’ this degree. Naihely we reduced such
problem to nonlinéar operator equation Au =0 with A satisfying condition (Six).
The second type of operators of our considerations is densely defined operator
A: D(A) C X — X" satisfying generalized condition (S;.). We introduce degree
and we ‘give the applicaticiis t6 Dirichlet problem for the equation

E oo {p"‘(u);% +a ( 2, g“)} Z ‘9'23(?) 0!

i=1 i=1

with very weak growth assumpfion tor the function p(u). The third typeiof our
* operators is densely defined operator M + A : D(M + A) C X - X*. We assume
that the operator A satisfies a veriant of the maximal monotonicity condition
and the operator A satisfies (S;.) condition with respect o the operator M. We
introduce a notion of degree for such operators;and we give the application of this
degree to the study. of the: Cauchy-Dirichlet: problem for the nonlinear parabolic
equation

7* . 73 8
‘gt—u -— Z;: aizi-ai (-’B)t; u, g—::) + p(ﬂ.‘,t,ﬂ) = ; 'égfi(z!t) (2)

in conditions that the operator cortespondmg to p(z,%,u) is not compact. We
study the computation of the index of a ¢ritical point for nonlinéar densely defined
operators of second ‘type and give the application of the index formula to the
operator corresponding: to the Dirichlet problem for.the equation (1} Resulis on
degree theories for densely defined operators were established in [4.5].
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Temam R.M.
(University Paris-Sud)
Mathematical problems in meteorology
and oceanography

‘We will review the primitive equations of the atmoshere and the ocean and .
their coupling. We will descibe some mathematical poblems that they raise, some
recent resulis and some less recent ones.

Tesei A.
(Universita’ Di Roma “La Sapienza”)
Semilinear Elliptic and Parabolic Inequalities
with First Order Terms' -

We discuss some recent results, obtained jointly with S. 1. Pohozaev, con-
cerning instantaneous blow-up of solutions to semilinear parabolic problems of the
following type:

{ 8e _ Au Mz|™P(z,Vu) +|z|"%u? in Qx (0,T) 1)

>0 in Q x (0,7).

Here Q C IR, » > 3 is a bounded smooth domain which contains the origin,
g > 1 and A, p,« are real parameters. By (-,-} we denote the scalar product in
IR"®. We also investigate the related problem of nonexistence of solutions to
semilinear elliptic problems corresponding to (0.1), namely:

{ —Au > Me|™#(z, Va) + 2| %7 in @ (0.2)

u>0 in 2

YWork partially supported through TMR Programme NPE No. FMRX-CT98-0201.
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Vassiliev VUA. 7
(Moscow Center of Continuots Mathematical Education) -

Theorv of lacunas and Petrovskii condition for hyperbolic
Operagors

Lacunas of a hyperbolic differential operator are the domains of the complement
of its wave front in which the prmc:pal fundamental solution coincides with a reg-
ular function. 1.G. Petrovski“i;in hls semmal 1945 work has related this analytical
property with topologlca,l propertles of the set of complex ZE10S of the symbol of
the operator and ‘established a topologrcal cntenon of The Bxistence of lacunas: a
certain integration cycle (called now the Petiovski“i'cyele) should be homologous
to zero. In the ;works of. A.M. Davydova, V.A. Boroyikov, and J. Leray the local
.analog of this property; was mvestlgated, namely.the, local regularity, (sharpness)
of the principal fundamental solution close; to. parincular points of wave fronts.

in the 251970 works of MLF. Atiyah, R. Bott and L. Garding a local version of
the topological Petrovski“i condition was found, and the fact that it is sufficient
for the sharpness was proved. The necessxty of this condition (conjectured also by
Atiyah, Bott and Gardmg) was, proved in 1983 for almost all hyperbolic operators;
however for very degenerate operators thls conjecture is false. For all srmple (of
types Ay, Di'ori By T‘smgi’ll.auntles of wave 'fronts” the. locahzed Petrovski“i condition
(~ the sharpness) has a transparent geometncal ‘characterization, which allows us
to enumerate all; regularity domains, close to 2ll such singularities, in particular
close to ali pomts of wave fronts of generrc operators m spaces R n 7. (For the
slmplest sxmple smgulantxes, of types Ag ‘and A3, this enumeration was. done by
Garding about 1976). The main tools of this study come from the local singularity
theory of smooth maps, especially from the Picard-Lefschetz theory of hypersur-
face smgularltles {Tn-the: talk' main: concepts -of the theory. of iacunas, ideas of
proofs, and some further results, links and perspectives will be- described.

Véron L.
(Department of Mathematics, Unw .of. Tours)

Boundary trace and removablllty for nonlinear
ellmtlc equations

\\\\\

—Au+|u|9‘ = 0, in Q

v, on G0 (0.1)

u
u
where  is a smooth bounded domain in RY and.v.€ 9MM(8Q) (= the space.of
bounded ‘Borel measurés-on-9Q): A function' i is a solution’ of ‘this problem if
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u € L1{(Q) N L2(Q; 6 dz) (where 8(z) = dist(z, 8Q))and
/EmMﬁwwwah—fc@ 02)
2. .

for every function { € W2%*(Q) such that { =0 on o0.

In the suberitical case, 1 < ¢'< ¢, = (N +1)/(N — 1), the problem has a
unique solution forevery measure ». (Gmira and Veron). In the supercritical case,
q Z e, thls is mo ‘longer true, for instance, the problem has no solution if the
tmeasure ¥ is concentrated at a single point.’A ‘measure v € mt(@ﬂ) such\ that (0. 1)
is solveed a g-trace. It is known that, for every g-race, the solution of (0.1) is
uniqueand that the solution depends monotonically on the boundary data.  .:;

The charactenzatmn of g-traces has been the subject. of several studles Le
Gall, Dynkin and Kuznetsov for g, €252 and. Marcus. and Veron for ¢ »;2.In
these works, the following result was esta.bhshed

- Ifq 2 qc, problem (0.1} has a solution if and only ifv vanishes,on every
Borel set B{9}Q such thatCyyq (E‘) 0, 1,:’q+ i/¢"=1.

Here Cy/q,q denotes Bessel capac:ty on 90, We observethat, for’'l ‘<4< ¢,
Caoteq(E)=0onlyif E = @.

‘The characterization of g-iraces 15 'closely related -fo the' characterizationof
removable boundary, singularities.-A closed set K C 8{ is a g-removable boundary
smgulanty, if the equation —Au + Ju|?"u = 0 has no positive solution such that
uE€ C(Q\K )and u.= 0 on'9\ K. Note that in this definition, nothing is assumed
concerning the beha.vzour of thesolution near K Jn particular, it is not assumed
that the solution posseSses a boundary trace v € IM(AQ). The following result was
proved by Le Gall for ¢ = 2, Dyand Kuznetsov:for.1,.<, ¢ <2 and; Marcus.and
Véron for ¢ > 2:

A closed set K C 851 is a g-removable boundary singularity if and only

if Cafq(K) =0

Inle Gall and Dynkm-Kuznetsov s papers the basic approach is probabilistic
. whilei in ‘Maicus-Véron’s the method is purely analytic. The probabilistic dpproach
imposes'thé’ restnct.ion @ < 2. On’the other hand, some of the technigues impose
‘the' restriction”g >'2:

In the talk (joint work with M. Marcus), we provide'a unified ‘proof of there-
sults quoted above, applying to all ¢ in the supercritical range.The methed, which
is once again purely analytic, is based on a careful study of a special class ofg-
traces, namely the set of g-admissible measures. We say thata measure v € 9(69)
is g-admissible if the Poisson potentlal of |v|-isin L9(%; 8 dz). Recall that the Pois-
son potential of a measure » is given by

Mﬁaﬂf@ﬁﬁm, (0.3)
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where P is the Poisson kernel of . The set of g-traces will be denotedby 9M4(9X2)
while the set of g-admissible measures will be denoted by Qq(aﬂ)

Every g-admissible measure is a g-trace. Since M, (62) is closed in IM(FQ)
with respect to the total variation norm, it follows that

clon Dg(09) C TMy(59), (0.4)

where cly; denotes closure inthis topology. We note that, for ¢ > g, D,(09) is
not closed with respect to thetoial variation norm and consequently there ewist
g-traces that are not g-admissible.

Remark 1 Since L®(8Q) C D4(09), it follows that L (8Q) C clym Dy(3Q).
In addition it was shown that, for ¢ > 2, every non-negative, bounded measure
in W—2/99(8Q) is g-admissible.

Qur first result provides a characterization of positive g-admissible measures
in terms of Bessel spaces.
Theorem A 1 Suppose that q¢ > g.. Then:

(a) If v is a g-admissible measure then v € W-99(50).
(b) Ifv € (W~2/99)* (8Q) then v is g-admisible.

(c) There ezists a constant C = C(q) such that, for every v € (W‘2/9-9)+(6§2)

_1||V||W—2/¢.e(an) HP(M)||Lo(2;64x) < C"”“W—uq,e(am (0.5)
Employing this result we are able to improve (0.4) by establishing the following.
Theorem B 1 For every g > 1,

Clan D (09) = My (59). (0.6)

Te results lie at the core of our proof of the capacitary characterization of
g-traces and g-removable boundary singularities described above. The main ingre-
dients in our proof are: (a) capacitary results, (b) various interpolation theorems
involving Besov or Sobolev spaces,, (c) a useful result of concerning measures which
do not charge sets of C, ,-capacity zero and (d) a construction ofa new ’optimal’
lifting from W?/%9'(8Q) into a weighted Soboley spacein Q.

Viana M.
(Inst. de Mat., Rio de Janeiro)

Dynamies: hyperbolicity and beyond

There has been much recent progress in the theory of dynamical systems,
from which an understanding of the typical behaviour of very general systems is
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emerging, extending the scope of the classical theory of hyperbolic dynamics. I'll
discuss some of these developments. In particular, I'll report on very recent re-
sults in the theory of Lyapunov exponents of smooth systems, unveiling a sharp
dichotomy between some form of uniform hyperbolicity and total absence of ex-
panding/coniracting behaviour (zero Lyapunov exponents).

Zhikov V.V, .
(Viadimir State Pedagogical University)
Some remarks about linear
degenerate elliptic equations ?

1. Divergent equations with Partially Muckenhoupt weights Under a cer-
tain additional condition solution are Holder continuity but

Harnack inequality
Sobolev inequality fail.
double condition inequality

Fabes — Birolli — Serapioni model example. Some open problems.

II. Elliptic equation div(Vu + BVz) = f with skew symmetrical matrix
B € I? Uniqueness problem. Analogy with Krylov’s problem. ” Diffusion in turbu-
lent flow”. ” Variational® way to choose a solution. Statement of Homogenization
problem.

111. Divergent equation with Lavrentiey phenomenon H-solution and W-
solution. Variational solutions. Accessible or approximation solutions. How to de-
scribe the set of all accessible solntions? Model examples. Some open problems.

2This research was partially supported by Russian Foundation for Basic Research under grant
No 99-01-00072
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SECTIONAT . TATKS

A’Campo Norbert
{ University of Basel} IRTEIN
Real deformatlons and complex topology of singularities

Let 4:C— C2 be’ a poiynomlal map. such that 7(0) -0 and that the image
of v is a curve X with an isolated singularity'at 0 A ‘réal miaber ¢ > 0 is called a
suberitical radius for the singularity:of X, if the boundar‘y: of every Euclidean ball
B(0,€') C C? with center-at.0 and radius 0-< ¢. <.¢ intersects the smooth part
. of X transversally. By deﬁmtmn, the local knot K (X ) at 0 of the singularity of
the curve X at 0 is the pair (6B(0 €), X N 8B(0,¢)); which up to homeomorphism
does not depend upon the subcntlcal radius €. A deformation v, : C — C? of the
mapping 7 is a polynomial mapping (2,%) € Cx C'+ %;(z) € € with 4o = 7. The
deformation v, will be called small relative to the choice of a subcritical radlus
¢ if for all t € [0,1] the intersection of the ciirve X, = ‘3%(C) with ‘0B(0,€) is
a transversal intersection of submanifolds in 2. During a small deformation the
type of the Tocal ‘knot in aB(O €) does not’ cha.nge We say ‘that a deformatmn
- iS generic-if for all't € [0, 1] the curve X; ' B(O ¢) has only ordxnary double
point singularities: Generic deformations exist and the number of ordinary double
point singularities of X; is the genus §(X) of the local knot K(X). From now on
we will assume that the mapping 7 and and its small polynonnal deformation e
are given by real’ polynomlals ‘We say 'that’the ‘généric real deformation - 'n is’‘a
M-defoimation if for every t € [0, 1] all singularities of the curve X, N B(0, e) have
real coordinates. The intersection D(O €) N X, €]0; 1j; is the image of a generi¢
relative immersion with §(X) crossings of an interval [a, 8] in the e-disk D(0,¢) of
R2 We call the immersion D(0,€) N X; C D(0,¢) a divide P C D(0,¢) for the
singularity at 0 of X. The knot K(P) of a divide P C D(0, e) is by definition the
intersection in the tangent space T(R? = R* of the e-ball in R?* and the space
of tangent vectors to the divide P. We now briefly state some results. The first

explains the title of our talk:

Theorem 1 For the plane curve singularity X and any of its divides P the knots
K(X) and K(P) are homeomorphic.

Not every divide, i.e. not every zmage P of a generic relative immersion of the
interval [0, 1] in the unit disk D, is adivide of a _plane curve singularity. However,
knots of divides share properties with knots of plane curve singularities.
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Theorem 2. The knot K (P) of a divide P.C D is a fibred knot.

Theorem 3 The knat of a dzv:de is tmnsversat to the t:gkt contact stmcture of
S3. The contact class. zn the sense of Emmanuel szuz of tfze knot of a divide is

tzght

Theorem 4 The unknottmg number of the knot K (P) of a dwzde P equals the
number of double points of the zmmersed curve P R B

Theorem 5 A knot of a divide is the closure of @ stmngly quasz-posztwe bmzd
Knots of ping-pong dzmdes are closures of posztzve bmzds' '

Theorem 6 Knots of szngularztzes are knots of pmg-pong dwzdes e

The topology and the monodromy of dwxde knots are very special with many inter-
esting properties. To planar trees we associate so called slalom divides and knots.
The arithmetic properties of slalom knots are ;related to the theory of ”Dessin
d"enfants” of Alexander Gmt.hendleck and to the generahzed Tcheblchev polyno—
mials of George Shabat : L .

s e T

Adamyan V., Tkachen.ko\IM a L S
(Odessa State University) .. oe I

Inverse Stefan Problem for the Inhomogémbﬁé Heat
Equation

The boundary problem for the 1ﬂﬁ6ﬁiogeﬁéous hea.t equation in linear, spher-

dependence deﬁermmatlon by a gnren mterfa.ce speed 1s solved L

"o Andrei Afendikov v ¢ T
" (Keldysh Institute of Applied Mathemat:cs, Moscow) ’
Alexander Mielke
(Math. Institut A, Unwersztat Stuttgart)

On the unfolding of reversible vector fields with SO(2)-symmetry
and a non-sermsnmple elgenvalue 0

We consu‘ler four—d:mensmnal ordmary dlﬂ'erentlal equatlons dependmg ona
vector-valued parameter ‘Ain'a nelghborhood of f.he origin. For A = 0 the origin is
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supposed to be an equilibriurn whose linearization has a fourfold non-semisimple
eigenvalue 0. Moreover, we assume that the vector fields are SO(2)-invariant and
reversible. Such systems occur typlcally from spatial dynamical systems in physics
near the mstablhty threshold, where the evolution variable is obtained from a
one-dimensional axial direction. The reversibility is then associated to a reflection
symmetry and the SO(2)-invariance might arise for instance from an additional
spatial variable in which periodicity is assumed, see [1, 2, 5, 6] for such applications.
Qur aim is to describe the generic unfoldings of such a singularity. It turns out
that there are two cases. In Case 1 the SO(2) action and the reversor commute,
a.nd in Case 2 they do not commute. In both cases the Iowest order terms which
are derived via quasnhomogeneous truncatlon lead to the steady one-dlmensxonal
Ginzburg-Landau eguation N 4 :

42
dz2

In Case 1 the reversibility acts like (2,4) + (-z, A); and we have b(A) =0
and general coefficients a(}),d € C. Then, we get the complex szburg-Landau
eguation (cGL). In Case 2 the reversibility is (z,4) ~ (—z, A) ‘which implies
a(}),ib(A),d € R. We demonstrate that this equation is completely integrable
while (cGL) in general has complicated dynamics. For instance, there are cascades
of n-homoclinic orbits in (¢GL) [3, 4]. Under the certain restriction on parameters
of (cGL) in an arbitrary small neighbourhood of the origin it is possible to prove
the existence of a horseshoe.

A+4MA+N@EA+dMﬁA =0
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Agoshkov V.1.
(Institute of Numerical Mathematics, RAS, Moscow)

On a new method for solving the Stokes problem

We examine in this study the following approach to investigation and solu-
tion of problems of a given class, exemplified by a boundary value problem for the
Stokes system: the function of pressure is regarded as an ”additional” unknown to
the "main” compo nent of a problem’s solution, and the continuity condition from
the Stokes system is considered as one of "observation conditions” (”observation
data”, etc.), which is prescribed to close the system. Then, the problem, which is
considered as an inverse onm e, is included to the family of optimal control prob-
lems that depend on a regularization parameter. In the following, the problems
of optimal control are examined and solved with classic methods. At a conclusion
stage, we must show that, for a trivial reg ularization parameter, we obtain the
original problens #1d. corresponding results (possibly, with additional restrictions
on the initial data of problem). We consider some examples of iteration processes
for the solution of problems in question, justify them, estimate their convergence
rates, and present some results of numerical experiments.

Agranovich M.S.
(Moscow State Institute of Electronics and Mathematics)

. Spectral Problems for the Dirac System
with Spectral Parameter in Loecal Boundary Conditions

Let Q be a bounded domain in R® with C*° connected boundary I'. We
consider the stationary Dirac system in © (for a free particle) written in the form

a(Dyu — v =0, a(D)v—byu=0.

Here u and v are 2-dimensional vector-valued functions, a{D) = Y.03D;, D; =
—i8/0z;, 6; (j = 1,2,3) are Pauli matrices, and by, by are real constants. The
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boundary condition on I' has the form
ia(v)r* = Au’,

where A is the spectral parameter, u* and v* are the boundary values of u and v,
and the matrix a(v) is obtained from a(D) by replacing D; by the components of
the outward unit normal ». This problem has been communicated to the author
by a Polish physicist Dr. R. Szmytkowski [1]. Assume that £ = byb; # 0 and
that the homogeneous Dirichlet problem for the equation Au + k%u = 0 has no
nontrivial solutions. Then we reduce the problem to the equation

Lut = et

on the boundary. The reduction is equivalent only on C* functions. Here I is a
nonelliptic first order pseudodifferential operator on T, but it has an inverse Z~! on
C* functions, which is again a nonelliptic first order pseudodifferential operator.
However, the linear combination S = b L —byL~? is an elliptic first order operator
with positive principal symbol. This permits us to conclude that the operator L
has a discrete spectrum but with two points of accumulation of eigenvalues, 0 and
0. There exists an orthonormal basis in L,(T') consisting of C* eigenfunctions,
and it remains to be un unconditional basis in all Sobolev spaces H*(T). We also
indicate the asymptotic behavior of eigenvalues tending to zero and to infinity.
Similar problems for the Maxwell system have been considered long ago, see [2]
and references therein. We also consider 1) the case of b; # 0, b3 = 0, 2) the case of
a particle in a smooth electromagnetic field, 3) generalizations to other dimensions
of the space and other numbers of unknown functions, 4) other problems for the
Dirac system similar to other problems for the Maxwell system considered in [2].
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Agranovich Yu. Ya.
(Voronezh State Technical University)

Spectral properties of integral operators
and a conditional variant of Hilbert’s 16-th preblem

This talk is based on a joint work with Bugakova Q.A. and Golovin A.V. As
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we consider some problems of object localization in.Spatial Analysis it is natural
to measure the information quantity by the angle value under which the object
in consideration is seen from: the given point. In this connection we consider the
followmg model problem iet two given segments be ﬁzed on the plane in arbitrary
manner. It is necessary to ﬁnd all points of the plane from which these segments
are seen under equal angles. The desired geometric locus of points forms a real al-
gebraic curve corresponding an inhomogeneous polynomial of the 6-th order of two
variables. The coefficients of this polynomial depend on geometric ard metric pa-
rameters of the problem the length of the segments, the angle among she segments
and the ‘coordinates of theit centers, Thus we ‘get a special family of polynomials
of the 6-th order, which defines the solutions of the problem in consideration. The
obtained solutions permit to consider the cosine of the angles under which the
segments are seen from the points of the found curves, Using these functions as
kernels of integral operators acting in the Hilbert space of signals of finite power,
we obtain the possibility to investigate the siructure of unitary invariants of these
operators: the spectrum and Hellinger types in accordance with the parameters
of the. problem. Thus we can see how the.continuous change of the parameters
of the problem leads to, the discrete change of some integer characteristics of the
operators and their invariant subspaces. The mtegral operators defined above can
also be used as window transforms or as filters in Spatial Analysis. It is clear from
the statement of this problem that the topic in the consideration is closely related
to Hilbert’s 16-th problem,{1] and to_well-known resulis of Petrovsky [2].In the
talk it will present the following results: (1) the factonzation of 6-th order polyno-
mials on polynomial factors; (2) definition of the generic disposition of segments
on the plane. The solving of the problem on segments in the case of the generic
disposition; (3) The solving of the problem in the ali degeneral cases: in the type
of the geometrical degeneration and.in the type: of the metric degen_gratxgn, (4)
determination of the kernels of integral operators and the presentation of the ker-
nels of integral operators corresponding to the problem in the form of convergent
power series with coefficients in the form of trigonometrical polynomxa]s (5} the
matrix presentation ‘of integral operators in the basis of the Hilbert. space. :
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Ahmedov H.1., Mamedoy Yu.A.
(Baku State University}

On almost regularity by A.A.Shkalikov one spectral
problem and expansion formula by its root elements

For the equation
¥ +alzly =Xy, 0<z<l, W

almost regular (a.r.) {order no less than one in sense of &eﬁnition of [2]) problems
arise only in the boundary conditions as the form :

U1(y) = ey (0) + a10%(0) + Bt/ (1) + Brop(1) =

Ua(y) = a20y(0) + faou(1) = 0, ' 2

where g¢(z) is a complex-valued function, o;; and B;; are complex numbers, ||+
la1a] > 0, |azo] + |B20] > 0. In terms of coefficients of equation and boundary
conditions we'll find a.r-ity criterian order m 2> 0 of the problem (1),(2).
Theoreml. Let g{z) € C™[0,1], m 2> 0. Thea for the a.r-ity order m of the
problem (1), (2) it is necessary and sufficient
a11520 + @20611 # 0, when m=0 (regularity);
11620 + @20f11 = 0, 0P+ axnbio #.0, wheam = 1;
21120 + a20f1 = : amﬁzo + aznfio = 011020 # 0,

a®0) = (-1)*q ('"(1) (k=0,m~3), q(’”’z)(o) # (—1)”“29(""2’(1)
when m 2> 2. The statement of decomposability by root element is also proved by
methods of [1). The problem as (1),(2) is a.r. order m.
Theorem?2. Let ¢(z) € C™[0,1], m 2> 0, and let the problem (1),(2) be almost
regular order m. Then for any ﬁmction f(z) such that

d? k : m
flz) € C™ 20,1, Us ([@ +q(z)] f(x)) =0, (i=1,2k=0,1,..., [?])’

the expansion formula

Zres/\ / G(z, &, A F(E)dE, (3)

v=i

where G(z,£, A)- is Green’s function of the preblem (1),(2), {\,}%, is set of its
poles, the series in (3) converges uniformly (in general with brackets) atz €[0,1),
is true. Note that a denumerable set of Green function’s poles of the problem
(1),(2} in the case m > 1 is proved in [2].
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Ajiev 8.S. .
(Austmlzan National University)

..On some properties of nonseparable spaces
of dlﬂ'erentlable functions.

G. M. Fichtenholtz and L.V. Kantorovich ([3], 1934) showed the noncomp-
lementability of C([0,1]) in Leo([0,1]). R.C. Phillips (1940) proved that there is
no any linear bounded operator (in particular, projection) from o, to itself with
the kernel cg. Here are analogues of Phillips theorem obtained for anisotropic
Nikol’skii, Besov (B} (G)), and Lizorkin-Triebel (L .,) spaces of functions, de-
fined on open subsets of n-dimentional Euclidean spa.ce, as well as for the spaces,
closely related to the above spaces, that are ‘defined by local best approximations
by polinomials in different metrics (for example the spaces of De Vore and Sharp-
ley, BMO(G), BM O(G’)an (@) = Lo(G)). Let X(G) be one of the spaces under

consideration then let X (G) be its subspace which coinsides in most cases with the
closure of C*® in X(G) (we are using another explicit but more long definition).
The case of (quasi)seminormed X (G) that is so called homogeneous variant of any
of the above mentioned spaces is considered too. The following is a short form of
the first theorem. . }

Theorem. Snppose that G is an open subset of n~d1mentmnal Euclidean space, a
linear topological space Y has 2 countable total set of continuous linear functmnals

Then, for an arbjtrary continuous linear operator F: X =Y, Ker(F) #X (G) O,

in other words, X (G) can not be represented 28 as an intersection of a countable
number of hiperplanes of the space X. Every above space is fitted to be Y.

As particular cases,  the pairs (X(G), X (G)) of zero smothness,
such as anisotropic (Lwo(G), Leo N VMO(G)), (BMO(G),VMO(G)),
(Loo(G), C(G), diam(G) < c0), are also covered To compensate negative

consequence, namely, the noncomplementness of X (G} in X(G), the norms of the

quotient spaces X(G)/ X ( ) are calculated (parily, if G is a domain satisfying
fiexible A-horn condition). The main tools of the proofs aze Phillips theorem by
itself, construction of convenient copies of I (1mply1ng nonseparability) in these
spaces, and the theory of function spaces developed in [1,2].
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Akhtyamov A.M.
{(Bashkir State University)
On the coefficients of eigenfunctions-series expansion
for problems with an eigenvalue parameter
in boundary condltmns

We consider the eigenvalue problem

n -
g, =D AL =0, U (y, A) = 2 AU (y) = {0.1)
»=0 - =0
Here j=1,2,...,n, L@ = zs_,, pus{z) yP~2Nz) =0,
U(y) = Ynce (ec,k; y®)(0) + Bjrs y*)(1)) . For the regular eigenvalue problem
(0 1) A.A. Shkalikov proved that derivative chains of eigen and associated elements
g{ are the basis in the Hilbert space Wy A1 (W, 5! is subspace of W+ x

WPt x ..o x Wt where WP = WS(0, 1) is Sobolev space.)

Let 7= {vo, 11, ..., Vn-2} € Wy and 7= 37,2, o5k, ckn Tf.
Theorem. Suppose f; lo(y) - Zdz = j;, y - 15(z) dz + Po(y, z)
Po(y, 2) = U(y) - Vo (2) + Uz“(y) Vih-i(a) + - U ) - V()
UP(), V¥ 2) = 1,2,..., 2n) are homogeneous linearly independent forms
tbere exist numbers £ E C (4,7 = 1,2,...,n), and homogeneous forms
1 (2,75 (2), ... 73z), such thai
Uiu(y) = 2_7..1 61_1 +_; (3}) V= 1 2 ooy T2,
I by -Zde - fo,y B(z)de = i (z) _,_J(y) v=12...,n
Then crp = prnforn, Wwhere Co-

_ A,
Prh = Zs—o :_—.ol : (U+1+s(”u): prohe ))

L2



-1 —ies r Y
1':‘1 Es:ﬂ ZIT‘U ’ D e ("’V) V2ﬂ+l -3 (z 4 8)’
Grh = Z:i_:]l Zuﬂ..—el—s (lv+1+s(yk ), zp" —h2 }}Lz -

n m-1 1-s w41+ h,v i} ~h,.
— L N T T U ()  Vap s (Zk“ )
Heres=mn, ..., m— 1, and v, is (n — 1)-th component of H*+*~* % {(H is Shka-

. likov’s linearizator).

Akulenko L.D., Nesterov 8.V,
(Institute for Porblems in Mechanics RAS, Moscow)

Accelerated convergence method
for solving Sturm-Liouville Problem.

_ Many problems in mechanics, theory of oscillations and stability, control the-
ory, mathematical and theoretical physics, hydrodynamics, acoustics, dynamics of
the ocean and atmosphere, theory of elasticity, etc., lead to generalized boundary-
value problems of determining natural frequencies and modes of oscillations. It
is required to construct a solution of the generalized Sturm-Liuoville problem, in
which the coefficients of the equation are arbitrary non-linear functions of the de-
sired parameter. To fix our ideas, we will consider the following eigenvalue problem

(p(z, Nu'Y +7(z,N)u=0, 0SzgE<e0; u(0)=u(f)=

0<pr<pEP2<0o0, O0<mErEre<oo AEA

We will formulate the probiem of obtaining real values of A for which non-trivial
solutions of the equation with the boundary conditions exist. As compared with
the classical case, the behavior of the eigenvalues A, and the functions un{z) —

as a rule turns out to be extremely unusual, and a detailed study of it is difficult.
The properties of the ”spectrum” as a function of the order pumber n (and z
for eigenfunctions) may dramatically differ from the generally known properties,
obtained for the classical problem. Caleulations of the eigenvalues and sigenfunc-
tions with a required degree of accuracy encounter, essential difficulties: there are
no effective algorithms. A highly effective numerical-analytical method for solving
the problem, which posses the property of acceleraied convergence, is described in
this paper. It is based on differential relation, which we have established, between
the eigenvalue ), and the length £ of the interval. Here is some model examples:

ljL=p=1; r=(A+2%)"?
On the basis of our algorithm we have obtained:

A

o < 107% . exact M =0,165643.
1

Ay = 0,1655405;
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NL=p=1; r{z,A)=(A+0,1sin7z)"2,

AL =0,235283, B2 <4.1075; A, =0,007163, QA <4.10°5
A Az X

We have solved a number of some applied problems in mechanics, theory of oscil-
" lations and stability, and hydrodynamics.

Albers B.
(Weierstrass Institute for Applied Analysis and Stochastics, Berlin)

Mass exchange and diffusion in porous materials

1. Introduction The paper contains a macroscopic continuum model of
~ adsorption in porous materials consisting of three components. We suppose phys-
ical adsorption processes which means thai particles of the adsorbate stick o the
skeleton due to weak van der Waals forces (see: [2]). In the flow process of a
fluid/adsorbate mixture through channels of a solid component the fluid serves as
carrier for an adsorbate whose mass balance equation contains a source term. It
consists of two parts: first a Langmuir contribution which is connected with bare
sides on internal surfaces (see: [3]) and becomes the Langmuir isotherm in equi-
librium. The second one is revealed with changes of the internal surface driven by
the source of porosity which is a parameter of the balance equation for porosity
(see: [4]). A simple numerical example which describes the transport of polla-
tants in soils illustrzes the coupling of adsorption and diffusion. We use a linear
regular perturbation method and Laplace transforms to find an analytical approx-
imate solution of the problem. In order to get numerical solutions for the inverse
Laplace transform we use a Fortran-solver. The results show that afier some pe-
riod of time arises a maxirmum for the amount of adsorption for a certain range of
fluid /adsorbate velocities.
2. Three-dimensional adsorption/diffusion model
We investigate a flow of a fluid-adsorbate mixture through channels of a
porous medium. Particles of adsorbate settle down on the surface of the skeleton
so that their kinematics changes from that of the fluid to that of the skeleton.
Before fluid and adsorbate flow with a common velocity v¥ through the skeleton
which has the velocity v°. Fluid, adsorbate and skeleton have the current mass
densities pF, p# and p°, respectively. The mass source of the adsorbate is denoted
by p*. With the definitions for the mass density of the liquid oF = of + p4,

A -
the adsorbate conceniration in the fluid ¢ := %;- and the source of conceniration
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é:= ;L: the classical balance equations have the following form

' f?g; +div (p%v°) = — 558,
%’; +div (EvF) = pte,
%w"'-gradc:(l—c)a,
ap;:s +div (v @ v - T%) = p,
ap;vF +div (pAvF @7 +751) = —p.

According to Dalton’s law we expected p 2 ep” with p* = pf + p#. Furihermore
T5 denotes the partial Cauchy stress tensor in the skeleton, and p =7 (vF — v5) -~
pLévF is the momentum source in the liquid where 7 denotes the permeability
coefficient. For the scalar field of porosity we have an additional balance equation
as introduced in e.g. [4]. For small deformations of the skeleton it has the form

-a—n--!-vs -gradn + ngdiv (v —v%) =4 = _A
at T
Here A = n — ng is the deviation of the porosity 7 from its equilibrium value ng,
T is the relaxation time of porosity and # is the source of porosity.

3. Specification of the mass source '

On the macroseopic level of description we denote the normalized fraction
of occupied sides per unit volume by £, i.e. the fraction of bare sides is 1 — £.
Furthermore we denote the internal surface area of the pores by fin: and the mass
. of adsorbate per unit area of this surface by m,. Then the mass source is given
by the relation ' '

a_ WA fin) _ mA  dE | dfin _
i = V& -V kfm:a? +£—§t—) ) 1

The first contribution on the right-hand side of this equation describes the change
of the fraction of occupied sides. It is specified by the Langmnir evolution equation

B o a(1-gpt -t

where p# is the partial pressure of the adsorbate in the fluid phase and e and b are
material parameters. The energy barrier E), for particles adsorbed on the skeleton
is assumed to be constant. Furthermore k denotes the Bolizmann constant and T
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is the absolute temperature. The right hand side again exists of two terms: the
adsorption rate (first term) and the desorption rate (second term). In full phase
equilibrium they are equal so that the time change of occupied sides is equal to
zero. In this case we get the well-known Langmuir isotherm of occupied sides. The
other part of (1) describes the change of the internal surface. We assume that
this change is coupled with relaxation of the porosity », which is described by the
balance equation of porosity. The source of porosity # describes the intensity of
dissipative changes of porosity per unit time and volume of the porous material.
Motivated by elementary considerations about changes of the internal surface and
of the porosity in a porous medium yielding film adsorption (see [1]) we assume

1 d 1 ing o« l
f ins dt
Results

The most important; mvestigatlon of this work is that the results show the
coupling of adsorption and diffusion. This means that the amount adsorbed (ab-
solute value of the concentration source} depends on the relative velocity of the
components. We can show that there is a region of relative velocities where the rate
of adsorption reaches a maximum value. In the case of very small and very large
diffusion the adsorptlon rate deca.ys much faster than it is the case for modera.te
diffusion. )
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Alexeyeva L.A.
(Institute of Mathematics, Alma-Ata) -

Generalized solutions of Maxwell equations.
Shock electromagnetnc waves

By the study of processes of spreading of nopstationary electromagnetic waves
we meet some difficulties,.in accordance with arising the shock electromagnetic
waves, for which is distinctive breach of continuity of fields on wave fronts. Last
one prevents to using classical methods of mathematical physics or increases the



35

requirernents on smoothness of electromagnetic fields that greatly limits a class
of solved problems. Entering a notion of generalized solutions of the equations
and applying the methods of theory of distributions enable to cope with these
problemsfi]. : '

We consider the solutions of Caushy problem and two boundary value prob-
lem (BVP) in the space of generalized functions D{(R?) for the Maxwell equations:

—£8,E +rotH = §B, pdH +rotE =¥ (0.1)

where electrical and magpetic permeability ¢, 4 are constant. The initial field
(Eo, Ho} and electric and magnetic currents j%(z,1} , 7% (z,1} are known. At the
boundary S, which is Lyapunov surface, there are next conditions on the shailow
currents: E x n = jg(z,t) (first BVP), H xn = j§{z,t) (second BV P).
Here » is unit vector of external normal, a x & and (a,b) are vector and scalar
product consequently. Eqgs.(1) are hyperbolic.
Theorem 1. The solution of BYP, which is continues and differentiable every
where besides waves fronts F;, is its generalized solutions in D§(R?) only if [E]s, =
(s/e){H)r, x m, [H]r, = ~(p/e)"*[E]r, x m. Also [W]p, = (m,[P]F,).
Here [f]r, is the gap of f(2,1) on F;, m = gradF./|jgradF|| is wave vector,
P = ¢~Y[E, H] is Poiting vector, W = 0,5(¢||E|]? + pl|H]|?} is the density of
_electromagnetic energy.
Corollary. At the front of shock waves F; ([E]r,,m) =0, ([H]p,m)=0 I
means that the shock electromagnetic waves are fransverse ones. ’
Next theorem is proved. o

Theorem 2. If the solution of BVP satisfies to conditions of theorem 2, it is
unique. ) o
Using Green’s tensor [2] the generalized solutions, their regular integral rep-
resentation and singular boundary integral equations for I and II BYP have been
constructed. For solving BVP here the method of generalized fuaction are devel-
oped analogous to [1,3]. Also the problem of strong shock waves expansion has
been solved as Caushy problem.
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Aliev A.R.
(Baku State University)

On the correct solvability conditions of boundary-value
problems for a class of the odd order operator-differential
equations with discontinuous coefficients

Ina sepzira.ble Hilbert space H the following boundary-value problem is stud-
ied for a class of the odd srder operator-differential equations with discontinuous
coefficients: .

4k41 A
A u(4k+1)(t) +p(t) A4k+lu(t)+ z A (t)u(4k+l-.?)(t) f(t),t € Ry = [0 oo) (1)
=i
u<f>'(0) =0, j =§‘5 n < 4k +1, -

where f(t) € La(Ry; H), uft) € Wit Ry H) ([1]), 4o = 2E (E is an.unit
operator in H), 4 is a selfadjoint positively-defined operator in H (A = 4™ > > ¢E,
¢ > 0), A;(t), j = 1,4k + 1 are linear, generally speaking, unbounded opéerators,
defined almost for every ¢t € Ry, and p(t} is a scalar bounded function, defined
g, 0 ’~<\ t S Ti;
in the following way: p({} = @ N<ish,

..................

i Qs, Ts-—l <t < +oo,
positive numbers, generally speaking, not equal to each other, and mf p(t) = o:;,

where aj, i = 1_,s are

sup p(t) = as; n = 2k or n = 2k — 1 according to the choice of the operator Ap.

Here we take the derivative ulf) = %—‘-‘- in the sense of generalized functions theory
The boundary-value problem {(1), (2)} is studied in [2] for p(t) = 1, ¢ € Ry.In
the work the following theorem holds true as well.

Theorem. Let 4o = B, n =2k, A = A" > cE, ¢ > 0, the operators B; (t) =
A;0A, j=T,4F+1 are bounded in H and the mequalzty takes place

Ul g 41—\ 5 \TE s
Z ( 4k 41 ) '(ék+1) Py ea; T x’

F=1

Al D~
o B supnsg(tmaﬁﬂ] top supnaw(tmﬁ.,g <1,

where : aesn . .
B R s - O R P TS
Bi 2Gk+2[(4k+1)(2k_3)+4k2—l] F>%~1
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Then the boundary-value problem {(1); (2)} at any f(t) from-space Lo{Ry; H)
has a unique solution from W (R+ s H ) Correspondmg theorem also takes pla.ce
whenAo——Eandn—2k-1 !
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Aliey R.M., Gasimova S.G.
(Baku State University)

On the optlmlzatlon problem for a remainder
of some class of quadrature formulae

Let’s consider the ordinary differential equation
=y dole)=f6) M)

with bou.ndary condltlons SRR it

#0) =) =0 (i=1,2,...,7), - N (2)

where f (z) is a contmuous function on the mterval {9; 1], i < a*,.;.l, %< 7,+1 (=
=1,2,. —1),05, %€ {0,1,2,...,2r — 1} and A = 0 is not an eigenvalue of
the’ correspondmg homiogenous probiem In the work the minimization ptoblem ls’f
solved for a remamder R,.N(y) of the follomng quadrature formula ‘

~

f sfe)de = / (@is+3 3 AP [yw(zk) O]+ Borh, )

k=1 4=1

on the set of solutions of the boundary-value problem {(1); (2)} Note that heré
0< =z <22<...<2Zy < 1,yn() an approximate solution of the boundary-va.lue :
problem {(1}); (2 )}, which is searched in the followu:g form

¥nlz) = E C’knukn(z

k=0

and found by colocation method. Note that the known functions uh,,(z) (k =
0,1,2,
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,n) are solutions of the equation uk )(z)=— fea(z) (E = 0,1,2,...,n) with
bounda.ry conditions (2}, fxa{z) (k-= 0,1,2,...,n) are Lagrange fundamental
polynomials. As colocation nodes we choose the roots of polynomial w,(z}, where
{wn(z)} is a system of orthogoral polynomials with respect to the weight p(z)
on [0;1). Note that both p(z) and 1/p(z) are nonnegative summable functions on
[0; 1]. Differential equation (1) as a functional, is consideréd in the space L2, of
functions y(z), continuous on [0; 1] together with their derivatives up %o the 2r-th
order inclusive. The norm is: ae : :

- 71 ety 1/2
Ilylli,,,,, = ( / p(a:)ly‘z’)(z)l“‘dz)

[}

In the work the optimal nodes and coefficienis are found on the set of solutions
of the problem {(1); (2)} for guadrature formulae (3). Estimates from below and
from above are found for their remainder R,; N(y) as’ well >

AR

‘Alkhutov Yu.A.2
(Viedimir State Pedagogical University)

L, — solvability of the Dirichlet problem
for Heat equation in noncylindrical domains

In the talk the Dirichlet problem is investigated in Sobolev spaces with Muck-
enhoupt weights for some class of model domains. We give the complete description
of the welghts for unique sol?ablhty of the problem together with the correspond-
lng coercive estimate. In partlcular the Dirichlet problem in a ball BR of radms
R is studied. We formulate this result for a classical Sobolev space W, O(BR),
p > 1. Our considerations ‘take place in the coordinate space Enyq of ponits
(,z) = (t,21,...,25). The solvability of the Dirichlet problem

Lu=fin Bg, f € Ly (Br); u € W2} (Bg) (0.1)
for heat conductivity operator L = A—3/8% closely connect to the first eugenvalue
p= p(R) of the problem

n

3 (exp (—JEl/ )}, + mexp (—E[/4)v = 0 in @am, vlog,n =0
i=1 T
in n - dimensional ball Q25 = {£ : |£] < 2R}.

3This research was partially supported by Russian Foundation for Basic Research under grant
No 99-0100893
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Theorem. The solution of the problem (0.1) is unique. This problem is solvable
with the coercive estimate

2 a5y < O 2 B 1 2 [, (8)

if and only if p(R) > (p — n/2 ~ 1)/p. For instance if p € (1, (n + 2)/2) then the
problem (0.1} is solvable in a ball of arbitrary radius R. It should be noted that the
criterions solvability of the problem (0.1) for various parabolic operators L with
constant coefficient are different. In particular for operator L = A—a-8/8t, a > 0,
the necessary and sufficient conditon of solvability is p(aR) > (p — 2/2 — 1)/p.
The first observation of this kind belongs to 1.G. Petrovskii.

Amosov A.A., Vestfalsky A.E.
(Moscow Power Engineering Institute (Technical University))
Finite-difference scheme to the equations
of a one-dimensional viscous real gas
and the equations of one-dimensional nonlinear
thermoviscoelasticity with nonsmooth data

The initial-boundary value problem

Din=Du inQ; (1)
Diu=Do+g, oc=v(g)pDu—p(n6), p=1/p in @ (2)
Die(n,0) =Drn+oDu+ f, n=MX56pD8 in @ (3)
7?l“=0 = 730(3)7 1"‘|3=0 = uo(z), E(’I: 9)'2:0 = e(l(x) on ; (4)
Upmg = o(t)y  ulo=x = ux(t) on(0,T); (5)
—7|z=0 = xot), Tlo=x = xx(t) on (0,7), (6)

describes one-dimensional motions of a viscous real gas and a thermoviscoelastic
body of the Voigt type. The unknown functions 7(z, t), u(z,t),8(z,t) are defined
on @ = 2 x (0,T), where 2 = (0, X). The existence of a global weak solution of
problem (1)-(6) with nonsmooth data was proved in [1], [2). For selving this prob-
lem, we propose the new nonlinear finite-difference scheme [3], [4]. Under almost
the same assumptions as in [1] on the data, we obtain a priori estimates, global
with respect fo time and the problem data, for the finite-difference solutions and
prove the existence of these solutions. Besides, a theorem concerning the conver-
gence of some subsequence of finite-difference solutions to a weak solution of the
initial-boundary value problem (1)-(6) is proved. This work was supporied by the
Russian Foundation for the Basic Research, projects 00-01-00207 and 01-01-00700.
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Amosov G.G.
(Moscow Institute of Physics and Technology)

Approximation and asymptotic behaviour of
one-parameter semigroups of contractions in a Hilbert space

Let (R,V) comsist of a one-parameter semigroup of contractions B =
(R:)ier, in a Hilbert space H and its minimal unitary dilation V = (Vi)ier
in a Hilbert space Hy, H C Hy,. We claim B = R' @ R?, where R! is a com-
pletely nonunitary contraction semigroup of type Ci., i.e. R} — 0, when ¢ = +c0
in strong toplogy, and R? is a unitary semigroup. We shall call by canonical this
decomposition of R. Note that a minimal isometrical dilation of R coincides with
¥ because B! € Cy.. Let H;, be a Hilbert space of minimal isometrical dilation
of R*, H C Hj,, His C Hy. Denote V = V(H, H;,, Hy) 2 set of all pairs (R, V)
defined by semigroups R having isometrical and unitary dilations in H;, and H,
correspondingly. Consider the minimal isometrical dilation Y = V*|g,, of R*.
Define the index of R as a mumber of orthogonal solutions (I-cocycles) of the
equation fiys = ft + Yofs, fi € His, 8,6 2 0. Let dp,7 = (dp+ I)(dr — I~ and
dy,y = (dv + I}){dy — I)~? be generators and cogenerators of the semigroups R
and Y correspondingly. Then the deficiency number n of 7 is defined by the for-
mulan = dim[(I ~7*r)}/2H). The deficiency index of D is a number of solutions of
the equation dy f = —f in the Hilbert space Hj;. Notice that all these definitions
yield to the same number that we call the index of R. We introduce the following
notion of approximation preserving the index (see also [1-2]).

Definition. Two pairs (R, V), (T,U) € V are said to be approzimating each
other if (i) Vo — Uy € 89, (i) Vif =U:f, Yf € H.© Hi,, LER.
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Notice that condition (i) of the definition garantees the equality of the indecies of
R and T. Moreover every pair (R, V) defines a quantum stochastic process B(V)
and an associated.completely positive semigroup B(R) on the pair of hyperfinite
factor (M’, M) generated by the representations of the algebras of canonical anti-
commutation relations over ‘H, and H correspondingly. Two pairs approximating
each other in the sence of our definitioniare:cocycle conjugate by a Markovian
cocycle (see [2] for the proof and [3] for the definitions and notations).: :
! Theorem. Let R? = 0 in the canonical decomposition of R and R included in
tke pair (R, V). Then for every norm-continuous unitary semigroup S in a Hilbert
space K there ezist a pair (T,U) € V. such. that:the part T2 in the: canonical
decomposition of T is unitary equivalent to S and (T, U).is approzimating (R, V).
The'part T? determines the asymptotic behaviour of T' = (T3)ier,, when  — +oo0. -
Hence Theorem implies that approximating arbitrary pair from.V, one can reach
the required asymptotic dynamics. .

[ ‘.’"
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Evaluatlon of structurai characterlstlcs of ﬁows

! ’ : et

The evolution of complex dynamm systems is htghly determmed by struc-
ture of locally maximal invariant sets and their characteristics, such as Lyapunov
exponents, the Morse Spectrum, the Conley Index, the topological entropy and di-
mension. The authors are developing some methods of applied symbolic dynamics,
which gives one an opportunity to obtain an mformatmn about the qualitative be-
havior of a system without any prehmmary information about the system. These
methods are based on the synthesis of theoretical results and computer-oriented al-
gorithms for the qualitative studying of dynamlc systems. The first step consists in
constructing the so-called symbolic i image of a system, which is an approximation
of this system. We consider the oriented graph, which vertices are the elements of
some closed finite covering {D;}i_,. The vertices ¢ and j are connected by an ori-
ented edge i — j iff the image of the cell D; intesects the cell D;. It is proved that
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there exists a correspondence between pseudo-trajectories of a dynamic system
and admissible paths in its symbolic image. An analisys of the symbolic image is
based on various methods of studying oriented graphs. For example, it is possible
to find a cell for which there exists a closed path passing through it. In particular,
the problem of localization of periodic trajectoies, the construction of neighbor-
hoods of chain recurrent components, atiractors and their domains, filtrations and
isolative sets, are solved. If the pair (K, L), where K is an isolating neighborhood
and L is an exit set, has a non-trivial homotopy type (the Conley Index), than the
set K contains a non-empty invariant set. The non-triviality of homology groups
Hy(K, L) provides the sufficient condition. Consequently, it is highly interesting
to find an effective algorithm for computation of the homology groups of the pair
of sets, each of these is a union of some cubes. Currently, the authors are testing
an algorithm for the plane sets.
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Aref’eva 1.Ya.
(Steklov Mathematical Institute)

Loop Equations in Noncommutative Field Theories

Noncommutative analog of loop equations in the form of Levy-Laplace equa-
tion for the Yang-Mills theory will be presented.
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Arkhipova A.A.
(St.Petersburg State University)

On the strong nonliner nondiagonal parabolic
systems with g-growth

Let Q be a domain in R?, Q@ = Q% (0, T), the number T > 0 is fixed arbitrarily.
We consider a solution u : @ — RY, N > 1, u = (u,...,u") , of the parabolic
system
d
U — Ea:—a“(z’ u,ug) + bz, u,u:) =0, (z,8)€q. (1)

o
We assume that functions af(z,u,p) and b*(z,u,p), k = 1,...,N, ate smooth
enough, and for a fixed ¢ > 1 :

k
faf,

K

(2, u,p)0585 2 v(1+ )T 101, %(z,um) I<u@+12)%7%  (2)
ol s

where p,# € R?M,u, u = const. Firstly, we consider systems with a, = aq (%, uz)
and b = 0 under assumption ¢ > 1 in (2). For these systems, local regularity of weak
solutions inside of @ were stated by J.Necas, V.Sverac for the parameter ¢ > 2
[1], and by J.Frehse, G.Seregin for ¢ € (1,2)[2]. We prove global in time classical
solvability of Cauchy-Diriclet (C-D) and Cauchy~- Neumann (C-N) problems for
such type systems with any ¢ > 1 in condition (2). Next, we study systems (1)
in the case when the elliptic operator of the system is the Euler operator of a
functional Efu) = [ f(z,u,uz)dz, ie., af = for (2,u,u5), o = fur(z,u,p). We

assume the "natural” growth of b:
| &(z,u,p) |< ba(1 + [P}, o = const > 0.

No smallness conditions on bg are assumed. For such type systems with ¢ = 2, we
proved the existence of the global in time almost everywhere smooth solutions in
@ for C-D and C-N problems. The solutions have at most finitely many singular
points [3]. It is appeared that in the case ¢ > 2 there exists a smooth solution in
Q . We shall also discuss some other author’s results devoted to systems (1), (2).
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Arlinskii Yu.
East Ukrainian National University
Sectorial operators in divergent form -
and its m-accretive extensions

According to T.Kato [1}], a linear operator S acting in a complex Hilbert
space H and defined on a linear manifold D(S) is called sectorial with a semiangle
a € [0,7/2) and with the vertex at the origin if the numerical range is contained
in the sector of the complex plane: ©(a) = {A € C: jarg A| < a}. We assume that
a densely "defined closed sectorial operator S has a dwergent form § = L3QL,,

- where linear operators I, Lo and @ satisfy the following conditions:

(a) Ly C L2 are two closed densely defined operators in H taking values in a-
Hilbert space 9,

(b) Q € £(9) and Re (QF. f) > m||fI?, F€H m>0,

(c) the llnear manifold D(L,) N D(L3QLy) is dense in the Hilbert space 'D(L;)
equiped by the graph norm. ,

In this talk we give a description of all m-accretive and m-sectorial exten-
sions of such operator S in terms of abstract boundary conditions and con-
sider applications to differential operators. A key role plays a ”boundary” triplet
{#, CH C?H_,8 T}, consisting of a rigged Hilbert space H4 C # C 7-£_ and
linear operators & : D(L}) - H—, T : D(L3) — H sich that

R(®) = H~, R(L) = Hy, ker® = D(L3}), kerT = D(L,), with the Green’s
identity:

(Lif,u)g — (fiLau)g = (®f,Tu)y, forall feD(L}) andall u€D(Ly).

We consider two cases: 1) dlm(‘D(Lz)/??{L;)) < co (this condlt.lon implies (c})
and

2) dim(D(L,)/D(L1)) = oo, L™ is a bounded. In the first case the boundary
space #H is a finite dlmensmnal

Theorem. Let dim(D(L;)/D(L1)) < co, P be the projection in $ onto R (L1)
w.r.t. the decomposition $ =R (I )-l-Q*‘l (ker L}) and let {#, @, T'} be a bound-
ary triplet. Then the relatzons :

v €D (Lg) . .
D(3) = { QPLyu+2Q}*XTueD(L)
& (QPLyu +2P*Q}f*XTu) € W(Tw)

b

Su=1L} '(Q'PLzu + 2Q1/2XI‘u)
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give a one-to-one correspondence between all m-accretive extensions of

S = L3QL, and all pairs <'W,X >, where W is an m-accretive lin-
ear relation in #,X : D(W) - Qg *R(L,) is a linear opera-

~ N2 ~— —

. tor such that "X e" € Re (W(e), e) u C € D(W). The opera-

tor §2 is an m-sectorial if W is an m-sectorial linear relation and
nfe" < 0%Re (W(e),e)y , € € D(W) for some é € [0, 1).

This result is applied for Sturm-Liouville operators. In the second case under
the additional conditions we give an abstract version of Vishik’s boundary oper-
ators [2] and use the corresponding result for the minimal operator generated by
a second order uniformly elliptic differential expression in the bounded domain in

R™
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Artamonov N.V.
(Moscow State University)
On the boundedness of selutions of one class of second
order differential equtions in Hilbert space

B rmanbepToBoM mpocTpaHCTBe §) paceMaTpuBacTca AuddepenndaibHOS
ypaBHEHHE

w"(t) + Bu' () + (T +iS)u(t) = 0, u(0)=1up, w'(0) =u,t Ry, (0.1)

T, B - camMoconmpaXeHHHe, NOIOKATSALHEO OTpeAeicHELEe ONepaTopHl, S — 3aMKHY-
Teil cuMMeTpHueckuii onepatop, D(B) O D(T?) u D(S) D D(T). Ypasuenne
AAHHOTO KAACCA BOIEMKAET NpHA Haydenud yparsenus ( v = {vg,vy}; 81,8 > 0)

wye + aywy + A2w +a(v,gradw) =0, w=w(,z),z€QCR? (0.2)
OTHECHIBAIOMEro Maibie Konebanusa naacTuxs: B fHoToke rasa ([1], [2]). O6oanazam
xez}g{)g)((Bm, z)/(z,z)) =m

g(z) = m(Tz,z) - ((2B — m)~ Sz, Sz), z € D(T).

$), — miKaJa TPOCTPAHCTB, HOCTPOEHHA] 1O omepaTopy T
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Theorem 1 ITycmbv g(z) nosyoepanuuena cuuzy (m.e. g(z) > clz,z), Yz €
D(T)). Tozda ¥(u1,ug) €H 1 X5 sadava Kowu das ypasnenusz (0.1) xoppexmuo
paspewuna ¢ apocmpancmee HX 1. Ecau g(z) > 0, Yz € D(T), mo ece pewenus
ozpanuuennsi ua noayocu Ry e npocmpancmee $ X 9 1

Ecan ) — orpamm<enHas o6iacTh ¢ JMIUIALEBON TDaH@med, TO [Ad ypaBHe-
mua (0.2) aoxaszaHa KODPEXTHAfA Pa3pelmMoCTh 324a4u Komm u Hafijemn go-
CTaTOYHHE YCJOBHA OTPAaEMIEHHOCTH pemieAu# B mpocTpascTBe WZ((2). Ecan
obaacts ) ~ MHOrOYPoAbHUK, TO PElieHHs YDaBHEHAS (0.2) C KpaeBEIME YCJIO-
BuaME W |sn= Aw |so= 0 orpanmuent ecar [v|? < (a?A1)/e?, A, - nammenbmiee
cobcTRennoe 38a3enre 324390 Juprxae aias onepaTopa Jianaaca ga 0.
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Asadullin R.M.
(Bashkir state pedagogical university)
Methods of elimination in conformity
to inverse problems for ODE systems

_ Consider a problem of determination of the parameters §; of the system of
ODE

z= f(l‘, Y 9) (01)
¥ =g(z,,9) (0.2)
2(0) = 2o, 3(0) =10

on given a vector of the solutions z(t), ¢t € [0,7]. Here # € R*; z € R*,n > 1;
y € R™,m 2> 1 is the vector of the unknown solutions, f;(z,¥,8),g;(z,y,60) are
the polinomials on appropriate variables. We have an inverse problem (IP) of
determination of parameters of an ODE system in conditions of an incompletness
of the information. The problems of a similar kind arises in modeling processes
of chemical and biological kinetics, systems of antomatic control and other. It is
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known [1], that the incompletness of the information on dynamic characteristics of
process results to nonuniqueness of the IP solutions. Reparametrizate the initial
system, eliminating variables y;, §;, to investigate a number of 1P solutions of the
system (1)-(2). Write the obtained system in the form

%
Za,-ggo,-;(:c, coe™) = eple,... ,zlm )y, (0.3)
=1

z2(0)

i

:E,'j’o(.’ﬂo,yo,e), i=1,... ,n,j: 1,..‘. ,

where a; = a;(f) are some rational functions on parameters; ;; are linear -
independent monomials on appropriate variables. For the constructive variables
elimination it is essential polinomial dependence of the righi-hand sides of the
system (1) - (2), that permits to use advanced algorithms and methods of computer
algebra. It is shown, that at some assumptions the direct (in a sense of the solutions
z(t)) and, as a consequence, the inverse problems for the systems (1) - (2) and (3)
are equivalent and IP of determination of the parameters a; of the system (3) has
the unique solution. The number and the form of parametrical functions ey ()
defines a number of the IP solutions for the system (1) - (2).

REFERENCES
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Ashino R.
(Osaka Kyoiku University}
Microlocal Analysis and Multiwavelets

Microlocal filtering is performed with adapted orthonormal multiwavelets
wich are derived from several scaling functions. Microlocal filtering can also be
considered to be the action of psendo-differential operators whose symbols are
smooth functions with compact supports in Fourier space. Expansion of functions
or signals in terms of a tight frame multiwavelet gives a rough estimate of their
microlocal content.
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7 Astashova 1.V.
(“MATI” ~ Russian Aviation Technology University, Moscow)

On Asymptotic. Propertles of the Emden-Fowler Type
Equation with Complex-Valued Coeflicient

Asymptotic behaviour of all solufions. to the differential equation

¥'(z) = P(z)ly(x)l"‘y(w) (0.1)

is descnbed provided m > 0, p(z) — po € C\R.

Theorem. Let p(z) be a continuous compIex—vaIued function, p(a:a) po € C\
R, m > 0. Let y(z) be an inextensible solution of (0.1) defined on (z1,20) or
(zg,zg) with —co € 71 < 79 < z2 € +0c0. Then

el = /g (00

arg y(z) = i(;%’_is% Iz — zo} (1 + o(1)),

as & — zo, with the sign *+” on (29, 22) or *~” on (z2,20) and the constant

Bﬁpn+\/|pa12+ =
Q= —

1 (Im pu)2
m+2 ) (0.2)

Theorem. Let p(z) be a continuous complex-valued function, p(z) = po € C\R
as g = €co,€ = x1, m > 0. Let y(z) be a solution of (0.1) defined near eco. Then

el = gy (1+o(1),

em Impg

argy(z) = @m 180 In|z| (1 + (1)),

as x — éco, with the constant Q given by (0.2). Some proves can be found in [,
(2.

Acknowledgement This work was supported by RFFI (Grant No.99-01-
00225).
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Avdonin 8.A.
. (St. Petersburg State University)

‘Riesz bases of exponential divided differences
and controllability problems

The ‘method of moments is a powerful tool in control theory of partial dif-
ferential equations. It is based on properties of exponential families (usually in
space L%(0,T)) such as minimality and the Riesz basis property. In recent years
interest in the method of moments in control theory has increased, and this is
connected with investigations into new classes of distributed parameter systems
such as hybrid systems, structurally damped systems and systems with singular-
ities in control or equation. The other challenging subject concerns simultaneous
conirollability of several systems. Control problems for these systems have raised a
number of new difficult problems in the theory of exponential families. The princi-
pal questions which we consider in this talk are connected with the basis property
_ of linear combinations from exponentials e**»* in the case when the distance be-
tween some points An tends to zero and therefore the family of exponentials {ef3»t}
does not form a Riesz basis in L?(0, T). Using a new approach we have general-
ized the classical Ingham inequality for the case when the set {),} is the union
of a finite number of separated sets [1]. Moreover, we obtained a full description
of Riesz bases of special kinds linear combinations of exponentials — generalized
divided differences [2]. We applied our results to problems of simultaneous and
partial controllability of several elastic strings and beams [1}-[3]. The talk is based
on joint papers with S. Ivanov and W, Moran.
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Azizov T.Ya.
(Voronezh State University)

- On the Riesz basnmt.y of eigenvectors
of twice contmulty differentiable operator functions

This talk is based on a Jomi: work wath A. Duksma and L.L Sukhocheva Let

L : {a,8] — L(%) be a continuous function which values are selfadjoint bounded
operators on a Hilbert space 7. We sei

E(L) =cls. {ker L(}) | A € [a, 8]},

t+(L(a)) (s-(L(B)), resp.) the number of positivé (negative) eigenvalues of L{a)
(L{b), resp.) counting multiplicity. By the definition-a differentiable operator func-
tion L satisfies the condition {8) if there exist positive numbers ¢ and J such that

forevery z € [e,8and f € U, |Ifll =1, - ;
A< > WE@LN>E

The main: result is the followmg proposmon

Theorem 1. Let 'L be a twice continuously dzﬂ'erentzable selfadjamt operator
function; defined ‘on‘f[a,b];, such that L(a) and L(b) are Fi'edﬁolm operators,
n+(L(a)) < co, _(L(b)) < o0, the conditions s and SR

; I
/ “’(tt" )dt<
®.

hold, wbere w(t L") is tbe madqus of contmmty of L” in the Markus—Matsaev
senser

oft, 1) = max{lE"(z +8) ~ L"(2)] | = €ls, b=}, te[0,6-d.

if o(L) is at most a countable set, tben evety ‘umon of orthonormal bases of
ker L(z), z E fa, b], isa mesz baszs in (L) and

codim £(L) = k.4(L(a)) + K- (L(b))

L LRV

If L satisfies the condition (S) and there is 2 number ¢ € (a,b) such that
L{c) is a compact operator, then (L) is at most a countable set, £4.(L(a)) < oo,
k-(L(b)) < o0, and L(:c) is Fredholm for z # c. Theorem 2 is in some sense an
inverse result:
Theorem 2. Let dim# = co and Jet L [a, 8] = L(?i) be a continuous selfadjomt
operator function which satisfies the conditions:
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(@) £ #0, (L@ =0> w-)EWAH > 0,5 # =,

(1) £4(L{a)) < o0, £~ (L(b)) < oo,

(##4) there is a ¢ € (a,b) such that L(z) is Fredholm for z # e.

Then

(@) k4 (L(z)) < oo for z € [a,¢) and £_(L(z)) < co for z € {c, B},

(b) L{c) is compact,

(¢) dim&(L) = dim#H,

(d) codim&(L) > k4 (L(a)) + - (L(b), and

(e) ifo(L)N[a, ) (¢ (L)N{c, b]) is 2 finite set consisting of Ka,c (5c,b), 52y, cigenvalues
counting multiplicity, it holds

54(E(c)) = 64 (L(a)) + ko (n-(L(¢)) = £-(L(B)) + Kcp).

This research supported by the grants NWO-RFBR 047-008-008 and RFBR
99-01-00391. '

Babich M.
(Steklov Math. Institute, St. Petersburg)

Symmetries of the 4-matrices Schlesinger Systems
and the algebraic surfaces

By the every set of parameters of 4-matrices Schlesinger System we con-
struct the algebraic surface. This surface keep all the information about the parent
Schlesinger System. Systems, connected by a symmetry transformation generate
the isomorphyc algebraic surfaces. All types of symmetries, such as a permutation
of parameters, Schlesinger and Okamoto transformations are considered. The new
form of Schlesinger system and the action of the modular group on the correspond-
ing linear system are presented.

Babich V.M., Dement’ev D.B., Samokish B.A., Smyshlyaev V.P.
(Steklov Mathematical Institute, St. Petersburg) '

Scattering of plane electromagnetic wave by
a conducting body with a conical singularity

The problem of scattering plane electromagnetic wave by axisymmetrical
perfectly conducting body is considered. It is assumed that the body has conical
singular point on its axis and this point is in the shadow zone. It is possible using
method of matching of asymptotic expansions to obtain an analytical expression
for the creeping wave propagating along the body surface: The scattering of the
creeping wave by the conical singular point is considered (as axisymmetrical as well
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non-symimetrical cases). The problems were reduced to solution of Fredholm inte-
gral equations. The numerical procedure to calculate the corresponding diffraction
coefficients is suggested. Appropriate calculations were performed.

Bakhvalov N.S., Eglit M.E.
(Moscow State University)

About properties of higher order equatlons for
elastic waves in stratified media *

The equations for wave propagation in stratified media with periodic struc-
ture are considered. They have the form

”(%1‘) ﬁ? dz; ( 5 )az)

A scalar p and matrices A;; are periodic functions of a coordinate z; with period
€. All dimensions are supposed to be scaled by a typical wave length. Long waves
are considered so the dimensionless period € is small. At ¢ << 1 it is possible to
describe the process approximately by the se-called averaged equations. In [1] the
method of two-scaled asymptotic expansions had been used to obtain the averaged
equation for a certain w in the following form

Pw = w

P ™ ™ 2 Rttty —
2 abals o e o a 13
ot 3 0z} 023 8z3

m=1U +l+1s,

where g is the averaged over the period value of p, the matrices hy,1,y, are constant
and the following relations are true

co
893 my
Biyiaty)T = (1) by, u~ e N,
( fala 3) ( ) o qyll,'zz;zs—ﬂ 1112'3( ) qmax a.a".‘ 62

The matrices hy,1, at I + 12+ I3 > 3 are of special interest here. These matrices
determine, in particular, dlspersmn of waves in microinhomogeneous media. Matri-
ces ki, 1,1, which are contained in the equations for waves propagating orthogonally
to the layers have been investigated in [2]. Here the waves propagating along the
layers are considered: The averaged equation can be written in the form (z2 - axis
is parallel to the wave velocity)

_Pw w FBw 8w
P = gy tellagg + & Hagy +0(°)

4The work was supported by Russta.n Foundation for Basic Research projects 99-01-01148,
99—01-01153) .

H
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Similar equation describes long wave propagation in a stratified plate ‘with the
surfaces free of forces. A parameter ¢ is then the ratio of the plate thickness to
a typical wave length. Calculations of the matrices Hy, Hs, Hy4 have been done
for different structures.: In particular, unbounded periodic media consisting of a
repeating system of two homogeneous isotropic layers as well as three-layered plates
with a plane of symmetry have been considered. In all studied ¢ases it was found
that Hz =0, H», H, were diagonal, H; > 0 (Hz > 0 for an unbounded medium),
and H, was not definite. Therefore the dispersion has different signs for different
components of a displacement vector w. Calculations for media consisting of a
repeating system of three homogeneous isotropic layers and those for two-layered
platesgave H3 = —HY # 0; H,, Hy were diagonal as before, Hz > 0 (H2> Oforan
unbounded medium), and H, was not definite. The authors thank E.V.Chizhonkov,
for his help in the organizing calculations. G
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Barsukov A.IL
(Voronezh Military Institute for Radioelectronics)

Similarity of a ‘J-dissipative'operator to a Hilbert
space d1551pat1ve operator
s 3 TRl i
This talk is based ona jomt work wnth T Ya Amzov, A Dljksma and P. Jonas;

Let # be a Hilbert space with the scalar product (--)and H =H, . OH._ beits
orthogonal decomposttmn sich-that dim#_. =g'¢co. “The operator J = Pt — P,
where P* is the orthogonal projection onto ’f‘{*, is called the fundamental sym-
metry correspondmg to this decomposition: The space - with ‘the inner product
[-,] = (J-,-) is cailed Pontryagin space and is called by the symbol Ti,.. Closed
densely defined operator A : dom All, is J-dissipative ifIm [Az,z] > 0,z € dom A.
We shall give the criteria for the similarity of a dissipative operator A on a Pon-
tryagm space. 1I; to a Hilbert space dlsmpatwe operator in terms of the location
of its spectrum and an umform bound on the growth of the resolvent. Df A The
main result is the follomng L .
Theorem . Let A be 2 maximal dzsszpatzve operator in a Pontryagm space .and
let J\l,)xz, «»Am be the point in H for which ker (A — X;I) contains at least’
one nonposmve nonzero vector, } = 1,2,...,m. The faﬂowmg statements are
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equivalent: (1) o(A) C C* and for each j = 1,2,...,m, there is a sequence {X;;}
in p(A) NC~ with Xij — Aj such that . A

sup |As; — A1 Tm Agal =" < 00,8up | Tm All|(A — Ajud) 2} < 0.
n n

(2)a(4) C C* and for each i=1,2,..: ,m, there is a sequence Ajn in p(A} with
Ajn = Aj such tbat .

sup I)‘Jn ~xl- 1A~ /\:nf)"ll < 0.

I

(3) Ais szmzla.r toa maxmzal dissipative operator on HzIbert space. (4) a(A) ct
and

sup{|Im M*||(A-AD)*||: ke N,A€C™} < 0.
(5) e(4) C C* and

e swplTm (A=A A€ €Y < oo

-Moreover, if A is also symmetric or selfadjoint in Poniryagin space, then (1), (2},
(4) and (5) hold if and only if A is similar to a symmetric and maximal dissipative
or selfadjoint operator in 2 Hilbert space, respectively.

Beklaryan L.A.
(i Central Institute of Economics and Mathematics
of Russian Academy af Sczence, Moscow)

The complexity of structure of the group
of homeomorphisms of the line and the connected problem
.of classification of the differential equatmns
with a deflecting argument®

Wlej‘:‘pnsidér &iﬁ'qrential equa.ti_ons with the deﬂect‘ing,argtllment
' 2() = £, 2(01), - 2(0:8)), ER,

where f : R x R%~isa contmuous mapping and g; : R — R, i = 1,..., s are the
hemeomorphzsms, preserving orientation. We outline the équations mth canonical
type of the argument deflection to which the given equation’ can be reduced using
transformation of the time variable. Such problem occurs to be equivalent to the
problem of classxﬁcatlon of the groups G =< 915095 > of homeomorphlsms

vl

Sin Russian .
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of the line, given by the functions of the argument deflection. The classification
of the groups of homeomorphisms, preserving orientation, in its time, is closely
connected with different topological, algebraic and: combinatorical characteristics
of group and also with the properties of the metric invariants.
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Belishev M.I.
(Steklov Mathematical Institute, St. -Petersburg )

Dynammal systems with boundary control: models and
characterization of inverse data® ,

An abstract version of the BC-method is proposed as a chapter of the linear
system theory dealing with dynamical systems with boundary control (DSBC)
A characterization of response operator (transfer operator function) ‘of DSBC is
given; a set of models (canonical realizations) of DSBC determined by response op-
erator is presented. As application, a conditional existence theorem characterizing
the dynamical Dirichlet-to-Neumann map of the Riemanaian manifold is obtained.
An abstract analog of the Gelfand-Levitan—M.Krein-Marchenko equations is de-
rived.

‘ , Belokolos E. D. o
(Instztute of Magnetism, National Academy of Sciences of Ufcm:ne}

The integrability and the structure of atom

We have proved in the Hartree-Fock approximation that an electron configu-
ration of atomic ground state is defined by a resonance condition gn, +pl = const.,
where n;,! are radial and orbltal qua.ntum numbers ofa smgle—electron state thh
an energy E=0,2nd ¢q,p are positive integers. If we insert in the resonance con-’

SThis work supporied by the grant RFBR N 99-01-00107
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dition the semiclassical Bohr-Sommerfeld éxpression for the quantum number n,
in terms of the atomic potential ¥ (r) we obtain an-integral Abel equation for this
potential. In terms of the Langer variable the Abel integral equation transforms
into an equation for specirum of a one-dimensional Schrodinger equation and as
a result of that the atomic potential appeass to be a soliton or its isospectral de-
formation. In terms of the radial variable r this soliton is nothing else as the well
known Tietz potential V(r) = —Z/r(1+ (r/R))?, where Z is a'nucleus charge and
R is a parameter. The Schrédinger equation with the Tietz potential for a radial
part of the electron wave function is an ordinary differéntial equation with rational
coefficients having two regular and one irregular singular points. In semiclassical
approximation the spectrum of Schrédinger operator with the Tietz potential is
universal and is deseribed in terms of elliptic integrals: For the Mendeleev periodic
system of elements we have proved the Madelung empirical rule (» + 1, n), in ac-
cordance to which the electrons complete in the atom with growth of the charge Z
at first the states with the least possible value of the quantum number n 4! and at -
a given value of the number n 4! complete the states with the least possible quan-
tum number n. We introduce in natural way a notion of the Mendeleev electron
shell and caleulate its different properties. It is shown also that the deformations of
the Tietz potential are many-well potentials for which we can calculate effectively
the eigenstates and eigenvalues. These many-well potentlals can be used in order
to explain-an existence of the d-, f-, and g- tramsition seties of elements in the
periodic system of elements.

Belokurov V.V. Soloviey Yu.P., Shavgulidze E.T. .
.(Moscow State University)

General approach to calculation of funetlona] integrals -
and summation of divirgent series

Belov V.V., Maksimov V.A.
(Moscow Institute of Electronics and Mathematics)

Qua51modes of helium atom correspondmg to stable orbits

1t is well known [1,2] that to closed phase trajectories of a hamiltonian sys-
tem that are nondegenerate orbitally stable in the linear approximation, one can
assign quasimodes of the corresponding (modA®/?) quantum problem within the
framework of Maslov’s complex germ theory [2]. But in the resonant case, orbitally
stable trajectories are degenemte, and asymptotic elgenvalues are also degenerate
in order up to O(h?), A — 0. In the present talk we consider the problem of
constructing quasunodes (modh®/?) corresponding to degenerate orbitally stable
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closed trajectories A*(E) for a physically important non-integrable system (the
model of helium atom with quadrupole momentum) with hamiltonian
Pl Ph_Z_2zZ, 1 141
H=5+G-L-Z+bty(3+3),
7 €ER? ri=|zi|, r2=|z1— 23|, 2; €R3, Z> 1 — const.

For 4 = 0, such trajectories are known in the physical literature (e.g., “frozen
planet” configuration, Langmuir orbit). For 7 # 0, we found another class of these
orbits — relative equilibria (RE) of the corresponding classical system. Using the
method of reduction by the diagonal action of SO(3) group, we constructed all
RE of the system and proved their orbitally stability. The scheme of semiclassical
quantization for degenerate trajectories A'(E) is the following: 1) in the neighbor-
hood of A}(E), we construct a one-parametric family of k-dimensional invariant
isotropic tori A¥(E) by shifting along the vector fields of hamiltonian’s symmetries
Ly,..., L, transversal to A'(E) (2 < k < 5); 2) it generates a k-parametric fam-
ily of almost invariant isotropic tori A*(E,J}, J € R*¥~! with complex germ; 3)
according to [3], in the neighborhood of A¥(E, J) we construct new canonic vari-
ables of action-angle type and the normal form of hamiltonian in these variables.
After quantization of A¥(E, J) in the new variables, we obtain a correction of or-
der O(h?) to the formulae of degenerate spectrum corresponding to the degenerate
trajectory Al(E).

REFERENCES

[1] V.M.Babich, Eigenfunctions concentrated in the neighborhood of @ closed
geodesic, Zapiski Nauchnykh Seminarov LOMI, 9 (1968), Leningrad.

[2] V.P.Maslov, Complez WKB Method in Nonlinear Equations, M. Nauka,
1977.

[3] V.V.Belov, 0.S.Dobrokhotov, 8.Yu.Dobrokhotov, Isotropic tori, complez
germ and Maslov’s indez, normal forms and quasimodes of multidimensional spec-
tral problems, Math. Notes 69, No.4, 483-514 (2001).

Ben Amara J.
(Faculté des Sciences de Tunis)

Sturm-Liouville Problem with spectral parameter
in boundary conditions

In this work, we study spectral problems of the form

~u"(z) + g(z)u(z) = Xu(z), O<z<nw (0.1)
{ w(0)=0 (0.2)

w'(7) = miu(w);
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Here g(z) is a real integrable function, A is a spectral parameter and m is a given
real parameter. The sign of m plays an essential role. In the case m > 0, this
problem can be interpreted as a spectral problem for a selfadjoint operator in a
well chosen Hilbert space (see[1]). Here we mainly interested by the case m < 0,
where the problem is realised as a spectral problem for a selfadjoint linear pencils.
We give sufficents conditions on the parameter m and the potential ¢(z) for which
all the eigenvalues are real and simple, and we establish the oscillation theorem for
the eigenfunctions. These results are obtained essentially by using the Pontriaguin

space properties and developping the analytic Sturm tiu_aory.

REFERENCES
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Berest Yu.
{Cornell University)

Lacunas For Hyperbolic Operators
with Variable Coefficients

The question of characterizing linear differential systems which propagate
waves without diffusion (also known as the problem of lacunas) goes back to the
classical work of Hadamard and Petrovsky. In early 70s Atiyah, Bott and Garding
developed a profound and nearly complete theory of lacunas for hyperbolic oper-
ators with constant coefficients. Extending this theory to operators with variable
coefficients presents a major challenge, and the problem of lacunas still remains
largely open in this general case. The talk will review some recent results and ideas
{mostly from harmonic analysis and algebraic geometry) that may hopefully lead
to a new approach to this difficult problem.

Berezansky Yu.M.
(Institute of Mathematics NASU, Kyiv)
Some Generalization of the Classical Moment Problem

In the talk will be given some generalization of classical moment problem,
which connected with spectral theory of special family of commuting selfadjoint
operators.These operators act in the Hilbert space constructed by positive definite
kernel.As result, we find the conditions on sequence of measures, which guaranteed
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that it is a sequence of correlation measures of some measure on conﬁguratlon
space.

Berkovich L.M.
(Samara State University) -
On a method of exact linearization -
. and on hlgher order nonhnear evolutmnary equations

Last thirty years the activity in the study of nonlinear pmcesses has been
blowing up. The most effective development takes place in the sphere of exact
analytic solutions. The talk is dedicated to the method of exact linearization [1]
of nonlinear autonomous ordinary dlﬂ'erentlal equations’ (ODE) The new ciass of
nonlinear evolutionary equations (NEE) of higher order, whlch is dlﬁ'erent to the
higher a.nalagum of KdV equatlons, is constructed -

Theorem In order NEE .
oy
. . B 3t
to be tréhsforméd by bubstituifon

—F(’a&' “aaxn) r ' . _.lfl‘ (1)
a : !
i

z=p j £ exp( / Fdy)dy, ds = pdz, B = const is normalizing factor.

to the linear evolutionary equation
8z Pz gk
i 'a—+2 ( )5* FE=
it is nessesary-and sufficient that (1) can be represented in the form factorization

o= exp(f fdy) By _
[ o™5" exp([ fdy)dy o

_ ' pwexp(ffdy) ) ] ‘ .' ) .
,E (yso [ =522 exp(f fdy)dy el b @

Let us demonstrate NEE of orders n = 2 and » = 3 of general form belonging
to the class (1},(2):

EYN

P = Yoo + Fyz + 2b10Ys + bapexp(— f fdy) / pexp( / fdy)dy;
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502 1.0y .o
——%—§f—§+f + f)va+

1
‘Payt = Yozo + 3f Yo Yoo + (5_50_;_2 - 9,

1
+3b3 oYz + (f + = P—y)yi] +3bap?ys +ba®/® exp(— / fdy) / ©*/% exp( f fdy)dy.

Example [2]. The equation w = h/2y.. — 1/2y> by the transformation
z = exp(—~y/h)}, ds = \/2/hdz is linearized to z = z,, For constructed classes
NEE we find the invariant solutions and also.general solutions on the base of prin-
ciples of nonlinear superposition. Other NEE admit di‘fferent type of factorization
(see, for example., [3]).
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Biryuk A.E.
(Moscow State University; Heriot-Watt University)

On generalised equations of Burgers type
with small viscosity

Consider the one dimensiona.l non-linear parabolic equation of Burgers type

Zu+ £ f(u) = v, (0.)

Here v is positive real parameter (viscosity).
Theorem 1. Suppose that f € Lip(R) and the initial state ug € Loo(R); then the
solution to the Cauchy problem for equation (0.1) satisfies )

|22, )] cogay < Blol., max(2EL2, ). (0.2)

tv

As a corollary for this Theorem we have:

. Li;
ift > g7t then |52z, ')ICO(IR) < 5|‘“0|L°,—%D' .
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Theorem 2. Given f.€ C*(R), (k.> 1) and an initial state ug € Leo(R); then
there exist z/-mdependent constants, Ck and ¢ such that for any v > 0 and for any
t > éxv we have - . o X

&*u .
7 4 ) ooy

< Crx .- (0.3)

Now we turn -our attention to the case of small viscosity, i.e., » << 1. It turns
out that if the viscosity » is small then its power in (0:3) is optimal (in sense of
Theorem 3 bellow) Consider the so-called integrable case of equation (0.1), i.e.,
F(u) = au® with a # 0. In this case equation (0.1) can be teduced to the heat
equation by:so-called Hopf-Cole transformation (u = —£ £ In ¢). We remark that
this transformation was known by V. Florin (see [1]) before Hopf and Cole. Usmg
the explicit formula for the solutlon obecan get . .- :

Theorem 3. Suppose f(u) = au® with a # 0. Given ug € C‘(IR) such that the
Cauchy problem
ut + 2auu¢ =0
{ u(0, z) = uo{z)

develops shocks fort > T. Then for any t > T we have
lujljgp |I! ;9-;;( )Ico(m) - 0. (0.4)
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Biroli M.
(Politecnico di-Milano) =~ = - S
Nonlinear subelliptic
Schrédinger type problems

Let X; = Y0, 45Dy, 8 = 1,0.,m, a;; € C(RY), be vector fields on R satisfy-
. ing the Hérmander condition (i.e. the vector fields X; and their comnmutaters up
to the order k span all the directions in RY). We denotes Xf=- 22_1 Dy;a;5.

In: the following Xu denotes the vector (X;4;..., Xpu).
A distance relative to the vector fields X; can be defined as

d(z,y) = sup{é(z) — 6(v); ¢ € CF(RY), |X4|<1ae} (1)
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(see for ex. NAGEL A., STEIN E. and WEINGER §., Balls and metrics defined
by vector fields I: Basic properties, Acta Math., 155, pp. 103-147, (1985)).
‘We recall that, for d(z,y) < 1, there exists a constant ¢ > 1 such that

1 i
2o~ 3] < d(2,9) < ol — sl

so the topology defined by d on RN is equivalent to the euclidean one.

In the following we denote by B(z,r) (B:,B) the ball of center z and radius r

relative to the distance d.

We now define the Sobolev spaces relative to the vector fields X;. We fix a ball
B,x of radius 2R; let @ C By be an open set in RYN (Bg is the ball with the same

center as B,z and radius R) the space W1 ?(Q, X), p € (1,+00), is defined as the

completion of the space C*° (Q) for the norm

A
Nellao = (el oy + 1XulLogayn)?-

By W,L?(Q2, X) we denote the space of the functions in W*?(4, X) for every open
set A such that 4 C Q. The space Wp?(2,X), p € (1, +oo), is deﬂned as the
closure of the space C§°(Q) in W?(R, X). We denote by W~19(Q, X b at+i=1,

the dual space of W, 1.p (Q, X) considered as a subspace of the dlstnbutlons on §2.
‘We observe that a natural notion of variational p-capacity of a set E with respect
to an open set {2 containing the closure of £ (denoted by p—cap(E, Q2))is associated
with the vector fields X;.

DEFINITION 1. A Radon measure pt on Q2 is in the Kato space K%(Q), 2+1 =1,
iff timpo 9(r) = 0, where ,

7(r) = supsea / ( (B( 6)|;1|(B(a: s)nsz))sh?ﬁ

the Radon measure p is in K () if it is in K9(A) for every open set AC AC Q.

toc

We can prove that every measure in K9(Q) is in W~19(2, X).

‘We are now ready to give the results that are the object of this paper.
Consider the problem

ZX?(|X"|P—2X:'H) +pluf~?u=0 inQ o))

i=1

where p € K9(Q).
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THEOREM 1. Let u be a weak local positive solution in Q of (2). Then for every
ball B(z,r) C B(z,87) C Q with r < Ry (Ry suitable) we have
' SUPB(z,r)% < c 2.""'f‘B(:z:,r)“

where C is a constant depending only on p.

From Theorem 1. we easily deduce results on the local regularity of solutions of
2. ' ’ '

THEOREM 2. Let u be a weak local solution in Q of (2). Then u € C(%).
Moreover if |p|(B(z,7)) € 77+, r <Ry, u is locally Hélder continuous.

We also investigate the boundary behavior of solutions of (2). v .,
DEFINITION 2. A point zq € 3Q is a regular point for the Schrédinger problem
if for every neighourhood U of zg the solution of the Dirichlet problem for (2} in
U NQ with a boundary data continuous at xg is continuous al zo.

DEFINITION 3. A. point zg € 3 is a Wiener point if

' p— cap(Q° N B(zo, p), B(zo,20)) 1 dp |,
./o ( P — cap(B{zo, p}, B(z0,2p)) ) p -

where Q¢ = RN ~Q

We have the following result:

THEOREM 3. A pbint zo'€ 00 is a regular. point for the Schrodinger problem iff
it is a Wiener point. Then the set of regular points for the Schridinger problem
does not depend on the measure p € K9($2) and it is the same as in the case g = 0.

We end by observing that the ieéults of Theorems 1,2 and 3 seem to be new also
in the enclidean case (X; = Dy;,i=1,2,., N).

Bobenko A.L
(Technische Universitat Berlin)

-Circle patterns and integrable systems

Circle patterns can be considered as discrete analogs of conformal mappings.
We study patterns with combinatorics of the square or hexagonal grid (as shown
in Figures) and prescribed intersection angles and show that they are described by
integrable systems. In particular one can assume that the circles intersect orthog-
onally (square grid) [1] or with the angle 7/3 (hexagonal grid) {4]. Circle patterns
with the hexagonal grid such that six intersection points z1, ... ,zg on each circle
have multi-ratio

(21— 2)za—2a)lzs —28) _
(22 — 23)(24 ~ 25)(26 — 21)
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are also shown to be integrable {3]. The corresponding Lax representations are
defined on regular lattices different from the standard square lattice Z2. In all
these cases using the 1somonodromlc solutions we constmct. discrete analogs of
holomorphic mappings 2% and log z.
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Bochkarevy S.V.
(Steklov Mathematical Institute})

Some method of estimating the L;-norm of exponentlal
. sums- and ever non—convergmg Fourier series.

On the basis of the characterization of the Hardy Space H* performed by
the author, using the Valle-Pussen expansion a new method of obtaining the lower
multiplicative estimates of Li-norm of the exponential sum of the common form
was derived. In particular, some estimates for the sum of exponents with the
coefficients of 0 and 1 that take into account both density and arithmetic properties
of the spectrum were obtained. For each type of spectrum with certain arithmetic
properties, for example class of convex spectrums, there is a precise at the edges
scale of estimates, that differentiate the spectrums of that class by their density
properties. An ever non-converging Walsh-Paley series of class (L), in case p(n) =
of+/logn) as n — co, and the one of class HY for every contmmty modale w(r),

satisfying the condition
w(ﬂ)
————dn =co.
-/0 4 /log L

These result reduce twice the gap between the upper estimate of Sjﬁlin'derived by
Carleson method and the present-day lower eshma.tes based on the Kolmogorom
structures.
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, Bogaché';? K.Y,
. (Moscow State University}

Efficient algorxthms for stiff elliptic problems
with large parameters

A finite element approximaﬁon‘and range of iterative algorithms for solving
a stiff elliptic boundary value problem with large parameters of the higher deriva-
tive are comsidered. The convergence rate of the algorithms is independent of the
spread in coefficients and the discretization parameter. Numerical experiments are
observed for algorithm eomparison in different conditions. :

Bogaevskij L
(Independent University of Moscow)
Singularities of fronts of linear waves
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Bogdanov: R.1.
(Nuciear Physics Instztute of Moscow State Unwerszty)

Neiv results for the II-nd part of 16-th Hilbert’s prbblem .

" 1. The main determmant ({1] [2] [3]). Let us consxder map from (—e,¢) x
R+ = {(¢,7)} on the plane

SR04 EW), 0 A=Y (’,t.)_)-_;‘; Do)

Lemma, For any point (t,7) and {(¢,7;)} of general pesition we have
Y H@Lv R (H) =0, fi=h|r-7) [G-n)|. - ©2
‘j=1 [ : H S s Pre - Ly . N

where 7,7; (¢; time on 7;) is some phase curves of polynomial (degree n) vec-
tor field v and 74 7,4 = 0,. n, #;(x) is Vandermonde’s determinant of
(71, 1 Ti=1, Tit15- -+, Ta)s dnnded on' Xj, such that A;dt = di;.
2. Nonlocal (ﬂrst) integral. Corollary. On the semi-affine covenng {t x 7}
there exists the first nonlocal mtegral in the form-;; . ;
Tesite.r SRR "

n
Y : & (T..To,fl,--- ,ﬁrns%s,t) = Zsj (TJ) Bl
A e g e e dS1 Nty=astty -
.o N - At
where g3 (i) t - t_, are suztable dlffeomorphlsms and s;=(+1) or (—1) depend—
ing from sign of relative us(x)- and orientation 7; , along decreasing #;. Proof .of
corollary. Denote by ¥; (or g:(xo) : R = R?) diffeomorphism of phase curve, such
that (¥;), V = p; V, where 4; (xo) =x%g (solution (1) on the phase curve 7). Then
we have

. (0.3)

B LR

. N v
i s

2 fn s
> wilv () = ZL“JV(f-’ ZL%-v(f: =
=1 g=t y =9;(x;)
K
=3 Lv (4} 5) = ZLg, Vo) (3 £5) =
i=t e

TThe work partially is supported by RFFI grant .No 01-01-00538. About Gilbert’s problem see
[3], the full text of proof see in [1].
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n n '
= Ly (S?j o 9; f,-) =Lvig) | D85, 0555 | =
i=1 j=1
n
= Lv(ge(xo)) 29:',-_, oifi | =0

i=1

Remark. For suitable cases from (3) follows that a nest of limit circles of v
admit linear upon 7 estimation (in contradictory with common opinion ([6] and
commentary in it) about quadratic one).
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Bogoyavlenskij O.1.
(Steklov Mathematical Institute; Queen’s University, Canada)

New symmetries of the MHD equilibrium equations

In this paper, we introduce new intrinsic symmetries of the magnetohydrody-
namics equilibrium equations. As known {1], the intrinsic symmetries (or Backlund
transforms) play an important role for the soliton equations of plasma physics such
as the Korteweg - de Vries equation, the Kadomtsev - Petviashvili equation and
the Davey - Stewartson equation. Another exceptional nonlinear equations with
intrinsic symmetries are the Sine - Gordon equation and the Liouville equation.
All these equations are the model single equations which are applicable only at
some approximations. They depend on a part of spatial variables {one for KAV
and two for KP and DS equations). In spite of their detailed investigation in the
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literature, all these soliton equations are not fundamental equations of physics. We

present in this paper the intrinsic symmetnes of the fundamental system of eight
nonlinear equations of magnetohydrodynamics equilibria, that depend on 2ll three
spatial variables z,y, z and are given by the explicit formulas [2]. For the ideal gas
plasma, the symmetries depend on an arbitrary function a(z) that is constant on
magnetic surfaces. For the subsonic plasma flows (Mach number M << 1) with
divV = 0 and with variable plasma density p(z}, the symmetries depend on two
arbitrary functions a(z), b(z) which'are constant on magnetic surfaces. The sym-
metries generate an infinite family of new MHD equilibria from any known one [3].
In [4], Grad conjectured that only exceptional and isolated plasma equilibria could
exist. In this paper, we show that MHD equilibria are not isolated and that any
MHD equilibrium is contained in a smooth family of equilibria which are obtained
by the action of the newly discovered intrinsic symmetries: The two dlscovered
symmetnes form mﬁmte~d1menswnal abehan Lie groups
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Bolotin 8.V.
(Moscow State University)

Second species solutions of Poincaré
- for the restricted 3-body problem

" The second species solutions of Poincaré for the n-body problem are solutions
shadowing a chain of collision orbits. By using variational methods, we prove a
result concerning symbolic dynamics of such sélutions for Lagrangian systems with
weak Newtonian singularities, i.e. with the Lagrangian of the form L = Lo(g,¢) +
€U(q), where Lg is smooth, I/ has a finite set of Newtonian singularities, and ¢ > 0
is small. As an- application, chaotic almost collision solutions are constructed for
the 3-body problem when one of the masses is small with respect to another. The
talk is based on a work with R.S. MacKay. :
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Borisov D.I.
(Bashkir State Pedagogical University)

Asymptotlcs of the eigenvalues of the Laplace operator
in cylinder with frequently alternating type
‘ of boundary condition

Let &’ = (z1,23), = (2, z3) be the Cartesian coordinates in R? and R3,
Q' C R? be the bounded simply connected domain with smooth boundary, 2 =
Q' x [0,H], D, and D, be the upper and lower basis of the cylinder 2, % be
the lateral surface, s be the natural parameter of 8Q'. Put-N > 1 an integer
number, £ = % a small parameter, 7. = {z : 2’ € ', |zs —en(j +1/2)| <
enf(s),j = 0, N — 1}, where. f(s) > 0 is some function, f € C°(8Q), 7 = n(e),
0 < 5(e) < 7/2, T = Z\7,, v is the outer normal to 9Q. We study the singular
perturbed eigenvalue problem

1

~AYe = AP, zELQ, :11)3:0’ 2 €Uy, - 3’(05 =0, z€DUr,,

ov

Denote A = — hm (z-: In rg('s))"l 2 0. Analogously to [1]—[3] it can be established
the averagmg (hmlt) problems the perturbed problem are. as follows

‘Ao _ ’
'517 =0, 33 € Dy,

¢o_ (asA 00} of (%—.!-A)(b‘;:ﬁ(asAE[O,+00)); z €.

—szo—wo, -ze’sz bo=0, zeDi,

Hereinafier g is a simple eigenvalue of one a.veragmg problems .
Theorem 1. Let A = oo. Tben the asymptot:& for tbe elgenvai’ue Ae convergmg
to Ao has tbe form

Ae = Xo+831(ﬂ) +.

Wbere Al (z;) is some explicitly calculated functxon ) :
Theorem 2. Let A € [0,+¢0). Then tbe asymptotzcs for the ezgenvalue Ae con-"'
verging to Ag bas the form .

e = Ag +eAq(u) + 2 An(p) + ..

where A;(n) -are some explicitly calculated function, hoIomorpblc onp,p = p(e) =
—(A+(eln5(e))~1), Aa(0) = Xo. The author is partially supported by RFBR grant

x 99-01-01143 and grant of Ministry of Education of Russia x E00-1.0-53.
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R
CEh Bonsowch Yu. G.,' Zolotarev 1.Yu., Portnaya T. B
e v 00 (Voronesh State University) |
PJIO&MBHHH AHAJA3 HA TOHOJIOI‘I’IQECKHE xapaxfrepnc'rnxn
He.HHHeHHBIX oTo6paKe RN

. Boprcosua IO.T. B_paaan'me cBOel paboTh [Teoprsa dbpeiroabMOBBX 0TO-
Gpaxennii ¥ HEKOTOPEIE 32,425l ONTAMANLHOTO Ypasaennd// WiTorn Bayk: U Tex-
BHKE , cepng CoBpeMeHHad MATEMATHKa U ee mpaaoxesnd. TemaTmdeckue o6-
30pst, ToM 68, - Mockea, 1999. - ¢c. 27 -48.] HcciefoBan ,onepaTop H(u,z) =
L(u, 3:) G(u, z), Boannxamm B npoﬁneme ynpamem ﬁemaennon AdBaMH-
9EeCKOR CHCTEMOM €O CRA3AMH , AEHCTBYONME 13 OPOCTPAHCTBA abCOMOTHO He-
OpepHBEEIX QYHKUHA B IDOCTPAHCTBO CyMMEpYeMeix. Ilpa ycioBnax, ofecmedn-
BAIOMAX SKBABADAAHTHOCTH L, G OTHOCHTENBHO AEHCTBHAS TODA; BHINMHCACHA TO-
TOAOTHHECKaA CTEHEHD d’eg.H Ir0 mpm ycaoBud degH # 0 rapamTmEpyeT cyme-
CTEOBaHHE YHpaBiseMoll maphl (u,z). Bopnconmem I0.T. comecTHO ¢ BosoTa-
.peseM MO, NpoBefenE! BCCASHOBARAA SKBHBAPHABTHEIX oTO6paXeHuER MBOTO-
o6pazuii ¢ TOUKH 3pEHUA NOCTPOEHNS TONONOTHIECKAX XAPAaKTEPHCTAK CO 3HAMe- |
HEAME B KAaccax G -Gopmmon, pﬁoﬁma.xonnn: x.naccmecxne XapaKTePHCTHKA
cTenenn wroGpaxcemm Xoncba‘ ‘Bpayspa # spamesns M.A. Kpacaocenbcxoro i
Tloaygents caegyompe peayanTaTEL 1. Aas OpOM3BOABLHOTO KOMAAKTHOTO MHO-
roo6pasma X"tF g ,qenc'rsyiomeza Ha HeM KomIlakTHOE rpymmut Jlz G ompege-
AIeAH KAACCH SKBABAPHAHTHO- OCHAMEHRARX Gopmamon G B, (X"+*). PaccmaTpn-
Bag NPOU3ROABHELE 3aMKHYTHEl HOATpymmu:i H rpymmet G, ompejeaseM .KAaccH,
axmnaapnamno—ocaameﬁamx H—ﬁop;mamoa 2. Aas COGCTBCHHOI‘O G - oTobpa-:
xemma f : X*+* o Y* yommaxramx G - Maoroo6pasmit u perympaoro 3HAYE-
ass y € Y*, Gy, = H C G onpepgenena cacrema [f~(y),V*]z, L C H, B
KoTopoit [f~ 1(yg) V“]L C LB(X™*F),  xoropymo M1 Basopem “o6o6menHof
H-crenenrio”. meeT MecTo

. Teopema. O606mennan H-crenens ABAZCTCH WHRADHAHTOM OTHOCHTENRHO -
H-romoromin oTobpaxenns f., & eciu xoTa 6 ofna ee L-KommnonenTa He 60p-
JAHTHA HYJIO, To 0poo6pas. f~1(yo) He nycT u sBaserca L-mMroroo6pasnem. Bopn-.
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cosugem ¥O.T'. u Hloptaoi T.B: 6s1in noayIeHsl cieAyiomye pe3yasTaThl. Usyda-
Anch 0cobkie TOYKE CHCTEMB! BEKTOPHBIX HOACH C TOYKHU 3PEHMA TEOPHH MpelAT-
creui. Jlas § - ob6aacTe n-MepHOToO, Ampcpepennnpyemoro OpMEBTHPOBAHHOTO
muEoroo6pasna M® cucteMrr n BexTopHuIX monéht {f;}P.; saganubix ma O u Ta-
K#X, 570 Ha O} oHm AMHEHHO HE3ABUCHMBI, GBLIA IOCTPOCHE! CACAYIONIHE FOMOTO
nmieckne MEB2PUAHTEL 0CO6LIX TOUEK STOH CHCTEMEL (TO’IeK 2,8 KOTOpHIX CHTEMA.:
{f:}2., ammeno 3aancma) , : o

1. mBgexc naonzpoaaaﬂon ocoéon TO'-iKH Zq

P TS S S 1t . - TR Py e

2. rao6aasHEIH Tononormecxcma nH,quc
‘ i N A

C;(&Q) € Tn—i (Vn ﬂ)

|

,Zloxasaﬁa TeopeMa O TOM, YTO B c.nyqa.e KOHe"iEOI‘O 4ucia ocobpiX TOYEK a:,, t=

l L,mB Q c,(asz) Z Cylz:)) ACnpaBe,zmnBa cne,qyxomaa TeopeMa: -
. : M—l' cho b U m sgat ey BRI RN T SHE
i Teopema Ec.im C;(BQ) ;é 0;-10:Br 2, nmee'mﬂ ocoéaa TOYKA CHCTEMBL/

BekTOpHMX nodelt {f;}7.;. B caygae, korga 80 = U B; u na Kamaom‘ Bi ma'
i=1e
cactemy {fi}?., HalOXeHH HEKOTODHIE YCAOBHA, TOMOTONMYECKW MAAEKC OBl
TIOCTPOEH ¢ TOMOMIBIO T'OMOTONUYECKAX. LPY I (x: + 1)-ag M.M. Tlocrankosa:
Cy(zo) € ma—a1(E™; M),: ,Mk) rge M onpe,qe:mo'rcz YCAOBHAMM HAJIOXKEHHBLIMHU
Ha cECTeMYy {fi },_1 aa B; cooTaeTcTReHo. Ilonyuenti 0606mennsa Ha GecKoHet-
HomepEmil caydaii. PaccmaTpmpaetca. ruiin6eproBo mpoctpancTso H. Ilpegmo-
JaraeM, JTO CYIIeCTBYET: HOCIeJOBATeAbHOCTE  KOHETHOMEPHEIX. HOANPOCTPAHCTB
H'CH2C..-C H® C --- C H n nocie[[oBaTelbHOCTE HEIPEPLIBHBIX 0T06Da-
xeunit {p;}32, Takux, 970 p; : H = H;, ||piz — z|| = 0, i - co pasHOMepHO Ha
Kax/I0M MHOXECTBE 2CH Hyc'm, Q -obaacTh THIEGEPTOBa HPOCTPAHCTBS, H,
Takad, 510 © ¢'Qm QﬂH i i'= 1,00 ABAAETCA KNETOIHEIM KOMIIEKCOM) imezo—r
1M TOALKO OFHY KACTKY ‘cTapmeit Pa3MePHOCTH. Hycre ma ) 3ajana cucTeMa
BEKTOpHHX ‘monet {£:}215- TaKuX ATO #a rpammge I''= 9Q nogencrema {fi}1y
JEEeHHO HE3aBUCEMA JAd no6oro n € N mxaxgoe f; : @ — H asnserca oTo--
GpaxeRzeM BUj2 I - K;, rge K; - puoane HEHPEPHBHOG 7 Kaxjoe f,(z) ;E 0 ma
= aﬂ z_]_oo i1 ;\! Py e P RS T R IS Y i
Onpegenesue 1. Cnc'reMy Bex'ropﬂmx nonen { fi}2.,s I‘IdJlbﬁepTOBOM npo-
cTpaHcTBe H 6yem BasHBIBATS JHACHHOC HE32BUCAMON, eCl MOACHCTeMA { E¥e.,
Jmﬂemxo mesasrcAMa fias moboron € N . - - —
v Onpege.nemae 2. Towky =9 6y,qu Ha3BIBATE ocoGon TOYKO# CHCTEMEL Bex-
éopm:lx nonedt {f;}32,, eciin CymECTBYeT Takoe n € N, A.am KOTOpOPO no,qcmc'rema
{f;}?., nmueiino 3apucHMa. B R I




Ilpu cAenasHHX Bhilile HPEANOACKEHAAX OCTPOSH MOGaIbEEIH TONONOTHTe-
CKUH MHAEKC

Ci(8Q) € (Fm-1(Vinm, --oenr))y m = 00

MMeeT MecTo TeopeMa o CyillecTBoRaHNM B {2 Mo KpaiiHell mepe ofHolt ocoboil
TO4KH B cay4Hae, korja Cy (09Q) # 0. Taxxe noayden uHjeKc H30AMPOBaHHOH oco-
60i1 Touku. B ciaysae ruan6epToBa npocTpancTsa H u chepri S C H xopasmep-
Hocth 1, Aag Beakon chepb S; C S C H kopasmepHOCTH 2 A1 HEKOTOPro m < 00
TOCTPOEH TA0GANBHBIN TONOAOTHEECKAN HHAECKC:

Ci(89Q) € (Tm-2(Vmm-1),--- . Tm15(Vints,m+a))-
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# Borovskikh A.V.
(Voronezh State University)

The formula of wave spreading
in the one-dimensional medium 2

’
Theorem. Let k(z) > 0 and the function ¢(z) = 51:((2:::)) is continuously differ-
. . 8%u 4., Ou .
entiable. Then the common solution of k(z) = = ——;k(x)a—m, in the class of

functions u(t, z), twice continuously differentiable on the set of real numbers and

. 2 2
having finite energy E(t) = —;— / [(%;f) + (—g—;‘) ] k(z) dz, is described with
ir

2Results presented in this paper were obtained during the author’s visit by invitation to the
University of Valenci end of Hainait-Cambresis in June 2000, their publication is being carried
out with the help of the grants GosComVuz RF N 97-0-1.8-100 in the field of fundamental sciencies
and Ne.11 in the fiels of mathematics
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the formula

Cu(et) = ,/"(,f( v -t)+§/"(”(+)"’W( +i
.1 " k). z+y—t z—y-—
+ 3 \/k—(——wy)f( 2T gy
- / Byt 2 g

4 :‘2/,/5:),4,( )J(a:+y ,4?—2 rt,z)dy__
- 2f\/’,:§§)V( oy ‘"’“’” ”_ y“, z)dy

#bere V,W are any twice contmuousfy differentiable functmn, such that

[[r@+s@ve - s@wen+
ir -
+ (W’(:c) + qS(z)W(z) ¢(2)V(a:)) ]k(:c) dz < o,

and sattsfymg the following reIatmns thh the initial data uo(z), uy(z)
V(e)+ W(s) = uala), ~[HE)V ()] + k@)W @] = k)n(z).

The notations J(a,b,z) and J (a,b, z) are used for the functions that are the solu-
tions of the integral equations

Ja, b, z)—- f qS(O' b)¢(a)da / / cﬁ(o' b)qS(a' T)J(O",T, z)drde

Dy

and

. 9 =z )
F(a,b,z) = ¢(a) — / / ¢(a - 7)é(c — 7)J (¢, 7, 7) dodr.
b a
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Borowiec A.
(Wroclaw University)

Complex geometry and new class of Einstein metrics

We study a class of pseudo-Rlemanman mamfolds (M n g) with a complex
orthogonal group-SO(n;C) as a structure group. We 'call them anti-Kahlerian
manifold. These manifolds have signature (n,n) and admit a parallel complex
structure J. ;From complex point of view they can be identified with complex
manifolds admitting holomorphic metric. Complex mamfolds of this type, when
half-flat, are known from Penrose’s non-linear graviton twistor construction. It
is proved that all odd Chern numbers of an anti-K&hlerian manifold vanish and
that complex parallelisable manifolds (in partlcular the factor space G/D of a
complex Lie group G over the discrete subgroup D ) are ‘anti- Kahlerian mani-
folds. The complexification of any analytic (in pariqlcular, Einstein) metric gives
an anti-Kahler (in particular, anti- K3hler-Einstein) metric. This gives a method
for constructing of new solutions of Einstein equations. This talk is based on joint
works with M. Ferraris, M. Francaviglia and 1. Volovich
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Mikhail Borsuk
(University of Warmia and Mazury in Olsztyn)

- The behavior: of weak solutions to the BVP for
elliptic quasilinear ‘equations with triple
degeneration near an edge of the domain boundary

We investigate the behavior of weak solutions to the BVP (Dmchlet problem
or mixed problem) for equations whose prototype is:

d - -
IV ) + dor™ Tt — [Vl ogn v = £(2)
3

P=22_,422; n23 0<p<l, ¢20, m>1, a20, 7>2m-2
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in a neighborhood of an edge on the domain boundary. We establish almost precise
exponent of the solution decreasing rate. The basic idea of our investigation is the
construction of barrier founction and the using of new comparison principle

Bouzar C.
(Université d’Oran. Algérie)
. A generalization of the problem of elliptic iterates

The aim of this work is to find algebraic necessary and sufficient conditions
such that the next inclusion, between spaces of Gevrey vectors of systems of linear
patial dlﬁ'erentlal operators,

¢ (o (P,) _1) ce (n (Q,),-l) , ©0.1)

holds. If the system (Q,) iy IS reduced to the elementary system of differential
operators (Dy, .., Dp} we obtam then the classical “problem of elliptic iterates”.
The general problem (1} is completely solved in the case of systems of dlﬁ‘erentlal
opera.tors with constant coefficients.

Definition 1 The system (P (=, D)) .—, is sayed N-quasielliptic in Q if i) ¥z € Q,
F( zo) = F(z), %) F( z0) is a regular Newton’s polyhedron iii}) ¥Yzo € Q,3e >
0, 3r>0¥£€R" €l >

L

V(&) < D 1Pi(z0,8)l

j=1

where V(€) = 3 €%|, S is the set of vertices of F( o).
ags

In the case of systems of differential opérators with variables coefficients we have
a general result for N-quasielleptic systems ‘We give the definitions of the space of

Gevrey vectors of the system (P; (=, D)) ;= » hoted G* (52 (P;) 3—1) , and the space

of Gevrey classes with respect to the Newton’s polybedron F, noted G (), and
after we prove a theorem resolving the posed problem (1) in the case of differential
operators with variable coefficients. The result obtained generalise the theorems
of Nelson, Komatsn, Kotake-Narasimhan and others... This work has been done
with Rachid CHAILI.
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Brailov Yu.A.
(Moscow State University) -
Geometry of completely integrable systems
on the semisimple Lie algebras

There is natural class of completely integrable systems on the semisimple
Lie algebras — the systems obtained by the method of “shifting argument” intro-
duced by A.8. Mischenko and A.T.Fomenko. The methods of extracting informa-
tion about Liouville’s foliation on the invariant torii in these systems:are devel-
oped. Particulary, some properties of bifurcational diagram expressed in terms of
algebraic structure. S , .

B

Bratus A.S., Iassakova E.S.
(Moscow State University)

Stabilizing and Destabilizing Diffusion Influence
in the System of Serm—hnear Parabohc Equatmn

‘ Stablhty of the. boundary-value problem for a system of serm-lmear parabohc
equatlons is considered. It is known that this problem is connected with the sign
of eigenvalues real part for a certain linearized operator. This operator includes
Jacoby matrix for the system without diffusion and the differential operator re-
lated to the diffusion. Asymptotic formulae for this operators eigenvalue have been'
obtained. This result permits to investigate influence of the diffusion on stability.
In particular case where the diffusion matrix contains Jordan blocks is considered.
This case corresponds to existence of the cross-diffusion components in the sys-
tem. Several questions then arise. If the system without diffusion is stable in some
neighborhood of the fixed point, will the system with diffusion also be stable? If
yes, then what kind of conditions should be laid upon the elements of the elements
of the diffusion matrix? Inversely, if the system without diffusion is unstable is it
possible to make it stables there by a proper choice of the corresponding diffu-
sion matrix? As an example the boundary value problems for Brusselator reaction
mechanism and Predator-prey system with the diffusions are considered. T -

Brudnyi A Yu.:
. (University of Calgary) - -
Planar Analytic Vector Fields - -
In the talk we consider some geometric problems related to the Poincare

center-focus problem for the families of planar analytic vector fields with a singular
point depending analytically on a parameter.
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Briining J.
(Humboldt University, Berlin)
Geyler V.A.
(Mordovian State University, Saransk)

One-dimensional geometric seattering
on compact manifolds

We consider 2 “horned” topological space X constructed from a compact
Riemannian manifold (X, g) of dimension d < 3 by. gluing a finite number of semi-
axes R"", j=1,...,n(“horns”). The Schrédinger operator H on X is defined by the

restnctlon—extension procedure” [1] applied to the direct sum of the Neumann
Laplacians on R} and a Schrédinger operator on X of the form —g~1/2(z)(8, +
iAu(2))g"? (z)g" (2)(8, + iAu(2)) + p(z) (A, and p are sufficiently smooth real-
valued functions}. For the Hamiltonian H, we prove the existence and uniqueness
theorem for the scattering states. Thus, we determine the transition amplitudes
from R to R (j # k) and the reflection amplitudes in each R} . Also an explicit
form for the correspondmg scattering mairix S is found and iis umtamty is proved.
It is shown that the spectrum of H as well as the spectrum of a point perturbation
of H can be restored from S even in the case of n = 1.

REFERENCES
[1] B.S.Pavlov, The theory of extensions and explicitly solvable models, Rus-
sian Math. Surv. 42, No 6 (1987), 127-168.

Brusentzev A.G.
(Belgorod State Academy of Technology)

About self-adjointness in essential of Schroedinger
non-semibounded operator with strongly potential

The report is comcerned with sufficient condition for self-ajointness of
Schroedinger operator in the space L2(G) with strong singularities of potential
on 9G. These problems were considered in the serie s of known papers related to
Schroedinger semi-bounded operator in some special types domains G . The stated
results contain generalization of these works in the directions of refusal of operator
semi-bounduess, of extension of domains classes and, in some cases, of conditions
relaxation on potential smoothness. In particular, the report includes the theorem
about self-ajointness of many particle Schrodinger Hamiltonian. As distingunished
from the known resulis, the theorem involves the systems, which are in the outer
field with nonsemi-bounded potential.
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Buchstaber V.M.
(Moscow State University)

Integrable nonlinear differential equations
- and uniformization
of universal spaces of Jacobians

Recent achievements in the theory of Abelian functions have been obtained
“by developing of classical Klein’s ideas about construction of the theory of sigma
function for curves of genus g > 1 as a theory of function that has all the key
properties of theta function of ¢ variables plus an additional and extremely impor-
tant one of modular invariance likewise the elliptic Weierstrass sigma function. An
approach to construction of Kleinian sigma function has been developed by the
author together with V.Enolskii and D.Leykin (see [1], [2]). It is based on the use
of the models of nondegenerate algebraic curves V = {(y,z) € C?: f(y,z) = 0},
where f(y,z) = y" —z*—3_ Aij¥fz?, is+jn < ns, n and s are coprime. The genus
of such a curve is g = (n—1)(s— 1). As a result, the Kieinian sigma function was
constructed and described as an entire function o(u; A), where u = (uy,--- ,ug),
A = (i) on the universal space UY(n,s) of Jacobi varieties of (n, s)-curves that
is a fibration with the base given by the coefficients A of polynomial f(y,z) and
a fibre given by Jacobi variety Jac(V'). We obtained an explicit realization of the
spaces #(2,2g+1) (hyperelliptic case) and (3, n) (trigonal case), where n = g+ 1
and g = 31 or 31 + 1, as an algebraic subvarieties #(n,s) C CV, where N = 3¢ for
hyperelliptic case and N = 4g,if g = 3l ot N = 49 + 2, if g = 31 + 1 for trigonal
case. We uniformaze these varieties with the help of g-functions of g variables that
are derivatives of order > 1 of the logarithm of the o-function. The above resulis
ensued from application of obtained descriptions of basis of functions for the dif-
ferential field of meromorphic functions on Jacobians Jae(V) of (n, s)-curves for
n = 2,3 and algebraic relations over A between them. Our studies in this direction
are motivated by the fact that under obtained uniformization the important non-
linear differential equations (Korteweg-de Vries (KdV), Kadomtsev-Petviashvili
(KP), Sine-Gordon, Boussinesq types) appear naturally and explicitly. As it will
be shown in the %alk, this gives new resources for applications of the theory of
Abelian functions. '
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Budaev V.D.
{Russian State Pedagogical University, St. Petersburg)
'Some Basic Properties of Systems of Root -
Functions of Nonselfadjoint Differential Operators

Let L be any linear operator (in particular, ordinary or partial differential
operator) in Hilbert space H. Define a system of root functions {u,}32., of L as
any system of nontrivial functions which satisfy an equation.

Lug + xnun =ben‘P(}‘n)'€fn—l

where the numbers 8, ar either equal to 0 {in which case the element u,, is called
as eigenfunction) or 1 (in which case we let A, = A,.; and %, an associated
function}), and also #; = 0. The numbers A, are called eigenvalues, ¢(}) is arbitrary
nonvanishing function. This definition is similar to V.A.Jlyin’s definition of root
functions of nonselfadjoint differential operators.

Theorem. Suppose that the length of every chain of root functions is uniformiy
bounded. One'can construct a system of root functions {%,}3., satisfies the fol-
lowing conditions:

1. All eigenfunctions of systems {un} and {ii,} coincide;

2. Every l-order associated fuction @y, is a linear combination of functions uy,
Upmi; o ooy Un~I; '

3. The estimation

"9nun—l" "f"(}‘n)"“n"
holds with arbitrary preassigned function 1(t) >0;

4 F system {un} is complete in H, then {ﬁn} also is complete in H;

5 1If sysf.em {un"un"‘l} satisfy the Bessel inequality (for every f € H), then
{#a)lita)|"1} also satisfy the Bessel inequality.

Some further properties of this constiuction will be given at the talk. For
the first time the similar results was obtained in [1] for nonselfadjoint ordinary
differential operators.
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Bufetov A.L
(Independent University of Moscow and Princeton University)

Markov eperators and convergence of spherical
-averages for actions of free groups -

A measure-preserving action of a free group can be viewed as a stationary
Markov process. If the group action is ergodic, then the process is ergodic, and if
the action does not have nontrivial eigenvalues then the tail sigma-algebra of the
process is trivial. Triviality of the tail sigma.—a.!gebra. gives convergence of spherical
averages for actions of free groups, and, in particular, a new proof of the Nevo -
Stein theorem.

Butuzov V.F., Nedelko LV.
(Moscow State Universily)

On the Global Domain of Attraction of the Stable
Solutions with Internal Transition Layers -

Consider tﬁe problem:

2Au—u; = f(u;x,é), (z,t) e D x (0, +oo), DcCR?, (1)

Ou N e :
on aD— 0, te(0,+0), (2)
u(z,0,6) = ug(z,e), z€ b, (3)

where ¢ is a small positive parametr, f(u, 2, €) is the smooth function. Suppose the
following assumption holds. (Al). There exist functions @(z) and u(z) € C’z(D)
such that #(z) < #(z), z € D, function f(u,z,0) is equal zero in the region
o= {(u,2) : @z) < u< @&z}, 2 € D} only for u = wi(z), i =0,1,2, and
besides 4(z) < ¢1(z) < goo(:c) < ga2(z) < u(:c), fu(p,(z),z,ﬂ) > 0 i=12

f,,(goa(a:),z 0) <0,z €D (A2) Let the equation J(x) f f(u z,0)du =
Ceafz) o

determme a closed smooth curve I’ C D dmdmg D into subdomains D('H (inside

the curve I'} and: D( ) and let 8J[0ng < 0, z € T, where 8/8np denotes the

derivative along the inner normal of T'. It is well known, if assumptions (?1),

(?2) are satisfied then for sufficiently small € the problem (1),(2) has the stable

stationary solution u,(z, ) satisfying

?;%u,(x,s) =¢i{z), z € D,(,"); eli_%us(z,e) = (), =€ D).
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(A3). Let J(z) # 0, = € D. (A4). Let there be only finite number of sets and
single points (separated one from another) in Df,"') where J(z) > 0 and only finite
number of sets and single points (sepa.rated one from another) in D‘(,—) where

J(z) € 0. (?5). uo(z)} € CZ(D), I = 0 and @(z) < ua(z) < 8(z), = € B

(A6). 3z(7) € D{) and 32 € D(+) such that: uo(z(~)) < 0 and ue(z) < 0 in
all points z € D( U8D where J(z) < 0; uo(z{*)) > 0 and ug(z) > 0 in all points
z€ D(+) where J{z) > 0. ’heorem. If assumptions (A1}-(A5) are satisfied then

for sufficiently small € function ug(z) belongs to the global domain of atiraction
G(u,) of the solution us(z,€), i.e. i_l’iglm lu(z,%,€) — us(z, £)llc() = 0.

Cardone G.
(Second University of Naples)

Compactness results for a class of non standard
lagrangians in the case of elasticity

Let us consider the class A of integrands f (z,£) such that

1) f(z,§) is a measurable function of z € R”;
i) f(z,€) is convex with respect to the n x n matrix &;
) —eo+eifl® < F(=,6) < coterlél’ with1< a g B< +oo,
cp20,e1,e22>0

where €2 is a bounded domain with lipschitz boundary and

e(u) (35 (u)) = (‘ (3u= g::))

is the strain tensor. Let us now consider, given a sequence (f;), of the class A, the
following sequence of integral functionals

felz, e(u))d: if u € WIP(Q; R?),
Al = { —fﬁ’oo Y (@ R") \ W("rf'(ﬂ )R") @

We prove compactness results for the sequence of functionals A?(u). More precisely
if AP is its I-limit with respect to the weak topology of W*(Q; R?), we want io
clarify the structure of AP(u). The first step is to prove the integral representation
of A?(u) on smooth functions.
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‘Theorem 1. Lét Q be a bounded domain with lipschitz boundary, A the class
of integrands defined in (1), A"(u) integral functionals defined in (2) Then there
exists an integrand _f(x e(u}) in.A such that

U AP = /,;f (e.e())dz,  for every u € C(R).

‘ The second step is the following theorem.

Theorem 2. Let Q be a bounded domain with Izpschxtz boundary, A the class of
integrands defined in (1), A2(u) integral functionals defined in (2) and e, B>1
such that the imbedding wh (8 R*) — LP(Q;R") is continuous. Then there
exists an integrand f(z,e(u}) in A such that

AP(u) > / f(:c,e(u))d:z:, _-for every u € Wh*(Q; R™).
o . -

We exphctl}r observe that we need in Theorem 2 of the contmulty of the
imbedding W'%(Q; R®) « LP (Q; R™) and that the general case is open. These
problems of compactness in the scalar case were treated in [2] and [3], while in
[1] the authors eonsidered the’ homogenization in the vectorial case when the in-
tegrands are of the type fe(z, Du(z)) = f (%, Du(z)), where £(-,§) is 1-periodic
with respect to z.
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Carpentier M.P.
(Instituto Superior Téenico, Lisboa)

Subsolutions and’ supersolutions of a boundary-value
problem with Emden-Fowler equations

- In this'work; we are concerned with boundary-value problem (BVP} for the
‘Emden-Fowler equation ¥’(z) = AzPy%(z), with A > 0, p > —1, ¢ € IR, wich satis-
fies the boundary conditions ¥ (0) = 0, y(1) = 1. This BVP has been considered by
Mooney [3] for p = 0, ¢ > 0. This particular BYP arises in heat-transfer problems.
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Mooney presented some numerical results when ¢ > 1. For 0 < ¢ < 1 the iter-
ative schemes based on Newton’s and Picard’s methods, presented by him, they
don’t converge. To construct convergents iterative schemeés we need a subsolution
of the BVP. In the present paper we introduce subsolutions and supersolutions for
0 < ¢ < 1 and also for ¢ > 1 and ¢ < 0. With thése subsolutions and supersolutions
we can conclude that exists a unique non-negative solution for ¢ > 0. When ¢ < 0
we can have one or two solutions or none at all, according to the value of X. The
supremurn of values of A for wich there are two solutions is obtained. Among the
several subsolutions and supersolutions achieved, we determine the highest sub-
solution and the lowest supersolution when ¢ takes all its real values; for specific
values of A and p. With this last subsolution and supersolution we get efficients
iterative schemes to obtain the solution of the BVP in a similar way that was
gotten for related BVP [1; 2]. Numerical results, obtained by different methods,
are presented.
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Castillo F.A.
(ITESM-CEM, Mézico)
Boundary value problem for layer-growth kinetics
in ion nitriding of pure iron :

‘The present work is devoted to study a boundary value ?roblem afisnng in
the mathematical modeling of layer growth kinetics in ion nitriding of pure ion.
‘Wellposedness of the boundary value problem is discussed.
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Chakyetadze G.
(Moscow State. Aviation Institute)

‘Absolutely: continuous invariant measures .
of interval maps'serving ds a model in:laser physics

The object of study is the real rational function .

azr

Sgpi 2 Y b+ i—m,

depending ‘on two scalar parameters a and b. The iterations of s, model the:
evolution of ‘a Fabry-Perot' cavity in Laser Physicsz The values of parameters that
correspond “to the regular (with penodlc sinks) ‘behaviour ‘of 55,5, are the most
preferable from ‘the ‘applied point of view. Thus' it makes sense, in particular,
- to determine the parameter ranges for chaos in the system. Earlier some partial
results in this direction were obtained in the framework of topological dynamics
(see [1]). We prove the following result.

Theorem. There is 2 set T of positive Lebesgue measure in the space of parameters

. {(a, )}, very closely to the point (co,—2), such that for any (a,b) € T there exists '

an absolutely continuous invariant probability measure of the map sap. -,
. This theorem can be considered as an analogue of Jakobson, Theorem (see
[2] [3]) for a two-parameter family of one-dimensional maps close to some limit

map with a neutral fixed point.
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~ ¥Chalykh O.A
(Moscow State University and Loughborough University)
Macdonald pelynomials and algebraic integrability.

In'late 80-s 1.G.Macdonald introduced remarkable families of multivariable
orthogonal pelynomials i, 2], related to simple complex Lie algebras, or root sys-
tems. Each family depends, apart from a root system, on two parameters ¢, and
specializes to several remarkable families of symmetric functions, such as Schur



85

functions and characters of corresponding Lié groups, Hall-Littlewood functions
and Jack polynomials. This makes Macdonald polynomials very interesting from
the point ofiview-of the representation theory, combinatorics, special function the-
ory and mathematical physics: We'present an alternative approach to Macdonald
polynomla.ls whlch uses some remarkable propertles of the difference operators by
Macdonald [1] in case T = q* with integer k. Namely, it turns out’ that in this
case the Macdonald operators act naturally.in the coordinate ring of a certain
singular affine algebraic variety. This provides an elementary construction of the
Bloch eigenfunctions:for Macdonald operators.. These eigenfunctions, in its turn,
are parametrized by the points of another, dual algebraic variety. This is.a mul-
tidimensional analogue of the phenornenon known..as ‘algebraic’ integrability ‘and
well studied in the context: of the finite-gap theory in dimension one. In this way
we obtain a generalization.of earlier results [3-5]. One of the applications is a new
proof of several conjectures:concerning Macdonald polynomials (norm conjecture,
evaluation formula and symmetzry. 1dent1ty) These have -been ‘suggested by Mac-
donald and proved (for all root systems) by 1.Cherednik [6,7]. Our: proof is much
simpler.since it ‘doesn’t us€ ‘Cherednik’s double affine Hecke algebras:
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~ Cheban D.N.
(State University of Moldova)
An analog of Cameron-Johnson theorem for the linear
C-analytic equations in Hilbert space.

The well-known Cameron-Johnson’s theorem [1,2] affirms that the equation
' = A(t)z - (1)

with recurrent (almost periodic by Bhor) matrix may be reduced by the Lyapunov-
Perron transformation to the equation ¥ = B(t)y with skew-symmetric ma-
trix B(t), if all solutions of the equation (1) and all its limit equations are
bounded on the whole real axis. The generalization of this result on the linear
(C-analytic equations in the Hilbertian space is our main scope in the article. Let

= (—c0,+00); C” — m—dimensional complex Euclidean space, G be a domain
from C™?,H be a real or complex Hilbertian space with scalar product < -,- >
and with norm |- |2 =< -,* >. Denote by H, a space H equipped with weak
topology, and by [H] (respectively [HL,]) the family of all linear continuous oper-
ators acting into HI (resp. H, ) and equipped with operational norm (with weak
topology). Assume that #(G,[H]}} (resp. (G, [Bw]), H(G,C?)) is the family of
all holomorphic functions k : G — [Hj (resp. h: G — [H,],h: G - C™) equipped
with compact-open topology and consider the system

z' = A(2)z '

{b 2 =%(z) (z€G), . : (2)

where ® € #(G,C™) and A € #(G, [H]). We suppose that the second equation of

~ system (2) generates the dynamical system (G, R,s) on G. Denote by U(t,z) the
Cauchy’s operator of equation

' = Alzt)z (z€G), ‘ (3)

where zt = o(t,z). It follows from general property of solutions of differential
_ equations (see, for example, [3-5]) that the farmly of operators {U(, zZ)lt € R,
z € G} satisfies the following conditions:

1.U(0,z2)=I (¥z €G), where I is 2 unit operator on H ;

2. U(t+r,z) =U(t,zr)U(r,2) (Yt,7rcRandz2€G);

3. the mapping U : Rx G = [H] (U : {¢,2) = U(2, z)} is continuous and for
every t € R the mapping U(t,-) : G — [H] is holomorphic.

The following assertion takes place.

Theorem 1 Suppose that there exists a positive canstant C such that

WUl <C 4
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for allt € R and z € G, then there exists P € H(G, []H[I) such that: ... . '
a. P-is bzholomorphzc, i.e. the operator P(z) is invertible for all z € G and
the mapping P~ : G — [H] (P~ : z— P~(2)) is holomorphic; ,
.. b, Pi(z) = P(z) for dil z € G, where P,(z), is an aperator adjomt for P(z),
c. the operator P(z) is positive definite for all z € G;
d. Clz| < |P(z)z|  Clz| for all z € G and z € T
. e. the change of variables z = P(zt)y takes equation (5) into

y=By - T )
with skew-Hermitian operator B € ?{(G [IHIj) ie B. (z) —B(2) forali z € G.

I

Remark 1 a. If the pomt z€ G is stat:onary ( w-perzoa’:c, guasiperiodic, almost
periodic etc ), then according to f6] the operator-function P(zt) will be also sta-
tionary (w-periodic, quaszpemod:c, almost perzodzc ‘ete ) b. The Theorem 1 takes
place for the system of difference equations =~

a(k+1) = AEk)e(R) .
{zm+n - 0(2k) (&),

where .A € H(G, Hﬂﬂ) and ® € H(G, (C’") and also for the system of dzﬁerent:al’
and difference equations with multidimensional time. : .
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Chebotarey A.M.
(Moscow State University) -

‘What i is quantum:stochastic differential’'equation from
*  the point of view of functional analysis : . -

We specify two fundamental objects which determine the well-posedness of

-a master Markov equation and a quantum stochastic differential equation. The
first object is a completely positive contractive map Q(-), which can be expressed

in terms of the coefficients of the formal generator of a master Markov equation.

We prove that if thére exists an eigenoperator X : @Q(X) = X, then the minimal

quantum dynamical semigroup does not preserve the unit operator and the prob-

ability of the event {quantum system prepared in initial state p explodes during

time t} differs from null. A nonexplosion criterion is suggested, which general-

izes the conditions proved for stochastic processes by Khasminsk’i and Taniguchi.
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The analogy between the Carleman criterion for self-adjointness of a symmetric
operator and the Gikhman-Skorokhod nonexplosion condition for Markov jump
processes becomes clear. The second fundamental object is a symmetric boundary
value problem on the Fock building. We prove that if the deficiency index of this
problem is (0,0), then the related quantum stochastic differential equation has
a unique unitary solution, and the corresponding master Markov equation has a
trace preserving solution. Sufficient conditions for the essential self-adjointness of
the boundary value problem are proved.

Chechkin G.A., Ostrovskaya E.L.
(Moscow State University)

On bebavior of a body randomly
perforated along the boundary

We consider randomly perforated domain. Suppose that the diameter of the
cavities and the distance from each cavity to the outer boundary of the domain
are equal to €. Also we assume that the set of the cavities is random, statistically
homogeneous and nondegenerated. We introduce a definition of nondegeneraty on
the base of the imbedding theorem for probability spaces.

For such structures we obtain the effective behavior, i.e. we consider boundary
~ value problem in such domain and prove the homogenization theorem. Also
we estimate the difference between the solution of the initial problem and the
solution of the homogenized problem. It appears that the homogenized problem is
nonrandom.

Chegis 1L.A.
(Moscow Inst. of Radioengineering Electronics & Automation)

Matching Conditions for Harmonic Fields and
for the Solutions of Maxwell Equations (Quasistatics)

Chepyzhov V.V.
(Institute for Information Transmission Problems RAS, Mascow)

Trajectory and global attractors for
a dissipative wave equation

The trajectory attractor %, is constructed for the following non-linear wave
equation with dissipation:
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(‘)fu.ﬁl‘-.')",.(-?-", g') :&u =, Au —b (z,g)f(u) + g (:é:, i:—):,:ulag:g':‘ 0., . (0.1)

Here z € 2 € R™ and ¢ is a fixed positive parameter. We assume that y(z, z) and
b(z,z) are continuous functions and 0 < 7 < wz,2) € 72, 0 < B €
b(z,z) < B2 forallz € QI x R”. The nonlinear term f(v} satisfies the inequal-
itios (£0)] < TollolP + 1), F(o) > 1lole*! — Ci, f(0)0 > 1F(o) - Co for al
» € R. Here F(v) = f; f(w)dw. Let-also g(2,2/c) € La(S2).! We study a family
KF = {(u(z,1),0u(z,t)),t > 0} of weak:solutions (irajectories) of the hyper-
bolic equation (0.1) such that u(-,#) € LI%(Ry; L1 (Q) N HE(Q)), d:u(-,1) €
LSS (R y; Lo(R2)), ulz, 1) is a solution'of the equation in the distribution sense, and
u(z,t) satisfies the energy decrease inequality. If » > 3 and p > 2., then the
uniqueness theorem for the corresponding Cauchy problem is not proved yet. The
trajectory, attractor %, consists of trajectories {(u(z,%),du(z,1)), >0} € K¥
that are bounded. in the space Lo (R4 Lps1(@) N HY(R)) X Loo (R4; L2(R)) and
have the bounded prolongation as solutions of the, wave equation (0.1) on the
entire time axis . The set %, attracts bounded sets of trajectories from KT, in
the space C([k, h + T]; H*~%(Q)) x C(lh,h + T]; H~(Q)) as b — +oo for every
T > 0. Since any trajectory {(u(z,?),8u(z,t)),t > 0} from %, belongs to the
space C(Ry; H=%(Q)) x C(R4; H~4(R2)) the following set is well defined:

A = (0) = {(u(': 0): alu('! 0)) l (u1 a““i € 213} .

Thé set "A; is called ‘the global attractor of the equation (0.1). It'is bounded in
HY(Q) x L2(R) and compact in H~4(Q) x H~*(Q) for 4 > 0.-Moreover the set A
has attracting properties known for the global attractors of semigroups generating
by dissipative evolution equations for which the uniqueness theorems of the Cauchy
problems hold. We now assume that_the functions v(z,z/¢), b(z,z/¢), and
g (z,z/c) have weak averages 7(z), b(z), and () as € —» O+, respectively.
For example, this is true if the functions 7v(z,2), b(z,z), and g(z,z) are peri-
odic, quasiperiodic, or almost periodic with respect to z € R”. Along ‘with the
equation (0.1) e consider the averaged equation '

R+ 7(2) = Aa - b(z) f@) +3(2), dlsa =0, 0.2)

which also has the trajectory attractor % and the global attractor A = %(0) in
the corresponding spaces. We have proved the following theorem: the-trajectory
attractor 9l and the global attractor.A. of the equation (0.1) converges as £ — 0+
to the trajectory attractor and the global attractor A of the equation (0.2),
respectively. All these results were obtained in’ the collaboration with M.I.Vishik.
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Cheremnikh E.V,
(National University (Lvivska Politechnika), Ukraine)

Fridrichs’ model and Titchmarsh-Weyl’s function
In the space H = L2(0;00) the operator
T'=84+V (0.1)

is considered as perturbation of the operator Sp(7) = (1), 7 > 0 with maximal
domain of definition D(S). The perturbation V = A" B is given by the operators

ag= [ orja(riptriin, Be= [ ptr)pripirldr, pen
1] 9

which act from H in anxiliary Hillbert space . The conditions on the vector
functions o, § and scalar function p are such that its permet to reduce some
Sturm-Liouville’s operators to the form (0.1). The maximal operator § : H — H
corresponding to the operator S, is given by the relation

{ D) = {sa € HBe=clp) : | Ir(r) + o) plrir < oo}
So = rp(r) + clp), 7> 0.

Let T(f) = § + V, the domain D(T(6)) is defined by some condition 8(yp) = 0.

Theorem 1 1) The branchement of the resolvent T; (6) = (T'(0)—()~ is generated
by the branchement of the ezgenvector hoc € H, 8(hg ) = —ko, ¢ € p(T(0)) of
the maximal operator T(0)maz i.e.

T (0)¢ = (a,b(()hag + T3 (O)p, ¢ €QNp(T(8)) (0.2)

where the functions { — (a, b(()), ngo, ¥ € ® are unique analytic in the domain
Q, b(C) is eigenfunctional of the operator T(6)*, corresponding to { and

Te(0)(T(6) - Qp = ¢, v € D(T(B) N B,
(T(B)mas — O)Tc(O)p =0, p€®, (€ Q

2) The branchement of the vector hg ¢ in 2 is generated by some function my((),
analytic in the resolvent set p(T(6)), i.e.

(ho.cs¥)a = (alC), ¥)mall) + (Roc,¥), € € QNp(T(B)) (0.3)

where the values (a((),¥), (Re¢, %), ¥ € @ represente the eigenfunctionals of
the operators T(0), T(0)ma- and they are unicue analytic functions in . 3) The
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function mg(C) is under the form mp(() = (T¢(O)w,w*), ¢ € p(T(8)} where w =
1+k1x, w* = 1+ kyn - some singular elements, x,n € H 4) The operator-function
¢ — T;(6) is pseudoresolvent in Q, bounded in some norm || - ||a. One can find

the results apropos of the prolongation of the resolvent in [1] The theorem 1 is
published in [2).
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Cherepova ML.F.
(Moscow Energetic Institute)
On solvablhty of problems for parabolic equations
with growing (near the boundary) coefficients

“Jepxacoe P.C.
(Mocxea)

O Kkypce reomeTpuu B o61ieo6pazoBaTeAnHON HIKOJe

CocToABne MIKOALHOTO MATEMATEIeCKOro o6pa3oBaBna B HOCHSAHEE TOAH
BHREIBAN0 0GOCHOBAHEYIO TPEBOTY MaTeMaTA%ecKol obmecTeenBoCcTH. Ocobenno
#pKo 3T Biipasui B.J. ApHoabA, KOTODEIA, B JaCTHOCTH, HHCAIL: “ ... Bed reome-
TpBA U, CACAOBATENHHO, BCA CBA3b MATEMATHKA C PeajbHEIM MEPOM U APYTUMH Ha~
yKaMa 6bina HCKAIOUIeH U3 MATeMaTHIeCKoro o6pasoBannd . .. Ocobengno onacna
Ted/IeANAA HCIE3HOBEHNA BCEX JOKa3aTebCTE B3 mKoabaoro obysenna. ToT, kT
Ee HayIATCH BCKYCETBY [OKa3aTelbCTRa B IKOe, He cnoco6eH OTARIATE NpPa-
BRABHOE DacCyXjenfe oT HempaBuabaoro. TakaMA AOABMA MOTYT JETKO MaHd-
AyanpoBaTh Ge3oTBeTcTREAREE HoAnTAKA.” [1]. .

HegocTaTKd B MOCTAHOBKE IHKOABHOTO MaTeMATHIECKOTO oﬁpaaoaanm
AMeIoT cBoe Hambolee ApKoe MpoABAcHEe B HpENofaBalidA KyPCa reoMeTpHH, KO-
Topkiil B KoHIme (Teneph yXe) HPONLIOTO BEKa CTal BTOPOCTENCHHHM HO 3HAYH-
MOCTH, HPaKTHIeCKE HeyA060BapAMEIM A BOCHPAATHS MKOABHAKAMA I QaKTH-
YecK# HOJHOCTHIO 0GECKPOBICHEHM 1O co,qepxanmo _ »

Opmako B mOCHefHWE OAH B Haieli CTpaHe BOBHEAKIO ,qamxerme 32 BOC-
CTaHOBJACHAE fOMKHOTO MECTa PEOMETPHM B MKOAbHOM o6pasopanuu. To xe ca-
Moe HabmoJaeTea U 3a pyGexoM; ocoGeHHO AKTHBHO 3TOT IPONECe NPOTeKaeT BO
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Ppaunpr. B 2Tol CBA3E MHTEPECHO TO3HAKOMUTBECA ¢ KOMOCTEHTHEIM MECHHEM
¢dpannyackoit Komaccun no MaremaTHIecKoMy o6pasopamaio [2, 3].

Ha ocroBpBoli BOIPOC — HAJ0 /K CETOABA NPOJOIXATE NPENO2BaRHE TeoMe-
- Tpal B mKoae? — orBeT 6e3 KoneGanmA JonxeH GHTH HOANOXHATEALHLIM. Apry-
MEHTH B NONL3Y HPETOAARAHUA MEOMETDHH MHOTOUHCACHHH. 3AECh HAJA0 BCHO-
MEATH U O Pa3BHTHA NpOCTPABECTECHHOTO HPEACTaBAcHNSA, U 06 ofygennn nc-
KYCCTBY JOKa3aTeALCTBa, YTO TeOMETPHA BHUNOMEAET AyHmle, deM jiobasd Apy-
rag AWCHENIEHS, B O 3BATUMOCTH IeOMETDHA B REaibHON XHU3HH, B KYALTYDE A
B 3CTeTHKE, A O $YHJAMEHT2ILHON DOIE B HaYKe W TEXHHKE TEOMETPHHECKOTO
MBIIACERES, CHOCODBOCTH ONMPATHCA Ha MEOMETPHHECKYIO HETYHIA.

Hayiense reoMeTDHEA MOXHO HOADa3fieluTh HY HECKoABKO dTamnos. Hanpu-
Mep, HagaanHoe (3AeMeBTapHOE) O6yHenHe FeOMETDAA NMPOBOAHWTCA B MAAJHIEX
Kaasccax cpeAHel mKOAK, HOCHT HarAAARE YPOBeHE i NPEAYCMATPABACT 2HAKOM-
CTBO C PEOMETPHICCKAMA ATYPaME I HOHATAAME KaK IA2HBEMETDHHE, TaK H CTe-
peomerpna. llpenofapanne Xe B KOAISHKAX, IUHEIX, CTADIIMX KAACCAX cpefHeH
IIKOAE PEKOMEHAYETCA CKOBIESTPHPOBATE BOKPYT TAKHX BOIPOCOB: IeOMETPHA
B mpocTpancTse (BKIIYad' HOAHIAPY: A CepUtecKyIo IeOMETPHI0); POih AHBa-
puanToB (fauEA, YOI, AW AE, 06HEM); TCOMETPHIECKRE MECTa B AOCTPOSHAS;
reoMeTpHTecKre NpecGpasoBanya A Ap.

HeTepecEO HANOMHATE B 3TOH CBA3M Te c006paxeHnus W MPeJIOXeHnA, KO-
TOpEIe OCTABAA HaM B CBOMX NMyGIMKanmax @ Brickaswzasusx A.H.Koamoropos.
Om mosarai, 9TC H3y4eHHe PEOMETPUH B HIKO/e JONKHO COCTOATH B3 JETHIPEX
atamos: 1 - II1, 1V - V, VI - VIIi, IX - X (coxpaneua. ,qeuc'm‘oaasmaa pambime
Hymepamta KAACCOB ,necm'memeu mxom:z)

HUsyuenne reomeTpnd B I - I xnaccax BocAT HaTISAHO-BAMOCTPATABHENA Xa-
paxTep. PaccMaTpuBaioTed (OPME! Pa3HYHEX NPeAMeTOB, JAIOTCA ROACHEHNS 06
#X CBOMCTBAX, BBOAATCH MEPBHIE OODEASICHEA. Y Jailjnecd 3HaKOMATCA € YIoTpe-
6neaneM JUEEAKHA, TAPKYAA, YIOALAUKA H TPAHCOODTHUDA, BHIHOAHAIT APOCTElH-
mme mocTpoenna u naMepennd. B IV - V xaaccax o6y1enne octaeTes Haria HEM,
HO pacin@pseTcA KpYr m3ydJaeMeix GEIYp ¥ HalHHacTCA HeleHATPaBIcHAAA pa-
60Ta 10 PasBATHIC JAefYKTHBRHOrO MbimAennd. Ha ocBoBe BRIBOJOB M2 Habmofe-
AUil DOABNATCA NepBHe JAeAYKTHBHEE yMO3aKAIOYeHHH, NePBHie, TEOPEMES B HX
JAOXa3aTeNLCTRA. YICHHKE HA Ha9aIbHOM YPOBHE 3HAKOMATCA C o'ro6pax<emmn
PEOMETPAIECKUX qmryp Ha NpEMepaX HapalieibHOTO Teperoca, OceBoii cuMMe-
TpHH. : : e C ,

B VI-VIIl xaaccax -yHammecsd HOCTeNEHHO ncwsogfn'ca K HOHAMAHHIO' OTH-
WECKOTO CTDOGHEA TEOMETPHH; HOCAEAOBATENbHO MPOBOZATCA HAeA NOBAMAHHA
reoMeTpuIecKoll QUrYDH KaK MHOXECTBAa TOYEK; fAid [OKa3aTelhCTBa. TEOpeM
H peleHuA 3ajad CACTeMATHIECKH HCIOIB3YIOTCA FeoMeTpHIecKue mpeobpaso-
Ban@a. BexTop ‘BBOGATCA KaK HMOHATHE, KOBKPETHHIME OPHSHTHADAMA KOTODOTO
ABAAIOTCA CAJ2, CKOPOCTh B Gy3nKe, HapaiieabHb#E Hepeoc B reoMeTpru. Ha-
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xomei, B IX - X xaaccax m3ydaeTca cHCTeMaTH49eCKuil Kypc cre- peomerpun. Ha
JABYX HOCAeAHEX 3TafiaX ocoboe BHAMaHEE yAeAAeTCA CHCTEME OCHOBHAIX HOHATHI
A oGoznaqdernid. CaeAyeT HON49epKHAYTH, ITC Pa3BHTHE WIKOALEOTO MaTeMaTHyYe-
cxoro o6pasopanna TpeOyeT A3JaBnd pa3/uIAbX BapUaBTOR yIeOHUKOB, YIacTus
B 3TOH paboTe BeAYINHX MATEMaTHKOB B DEHArOrOB CTDAHE.
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Chiado’ Piat V.
(Politecnico of Torino)

Homogenization of monotone operators

In this talk we give an account of the main contributions to the study of homoge-
nization of boundary-value problems defined by monotone operators, starting from
the linear case studied by De Giorgi and Spagrolo (1973) up to the recent results
by Zhikov (2001), concerning non-linear equations involving periodic measures.
We try to analyse the evolution of homogenization techniques, entering into de-
tails in the case with measures. More precisely, we examine the limit behaviour of
solutions u* of boundary-value problems of the type

[ @Govee) - Vorwrrico) duc= [ fodn  voecr@),

where p.(4) = e¥ p(e~14), and p is a given non-negative Borel measure on RY,
that is 1-periodic with respect to each of the variables z;, ... , zy and is normalized
by the condition [, du = 1, with Y = [0, 1[". The function f € C°(Q), p > 1, 2nd
the function a(z, §) is p-measurable with respect to z € 2, it is strongly monotone
with respect to £ € RY, for u-a.e. z € RY and satisfies suitable growth conditions
with rspect to £ € RY. We illustrate the main homogenization theorem in the case
pt is p-connected, and we examine some examples of p-connected measures. In the
end, we try to point out which are the main problems that are still open in this
field.
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Chizhonkov E.V
(Moscow State Umverszty)

To optimization of one symmetric algorlthm
for saddle point problem

‘We consider the abstract linear nonsingular saddle point problem Lgz = F:

noe= (g ) (f ©1)

where A is a symmetric, positive deﬁmtg Ny x Ny.matrix, and B is an Ny x N,
matrix (in the general case Ny > Np), f, ¢ (¢ L kernel(B7)) are given and u, p are
the unknows. The problem (0.1) can be reformulated in the following way ([1]):

- Q~*(A+ B Bs) Q-'B wY_(F\os
M°z=(BTQ"1(uA+Vﬁ§o—Q) uBTQ"lB) (p)—(§)=F'
Hee C=C% > 0,Q = QT > 0, By = BC~1BT are matrices, and » > 0,8

are parameters. For the preconditioners C and @ the following inequalities are
assumed: there are posmve constants v, T (y < T) and §, A(6 < A), such that

70 g BTA‘IB re,
Q< AQ

Introduce the preconditioner My with parameter a > 0 for the operator Mp in the
form: Mo = diag{I,a C}, where I is identity matrix. Denote H = kernel BT, then
we expand the Euclidean space of vectors I/ with dimension Ny into the direct
sum U = H @ G, where G = H*. The following thecrem holds.

Theorem. Let subspaces H and G are invariant under Q' A, then the spectrum
o{T) of the preconditioned operator T = My * Mo belongs to the set A:

A={s}u{8+ /0% —ts[a}, 0=501+pt+vitf[a)/2, tc[y,T],s€[4A].

Using the analytic representation of the preconditioned operator spectrum,
it is possible to formulate and to solve the asymptotic cptlmizatlon problem of the
method M(}Zf + Moz = F (see, eg. [2]).
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Chronopoulos A.Th.
(The Univ. of Tezas at San Antonio)

Block S-step Iterative Methods for Nonsymmetric
Linear Systems

(jointly with Kucherov)

- 8-step and block conjugate gradient type iterative methods have been stud-
ied and implemented in the past. In this work we derive a block s-step conjugate
gradient type iterative method (the block OSOmin) for nonsymmetric linear sys-
tems. We also derive the "seed’ or "projected’ version of OSOmin. Finally, we derive
2 new averaging algonthm to combine several approximations to the solution of
a single linear system using the block method with multiple initial guesses. We
implement these new methods with JLU preconditioners on a parallel computer.
‘We make comparisons between the different methods.

Chueshov L.D.
(Kharkov National University)

Order—preservmg skew-product flows
and nonautonomous parabolic equations

Let X be a nonermnpty seb in a real Banach space ¥V with a closed convex cone
Vi C V such that V3 N (—Vy) = {0}. This cone defines a partial order relation
on X viaz € yif y— 2 € V. The cone ¥, is solid, if it has nonempty interior
int V.. The cone V. is normal, if for any a, b € V such that a < & the interval
[a,8] defined by the formula [a,b] = {z € V : ag 2z K b} is boundéd. The cone
V, is said to be minihedral if for any finite set B C V there exist supremum sup B
"and infimum inf B. As an example of a normal minihedral solid cone we can point
out the standard cone in the space of continuous real functions on a compact set.

A skew-product flow (SPF) with time R4 and state space X isa pair (m, a)
consisting of the following two objects: (i) a base flowe = (©, {7:,t € R})on ©, i.e.
“a family of transformations {o; : © = O, € R} such that 0§ = id, @00, = 044
forallt, s € R and {t,0) — 0,0 is a continuous and (i) a mapping 7 : Ry x X x0 ~»
"X x © of the form ={t, z,0) = (p(t, 8)z, 6:0), where ? is a cocycle over ¢ with the
state space X and time Ry, i.e. a continnous mapping (2,8,z) <p(t 9)2 from

IR+ x © x X to X satisfing the cocycle property:

9(0,0) =id, ot + s,0) = plt,o.0) 0 p(s,0) for all tsER+,9€9

A skew-product flow (=, ¢) is said te be order-presemzng iz <y 1mphes eft, )z <
o(t,f)yforallt>0and 2 €0O.
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The concepts of equilibria, sub- and super-equilibria turn out to be of prime
importance for the study of order-preserving SPF (for autonomous and periodic
systems these concepts are well-known, see [3] and [5], for instance). The following
definitions are motivated by the corresponding concept for random dynamical
systems (see [1, 2] and the discussion therein).

A mapping u : © — X is said to be: (i) an equilibrium of the SPF (r,s)
if it is invariant under ¢, i.e. if @(t,0)u(9) = u(c:f) for allt > 0 and @ € ©;
(i) a sub-equilibrium if @(t,6)u(0) > u(c:) for allt > 0 and ¢ € O; (iii) a
super-equilibrium if ¢{t, #)u(f) € u{o:f) forall¢ >0 and 6 € O.

Qur first result is the following theorem.

Theorem 1. Let (7,5} be an order-preserving SPF. Assume that there ezist
a sub-equilibrium a and a super-equilibrium b such that a(0} < (@) and the set
o(to, 8)[a(8), b(8)] is precompact in X for some to € Ry and all # € ©. Then the
limits

«(8) = ’E+m°° o(t,c_ib)e,(c.0) and a(f) = 3}32100 o(t, 0-:0)b,(c-:0)

exist, and they are equilibria such that a(6) < u(0) < #(F) < (6).

This theorem is well-known for antonomous and periodic systems (see, e.g.,
[3, 5]). In fact similar assertions can be also found in [4] for ordinary differential
equations with almost periodic coefficients. It was alse proved in [1] for random
dynamical systems.

An order-preserving SPF (m,0) on X = V. is said to be strictly sublinear if
for any z € int V4 and for any A € (0,1) we have Ap(t,6,z) < ¢(2,0, Az) for all
t>0andf €O.

The orbit 7,(f) := Urpow(t, 0-:0)a(c-.0) of the cocycle ¢ of SPF (m,s) in
X = V, emanating from a is said to be bounded if there exists a constant C' > 0
such that ||¢(t, 0-:8)a(e-:0)]| < C for all ¢ 2> 0 and ¢ € ©. We will say that the
orbit v, is unbounded if it is not bounded. We will also say that SPF (m, o) is
compact if

7 = | J{(w(t,0)a(8),0:0) : £ > 7,0 € ©}

is a precompact set in X x © for every a(f) € ¥y with bounded orbit v.{f) and
for some 7 2> 0.

Qur second tesult describes the possible long-term behavior of a sublinear
SPFs. '

Theorem 2. Let (n,a) be a strictly sublinear compact order-preserving SPF
on Vi, where Vy. is a normal minihedral solid cone in the Banach space V. Assume
that o(t,0)int V4 C intVy for allt > 0 and @ € ©. Then precisely one of the
following three cases applies:

(i) for all b € int Vy., the pull back orbit -y, emanating from b is unbounded;
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(i) for all b € int Vy., the pull back orbit v, emanating from b is bounded, but the
closure of y, contains elements that do not belong to int Vs ;

(#ii} there exists a unique compact equilibrium u € intVy., and for all b € int Vy
the orbit emanating from b converges to u, ‘i.e. imy 400 0(¢,0-:0)b = u(f}
forall@ € ©.

Our main example is the SPF generated by the syst.em of parabolic differential
equations

Bu; = Aw; + filt, =, m,. .. ,um), Fi=1,...,m

in a smooth bounded domain D C R%, d < 3, with' the Neumann boundary
conditions. Here the function f = (f3..., fm) is almost periodic with respect £ and
it is cooperative, i.e. 0f;(t,z,u)/Ou; > 0, when i # j and u = (uy,.:. ,um) ERTP.

We note that in contrast with the antonomous or periodic case almost pe«“
riodic systems can possess nontrivial completely ordered omega-limit sets. This
is one of the obstacles which prevent the direct expansion of results available for
antonomous or periodic systems to the general nonantonomous case.
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- *,Chung; S.-Y.

(Sogang University)
... Uniqueness Theorem and, reflection principle for
the Solutions of Heat Equation via generalized. functmns

. It is well known that solutions of the heat equation in the upper half space
is not uniquely determined by its initial value. But many ma,thematlaans, such
as Tychonoff, Hayne, and so on, have constructed a uniqueness class of solutions
with some constraint on the growth of solutions. Here, we give a much larger
uniqueness; class -which.improves the resulis ever known so far. In addition, a
reflection principle for the solutions of heat equatlon will be improved and used to -
get a-uniqueness theorem for-the, temperatures, in semi-infinite rod. Throughont.,
this talk, it will be seen how, theory of generalized functlons, such; as distributions,
ultradlstnbutlons, hyperfunctmns, work- properly in this area.
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Cieslik D.
-(University of Greifswald, Germany)

The Steiner Ratio

Steiner’s: Pioblem is” the 2Problem of shortest comnectivity”, that means,
given a finite set of'points in a metric space (X, p), search for a'network intercon-
pecting these points with minimal length. This shortest network must be a tree
and is called a Steiner Minimal Tree (SMT). It may contain vertices different from
the points which are to be connected. Such points are called Steiner points.

If we do not aliow Steiner points, that means, we only connect certain pairs of the
given points, we get a tree which is called a Minimum Spanning Tree (MST).
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Observation 1.
In general, methods to solve Steiner’s Problem, that means to find an SMT,
are still unknown or hard in the sense of computational complexity. In any
case, we need a subtle description of the geometry of the space.

On the other hand,

Observation IL.
It is easy to find an MST by an algorithm which is simple to realize and fast
to run in all metric spaces. The algorithm needs only the mutunal distances
between the points.

A natural question, derived from these observations, is to ask, what is the perfor-
mance ratio of an approximation of an SMT by an MST? Consequently, we are
interested in the greatest lower bound for the ratio between the lengths of these
both trees: '

_ L(SMT for N) . .
m(X, p) == {L(MST o ) N C X is a finite set} ,

which is called the Steiner ratio (of the metric space (X, p).
We will discuss this quantity for specific metrie spaces. Particularly, we will con-
sider the class of all

o two-dimensional Banach spaces;
» finite-dimensional £,-spaces;

e Riemannian surfaces;

o graphs; and

e sequence spaces.

Cojuhari P.A.
(Institute of Mathematics and Computer Science,
Academy of Sciences of Republic of Moldova)

Hardy type inequalities for abstract operators

Inequalities of Hardy [1,2], due to their importance for many principle prob-
lems from various domains, intensively have been discussed by many authors (see,
for instance, [3-6] and the references quated there). We propose a general method
for studing Hardy fype inequalities. Our approach is based on the technigue of
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abstract operator theory as far as possible and then involving concrete operators
in ‘order: to obtain.the classical. Hardylinequalities, and others. - In this context, the
following tesult can. be considered as an.abstract version of Hardy. type inequali-
ties. For the.sake-of simiplicity let:us consider only the-case of the Hilbert spaces
(see, also, [7]). 1

Crehi g e
Theorem i Let A and B be densely defined linear opemtors in a Hzlbert space

.......

some 7 S 0) ‘such that Re(BA“l) = C’ "on @ linear mamfald o of Hu Then, for
each complez number A with Re) = 0, the foliowing znequal:ty holds =~

e add ey geei 2GS S R

SUF AN yiv 510070 ) ‘] ¢ !,m"Au” ”(B AI)H" ST 5. ,4 g o

.....

far all a€ Dom(A) A Dom(B) sitch that Au €Q, where m= = m(C) s the greatest:
lower bound of the operator |C.

t4h a0t Ty
‘We note that- thé ‘Gonstant 7 from above mequahty is optimal. This fact follows at

once by consxdenng conctete mtuatmns which correspond to f.he case of well known

resulés!of B. Muckenhoupt [8] ,as shown Appllcatmns f.o spectral theory is, .also
considered. gt
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Collar A.F.
(Institute of Applied Mathematics and Systems, Mezico)

A dynamical model for the interaction among large
neural aggregates. :

A dynamical model that describes the synaptic interaction among large neu-
ral aggregates as a competitive and cooperative process of propagation of waves
of excitation and inhibition is described. The derivation of a nonlinear hyperbolic
system of coupled equations is made, for which, averaging over the spatial variable,
turns it into a system of ordinary differential reaction equations, with nonlinear
terms that depend on the unknown function in a sigmoid form. These unknown
functions represent the level of stimulation of the neural aggregates, because of the
synaptic activity that is performed on them. This sigmoid term represent the abil-
ity of the aggregates to answer to a given level of stimulation. Some results about
the asymptotic behavior of the solutions in relation to certain small parameters,
the existence of periodic solution and travelling waves and the controllability of
the model, are obtained. Also, several characterization and identification problems
of the parameters that define the sigmoid functions that are able to generate stable

- periodie solutions, are solved. The results obtained are applicable to the analysis
of the thythms of the brain cortex and to the study of the so-called limbic circuit
and its role in the schizophrenia disease.

Corbo E. A.
(University of Cassino)
A problem of approximation of BV functions
with values of fixed norm -

. Danilin A.R.

(IMM UrD RAS, Fkaterinburg)
Asymptotics of solutions to a system
of elliptic equations with parameier and
small coefficient at higher derivatives.

By the matched asymptotic expansions method 1] the asymptotics of solu-
tions of the following Dirichlet problem for system of singularly perturbed elliptic
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equations with scalar parameter and additional integral restriction

{ Loze +1c = f, Loue — De -2 = 0, (2,3) € = (0;1) x (0; 1),
:Z;(Z‘,y) = ﬂg(.’t‘.‘,y) = 03 (2, y) c 39,

el = [ w2(e, ) dody= 72,
o

is constructed, where £z = ?Az — b(z)gg —a(z;9)z, Liu=c*Au+ b(i)g—; -

a(z, y)u, . : _
F,aeC®(Q), a(z,y}) 2 A> 0 for (z,¥) € Q,
beC™[0;1], b(z) > B> 0 for z € [0; 1]

and s
W) LED —oz,9)- fla) 0 im0

The problem of finding optimal control and corresponding state in problem of
optimal control of solutions of the equation £z, + %, = f in domain {2, integral
restrictions for control and quadratic quality criterion [2] is reduced to the above
problem.
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Danilovy V.G.
(MSIEM, Mascow)

Solutions to quasilinear equations describing interaction of
nonlinear structures

In my talk I will speak about a new approach to constructing formmias of solu-
tions describing the merging process for shock waves, weak discontininties (shock wave
generation) and decay of nonstable shocks for scalar conservation laws.
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‘Da Silva A.R. .
(Federa! Unwerszty of Rio’ d’e .Tanesm)

Some resulis of S.Bernstein on the 2-point -
problem revisited

The.. purpose of this talk is to present the geometric viewpoint: of the classical 2-
point boundary value problem, mtroduced by M.M.Peixoto.- We shall show that this
- approach. allows us: to extend some results due 8. Bemstem, so as to put them within
the framework of the modern theory of thtney stratifications.- Our results, based on
previous work by Peixoto and Thom, allow us to handle a large class of equations left
out by their treatment. Further, we shall see that these matters are closely related to the
escape-time problem for second-order ordinary differential equations.

Davydov A.A. ...
( Vt‘ad:mzr State Umuerszty)

Limiting direction metamorphoses of generic
1mphc1t ODEs
) TS

An implicit differential equatzon of order n ]S defined as zero level (=equation sur-
face) of a smooth function on (n+2)-d1mens:ona1 manifold $» endowed by 2-dimensional
distribution Dn’ wh:ch are the result of Goursat prolongat.lon procedure from standard
contact structure on the space ‘of directions on the plane. A generic equatmn is defined
by a function from an open everywhere dense subset in the space of functions in fine
C“-topology “The surface of & genenc equation i either empty or a smooth hypersurfa.ce
in* S, because the ‘differential of a genenc function ‘does not vanish ‘at any point of its
zero level. A sohition of an equation is an 1mmersed cuive’ whlch lies in its surface and
is tangent to the distribution D,. A direction on the plane‘is ‘admissible if theré exists
solution of the equation whick passes through this point with the slope supplying by
this direction. A boundary peint of the closure of set of admissible directions gives the
limiting direction at the respective point. A point of the plane provides metamorphose of
‘hmxtmg directions if the number of such directions i is not constant near this peint. Here
genenc metamorphoses of limiting directions are classified. Ones are closely related to
‘generic singulavities of limiting direction’fields of generic dynamic inequalities on surfaces
{1]. The restriction to the equation surface of natural projection from 5, $o the space of
the directions on the plane is called equation 7-folding.>

Theorem 1 A germ of I-folding image of a generic, equation of order n- 2 2
at any point o_f its boundary is the germ at zero of one of the followmg g9 aets,
1)0; 2)z < %22 3)z € 2% + y2,°4) 2 <'|z];5) = < |eh; 6) {y 2oz € 2} T2 <
max{!zl,y} 8)yg < max{la:l —z,2}; 9)z < max{—w +zw® + ywlw € R} in appropriate
Jocal smooth coordinate system z,y,z in the sgace S, which has the origin at this point
and moves the canonical projection along the direction azis to the form (z,y, z) = (z,y):
Also such image for any equation near the given ‘one is carried to the initial one by
C®-diffeomorphism of thzs space besng close to. the :dentsty cmd cammutatmg with this
projection. cldde i
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Metamorphoses can be subdivided in two classes. One of them consists of point
metamorphoses every of which takes place near some direction at a point of the plane
and the other one is formed by multipoint metamorphoses when'at a point of the plane
there are observed at least two different point metamorphoses. Set of all points on the,
plane which provide point metamorphoses is a bifurcation set. Generic point and mul-
tipeint metamorphoses are also described and their stability is proved. For n'= 2 some
metamorphoses and their stability were investigated by M. LeMasurier [2].

- The woik is done by the ﬁnanc:a] support of !;he grant.s RFBR 06-01-00343 and
NWORFBR 047-008—095 T .
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~ Delitsyn A.L.
A " (Moscow State'Univerésty)
The spectral a]propertles of soime operators ,
of mathematlc phys:cs in deforme cylmder.

The problem of the e:nstence of the dlscrete spectrum of dnﬂ'erent operators of math-
emat:ca.l physics in  deformed cylmder is the subject of many studies [1-3). Nevertheless
there are nio, genera.l cntenons of determination if discrete spectrum empty or not. We
consider t,wo problems ‘The ﬁrst. spectral problem is:

',“.», —A" =#'u  ulog =0 uGLz(Q), S (0.1)

where Q is locally enlarged: cylinder mth smooth’ boundary, Q; = ((z, ¥) G Q z e
(—-oo, oo)) € Q The second problem is :

- rotrotE = l:"‘E» Exnlaq 0 1(0.2)

divE=0 . E¢ Lz(Q)
which considerd in @. The main result is -~ -~ "
Theorem.The discrete spectrum of the ptoblem ( 1) and (2) is not empty.

. For the, cons:deratwn of the problem (1) we consider [4]. the nonlinear spectral
problem in finite domain bounded by two sections z = z;,2 = z; and the boundary of
cylinder 8Q , T - R .

o ) —Au—k u ulaq =0.

g—:h:;’ = - Z 711(’3)(”, %bn)IL;(Q,)ibn.
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8u
B =lemzy = Z k)2, ﬁbﬂ)’:a(ﬂl)’l”‘.
n
where 1, are the solutions of the spectral problem in the section of regular cylinder
—A1%n = Anthn thaloa =0

Yn = VAn — k? We prove that there are exist the nontrivilal solution of this problem.
The analogous method is applied for the (2) problem.

REFERENCES

[1] Exner P., Seba P. Bound siates in curved quantum waveguides, J. Math, Phys.
30, (1989), 2574-2580.

[2] Bulla W., Gesatesy F., Renger W., Simon B. Weakly coupled bound states in
quantum wavwguides Proceedings of AMS. 125 No 5 (1997), 1487-1495.

{3] Evans D.V., Levitin M., Vassiliev D). Ezistence theorems for trapped modes [/
J. Fluid Mech. 261, (1994), 21—31

[4] Delitsyn A.L. On the problem of scattering in a nonuniform wavegmde Comput.
Math. Math. Phys. 40 No 4 (2000, 577-581.

Demidenko G.V,
(Sobolev Institute of Mathematics, Novosibirsk)

On pseudohyperbolic equations

In the paper we continue the study of equations not solved with respect fo the
highest derivative

=1

Lo(z; D2)Din+ Y, Li-x(z; Do) Dfu = f(¢,7). (1)

k=0

Probably, for the first time, equations of such type were studied in Poincaré’s well-known
article [1]. Subsequently, they were considered in some aiticles by mathematicians and
mechanics. The most intense interest to equations of the form (1} arose in connection with
investigations of the problem on small oscillations of rotating fluids by S.L.Sobolev {2]. It
is well known also that after the appearance of 5.L.Sobolev’s articles ™... 1.G.Petrovskii
pointed ont the necessity of studying the general differential equations and systems not
solved for the highest derivative with respect to time (systems not of Kovalevskaya type)”
(see [3, p. 27]). At present, there are a great number of works deveted to the study of
equations and systems of such type (see, for ezample, the bibliography in [4]). In the
present paper we consider one of three classes of equations of the form (1) introduced in
" the book [4]. The dlass is called pseudohyperbolic and contains particularly one class of
equations defined by S.A.Gal’pern [5]. The main result of the paper is proof of solvability
of the Cauchy problem for pseudohyperbolic equations with variable coefficients. In the
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case of constant coefficients analogous results were published in [6]. The research was
supported by the Russian Foundation for Basic Research (N 99-01-00533, N 01-01-00609).
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Demidov A.S.
(Moscow State University)

The Stokes-Leibenson problem and'non-standard analysis

{

It is shown why this problem in the case of a source does not admit a classical solution
when initial contour is non-analytic. This. “peculiarity” can be relazed by using non-
standard analysis. Let Q9 C R? be a sunply connected open domain - (symmetnc with
respect to z-axis} such that the origin belongs to Q9 and its boundary Fa is smooth
encugh. This domain is deformed in the following way: for t 2> 0, we get a domain 0,
such that, along its boundary T';, each point x = (z, y) moves as velomty % = Vu, where u
satisfies: ¥zz-tuyy =26, mQy, and u=0, onT:,wheredisthe “Dirac function”

concentrated at the origin. Let v = v(z, y) be.the function harmonically conjugate to.u
in 2\ {(0,¥) : y < 0} such that v(z,0) = O for z > 0. Let b(t,5) be the angle between
(z > 0)-axis and the exterior normal to {2 at a point s € Tt N{y > 0} such that
¥ = ¢ € [0,1] at the point s. Example: the function (t,5) ~> b(t '¢) = we. corresponds to
a cerle. Let Hé(t,0) = 35, ¢k(t)cos1rka, where . ¢(t,0) = 2»1 ¢k(t)ek(o-) and

e : ¢ > sinwko. .

Theorem 1. Funcbzon b(t a') = b(t a) + ,B(t a), where ﬁ(t o) 2k>1 ﬂk(t)sm 1!":0',
satisfies:

(t+to)(b K(b))ﬁ(t ar) = e—z"“’")a (t a') +
+b’(t a')e""("‘” f [mff"f) ¥, e)e-‘*“ﬁ]de (o 1)
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K($)(¢,0) = b'(t, o)e=") 3. f " OB, £) de,
. LT de .

a=H(B), V2rito /l‘expa(o, a)do = |Ts]|/2,

where §(t,0¢) = 8g/at, ¢'(t,0) = 89/3c. The function b = b(t,-) € L*(0,1) defines T
(seef1f). ‘ . W

Theorem 2. Vector e, is transversal to M ="{b € L% b -8 << 1 <
(1 - K)(8),e1 >pa= 0}. The projection of the equation (1) on a normal 5 to A C M
{codim M = codim A = 1) has (a convenient scale) the form: ~2n1; = 1, its solution is de-
fined only for t € n{0)?. The solution of the regularizing equation —2(n+ A.(n(0},t))9 =
1, is defined for all ¢t > 0 and oscillates with frequency (8¢%)™" and amplitude ¢ for
t > n(0)?. Here A is a function which takes alternately values e and —¢ with frequency
(8%)™" for t > n(0)?, where ¢ is an infinitely small in the sense of non-standard analysis,

- CRTUR Lt Lo ©m . o

. . REFERENGCES

[ A.S.Demidov; Some a';;pyiicatians'of the Helmoltz-Kirchhoff method (equilibrium plasma
in tokamaks, Hele-Shaw flow,... ), Russian J. Math. Ph.,7, No 2(2000), 166-186. .

Demjanovich Yu.K.
(St. Petessburg State University)

On Solution of Some Interpolation Problems Wifh p-splines °

¢ . Denisov V.N. 2~ - : W
. (Moscow State University) '
On stabilization of the solution of -
the Cauchy problem with lowest terms
In half space {t > 0} = {5;; t:.z EE‘:“f Ny 0} we congigigr the Cagchy problem

N N : '
a du Fu 3u
gf‘; o ak,(z)a—m) + gbg(x, ) g + el thu ~ 5 =0, )
A - :

v u(z,0) = w(z). )
We assume that following conditions holds: coefficients an(z} = ai(z) (k,i=1,...,N)
are bounded and measurable, and uniform parabolic condition holds, initial function
to(z) — bounded and continuous in EY, c(z,) < 0 for all (z,£) € {t> 0}, functions
be(z,t) (k= 1,..,N), ¢(z,t) are bounded in every strip {0 < t < T} = {E¥ x
(0, T)}. The Cauchy problem (1), (2) we understand in usual weak sence; that is in
sence of integré._l' identity [1]. The solutions of the p;'oblem (1), (2} we takes from class of

2The research is partly supported by RFFI Grant 9&01—@345.
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uniqueness, that u(z,£) is solutions bounded in each strip {0 < ¢ € T}. We consider the
question of sufficient conditions, which guarantee the following zero limit

lim u(z,£)=0 (3)

exists, uniformly on every compact K C EV for all bounded initial function ﬁo (z).
Theorem 1. Let N =1 or N =2 and following conditioness holds:

oz, ) —a® <0 ()
for |z| < k, for some k > 0 and all £ > 0, and
o (Bl G+, zeEY, >0, and G >0, >0 (5)

Then the solution of the Caucby problem (1), (2) stabilizes to zero, as t = +co uniformly
on any compact K C E¥ for any bounded function uo(z).
Remark. On examples we demonstrated that conditions Theorem 1 are precise and
Theorem 1 does not hold in cases N 2 3.

Theorem 2. Let N > 3 and following conditioness holds:

e{z,8) < 'x‘;: (6)
for |z| > h, where h — some positive;
. '
R
Then the solution of the Caucby problem (1), (2) stabilizes to zero, as t = +co uniformly

on any compact K C E¥ for any bounded function uo(z).
Remark. On examples we demonstrated tha$ conditions Theorem 2 are precise.
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[bx(z, )| < (k=1,...N). o

Derkach V.A.
(Donetsk National University)

On indefinite generalized interpolation

Denote by Sx or Hg® the class of matrix valued functions s which can be represented
by sab~!, where b is a Blaschke-Potapov product and so is from the Schur class or
39 € H®, respectively. We consider the following problem [ P.(w,§), which is an indefinite
variant of the Sarason problem. Given are an inner matrix function 8 and w € H*. Pind
8 € Sx such that [s(2) ~ w(z)]8(z)"" € H. In the case where 4 is a Blaschke—Potapov
product the problem [P.(w,0) is a tangential interpolation problem. Associated with
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the problem P.(w,#) is a functional Pontryagin space H and an isometric operator V
in H. Solutions of the problem [P<(w,f) and unitary extensions of the operator V are
shown to be in a one-to-one correspondence. Making use of Kre“in — Naimark formula
for generalized resolvents we obtain a description of all solutions of the problem.

Dezin A.A.
(Steklov Mathematical Institute)
On the deductive approach to
elementary quantum mechanics

.The ontline of deductive approach to elementary quantum mechanics is given. As
a model of physical space a locally compact abelian group is used.
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Dhungana B.P., Kim D., Chung S.Y.
. (Seoul National University)
Characterization of Solutions of Hermite
Heat Equation and Schrédinger Equation

 We show that smooth solution to the Hermite heat equation (8; — A +|z]2)U(z, §) =
0 on R™xR* which does not increase faster than t~7 for some N > 0, can be expanded

into 2 Hermite series . »
U (z,8)= Z cp e~ ClEIER)E hi(z)
: P

with the polynomial growth in ¢ and vice-versa. Moreover, due to the polynomial growth
of ¢, the initial value of the solution twms out to be a tempered distribution. We intro-
duce an integral transform U(z, s + it) := {U(, t), E(z, ¥, 3)) in R® x R* x R? associated
with the Mehler kernel E{z, y, s} and call it the Mehler transform of U(- , ) € T;(R"). As
an application of the above result, we show that every solution U(z, £) € C* (RE, 7';(R“))
of the Schridinger equation (—i8:— A+|z*)U(z, £) = 0 subject to sup,cgn |U(z, 3-+i0)| =
0(s™™) as s — 0* for some N > 0, is a tempered distribution in the form of Hermite
series 3, cx e~(IEH™# py(7) with the polynomial growth in ¢x and vice versa. Here the
space 72012") is the dual of T3(R"), a variant of the Gel'fand-Shilov space 53(R"™).
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Djuraev L.N.
(Samarkand State University)

New universal method of numerical solution of
Mathematical Physics Problems

Many important problems of Physics, Technology, Engineering and Science inte-
grally are described Mathematical Physics Problems (MPP). Such problems may be
solved exactly in exclusively scarce cases when eguations are one-dimensional, linear
and coefficient constant. But important practical problems are nonlinear and many-
dimensional. Such problems may be solved successfully only with help numerical method.
Among numerical methods solving of MPP more universal, effective, flexible, simple are
Finite Difference Method (FDM) and Finite Element Method (FEM). Although indicated
methods are differed via principle of construction and investigation according discrete
scheme 2 idea besis these methods equally. In present message are accounted absolutely
new approach to numerical solving of MPP. Principle of construction and a idea besis of
this method are differed from FDM and FEM. New method are demonstreted on exam-
ple of boundary inverse problems (incorrect) for simplest hyperbolic equation. Resuits
broutht of numerical experiments on PC are shown effectivity and absolutely stability of
accounted method
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Dmitriev V.1, Saltykev E.G
(Moscow State University)
Absence of poles in integrand of the Green’s function
for special model of three layers medium
The Green's function u(z,z) satisfies the Helmholtz equation with an ingomoge-
nious term of é-function type

% + Fu + 8 (2)u = —28(z — 2)8(z — z)

8z?

and the radiation condition at infinity - u — 0 when r = /22 + 2% — co. The function u
has the logarithmic singularity in the source point M'(2',"). The equation is considered
when 2,27,z € R. We suppose that the coefficient &*(z) depends on one variable z
and takes three values kf = g1+ jou, &1 € R,n > 0,1=0,1,2, j is the imaginary unit.

‘We obtain the problem solution expanding the function u as the function of variable
z in the Fourier integral.

The integrant of the Green function represents a fraction with a denominator - the
Wronskian of linear independent depending of the variable z solutions of the ordinary
equation . The Wronskian contains the factor which could be equal to zero

wla)=1-—¢g

where
g=p e,
P el I ek &
T

’7' = Va*—k,’,l::(},l,z, Reﬂ‘ 20,

H is the thickness of the middle layer.
o is a spectral parameter.

We prove that in the case of a special connection between the parameters of the
problem £; and o when

(62 — €0)® + (01 ~ 70)* _
{e2 —£1)? + {02 ~ 1 )? -
the intergrant of the Green's function has no poles in the comlex plane a.

For that purpose we consider the integrand in the upper half-plane of a complex
plane of the special parameter a = a+jaz. We divide the upper half-plane by byperbolas
az = a;[20,1 = 0,2 into three parts.

Taking into account that Im i < 0,1 =6,1,2 in the domain on the left of the
hyperbola a2 = ¢:/2c; and Im 7 > 0 on the right of it we prove that on the boundary
" of the internal domain 1 >| ¢ |. Using the Rouché theorem we obtain that 1 — ¢ # 0 in
the whole domain. It is easy to show that last equality is velid for external domains.

The formula (1) is connected with the condition 1 >| ¢ | on the both hyperbolas.

(1)
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Debrokhotov S.Yu.
(Institute for Problems in Mechanics, Moscow)

From Hugoniot-Maslov chains for singularities of quasilinear
equations to pendulum type behavior of typhoons trajectories

The dyramics of solitary weak point singulazities (vortices) is studied for the system
of shallow water equations with the variable Coriolis force on the B-plane. According to
Maslov’s viewpoint, this dynamics can be described by an infinite chain of ordinary
differential equations similar to the Hugoniét conditions arising in the theory of shock
waves and can be used for the description of the typhoon “eye™ trajectories. We show
that after some reasonable closure, one obtains the nonlinear system of 17 ODE with very
curious properties, like integrability, which allow us to say that in some approximation
the vortex in question can be treated as a rigid body whose trajectory is determined by
the Hill and Physical Pendulum equations.

Dolgopiat D.I.
(Pennsylvania State University)

Transversely hyperbolic systems with symmetries

We discuss partially hyperbolic dynamical systems where the central direction is
generated by the symmetry group of the system. We relate mixing properties of such
systems with accessability properties of stable and unstable foliations. We also investi-
gate the imapct of small non-symmetric perturbation on the system obtaining diffusion
approximation for the slow motions and compute weak derivatives of assymptotic mea-
sures. In some cases we show that after generic perturbation the system becomes robustly
non-uniformly hyperbolic.

Drébek P.
(University of West Bohemia, Check republic)

Resonance Problems for the Models
of Suspension Bridges

The boundary value problem

Uz +u,,,-,_,-, +bu"' =hin (—5', 5) X R,
“(igs t) = “m(ig‘: t) = 01 (0"1)
u(z,t) = u(—=z, ) = u(z,~t) = u(z,t + T},

where u*(z,t) = max{u(z,t),0}, serves as a model of suspension bridge. If h is positive,
symmetric and time independent forcing term, problem (0.1) has a pesitive stationary
solution. Depending on the magnitude of T > 0, different types of nonstationary solu-
tions to (0.1) exist for certain ranges of parameter b > —1. The problem (0.1) can be
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transformed to the usual bifurcation scheme and the existence of nonstationary solutions
is proved by using of the bifurcation theory.

REFERENCES

P. Drabek, G. Holubova: “Bifurcation of Periodic Solutions in Symmetric Models
of SBuspension Bridges”, Topol. Meth. in Nonlinear Analysis 14 (1999), 39 - 58.

Dragovich B.
(Institute of Physics, Belgrade,)
and Steklov Mathematical Institute)

Some new differential equations with adelic solutions

‘p-Adic analysis has a successful application in mathematical physics (for a review,
see [1]). Adelic approach seems to be the most natural in p-adic generalization of classical
and quantum mechanics {2]. In this context we usually encounter adelic functions, as se-
guences of functions which are adelic valued for adelic arguments. These adelic functions
are solutions of the Euler-Lagrange equations of motion. Thus it is important to investi-
gate adelic aspects of differential eguations in mathematical physics. In this contribution
we will present construction and analysis of some new differential equations which are of
interest for adelic physical models. There exist p-adic and real solutions, which together
make adelic solutions. Some of these results are presented in Ref. [3]. It is worth noting
that real and p-adic components of these adelic solutions have different form. In this way
we have Lagrangian and equation of motion, which are invariant under change of the
number fields R and @, but the corresponding solutions are not invariant. It is natural
to expect that the fundamental physical laws are invariant under interchange of R and
@p. So we have here some examples which may serve to study a new kind of spontaneous
_ symmetry breaking related to number fields. This can be used to explain the dominance
of real numbers at distances larger than the Planck length.

REFERENCES

{1] V.8.Vladimirov, 1.V.Volovich and E.1.Zelenov, p-Adic Analysis and Mathemati-
cal Physics, World Scientific, Singapore (1994).

[2] B.Dragovich, Ther. Math. Phys. 101 (1994) 1404,
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Drozhzhinov Yu.N., Zavialov B.1.
(Stekiov Mathematical Institute)

Tauberian Theorem for Generalized Functions
in Banach Spaces

We disccuss new general tauberian theorem for Banach valued distributions. This
theorem includes a lot of interesting particular cases. We give some of its applications. In
particular we study the asymptotic properties of solutions of Couchy problem for Heat
equation.

.t

Dubinskii Yu.A.
(Moscow Energetic Institute)

Some Orthogonal Decompositions of Sebolev Spaces
and their Applications

We consider the decompositions of the Sobolev and Sebolev-Clifford spaces in the
sum. of the analytic and coanalytic subspaces. These decompositions are the base for
the constructions of the corresponding nonlinear analytic and coanalytic boundary value
problems.

Dubovski P.B.
(Obninsk Institute of Nuclear Power Engineering
Institute of Numerical Mathematics RAS)

Well-posedness of linear integral equations with Wnon-
-Fredgolm kernels and natural spaces of their solutions'®

We consider linear integral equations of the second type with non-Fredgolm ker-
nels. The notion of quasifunctional is introduced, and the resolvent adjoint equation is
considered. As a result, we select certain functional spaces that are natural for a given
integral equation (or a system of integral equations). The existence and uniqueness the-
orems in these natural functional spaces are proved. Also, we deraonstrate that outside
these natural spaces the solution may be, generally speaking, non-unique.

REFERENCES

{1] P.B.Dubovski, An analytic solution of the fragmentation equation by means of
the adjoint equations methods, Differential Equations, 36, No. 10 (2000), 1385-1392.

[2] P.B.Dubovski, Analysis of infinite systems of ordinary differential equations by
means of the ajoint equations methods, Differential Equations and Applications, Proc. of
the 2-d Int. Conference, St.-Petersburgh, 8t.-Pt. Tech. Univ., 1998, 123-126 (in Russian).

19The research is supported by the Russian Foundation for Basic Researches, project 01-01-96019
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Dubrovskii V.V.
(Magnitogorsk State University)

The new method of a finding of the first eigenvalues of the
spectral problem of Orr-Zommerfeld.

This article deals with the elaboration of the new method of a finding of the first
eigenvalues of the non-self-conjugate operators on the basis of the theory of the regular-
ized iraces of discrete operators. The formulas, which help to calculate the corrections
of the theory of perturbations of the necessary order, are also obtained.. The technique
of numerical experiment, tested on the spectral problem of Orra-Sommerfeida, has been
elaborated.

Dyachenko A.V.
(Moscow State University)

Oscillation theorem for eigenfunctions of the indefinite
Sturm—Liouville problem

We consider the boundary problem of the form

" +(Mf(z) +a(=))y =0, ag<zgh

yla) = y(b) = 0.
it is called the indefinite Sturm-Liouville problem if the function f changes sign on
{a,b]. We assume that the operator Ay = —y" + g(z)y subject to the given boundary
conditions defines a positive. definite operator in L*(a,b). This problem has a conntable
set, of positive eigenvalues 0 < Xo < A1 < ... (as well as negative ones). The main results
obtained are the following,
Theorem 1. The eigenfunction ¥ corresponding to the eigenvalues Ay > 0 has exactly k
zeros on the open interval (a,b). If the function f is smooth and has a finite set of turning
points then the number of zeros of y. on a segment [a,B] C [a,b] can be estimated as

follows .
im NelB] _ Jo Vi-de
e N AV

Moreover, if f(z) > 0 at the segment [o, 8] then yx has no more than one zero at [, 8]

Theorem 2. Let the operator Ay = —y" +q{z)y with Dirichlet boundary donditions on

intervals (a,c) and (c,b) be positive for any ¢ € (a,b). Then the zeros of the eigenfunctions

possess the interplacing property: exactly one zero of the function yx lies between two

neighbouring zeroes of Yr41. :
" The talk is based on the joint work with A.A. Shkalikov.

f- = max{—f£,0}.
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D’yakonov E.G.
{Moscow State University)

Some badly conditioned stationary problems in
energy spaces and optimization of numerical methods
for such problems

The paper deals, first of all, with special types of stationary boundary and spectral
problems in energy spaces like classical Sobolev spaces and their modifications on com-
posed manifolds (they have not only fundamental theoretical importance but are also
of special interest for many applied problems like those ‘on multistructures in theory of
elasticity} and, secondly, with justification of the famous Bakhvalov—Kelmogoroy prin-
ciple about asymptotically optimal algorithms for classes of correct problems with the
solutions in a given compact set M of the energy space (see [1-6] and references therein).
This principle states that, given a prescribed tolerance & > 0, it is possible to indicate
a computational algorithm such that it yields an e-approzimation to the solution u € M
with the computational work

W(e) < N(e)

(see [1,2,4-6]); N(e) denotes the minimal value of N such that #(N) < e, where #(N) is
the classical N-width in the sense of Kolmogorov for compact set M. The main attention
in the paper is paid to hard (stiff} stationary problems which, for the simplest linear
case, can be formulated as operator equations

Aogu=f (1)

in a Hilbert space H); they depend on a singular parameter @ — +0 which yields very
large condition numbers

s(Aa) = [Aallli(Aa) "l = O(1/e)

of eriginal operators Ao. For special types of problems (1) when (1) can be written in
the form ’ :

Lo o
Ligws + ;Lz,le,;Lz,lul = fi, (2)
(Lij; € £(Hj; H:), i =1, 2,5 =1, 2,1m L2,y = Hz) their reduction to ones with strongly
saddle operators
_{ Inpn L3,
La = [ L2y —alap ] @)

in a Hilbert space H = Hj x H; leads to the remarkable improvement of correctness
and to the estimates s(Lo) = O(1}; the indicated regularization leads sometimes even
to the construction of asymptotically optimal numerical methods and algorithms with
the estimates W{e} independent of the singular parameter and under natural conditions
on the smoothness of the solution (see [1,2,4-6]). For nonlinear problems with strongly
monotone and Lipschitz operators (we call them Vishik’s operators), we make use of

lAau — Aavl] ~1y = ll(Aa) " u — (Aa) v
Aol = sup o7, A = su
" a" . P "u _ v" "( G) " u—vI:!O . “u — v“

25£0
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in the definition of x(Aa); the number log{x{Aa)} = h(Aa) > O can serve as a char-
acterizion of hardness of the given invertible operator Aa since h{A, defines a distance
between Ao and the class of isometric maps; localized versions of R(Ag are of help if a
priori estimate of the solution of (1) is available;

Theorem 1. Let, in problem (1), L1, and Lz be Vishik’s operators, a > 0.
Then, for nonlinear operator (8), there exists a constant K independent on a > 0 and
Lz and such that [|(La)™"|| € K. We concentrate also on cases when the proof that
L2 € L(Hz; Hy) in (2) and (3) is normally invertible requires ruther unusal extension
theorems like those in Sobolev space W2(Q) when the boundary of the domain may be
of non-Lipschitz type on manyfolds of smaller dimension. The case of several singular
parameters is also considered.
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Dymarskii Ya.M.
(Lugansk State Pedagogical University)

The manifolds of eigenfunctions
and Arnold’s hypothesis of transversality

Consider the family of eigenvalue problems
—u" +p(z)u=Au, z€S, ){uzdx =1 (1)

where a real valued potential p € P = C"(S")n{p : §pdz = 0} (r > 2) serves as a
functional parameter. For fixed p, the eigenvalues form nondecreasing sequance Ao(p) <
Af(p) € M (p) < - . I 27(p) < Ak(p), them both these eigenvalues are simple; if
Arlp) = AE(p) = AL(p), then the eigenvalue is double. The eigenfunction u corresponding
to the nth eigenvalue has 2n non-degenerate zeros z;. Denote by Uy (U,'}’ } the set of all
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eigenfunctions of family (1) associated with simple eigenvalues A7 (A%, respectively); U
denote the set of all einenfunctions of family (1) associated with double eigenvalues A7.
1t is clear that U7 MUY = @, UEnUL = @. Let U, = U, VU VU Dencte by P3 C P
the set of all potentials associated with double eigenvalues A;.

Theotem 1. The set U, is a C"~! manifold modeled on P. The subsets UZ C U,
are open submanifolds. The subset U, C U, is the submanifold and codimU; = 1. The
manifold Uy, is trivial fiber space over Uy, its fiber is diffeomorphic to R.

Consider the mapping @ : Un — 8, where a(x) = (X237, z:)mod 27. Denote by a*
the restriction of the mapping o onto Uy,

Theorem 2. The mapping & is trivial fiber bundie. The mappinga® is trivial fiber
subbundle. The manifolds UZ, Uy and Uy, are homotopically equivalent to st

Theorem 3. The subset P2 C P is C*' submanifold of codimention two. Let
p € P and un, v, are orthonormal eigenfunctions corrersponding to Ay (p); then the
tangential space ToP* = {q € P : § quavndz = §g(uf, — v3)ds = 0}. The space P is
trivial fiber bundles over Uy, its fiber is diffeomorphic to R2,

Theorem 4. For any integer ny,n2,...,nx the intersection nE;IP,:,. cCPisC?
submanifold of codimention 2k.

Corollary (Amold’s hypothesis of transversality). Suppose M is finite-dimensional
C™! manifold. If r — 1 > dimM — 2k, then maps tranasversal to n§=1P,:.. are residual in
Cc™(M, P).

Dynin A.
(Ohio State University, Columbus)

Variational Schr&idinﬁer Operators and
Feynman Integrals

Classical configurations of nentral massive boson fields on RP are real-valued func-
tions ¢ = ¢(z), = € RP. Their quantum states are (non-linear) complex functionals
T = T(d).

A symbolic variational Schrédinger operator, defined on the guantum states, is

1 [ (-5 + (V8P @ + 9te o+ [ (660, 525 ) =

The first integral is a free Hamiltonian operator Ho, a continual harmonic escillator;
the second integral is a perturbation Hamiltonian operator P, a continnal polynomiat of
“products with ¢({z)” and of “variational derivatives 8/8¢(z)” indexed by zeRP.

We present appropriate symbolic operators Hy+ P (in particular, with quartic P ) as
selfadjoint operators H on the Fock space F of quanium states and describe the quantum
propagators exp(—iH't) via a rigorous Feyman type integral.

'The Wiener-Ito-Segal model of the Fock space F is £2 (ReS,e"(‘ﬂ'ﬂ/ 2 D(¢)), where
ReS is the real part of the Schwartz space 8 = S(RP) and e~{¢1#}/2D(¢) is the standard
Gaussian promeasure on Re 8. (Hermitean scalar products are modified to be antilinear
on the left.) The costant 1 is the vacuum guantum state Qo €F.
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The derivatives 8/8¢ in the directions of non-zero ¢ € ReS act in the space of
continuous polynomials on ReS. For complex i €8, 8/8y = 8/3(Re ¢) — i8/8(Im ¢).
Their Hermitean conjugates (8/8%)! act in the space of continuous polynomials on Re 8
as well. .

Let hp denote the harmonic escillator (1/2)(—~92 4 2?) on £2(RP). Its differential
second quantizaton hp is the Priedrichs selfadjoint extension on F of the operator

N
Bio [(8/0%;5) ' = > No/(hn )] [](2/245)00, B0 =0.

=1 - k ik

Let Foo be the Frechet space of ¥ € F such that {¥|(1+/4p)"|¥) < oo for all r > 0. This
is an infinite-dimensional analogue of the Schwartz space 8. lts antidual space F_ is
an infinite-dimensional analogue of the Schwartz space S'.

The coherent states, Qo and Qy = 3.5 (n!)~*(8/39)!" for non-zero $ € S, are
quantum states from Feo. They form a continual orthonormal basis in F:

(Qpr|¥) = f D@, $)e®' * N, |0), (¥"1¥) = / D(b,$)e” T |y ) (R |T).

The derivative 8/84 is a continuous eperator on Feo. It is continuous in the parameter
3 €8 with respect to the topology of S'. By the continuity, 8/84 is extended to all $ €'
In particular, we have the variational derivatives 8/3¢(z) = (8/85z), z € R®, in “the
directions of the delta functions §,”. The Hermitian conjugates (8/84:)} are continuous
operators on F-co. .

A polynomial operator P : Foo =+ F-co of order n with coefficients ey € S'(R7*++1)
is a finite sum of weak operator integrals

k ' k .
p=3 /ckg(xl,... \Zk41) H(a/acp(z,-))‘ 11 @ree@=:) 11 da;.
=t

k4ign j=k+1 k4t

The Wick symbol P¥ of the aperator P is the continual polynomial on S:

x &
PG o)=Y, /ckt(zz,--- ,rk-:-c)HE(a:,-) H N H dz;.
k+ign =1 i=k41 igk4t

“The principal symbol Py’ of P is the partial sum in P” over k+1=n.

A polynomial operator P is Re-elliptic if its Wick symbol is real, and for a positive
constant C its principal symbol P{(¢) > C|I¢l|Z, for all $E€Re S.

If {crifhplert) < oo for some r > nD then the operator P is tame. The anti- Wick
symbol P°(3f, ) of a tame operator P is the continual polynomial on S such that

(04| P1T) = f DB, v)et? 1 P2 (5, 9)(Q21 D).
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The Wick symbol of the free Hamiltonian operator Hy is (%), and (Re | Re )?
is the Wick symbol of a quartic self-interaction Hamiltonian operator. The operators are
Re-elliptic but not tame.

Let a self-interaction polynomial operator P be Re-clliptic. Assume that its Wick
symbol P* is continuous on L*(R”). The following theorems improve on [1].

Theorem 1 The operator Ho+P has a Friedrichs type extension to a selfadjoint operator
H on the Fock space F.

Theorem 2 There ezists a sequence of Re-elliptic tame polynomial operators {Px} that
strongly converges to P on the coherent states 2y and such that the matriz element
(Qpn| exp(—3SHE)| Ry} is the limit at N = co of the continual integrals over S¥—1

L N-i it —_
J TI0G; vi1exe X [thses = bolbs) = 5Kl + PR 0]

=1 =0
Yn =" o = 94",

The Emit is a rigorous mathematical version of a Hamiltonian Feynman integral
over classical histories {¢5,0 £ 7 < ¢} for the quantum amplitude from 1o to ¥, (cf.[2]):

f:’ [I2@ vy em /0 dr [-s(:fiflzpf; ~ (e} ~ P"(@7,9.)]

2 s=0

Both theorems, with Berezin continual integrals, hold for massive fermion fields as well.
(The fermion classical configurations are Grassmann functions on R?, and the harmonic
oscillator h is replaced with the Dirac operator on R”.) Further extensions to massive
supersymmetric fields with elliptic self-perturbations are straightforward.
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Dzhalilovy A.A.
(Samarkand State Universily)
Limit Laws of Entrance Times for Circle
Homeomorphisms with Singularities

Limit laws of entrance times have been obtained in verious contexts such as: hy-
perbolic automorphisms of the torus and Markov chains, Axiom A diffeomorphisms and
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shifts of finite type with a Holder potential, and piesewise expanding maps of the circle
[1]. Given a orientation-preserving homeomorphism f of the unit circle ! with irrational
srotation number a. For any subset A C S, we consider a map Na: S' = N, by

Na(z) = min {j >0: fi(z) € A}

for all z € §*. We call Na(z) the first entrance time of = in A. We assume that the
expansion of @ in a contimued fraction of the form o = [a,@2,--+ ,an,---]. We denote
the finite continued fractions by %3 = [@1,82,-* - ,az]. Let Jp,nn > 1 are a descending
chain of renormalization intervals of f. For A = Jn we denote Nn(z) = Nj,(z) and
Na(z) = g7 Na(z). Let i be the unique ergodic invariant probability measure for f and
A be Lebesque measure on S*. For every n > 1 we define two distribution functions:

Falt) =iz € 5" : Nuf2) < 8}

B,(t) =Mz € ' : Nafz) <1}

If subsequence {Fn,{£)} converge (pointwise or uniformly), then the limit distribution
_F(t) is either the uniform distribution on the unit interval, or F(t) is piesewise linear
function [2]. This is true for ®,(t) in the case, when fisa G! - conjugate to 2 rotation.
An interesting question is the study of Limit points of {®,(t); n > 1} and its properties for
circle homeomorphisms with peints of singularity(i.e. when normalized invariant measure
o is singular with respect to Lebesque measure [4]). We study homeomorphisms of the
circle satisfying the following conditions: a) the rotation number a(g) is "golden mean”;
b} either g(z) is nontrivial fixed point of renormalization group transformation (RG) on
the space of real -analitic critical circle maps with cubic critical point [3] or g(z) is unique
periedic point of peried 2 of RG on the space circle homeomorphisms C**¢(S! [{z.}) for
some e > 0, with a single break point (at which there is a jump of the first derivative) .
" We construct a thermodynamic formalism for g(z) 2nd on its basic to study the limit o

{®(t)}. 1t is shown, that for any ¢ € [0,1] :

lim ®n(t) = B(2)

exists and the limit @(t) is continuous and singular function. The cases when f is C'-
conjugated to homeomorphism g{z) diffeomorphism are also discussed
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Dzhenaliev M.T.
(Institute of Mathematics, Almaty)
Ramazanov M.IL
(Karaganda State University)

About solvability of the cauchy problem
for loaded nonlinear parabolic equations

Let the separable reflected Banach Space {V, |- ||} and Hilbert Space {H,|-|,(-,-}}
be given and the following dense continuous embeddings V C B = H' C V' be valid.
Let v be the norm of embedding operator V C H. We consider the loaded nonlinear
differential operator equation [1), [2] in space V

L{t)u = o'(t) + Ao(t)u(t) + f:Ak(t)u(t.,) = f(t) ma (0,1), (0.1)
) k=1 :

with initial condition
u(0) = o, (0.2)

where u'(t) = du(t)/dt, Ax(t),k = 0,1,...,m,~ are family of given operators, Ao(t) :
V o> V', Ax(t): H » H, k=1,...,m, the points &, k = 1,...,m, of interval [0,1] are
fixed and given and £ < f2 < ... < &m. Suppose that function. £(£) : (0,1) = V' and
element ¢ € H are given. Let the following conditions be satisfied: v

Assumption 1. ). Function ¢t = < Ag(t)u,v > is measurable for any fixed u,» € V;
b). function X — < Ao(¢)(u + Iv),w > is continuous in zero for almost al} t € (0,1)
and for any fixed u,v,w € V; c). operator Ao(t) : V — V' is monotone for almost all
t € (0,1); d). there exist such positive numbers @, 8,8,p (p > 2) that

{ < Aoty 2 > > allol” — 8, [l4o(Dollv: < B+ [ofIP~1),

0.3
|Ax{t)o] < aorlol, k=1,...,m, (03)

is valid for any » € V uniformly with respect to ¢ € (0,1). We shall say that operator L
satisfies to the condition A(e1,a) designated as L € Ale;,a) iff the following inequalities

9:Tk L b1ebpa( = Grkxr, 0< 8 <1, (0.4)
. —at| - -
where xr = {‘;[tixp( aty}/(1 — exp (—aty)), :iz,

k=1,..,m,
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are. valid. §

Theorem 1. Let the Assumption 1 be satisfied and L € Afe1, mey —~ (1 —8o)), n =
2ay~. Then the problem (0.1)-(0.2) is solvable for any f € LY0,1; V'), v € H (1/p+
1fg=1).

/ Proof of Theorem 1. We are using Galerkin method. Let {w;} be the basis in V.
We are looking for the approximate solution u™(£) = zﬂ,l a¥ (£)w; using the solutions
of Cauchy problem of loaded nonlmear ordmary dzﬂ'erennal equatlons

(0" (8), w5) + (Ao(e)u" (6) + EAk(t)u“(¢k>_— frw) =0, 05 <N, 9

=1
Q== s Jm e )
i=1

The following statement is valid for the problem (0.5)(0.6). Lemma 1. [f L €
Aer,mes — n(1 — &o)), then the pmblem (0.5)- (0.6) is solvable in interval {0,1). The
measurability of functien t — < Ag(t)u® (#),w > is supported by Assumption 1 about
operator Ao(t}. The mapping t = Ao(tju™(£) : R — V" is also measurable by virtue of
separability of V. Thus by virtue of condition (0.3) and estimation uniformly with respect
to N
o™ (Mo o,1: 020 0,1:v) < comst, e
we have the following estimation
“AO(t)uN(t)"tA(o,l;V') g const . o N (9.8)

uniformly with respect to N. Further for Fourier image 4" (7) (of extension @ (t) from
(0,1) into R by zero value) we obtain uniformly with respect to N the following estimation

f [Pea” (m)fdr < C(a), o € (0,1/4), 09
which means that fractional derivative Dfu™ (t} is restricted. The estimations (0.7), (0.8),
(0.9) and the following equahhes
Aoltyult) = U(t) in L"(o 1; V’),
3 Ax(tu(en) = £6) in L0, 1; H),
k=1

completes the proof of Theorem 1.
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Egorov Yu.V.
(University Paul Sabatier, Tulouse)

On elliptic boundary value problems
in a cone with nonlinear boundary conditions

We are studying the weak solutions of an elliptic linear equation of second order

=3 a%(a,-,-(x)%‘;) —c(g)u=0 )

£,5=1
in an unbounded domain @ C R” such that
Q C {I = (z'iz“) : lz'l < Az”)"'Br \ <2n < m}!

supposing that u satisfies the boundary condition
A Ou p—1 =
e+ b)) uz) = 0 @)

on the lateral surface S = 80 N {z. > 0}, belonging to C*. Here p > 0, b{(z) > bo > 0,
and

du _ f:a“(a:) Su cosé;
8N~ pe N Bz "

0; is the angle between the direction of the z;-axis and the outer normal direction.
Theorem 1. A function u, satisfying (1),(2) and the ineguality |u(z)| < bz5 with
a < ap in the domain Q, tends to 0 as z, — co uniformly in Q.

We study alse the asymptotic behavior as 2, — co of the solutions of (1} satisfying
the nonlinear boundary condition

o b)) (o) =0 ®
on S.

Theorem 2. Let
Q={z=(z',2n) : |5'| < 4z] + B, 1< zn < co}.
Suppose that v(z) satisfies (1), (3) and v(z) 2 0in Q. If

2—-a 1

A M

<<l
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or
p>1 0gea(n-1)<1,
then v(z) = 0.
The talk is based on the joint work with V.A.Kondratiev.
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Eichhorn J.
. (Greifswald University, Germany) _
Bordism theory for open manifolds

Qur classsification approach for open manifolds consists of 4 steps, 1. defini- tion of
uniform structures of open metrized manifolds, 2. description of their (arc) components as
rough equivalence classes, 3. characterization of them by new invariants like Lipschitz or
Gromov-Hausdorfl cohomology, 4. charac- terization of the elements inside an equivalence
¢lass. For the fourth step we developed several bordism theories adapted to geometric
features of the ends. We present independent generators and partial characterization of
bordism classes.
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Engquist B.
(KTH, Stockholm)

On existence of solutions to the Prandtl equations

The Prandtl boundary layer equations describe solutions of the Navier Stokes equa-
tions close to a boundary in some filow regimes. We shall discuss the lack of well posedness,
existence of classical solutions and the convergence to Euler solutions as the Reynolds
number mcreases. We shall also give computational results and present a theorem of
finite time blow up.
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Exner P.
(Nuclear Physics Institute, Academy of Sciences, Prague, Czech Republic)

Quantum graphs with tunneling

There have been a renewed interest to quantum mechanics on graphs recently - cf. [1] and
references therein. In all these studies, however, the graphs are regarded as perfect, which
is certainly an idealization from the viewpoint of applications. In this talk we consider
guantum graphs which allow tunneling being described by Hamiltonians which can be
formally written as i

H=-A-ad(z-T), a >0,
where T is a planar graph. We present several results cénceming such operators. In
particular, we show that if I' is a non-straight bent curve which is asymptotically straight
in a suitable sense, 6aisc(H) is non-empty [2], which is a property analogous to that of
bent Dirichlet waveguides [3]. We also demenstrate a similar result for non-straight arrays
of point interactions {4]. Furthermore, we show that the eigenvalues of H with I being a
smooth curve tend for a@ — oo to those of the operator — ;: — +x(s)? on L*(T"), where
& is the curvature of I'[5]. If I is a loop, we get in this way an estimate on the number
of bound states with a correct semiclassical bebaviour in contrast to the result in [6).
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Faminskii A. V.M
(Friendship of Nations University of Russia)
On boundary value problems for some
generalizations of the KdV equation

We consider the problems on nonlocal well-posedness of initial boundary value
problems for the generalized Korteweg ~ de Vries equation (KdV)

Uy + Uzzz + aUz + (g(u))z =0 (0.1)

UThe work was supported by RFFI grant {project 89-01-01139).
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in three domains: a right half-strip 11} = (0,T) x R4, a left half-strip II7 = (0, T) x R—
and a bounded rectangle Qr = (0,T) x (0,1) (T > 0 - arbitrary). For each of these
problems we set the initial condition

(0, z) = uo(z) (0.2)

yaﬁd the following boundary conditions: 1) for the problem in 11}

u(t,0) = m (2), (0.3)

2) for the problem in Ii7
u(t,0) = ua(t),  ua(£,0) = ua(t), (0.4)

3) for the problem in Q7
w(t,0) = wi(t), u(t,1)=wa(t), ualt,1) = us(t). (0.5)

The function g is assumed to be in C2(R), a is an arbitrary constant.

Theorem 1 Let (14)%up € L2(Ry4) for some a > 0, wy € (Lese NW 2 n W2 %) (0, T)
for some £ > 0 and

lg'()l Sclul  VueR. (0.6)

Then the problem (0.1)-(0.3) has a solution u(t,z) such, that
T pmti
(1 4+ 2)% € Loo(0,T; L2(R4)), sup f / ul dzdt < oo,
m20J0 m

and if @ > 0, then (1 + z)*"Y?u, € Lo(TI}). For a > 3/8 the constructed solution is
unique.

Theorem 2 Let ug € H'(R4), w1 € H*(0,T), uo(0) = u1(0), and for each § > 0 there
ezists a constant c(d) > 0 such, that .

[ ow)ds <A 4o VueR.
9

Then the problem (0.1)-(0.8) has @ unique solution u(t,z) such, that

T pmti
u € C([0,T}; H'(Ry)),  sup f / u?, dzdt < oo,
’ m>0J0 m

T oo
/ sup ul dt < co, Z sup u? < co.
o =20 m=0 (t2) €10, TIx[m,m+1)
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Theorem 3 Let ugp € L2(R..), u2 € wilete (g, T) for some € >0, uz € £2(0,T), and
the function g satisfies the inequality (0.6). Then the problem (1),(2).(4) has a unigue
solution u(t,z) such, that

ug Lm(O, T; L2(R-)), / / vl dzdt < co.
. ) -1 ..

Theorem 4 Letup € L2(0,1), and the functionsuy, w2, us, g satisfy the same conditions
as in the Theorems 1 u 8. Then the problem (1),(2),(5) has a umque solution u(t, ) such,
that u € C([0,T}; £2(0,1)), %= € L2(Q7).

Corresponding continuous dependence results and a theory of nonlocal well-posedness of
these problems in more smooth classes are also established.

- Fatibene L., Francaviglia M., Raiteri M. '
( Universita di Tonno-ma C.Alberto)

Conserved quantltles and entropy in general relatwnty

The notion of entropy of exact solutions of General Rela.t.w:ty and, more gener-
ally, of gauge covariant field theories, is reviewed. A definition resembling the Clausius
formulation of classical gas thermodynamics is considered and analyzed by an exten-
sive use of the geometrical framework for field theories as well as Nother theorem. This
new definition of entropy applies in particular to all covariant theories of gravitation,
in any dimension and signature. A complete correspondence with Brown-York original
formulation of the first principle of black hole thermodynamics is finally established.

Fiedler B.
{Free Unwers:ty of Berlin, Germany)
Quantitative Homogenization

h onphanhne conditions are well-known from Kohnogorov—Amold—Moser theory In
contrast, we consider semilinear reaction diffusion equations with spatially quasiperiodic
coefficients in the nonlinearity, rapidly varying on spatial scale . Under Diophantine
conditions on the spatial frequencies, we derive quantitative homogenization estimates of
order £ on Sobolev spaces H “in the triangle

0<7<mm(a 3[22 a')

Here n denotes spatial dimension. The estimates measure the distance te a solution of
the hemogenized equation with the same initial condition, on bounded time intervals.
The same estimates hold for C'-convergence of local stable and unstable manifolds of
byperbolic equilibiia. Our results apply to homogenization of the Navier-Stckes equations
with spatially rapidly varying quasiperiodic forces in space dimensions 2 and 3. Our
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results also extend to quantitative bomogenization of global attraciors for near—gadlent
system. All results are jomt. work with Ma.rk I Vishik. . .

Filinovskii ALV,
(Moscow State University)
..On the behavior for small values of a parameter for the
resolvent of the Dirichlet problem for the Laplace .
operator in unbounded domains ~

Al

—41‘

Let 2 be an unbounded domaln in R" > 2 mth smooth boundary sunface I,
Consider the self-adjoint operator L = —A : Lg(ﬂ) — L2(Q2) with the domain D(L) =

{u tu €S WHR), Aue Lz(ﬂ)} Since the spectrum of L belongs to [0, +c0), we see
that for all &k € {Imk > 0} and for any f(z) € L2(R) there exists the function v(z, k) =

(L - K*)7'f €5 W}(RQ). The function v(z;k) is the solution of the _boundary-value
problem for l:he Helmholtz equation

W . . : % o

Av+kzv——f, iy EQ . o \ -(0.1)
o]r .-.0 (0.2)

We study the behavior of the functlon »(z, k) .at k -3 0 and k€ Ky ={Imk >0, [k| <

N}, N > 0. Let ¢z} = Za,x,mth0<als. <a,,.<a,n,;.;=. —a,.—-l
F=1.c. i
0m<n~-1 Suppose the domam SZ ;é R™ and the ongm does ot belongs to

2. The domain 2 is said to be the domain; of cless G, ([1}, [2]) if (v, Vu(z)) < O,
z € I’ (v is the outer unit' normal vector to '), and ‘exist the posjtive constant C

such that 2 2 g ( E a:,) 1 F E Q. By deﬁmtmn, puc the space L2y, 7 (),

_:—m+1
-0 < 7 < +00, ~co < T2 < +co, as a complet.mn of the space of a functions from
C™($2) with bounded support by norm ! :

1[2
3 R w . L. e
““"fa.-n -n(ﬁ) (’../""I2 1387‘ ) L

By definition, put the space H.m.,,,.,a(ﬂ), —co <71 < 4o, —c0 <N < +oo, —co <
Y8 <+4co,asa completxon of the space of a functlons from C°° (2) mt.h bounded support
bynom e

T . ' . e e

' v 1[2
|| "Hﬂ.n.n(m (n/ (|Vul r"=+iu| ™) e do ) :

Let 3 H2, .. ..(©) denote the subspace of functions u(z) € H, ., 4. (9) with ulp =
Theorem. Letay; €1,0< 11 € 1 —am, —00 < 72 < -+oo, then there exists posmve

B TR



130

constant C* = C*(m1, 72,1, m, @m) such that for all domains Q € G, with C; < C* and
for f € L2,4,,7,(2) the function v(z, k) is represented by asymptotic series

o(z,k) ~ 3 vi(@)k¥, k-0, keKn.
=0

The functions v; €5 H.l,l,.,,_4jam—2a,,.,~,3—4(.:'+1)am (), 7 =0,1,..., are the solutions
of the boundary value problems

Avj=—vj1, €R, v=f(x), (0.3)
vJ'II‘ =0, (04)

and satisfies an estimates

"u" HH‘:Q 17a—4iam ~2am,va—4(i+2)am

(1)) £ Cn, 11,72, j)“”.‘i—-l “L‘z,-n.*/g—ijam (2)-

The remainder part of the series is k*'# where | is a number of the first remainder and
#(z, k} is the solution of the boundary value problem

AG+ ko= —v, z€Q, (0.5)
#lp=0. (0.6)

For all vs € (—1, min(2a; — 1,1 — 2ar,)) we have an estimate

(Ve, Vo) . V|,
Vel  “ofe

+ “v"i}“ L3,v3()
L?."Ia(“)

HIFN L2, 13- 20m () € Cllor-1llLz 225
_(¥5, Vo)l

[Vefr '
This research was partially supported by the Support program to leading scientific

achools of Russian Federation (grant N 00-15-96100) and the program "Russian Univer-
sities” (grant N 992238).

V5] = V5] keKy, N>O.

. REFERENCES
[1] A.V.Filinovskii, Stabilization of the solutions of the wave equation in domains
with non-compact boundaries, Sbornik: Mathematics, 189, No 8(1998), 1251-1272.
{2] A.V.Filinovskii, Energy decay of selutions of the first mized problem for the wave
equation in regions with noncompact boundary, Mathematical Notes, 67, No 2(2000), 256-
260.



131

Filippoy V.1.
(Saratoy State University)
P.L. Ul’yanov’s problen on representation by series
on arbitrary function systems in the classes ¢(L)

We consider the function systems in the classes (L) more general than the Faber-
Schauder system, namely systems of the type

(1) {ap()} = {9(2"t~K)}, n=0,1,.., k=0,1,..,2"

where (¢} > 0, t€(0,1), ¢ € Leo(0,1), #{t) =0, t€£(0,1), |[Y)lc #0,in
the classes @(L). We can remark that the Faber-Schander system is a partial case of
the system (1). P.L. Ul’yanov [1] considered Faber-Schander system in the classes (L)
and formulated the following problem. What function systems will be representation
systems in the classes ¢{L)? We give some results on this problem. In the paper [2] are
considered more general systems but in the spaces L. In the talk we will consider more
general systems than the systems (1) in the classes (L) and 7,0 < p < co. Let & be
the set of even functions ¢ that are finite and nondecreasing on the halffine [0, co), and
such that limeco ©{t) = zp(co) = co. We denote by (L) the set of measurable functions
£(z) on (0,1), for which f, o(f(t))dt < co. If

2) Pt) €D, ¢(0)=0, «(t)>0, £>0, o(t)€Cl0,00),

then the set (L) is called a generalized Orlicz class. If additionaly ¢(t) satiesfies the
Aq-condition (i.e., ¢(2t) = Ofe(t)},t = o), then ¢(L) is a linear class. If () = |7,
then the class o(L) = L?. Below we will suppose that Ax-condition is fulfiled.
Definition 1. A system {fn}h=1 of the class ¢(L) is called a representation system in
the class ¢(L), if for any f € (L) there exists a series 3>, ex fix such that

<p(f ch fr)dt =0,

ﬂ-}OO

Theorem 1. A subsystem {¥n, }i2; of the system
(1) {ap(B)} ={#(2"t-K)}, n=01,.., k=0,1,..,2%
where $(£) 20, t€(0,1), % € Leo(0,1), #(t) =0, t£(0,1), [lPllo £, isa

representation system in the class (L) if and onli if

Ye>0 YNEN 3m>N:mesit: Zg{)n,(t)#()}}l—-e
=N
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Filippoy S8.8., Tyglivan A.V.
(Keldysh Inst:tute of Applied Mathematics) .
On an approach to examining boundary, value, problems for
"+ ODEs wzth extra boundary condltmns C

i - . R ey PR | REET AN

For the steady—sta.te viscous flows of mcompre351ble fluids between parallel planes,
there exists a class of so-called ‘self-similar’ solutions to Navier-Stokes equations. In this
case, we come to boundary value problems (BVPs) for, ordinary differential equations
of 3rd order, which contain one unknown constant, and four boundary conditions. We
mf.roduce the notions of eqmvalent problems and eqmvalent solutions and prove that all
the solutmns to relevant BVPs can be found by solving equivalent initial value problems
(IVPs) To eluadate the problem, let us consider 2 simple example. Given an erdinary
differential equatlon e g y"‘ - yy" + y Y +b= =0 with an unknown constant b and four
boundary cond]tmns, say 9(0) = ¢'(0) = 0, y(1) = 0, ¥’ (1)4r = 0, where r is aparamecer
Usmg numencal methods find all the solutlons to this BVP (or state their absence} for
r varying in a cértain’ range ‘The 'main "idea is to embed this en&paramgter family of
BVPs into.an, extended two-para.meter famlly of BVPs and_ to define certain relations
of eqmvalence between the members of this extended family. In the above example, the
length H of the interval [0, H] is chosen as the second parameter (the original interval
was [0, 1] ). Now, we observe that the transformation X = z x H; Y. = yfH changes the
values of b and r to B and R but the form of the equation and boundary conditions is
preserved. We define equivalent problems as problems, which have equal products R- H3,
and equivalent solutions:as solutions, which!meet the requirements B, - Hf = By - Hj axid
Hy -YW(H,' 2) = Hp : Ya(H; - z) for all 2:€'[0, 1]. Then we prove that there exists a one-
to-one correspondence; between equivalent problems :and eguivalent solutions. Moreover,
if we add the!missing}initial value; say Y*(0) =!C, then the solutions io all initial
value problems with fixed ratio B®/C* constitute a certain class of equivalent solutions
to extended BVPs, and one-to-ome correspondence between the solutions of IVPs and
BVPs can be established. Thus, the task-of solving a variety of ‘overdetermined’ BVPs
depending on the parameter r is reduced to solving a one-parameter set of IVPs. In this
way, several boundary value problems of similar type were studied. Numerical results are
discussed in short. All the examined problems take their origin in the hydrodynamlcs of
incompressible viscid flows and thermocapillary. convection. d

Filonov N.D
(SPb State Unwers:ty} -

Exa.mple of a perlodlc elllptlc operator of second order
with an eigenvalue of infinite multiplicity
[0 SR RIS
, In the three-dimensionsal case we constrict an equation —~div(ggradu) = Au having
a nontrivial smooth finite solution u..The positively-defined matrix-function g belongs to
the Holder class of.any order. lesser than'1. It is known that for the Lipshitz coefficients the
finite solution can not exist due to Hormander theorem of unigqueness of the continuation.
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;From the point of view of the spectral theory our result means in particular that there
exists a Schrodinger operator with periodic coefficients such that its spectrum contains
an eigenvalue of infinite multiplicity.

Florens V.
(Universite Paul Sabatier UFR MIG, Laboratoire E.Picard, Tulouse)

Generalized Tristram signatures of links and applications to
the real algebraic curves

Tupchiev V.A., Fomina N.A.
(Obninsk Institute of Nuclear Power Engineering)

On_existence and uniqueness of a global solutions of
initial-boundary value problems of chemotaxis

In 1971 Keller and Segel [1] proposed a mathematical model describing the dynamics
of populations of so-called chemotactic bacteria, i.e. bacteria which are attracted by the
gradient of concentration of some chemical substance. We study a particular case of a
general mathematical model, which is the initial-boundary value problem:

-g—:‘;V(uVu—xuVu), inQ t>0, (1)
dv .
5= vAy — k(v)u, m 2, ¢ >0, (2)
u By
a_%_o,onaﬂ,c>o, » (3)
u(z,0) = u’ (z), v(z,0) =% (z), on @, (4)

where u(z,£) is the demsity of bacteria, v(z,t) is the concentration of the chemical
substance at the place z and time ¢ and Q is bounded domain in R" with bound-
ary 9Q. The parameters p,x,v are positive numbers and function k(v) is such as
0 < k(v) < A,k'(v) > 0,k"(v) < 0,k(v) < kov. Initial functions are u° (z) ,4° (z) € C (Q)
and 0 < m°® < o (z),v° (=) < MP. For the initial Cauchy problem [2, 3] with @ = R and
for the initial- boundary value problem in one space dimension the global existence and
uniqueness of a classical solution are proved. One of the interesting aspects of the Keller-
Segel model is the possibility of blow-up of solutions in finite time. The fact has been
studied in [4, 5]. Chemotaxis system in [4] is different from ours since in system from [4]
k(v) <0, i.e. the chemical substance is produced by the bacteria, whereas it is consumed
in our model. Under definite conditions on parameters and on initial functions the global
existence and uniqueness of a classical solution are established for our {wo-dimensional
boundary value problem. The proof is based on obtaining apriori estimates of solution
and using the method of continuation of a local classical solution {6].
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Fortunato D.
Universita di Bari
Topological solitons for a class of Lorentz
Tinvariant equations in three space dimensions

‘Topological Solitary Waves: Existence and multiplicity results for a class
of Lorentz invariant equations in 3 -Space Dimensions

Here we review some results contained in [1,2]. We consider fields
$:R* oM

where R**! is the space-time and M is a manifold whose 3-homotopy group m3(M) is
not trivial. We shall take for definitess M = R*\ {5_ }, where £ is a point in R?. In this
case it is well known that w3(M) can be identified with the the integers Z. We study the
existence of solitary waves for the Lorentz invariant field equation

z [a" (@) %’tﬁ] ~V-[a' (@) V9] + V'($) =0, (1)

where 2
1oz |8¢
o=1vuf - |22

a:R—-R,V:R*\{f} > R with V > 0and V, £ denote the appropriate differen-
tiations with respect to the space variable z € R® and the time variable ¢. Clearly when
a(c) = o the above equations (1) reduce to the semilinear wave equation

3y by _
a—tz—-A’/)-l-V('f’)—O: (2)
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it is well known (Derrick’s theorem) that the only finite energy static solution of (2) is
the trivial one. Now we consider the case in which a(0) is a perturbation of the identity,
more precisely we assume that N BIVU VRN TR

e L. go(e)=0c+ed, e>0. s

It can be shown that to any finite energy field ¢ there corresponds a homotopy class in
ma(R*\ {£}). So-éach field ¢ can be labelled by an integer ¢ which we call topological
charge. If V is sufficiently singular at & , then it is possible to prove that equation (1)
has a static finite energy solution’ whose topological charge is not trivial (see ref. [1]).
Moreover, if V has a suitable symmetry, it can be proved that (1) has static finite energy

solutions having an assigned topological charge (see ref: [2]). * 7 ¢
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equation in dimension 9, Beviews in Math. Phys;, v.10, (1998) 315-344.
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“Pursikov AV,
(Moscow State University)

_Stabilization of parabolic equation and
2D Navier-Stokes system by “bb,u‘ndary feedback control

" We propose 'new mathematical formalization for the notion of feedback control
adapted for parabolic equations ‘and for Navier-Stokes systém. With help of this formal-
ization we solve the problem of stabilization for indicated eqhations defined in a bounded
domain Q by a control supported in a part T' of the boundary of this domain. In the case
of linear equation stabilization problem is formulated as follows: Given & > 0 and initial
condition yo(z}, find feedback control supported on T such that the solution y(t,z) of
the obtained evolutionary boundary value problem satisfies the estimate:

O e Mgy oo ast o0
In the nonlinear case (i.e. for Navier-Stokes system) we carry out stabilization near ar-
bitrary steady-state solution. Stabilization can be made for each prescribed rate k > 0.
Details of formulatit?n and Idea of proof will ?Je given at the talk.
[1] A.V.Fursikov, Stabilizability of quasilinear parabolic equation by feedback bound-
ary conirol, Matem. Sbornik, (2001) (to appear)

{2} A.V.Fursikov, Stabilizability of two-dimesional Navier-Stokes equafions with help
:of boundary feedback contral, J. of Math. Flnid Mechauics, (2001) (to appear).
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- Gabasov R. .
(Belarusian State University)
Kirillova F.M.
(Institute of Mathematics, National Academy of Sc:ences of Belarus)

Synthesis of dynamical systems with given limit cycles

, 1 A method of synthes:s of dynam:cal systems with gwen Limit cycles (LC) by
constructmg bounded. feedbacks is under consideration. In addition 2 high quality of
transients from the point of view of a chosen cost function is provided to a closed-locp
system

2. A base problem on whlch an algonthm of synthesis of the timit cycles is justified
has the form

¢'z(t*) - max, & = Az+bu, 2(0) = zo-
Haz(t"y = =0 Iu(t)l <L teT=[0.r)(zcR%ueR) 0.1)

: Problem (0.1)is solved in the class. of discrete pos:tmnal contmls by using fast
procedures of calculating optimal open-loop solutions that allow to construct real-time
algorithms to the optimal controller [1] generating current values of the optimal feedback
for every concrete process.

3. The simplest problem of LC synthesis consists in the following. Let a dynamic
control system

N U= Az+buxeR",‘ueR

a'ad a closed curve T = go(t), t>0, a oumber L be gwen. Denote by G a given

vicinity of f(t), ¢ > 0. LC problem. It is necessary to comstruct a discrete feedback

u(z),.z-€ G, such that the conditions hold: 1) |u(z)| € L,z € G 2) the curve z =
@(t), t >0, is a stable LC to the closed system

, | s=Aztbuz),zeG. (02
This problem is solved with the help of problem 0.1).
4. Generalizations of problem (0.1) is considered for a quasi-linear control system
5= Az +but pfz). ‘ (©.3)
Asymptotics of switching imints of the optimal control is constructed by a small

parameter method and is used at solving the LC problem to system (0.3).
‘B, The second generalization of the L.C problem deals with a control system

b= f@) b, : (0.4)
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where f(z),z € R", is a piecewise-linear function. A special procedure of linearization is
suggested to be used at fast solving an optimal open-loop control problem and realizing
in real time optimal feedbacks that provide the solution of the LC problem.

6. Composition of two procedures (items 4, 5) allows to construct a method of
" solving the LC problem for general nonlinear systems (0.4) (f(z) is a nonlinear function).

REFERENCES
[1] R.Gabasov, F.M. Kirillova and 8.V .Prischepova. Optimal feedback control. Lec-
ture Notes in Control and Information Science (M.Thoma Ed.), Springer-Verlag. Vol.207,
1995.

Gabushin V.N.
(Institute of Mathematics and Mechenics, Ekaterinburg)

Optimal’noe vosstanovienie znacheniy lineynykh i
nelineynykh operatorov ﬁrl netochno zadannykh
iskhodnykh dannykh

Predpolagaetsya rasskazat’ o novykh rezul’tatakh, a takzhe nekotorykh bolee ran-
nikh rezul’tatakh, ne voshedshikh v obzornye stat’i V.V. Arestova (Uspekhi matem-
aticheskikh nauk, 1996) i V.V. Arestova i avtora (Izvestiya VUZov. Matematika. 1995),
svyazannykh s zadachey optimal’noge vosstanovleniya (nailuchshego priblizheniya)
znacheniy Ux operatora U, esli x opredeleno s oshibkoy, ne preveskhodyaschey nekotorogo
fiksirovannogo chisla, i x prinadlezhit nekotoromu mnozhestvu W iz oblasti opredeleniya
operatora U. V svyazi s rassmotreniem zadach v prostranstvakh Lp pri Ojpil nekotorye
obschie rezul’taty avtora rasprostranyayutsya na shachay lineynykh metricheskikh pros-
transtv. Krome togo, predpolagaetsya rassmotret’ zadachu ob optimal’nom vosstanovlenii
operatora differentsirovaniya na nekotorykh nestandartnykh klassakh funktsiy, naprimer,
12 klassakh differentsiruemykh fupkisiy s odnostoronnimi ogranicheniyami na starshuyu
proizvodmuiyu, a takzhe svyazannye s etoy zadachey neravenstva i sravnit’ poluchennye
rezul’taty so sluchaem prostranstv tipa Soboleva. Poluchennye ranee meravenstva diya
proizvodnykh resheniy obyknovennykh lineynykh differentsial’nykh uravneniy takzhe pri-
menyayutsya v zadache o ‘vosstanovlenii proizvodnykh etikh resheniy. Drugim opera-
“torom, kotoriy predpolagaetsya rassmotret’, yavlyaetsya operator vychisleniya krivizny
krivykh, zadannykh vektor-funktsiyami iz klassov, podobnykh klassam Seboleva diya
‘obychnykh funktsiy, i iz nekotorykh drugikh klassov. V etoy zadache budut ukazany of-
senki sverkhu i snizn tochnosti vosstanovleniya, a takzhe ukazany otsenki nmekotorykh
funkisionalov, svyazannykh s etoy zadachey, inogda neuluchshaemye.
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Gadyl’shin R.R.
(Bashkir State Pedagodical University)

On analogs of the Helmholtz resonator
in homogenization'?

it is known the scattering problems for E-polarized and H-polarized electromag-
netic fields on ideally conductive cylindrical surface whose cross-section is a curve I's are
reduced to the solutions of the following boundary value problems in Qs = R*\Ts:

(A+K¥)Es=J, z€Qs, Es=0, z€ly

Es = 0(s~'1%), % —ikBs=o(r"?), roe0 (11)

for E-polarized filed and, respectively,
8H,

(A+K)Hs=h, =€, —#=o, z € Ts,
Hs = O(="'1%), %I_—fi —ikHs=o(r""?), rooc (12)

in the case of H-polarization. Here z = (%1, %2}, r = |=|, k is a positive number, v is the
normal to I's, J is the component of current vector j directed paraliel to a generatrix of the
cylindrical surface, and h is the third component of the vector —rotj in the case, when, in
the contrary vector j is perpendicular to a generatrix. The functions J and h are proposed
to be from L2(R?) and have bounded supports. Hereafter, To € C* is the boundary of
the bounded simply connected domain 2, and for § = € > 0 the curves I, are obtained
from T by cutting out a great number of holes, having small size and located almost
periodically and closely each to other. Namely, let w be the unit circle with center at the
origin, 7o = 8w, N > 1 be an integer number, € = 2N~1, 0 < a(e) < %, 8 be the polar
angle, ve = {(r,8) : r = 1, e(—a(e)+ mr) < 8 < e(ale}+m7), m=0,1,..,N—1}, Pbe
the diffeomorphism in R?, = P(w), I's = P(7s). For § = ¢ we call the boundary value
problems (1.1) and (1.2) perturbed problems and consider their solutions in the elass of
functions which with their first derivatives are square integrable in the neighbourhoods
the ends of the curves T. Since Qo = QU (R*\2), then for § = 0 the boundary value
problem (1.1) disintegrates in two Dirichlet problems and the problem (1.2) does in two
Neumann problems in §2 and R*\Q2. We call them limit interior and outer problems,
respectively. In the case of the boundary value problem (1.2) and the analogue of the
problem (1.1) (the join of small two-dimensional domains instead of the join of arcs T
is considered) it is known if Imk > 0 and 4* is not an eigenvalue of the limit interior
problem, then for sufficient small holes (with respect to distance between them) the
solutions of the perturbed problems converge to the solutions of the limit problem in
Q and R*\Q). Thus we have the situation which is analogous to Helmholiz resonater,
when the perturbed problem (for Helmholtz resonator these are Dirichlet and Neumann
problems cutside the closed curve in which one small hole is cut out) and the limit outer
problem are solvable for all positive k, and the limit interior problem has positive discrete

12The author is supported by RFBR grant 29-01-01143.
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spectrum. First part of the work is devoted to proof that, like for Helmholtz resonator,
analytic extension of the perturbed problems have poles in the lower half-plane tending
to eigen frequencies (to square root of eigenvalues) of limit interior problems. Namely,
the following two statements are established.

Theorem 1 Let 1o > 0, 73 be an eigenvalue of the Dirichlet problem in Q) and elnale) »
0 as £ = 0. Then analytic eztension of the Green function e} for boundary value
problem (1.1) has the pole 7. with small negative imeginary part converging to 7o as
e—0.

Theorem 2 Let 7 > 0, 78 be an eigenvalue of the Neumann problem in Q and
T oae)=exp|~——], be)>0, Limble)=0
2 =P Te(e) ) P e =

Then analytic eztension of the Green funciion GA for boundary value problem (1.2} has
the pole 7, with small negative imaginary part converging to 79 as € = 0.

However, the existence of poles with small imaginary parts does not mean that they cause
resonance phenomena consisting of, in particular, the fact that for positive frequencies &,
-close to the eigenvalues of the limit interior problems, the difference between the solution
of the perturbed problem outside  and the solution of the limit problem is O(1) even
in the case when the support of the right hands of the equations is located outside Q. in
the second part of the work for the problem (1.1) in model case when Q is the unit circle
and the holes are situated periodically the rigorous asymptotics of these poles on small
parameter ¢ is constructed and their resonance character is shown. The Bashkir State

Pedagogical University, Ufa
e-mail: gadylshinbspu.ru

Gaiko V.A.,
(Belarusian State University of Informatics and Radioelectronics, Minsk}

On Global Bifurcations of Limit Cycles

We conmsider two-dimesional dynamical systems and discuss the modern state of
the second part of Hilbert’s Sixteenth Problem on the maximum number and relative
position of limit cycles in such systems. Unfortunately, this Problem has not been selved
completely even for the simplest nonlinear case: the case of quadratic systems. We suggest
a new global approach to the complete solution of the Problem in the guadratic case.
This approach can be applied also to the study of arbitrary polynomial systems and to
the global qualitative analysis of higher-dimensional dynamical systems [1].

1. To use five-parameter canonical systems with field-rotation {dynamic) parame-
ters.

2. To divide the plane of two rest (static) parameters into the domains correspond-
ing to various number and character of finite singularities and to consider the canonical
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systems separately in each of such demains, i.e. to reduce the study of limit cycle bifur-
cations to the analysis of three-parameter domains of dynamic parameters.

3. To prove in every concrete case of finite singularities that the maximal one-
parameter family of multiple limit cycles is not cyclic.

4. Using Bautin’s result on the cyclicity of a singular point which is equal to three
and the Wintner-Perko termination principle stating that the multiplicity of limit cy-
cles cannot be higher than the multiplicity (cyclicity) of the singular point in which
they terminate, to prove by contradiction in every case the nonexistence neither of a
multiplicity-four limit cycle nor of four limit cycles around a singular peint. :

5. To control simultaneously bifurcations of limit cycles around different singular
points and to prove that the maximum number of limit cycles in a quadratic system is
equal to four and the only possible their distribution is (3 : 1).
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[1] V.A.Gaiko, Global Bifurcations of Limit Cycles and Hilbert’s Sixteenth Problem,
Minsk: Universitetskeje, 2000. (Russian)

Galaktionov V.A.
{ Unwers:ty of Bath, UK; Keldysh Institute of Applied Mathemat:cs)

Existence and blow-up for higher-order
semilinear dparabohc equations:
majorizing order-preserving operators

As a basic example, we establish that in the Cauchy problem for the 2m-th ordér
semilinear parabolic equation

= —(—A)"u+|uff in RY xRy,

where m > 1, p > 1, with bounded integrable initial data ug, the critical Fujita exponent
is pr = 14+ 2m[N, so that for p > pr there exists a class of small global solutions and for
p € (1, pr] blow-up can accur for arbitrarily small initial data. These resulis are classical
for the second-order (m = 1) heat equations and were proved by H. Fujita in 60’s. The
main idea of global and blow-up estimates for bigher-order equations are as follows. We
show that for any m > 1, there exists a majorizing order-preserving equation and a
standard comparison applies to describe some key properties of such parabelic flows. In
particular, the global solvability follows by comparison with similarity solutions of the
majorizing order-preserving equation, which are expressed in terms of eigenfunctions of
a Hammerstein’s operator with positive kernel. On the other hand, a usual comparison
with a spatially flat solutions of the majorizing equation implies a sharp L*-bound on
any blow-up solutions. Generalizations to differential and pseudodifferential evolution
equations and relations to positivity sets for higher-order equahons arve discussed. A
joint work with S.1. Pohozaev.
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Galeey R.Kh.
(Insitute of General Physics RAN}

@ﬂyKTyaHHOHHO-HaCCHBHaﬂ TeopeMa

B pamkax mmmetHol (AYKTY2UHOHHO-AUCCHIATABHOH Teopuu AokazaHa o6-
miaa  GAYKTyan@oHHO-TAcCHBHa® TeopeMa, 0606lapoiiad HIBECTEYI OJHOMEPHYIO
ayKTyanpoRHe-AUCCHIATHBEY 0 Teopemy. 1Ipu JoKazaTeldhcThe Halilelh TeopeMAE Ghiza
WCHOAB30BaEa TEOPHA HACCHBHHX CHCTeM, pasemTad B paborax H. Konig u T. Meixner
[1], E. Beltrami u M. Wohlers {2], B.C. Baagamupora (3], A. Zemanian [4], P.X. Ta-
neepa [5], ¥ opuMenensas K MofieaaM B QUILKe [LI23ME, CHOPMYIMPOBAEHEM B paboTax
R.Kubo [6], M.A.eonrosuga u C.M.Prrropa [7), B.II.Cumma [8), A.A Pyxazgse n ap.[9).

DayKTYAMUOHHO-TIACCHBHASR TEOPEMA. Cpeduue anauenns RACCUSHO20 ONEPG-
mopa -omwausa Z1k(r, t) u daysmyayuu nsomuocmu moxa 3’;;(1‘, t) coazamunt cacdywuus
coomuomeHUCH:

< Zu >= 28K < Qi H] > (n,8),
2de [Ji, H] - xommymamop.

3aMeTum, wro omepaTop -oTKmmKa Zik(r,t) cefamBaeT, out - GAYKTYawmA
AIOTHOCTA Toka J (r,t), xoTOpHe BRIIHBAKTCH, BOSHMKAIOMWIMM BHEIIEVMMH in -
EKTPOMATHATREIME ToaaMu A, ¢ YUOMSHYTHM HoleM A ciegyoumM o6paaom:

J=2+A.

Kax caegcTeme mpailed TeopeMii, MH IoAyHaeM Hallly patee oNyOIMKOBaBEHYIO
DAYKTY2HNOBHO-JUCCATNIATABHYIO TeopeMy:

ASMuUs3pRUMO6E UGCMb OREPAMOPE OMKAUKE U CNEXMPANLHAR PYHRYUL XOPPEAR-
MOPa MOKE COI3AUB COOMHOUICHUCMH:

<u-~Zh>=@) v < ih > {exp (%—‘:—) - 1} (k,2).

SameTmd, TT0 OAHOMEDHLI BADHAHT STOM TeopeME 61T chopmyaMpoBaH pasee B [6-8].
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Galkin V.A.
(Obninsk Institute of Nuclear Power Engineering)

Smeluchowskii Equations®®

The paper is devoted to global genaralized solutions of the Smoluchowskii equa-
tions for coagulation processes in nonuniform systems. The Smoluchowskii equation for
particles with discrete masses is given by the following relation

:—l
33__1’,_{_ Vi z@'—mfe—)fj f:z‘bafz: 1€N, (1)

where @; ; = o;,;|v: — vj] is intensity of particles collisions, g;,; is particles capture cross-
section which is simmetric nonnegative function on N x N. The solvability of Cauchy
problem was established by means of Tartar’s compensated compactness method. It is
important to emphasize that value of generalized solutions for physical kinetics equations
is caused by possibility of nonsmooth space - time singularities for infinitely smooth
initial data of Cauchy problem. The example of such singularities we shall propose in
the talk for equation (1). The main reason which cause the singularity in this case is
noncontinuity of Smoluchowskii collision operator (right - hand side part of the equation
(1)) in. the norm defined by conservation law of Cauchy problem. The similar problems
are considered for spatially uniform Smoluchowskii equations provided rather high rate
of particles interaction is supposed and the same we investigated for stationary uniform
problem when particles positive sourse is added te Smoluchowskii collision operator.
The functional solutions theory was applied to global correctness problem. We proved
global existance, uniqueness and stability theorems for nonnegative functional solutions
of generalized Boltzmann equation provided free velocity v is Borel locally bounded
function and initial data are nonnegative Lebesgue summable functions.

135upported by RFBR grant No. 00-01-282a
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Gasymov Z.M.
(Baku State University)
Inverse Singular Problems of two Spectrums
of Sturm-Liouville Equation

Difference notions and methods, generated during the process of investigation of
the Sturm-Liouville equation

~y' (%) + a()y(z) = py(z), (0.1)

and associated with this equation the operator of Sturm-Lioville L = — 25 + (=), which
also called one-dimepsional Schrodinger operator and function g(z) is called potential.
The results in the regular case in different statements were enough investigated. The
results of regular cases we expand to the some singular cases. Theorem. For sequences
of real numbers —co < po < py € pF < pz € pF < ... to be spectrums of periodic
¥(0) — y(z) = ¥'(0) — ¥'(x) = 0 and antiperiodic y(0) + y(r) = y'(0) + ¥'(x) = © value
problems, generated by the same equation (1) with the potential .

o)=Y 2+ aole), (02)

i=1

A; are real constants, p; € (1;5/4), a(z) € L2(0;#) and with boundary conditions
y(0) = y(x) = 0, ¥'(0) = ¥ (x) = O correspondingly, it is necessary and sufficient for that
sequences satisfy to asymptotic formula

2 — .
pE =i+ ;ZA;C,,,J:% ' _24+6F,

=1
where p3, are eigenvalues of periodic and pi, 41 eigenvalues of antiperiodic boundary
. e 3
value problems, pi € (1;5/4), Ai, A are arbitrary real pumbers, Cp, = [ 5'6“—;;{:}6 and
(]

o0
S Il +letl < co.

REFERENCES

f1]. V.A. Marchenko, Operators of Sturm-Liouville and their agplications, Proc.
?Naukova Dumka”, Kiev, 1977,

[2] Z.M.Gasimov, On the solution of the inverse problem of two spectrums for sin-
gular Sturm-Liouviile equation, DAN Russia, 365, No 3(1999), p.304-305.

{3] 2.M.Gasimov, Primal and inverse problems for Sturm-Liouville equation on the
finite interval with singularities at the ends, Proc. of the Second ISAAC Conggess, Proc.
Kluwer Academic Publishes, 2, Netherland-USA, 2000, p.1255-1263.



144

Gasymov M.G., Orudzhev E.G.
(Baku State University)

On Expansion Of Function By Solition Of Spectral Problem
For One Differential Equation

A boundary value problem on interval {0, 1] was considered

y(zn) (=) + Pi(z, A)y(2n—1) =)+ + Pzn(,,?, Ny(z) =0 (0.1)
Uiw) =49 (0) - g5 9(1) =0, j=T7m (0.2)

where Pi(z,}) = iPu(x)A‘, i = 1,2n, Pu(z) € C*#+[0,1],1 < i, P; are complex
=0

numbers, A is spectrum parameter with supposition, that corresponding characteristic
equation have k = 2m different roets #y,... ,8%, each of which are of n,,... , 7 multi-
plicity ; moreover, these roots are different from zero and such, that numeration divides
plane X to the sectors R,, s < 4m, af each of which inequality of Tamarkin type holds,
At present paper some conditional algebraic equations relative to coefficients. B;,i—.(z),
v =1,n, — 1 was found, which are sufficient conditions for existence of partial solutions
of equations (1) at each sector R,, which allow asymptoetic representation for |A] - co

——

N 1 _ 2 . =1,k
yi{z, ) = g?o(z) + %g}o(x) T F'—‘—‘g:" Y=)+0 (Aﬂf—l)] e®? i=1,%n

where g2 (z) and g,,(z), 7 = 1,n, — 1 are fundamental solutions of homogenous and
partial solutions of non-homogenous differential equations of n,-th order correspondingly,
which expressed by P{)(z), u < n,. For functions, which have continuous derivatives up
to the order 2n+y, p = max{ni,... ,nx}—min{n1,... ,nx} and vanishes with derivatives
up to the order 2n + p — 1 at points "0” and 1, the expansion by eigenfunctions of
problem (1)-(2) was obtained.
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Gaudlello A., Carbone L., Cioraneseu D., De Arcangelis
(Tealy)
Homogenization of Unbounded Functionals
and Nonlinear Elastomers

The homogenization process for some energies of integral type arising in the mod-
elling of rubber-like elastomers is carried out. The main feature of the variational prob-
lems taken into account is the presence of poinbwise oscillating constraints on the gradi-
ents of the admissible deformations. The classical homogenization result is estabilished
also in this framework, both for Dirichiet with affine boundary data, Neumann, and
mixed problems, by proving that the limit energy is again of the integral type, gradient
constrained. An explicit computation for the homogenized integrand relative to energy
density in a particular relevant case is derived.

Gelfreich V.G.
(St. Petersbourg)

Splitting of Separatrices: erturbatlon theory
and exponential smallness

This talk is a survey of main results related to the separatrices splitting for area-
preserving maps and Hamiltopian systems with one and a half degrees of freedom. The
special attention is paid to the problems, where the separatrices sphitting is exponent:ally
small with respect to a perturbation parameter.

Georgievskii D.V.
(Moscow State University)

The generalized Orr—Sommerfeld problem
for wscoplastlc flows

The spectral problem [1]

o\ .
o'V ~ 282" + s*p — 4xs® (l °'|) = :'s[(u° - %) (" — s%¢) — v°"cp] Re (0.1)

Z2=0, T2=1: @=¢ =0 ’ (0.2}

describes stability of shear flow of viscoplastic material inside the layer {2:0 < 72 < 1}
in case of absence of rigid zones in this layer. In (0.1) Re, & are the Reynolds’ number and
the il’yushin number respectively; w(z2) is an amplitude of stream function disturbance
¥ (21, 22,8) = q;(z;) exp(isz; + at); a is complex frequency being spectral parameter
(its real part sign is in connection with stability of flow which is defined by the section

v°(22)); s > 0 is wave number of disturbance along the axis z:; a prime means derivation
with respect to z2. The last term in left band of (0.1) takes into account an influence of
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plastic properties of medium in comparison with viscous ones. Without this term (0.1)
is the same as the classical Ormr—Sommerfeld equation. The function +° in the problem
(0.1), g0.2) is supposed o be monotone continmously differentiable inside 2 and such
that f (x/lv*|)dz2 < co for any function x(z) vanishing by 22 = 0 and z» = 1.
The section of the Couette’ viscoplastic flow may be example of v° here. If the points
{¢ € Q: v°'(€) = 0} exist then they are boundaries of rigid interlayers ©, € . The latter
appear, for example, either in the Poiseunille’ viscoplastic flow or in motion of heavy layer
along inclined plane. Then the following conditions

zo=€: ¢ =0 "+ s s——-i‘iw— =0 0.3

2= PP =0, ¢ Q+£§U°.p—, (')

take place instead of the sticking conditions (0.2). The conditions (0.3} bath contain

the speciral parameter and take into account a change of rigid interlayer thickness in

disturbed motion. It should be noted that the problem (0.1}, (0.3) is considered only

inside subdomains Q7 = 2\ Q. If change of thickness of domains {2, can be neglected
then the conditions (0.3) are simplified and no lenger contain a:

z=€: ¢'=0, ¢"+p=0 ‘ (0.49)

In the present work the integral methods for estimation of critical parameters on plane
(Re, k) ave developed for spectral problem (0.1), (0.2) called as the generalized Orr—
Sommerfeld problem as well as for the problems (0.1), (0.3) and (0.1), (0.4). These
estimates are based on variations inequalities in H2(Q7) and have sufficient nature. They
generalize the Joseph—Yih inequalities [2, 3] obtained on the basis of analysis of the Orr-—
Sommerfeld problem. It is shown that the presence of plasticity parameter & stabilizes
corresponding Newtonian flow.
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Gindikin 8. G.
(Center Sofus Lie (Moscow); Rutgers University
Integral geometry on symmetric spaces and nonlinear
giﬁ'erential equations
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Gladkov A.L.
- (Vitebsk State University)
Cauchy problem for nonlinear parabolic equations
with any growing at infinity initial data

We study the Cauchy problem for the semilinear parabolic equations of higher order

m m
w4y (~D)'aDu+y 5D 'utcutdul®u=f, (s,t)€Sr, (1)

f=1 i=1

u(z,0) =uo(z), z€R, » (2)

wherem > 1, D =8/8z, S =Rx(0,T}, T > 0, a;, bi, : = 1,..,m, ¢, d and
@ are copstants, & > 0 (i = 1,..,m), d > 0, a > 0, f(z,t) € L&/t (g.y
uo(z) € L7,.(R). No assumption has to be made on the behaviour of uo(z) as |z| - oo.
We can consider the equation (1) as a generalization of classical Fisher-Kolmogoroy
equation (b; =0, i=1,...m, 6¢i=0, i=2,..,m, ;s =d =1, c= ~1, a = 2}. Special
case of (1)

#e = ~yD'u + DPu+u—o® 3}

has been investigated in connection with studying of phase transitions of critical points in
[1], [2] and as a model equation of higher order for bistable systems in [3). The existence
and the umiqueness of a generalized solution of the Cauchy problem (3), (2} in St with
initial data which satisfies the inequality

/ u2(z) exp(—Blz|*/*)dz < oo
R

for some positive constant 8 and any T < 9/[25678°] have been proved in [4]. We shall
define the notion of the generalized solution of problem (1}, (2). Let Q be any bounded
domain in R and Q7 = Q@ x (0,T), where T > 0. By W(Q,T) we shall denote the space
of real functions v with properties

v € £2(0, T; H™(R2) 0 L212(Q)) n L=(0, T; L2(D)),
u € L*(0,T; H-™(Q) @ Llet2M (=11 (),

Definition. A function u(z,t) is said to be a generalized solution of (1),(2) in St
if u(z, t) € W(Q,T) for any domain Q and satisfies initial data (2) in the following sense

/{u(z, t) — uo(z)}i(z)dz >0 as £—0
2
for any function h(z) € Hg ()N Lo**(Q) and integral identity

// free + 2 a;D'uD'p + Z(_l)j—ibjpjuDj—lsH_
a7

=1 i=1
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+cu<p+d|u|“uip]dxdt’='/f Fodzdt
S Qv

for any function 4(z,t) € L*(0,T; HF () 0 LH3(Q)). -
We prove the existence and the uniqueness of the generalized solution of (1), (2) in St
forany T > 0 ‘without any gmwth restriction at an infinity on the initial data. The

resulés can be extended to a number equations with more general nonlinearities. Maybe
the simplest ‘example is equation (1) with nonlinearity g(u). instead of |u|®u, where

timinf |g(u))/Jul** >0. for some >0,
nj—>c0 M .

_ g(u)mgnu>0 for u;éﬁl
lg{21) — g(u2)].> c;lg(ul —ug)] for wuj,u2€R and some ¢ >0.
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Glaskova M.Yu. -
(Voronezh State University)

‘On the uniform cone operators

This talk is based ona ]omt work with T.Ya. Azizov, A. D:jksma, and K.-H. Forster

In the following E=Coa E = R, E”“ is, the m-dimensional Hilbert space
’mth the Euclidean inner product, and ET is the cone of the nonnegative vectors
u = {51, . ém}’€ B™ with & > 0, i = 1,m. We say that an m x m ma-
trix° A" is uniformly cone positive in E”" if there is a positive mumber k4 such that
(Au, u) > kalu,u), 2 € EF. We prove some new and reprove some old results related to
uniform cone positivity and the cosine.

Theorem. Let A be a selfadjoint m X m matrix and let
Py ={a€E™: (Au,u) =0},

Then A is uniformly cone positive if and only if Pin E? = {0} and there is a vector
g € ET = {0} such that (Au,u) > 0.
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Corollary 1."Assime'that A is a noiinegative matiix. Then A is uniformly céne positive’
if and.oply if kernel ANEY = {0}..
Corollary 2. Let. A = (a.,) fi=1 be a. se!fadjomt matrix, with real entries such that(a)

@i;> 0 i=1,m, and(b) it e a,, > 0 for every §. mtb 7(:) # @, where .
Jenti)

() =4319) € vh W =N £ 4 g <O,
Then,A is uniformly cone positive.

Consider an operator pencil Ag -+ A1 A1+ -+ + AyAs in which, for-example-(other;
cases are also. considered), . Ao.is a maxzimal accretive ve operator;. Az, ..., An are closed
accretive operators, and dom-Ao.C. rma‘om Ajrd = 1,n. . We give a suﬂ'iczent condition
under which it is closed for all 2.20,i=1n in case n =1, dom Ay = domA;, and,
Ao, Ay are maximal umformly accrem'e, “this condition } is also necessary The conchtmn
is that the matrix (cos(A.,A,)),',_o is uniformly cone positive. te nmm\ oo Uiz

Finally, we study the closedness of some 2 x 2 matrices with operator entries.

This research supported by the grants NWO-RFBR 047-008-008 and RFBR 99-01-
00391,

Gliklikh Yu.E.’
(Voronezh State Univeraity)
Viscous hydrodynamies in terms of stochastic processes
on groups of diffeomorphisms

We constriact special stochastic perturbations of the:curyes on the groups of dif-
feomorphisms, describing. the, motion. of. perfect fluids,’ whose, expectatxons describe the
motion of viscous fluids, The processes sa.tisfy a certam stochastxc analogue of equation
of geodesics constructed in previous works by the author (see, e.g., [1] and [2)), i.e.,
this generalizes the approach to perfect fluids by V. Arnold, D. Ebin and J. Marsden.
For the flat_n-dimensional torus: T“ denote by, ﬂ;(‘r") the Hilbert manifold of Sobolev
H*-diffeomorphisms .of 77 (s > 2 + 1), preserving the yolume, with group structure
rélative to the comiposition: o. Let g(t), a(0) = e, §(0) = 1o, be a curve:in DL(T™) de-.
scribing the motion of perfect incompressible, fluid w:thout external force It exists for,
tefo, e) where &> 0 depends on up. Consider a Wiener, process w(t) in R". The process;
wa(t) =~ [ 1“—&9- ds +w(t) is' well-posed: forte [0, c0).. Denote by. w?(t) the conditional
expectation of wo(t) with respect to the g-algebra generated by:w at &. Introduce the,
random diffeomorphism: gW" (£} € D(T™) that sends.the point-m €.77. to m + ow*(£)
' where ¢ > 0 is a constant.. Construct the process n{t) = eW* (¢} og(t). Obviously it exists
for ¢ € [0,¢).

Theorem 1. The process 5t} satisfies the relation. 2. Dan(t} = 0 (a stochastic analog
of equation of geodesics) where D, is Nelson’s (covariant) backward mean derivative.

Construct the vector u(t) = E(TR,,“) Dun(t)) € T.DA(T™) where Ry is the right
shift on Dp(7™) and E is the expectation; u(t} is 2 time-dependent divergence-free H°-
vector field on 7™ with u(0) = uo.
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Theorem 2. If the vector field u(t,m) on T™ is C* in t and C? in m € T™, it satisfies
the Navier-Stokes (NS} equation with viscosity coefficient 91,3 and zero external force.

The process 7(t) and so the vector field u(t,m) are well-posed for s > 2+1but

u(¢, m) may not be smooth enongh to satisfy NS equation in classical sense. In this case
we call %(¢, m) a generalized solution. '
Corollary. (i) For s > in + 1, an H*® divergence free vector field up on 7™ and a
real number ¢ > 0 there exists a generalized solution u(t) of the above-mentioned NS
equation with initial value uo, well-posed on the same time interval (depending on o)
as the solution x(t) of Euler equation without external force with initial value uo;

(i) u(t) tends to «(t) as & — 0 (i.e., the viscosity coefficient tends to zeroj;

(iii) For n = 2 the generalized solution of Navier-Stokes equation exists for all
t € [0, 4-00) since solutions of Euler equation exist for those t;

(iv) For s > in+2 the above-mentioned generalized solution of NS equation is a
classical solution.
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: Glutsyuk A.A.
(Ecole Normale Supéricure de Lyon)

An estimate of the number of zeroes of abelian
integral for special hamiltonian of arbitrary degree.

This is a joint work with Yu.S.Ilyashenko. We consider a real polynomial H (z,4) =
p(=)+q(y), where p and g are monic polynomials of degree n+1 > 2 with complex critical
values contained in unit disc, such that the complex critical values of the polynomial B
are distinct and are "not too close to each other™: the distance between any two of them
is at least ;’, Let H have a continuous family v; of ovals, i.e., closed curves in real level
lines H(z,y) = t. For a deformation of the hamiltonian vector field with the hamiltonian
H in the class of real polynomial vector fields of the same degree, we give an explicit
upper bound (depending on n) of the number of the ovals 4: that can generate limit
cycles of the perturbed field. More precisely, we show that an abelian integral over 7; of
a real polynomial 1- form of degree not greater than n can have at most e Zeroes, as
a function in £. The constant ¢ is independent on =.
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Godunov S.K., Gordienko V.M.
(Soboley Institute of Mathematics, Novosibirsk)

Galilei Invariant and Thermodynamically Compatible
Equations

Golo V., L.
(Moscow State University)

Solitonnye resheniya nelokalnoge uravneniya Shredingera

Gomilke A.M.
(Institute of Hydromechanics, National Academy of Science, Ukraine)

Factorization of the operator-functions in the Hilbert space

Gorbachuk V.M.
(National Technical University of Ukraine "KPI”)

Locally integrated semigroups
of normal operators in a Hilbert space

‘We consider the problem

y() = Ay{t)+;;!a:, tefo,b], b<eo, (0.1)
y(0) = o {0.2)

where A is a normal operator on a Hilbert space $j. It is assumed also that the resolvent
set, of the operator 4 is nonempty. We say that problem (1)-(2) is well-posed if for every
vector z € 3, there exists a unigue vector-function y(t) € C({0,8], P(4))n C* (fo, 8, %)
satisfying (1) and (2). Here D(A) denotes the domain of A. If problem (1}-(2) is well-
posed, then there exists a strongly contimuous operator-function S(t) on [0,8], such that
for any z € 9, any ¢ € [0,8],

£k
fS s)zds € D(4A), A/S(s)a:ds = S(t)x - —a:
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The function S(t) is called k-times mtegrated semigroup generated by the operator A.
We give the conditions on the operator A, necessary and sufficient, for problem (1)-(2) to
be weli-posed. The conditions are formulated i terms of location of the spectrum of A.
In the case; wheére the 'operator. A is selfadjoint; these conditions are equivalent to upper
semiboundedness of A. It is given also a necessary and sufficient condition on the vector
z in order that the solution of problem (1)-(2) be an entire vector-function of finite order
and finite type.

Gorbachuk M.L. and Gorbachuk V.I1.
(Institute of Mathematics, National Academy of Sciences of Ukraine)

- On solvability in.classes-of entire vector-functions,:, .
‘of the Cauchy problem for differential equations
in a Banach space

We consider the Cauchy problem

o D
SREEE

R R R S B y(t) Ay(t)’., f;e[O m), - e (0.1)
R ERTESARR S IRE ’y(o).'f:",y‘!r’} AN R i 'T‘.r RN SR r"';".i (0.2)

where A is a closed operator with dense domain D(A} in a Banach space B, yo € D(A4).
If P(A) = B, then problem (1)-(2) is solvable for any yo € B, and its solution is an
entire vector-fumction of exponential t.ype Thxs is not the case when A is unbounded.

A vector = € ﬂ D(A™) is entire for the operator A if the series. 2 £4%2 converges in

the whole complex plane; ‘We say that an entire vector for, the operator A has a finite
order if there exists a number B.€ (—c0,1) such that. 1Az|| € »™” for, safficiently large
n € N. The infimum r = r(z) of such 8 is called an order of z. Define the type s = s(z)
of an r-order vector z as s = inf{a > 0: [|A”z]] < a”n™ for sufficiently large n € N}.
We show that problem (1)-(2) is solvable in the class of p-order and o-type entire vector-
functions (p < 00, ¢ < co) if and only if yo is an entire vector of finite order r and finite
type s, related to p and . by the relations p = (1 — )™, ¢ = (pe) ' (se)”. In the case
where R(), A) = (A — AM)™" is a meromorphic operator-function, then the set of initial
data yo for which problem (1)-(2) has a solution in the class of entire vector-functions of
exponential type is dense in B if and only if the set of root vectors for the operator 4 is
complete in%B.In order that ‘the latter be hold, itis ‘mecessary and sufficient tha.t there
exist an integer m > 0 a total sel: M C 93 and a number sequence r,, nda asn — o,
suchtha.tr:,.l’;‘ v

A

».L

0}

VxEMsup/ln

gy

i .
R(rne A)x" do <°°'

RN

If A is the generator of Co-group of boundéd linear operators U(¢), ¢ € R, in B, then
the set of initial data.yo, for which-problem (1)-(2} has an entire solution of finite order
p > 1 and type ¢ < o0, is dense in B. In the case where p = 1, & < co, the density holds
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under the condition -

f vl ,
/ -—-——-1 > dt < oo

Gorin E.A., Karaulova LY.
(Moscow State Pedagogical University)

Convolution equations on infinite-dimensional Abelian groups

Let. *X be a complete separable met.nc Abelian group In what follows we fix'a
cont.muous function u : X — Ry such’that u(0) =0 and iz | u(z) < ehe > 0,
form a nelghbprhood base ai; o€ X The typlcal example gwes a Banach space’ X and

cu()y=faE. ’
*" " 'We consider Ry as an Abelian semi-group w:th respect to an operation ® and under
the usual topology. The main examples are given by s + ¢ and max{s, t}. - oo
* It will always be assumed that the following (balance) condition holds:
' if't > 0 then there exists a Sequence ep, = en(t) € X
such that #(z +ea) = u(z) @1 forall z € X.
If the above condition takes place then X is nof locally compact. At the same time the
condition holds (get s@t = = s-+t) if X is an infinite-dimensional L?-space and u(z) = llzi?
.28 well as (get s ¢ = max{s, t}) if X = Co(Q), where 9 isa locally—compact but not
compact metric space, and u(z) = supg J2(w)].

Let f be a Borel functmn onRy andlet pbea regular Borel measure on X of ﬁmte

total variation. Put

(Fou) » p(a)’ / (F 0 )a — =) u(da). | ©.1)

We should like to present sufficiently wide classes of f’s such that the triviality of
the potential (1) leads to ¢ = 0. [t can be shown in the usual way that (fou)+ ,u(a) 0
leads {o the relatlon ‘

f f(set)dga(s) 0 forall tER+, (0.2)

where S .

ga(t} = piz | u(z — a) < t}.
There exist cases such that the equation (2) arises however f is bounded on the segments
0 < a <t < B < coonly. In particular, the growth of f in zero does not play a role at
all (we use a variant of the Cartan covering lemma).

. If 3@t = st then the equation (2) belongs to the classical harmonic analysis. In

this case many non-trivial results: was fined.

. If s®t=max{s,t} then harmonic ana.lyms does not work for a non-trivial contin-
uous character on (R4, 9®) does not exist. Fortunately, the business is not so poerly. In
“this case if (2) takes place and if variation V{2*(f) > 0 for all € > 0 then go{t) = 0.
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In particulary, if {2 is a locally compact but not compact separable metric space if
does not contain isolated points if X = Co(R) if u(z) = sup, |z(w)|,and if (fou)+u =0
then either f = const or y=0.

Gorodetski A.S.
(Moscow State University)

Regularity of central leaves of partially hyperbolic sets

The following theorem was announced by Yu.llyashenko and the author in [1].
Theorem A.Given an open finite interval I C R,0 € T and 2 closed manifold M,
dimM > 3, there exists an open set U C Difi*(M) such that any f € U has a locally
maximal invariant set A C M with the following properties: (i} There exist {wo numbers
I and I = ) + 1 such that the hyperbolit periodic orbits with stable manifolds of
dimension I; are dense in A, (ii} For any X € I there exists an orbit dense in A with one of
the intermediate Lyapunov exponents equal to A. Addendum. The set A in Theorem A
may for dimM 2> 4 be taken €o be a partially hyperbolic attractor. The proof of Theorem
A require the folowing technical results which is also of its own interest. Let the map S :
U(A) — U(A) be hyperbolic with locally maximal hyperbolic set A, A = Nae2S™(U(A)).
Let M be a closed manifold. Theorem B.Let the map § : U(A) x M —» U(A) x M,
% = 8 x idy be of class C™** 0 € r < co. Then any C**}-diffeomorphism &, which
is O™t close to 3, has an invariant subset A homeomorphic to A x M, the projection
®: (A, 8) - (A, S) is a semiconjugacy, the leaves ~'(z) are C™*'-smooth and depend
Hélder continuously on a point = € A in C*-norm. The Hélder exponent and the Holder
constant are uniform on a small C™*-neighborhood of the map §. For the case when
S is an Anosov diffeomorphism of T" and M = T* this result {by different method) was
recieved by V.Nitica and A.Térok [3].
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Goryunov V.V,
{ University of Liverpool)
Unitary reflection groups and automorphisms
of isolated hypersurface singularities

A classical result by Arnold states that simple hypersurface singularities are clas-
sified by the ADE Weyl groups. Armnold also showed that simple hypersurfaces with a
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reflectional Z;-symmetry correspond to the groups By, C and Fy. I shall speak about
the first appearance of Shephard-Tedd unitary reflection groups in singularity theory.
This is provided by consideration of arbitrary finite order symmetries of simple hyper-
surfaces.

Grebennikov E.A.
{CC RAS, Moscow)
Yakubyak M., Kozak-Skovoradkin D., Silushik A., Olshanovski G.
(Academia Podlesskaia, Sedlze)

About the aglplications of KAM —
theory in new problems of the cosmic dynamics

In the articles [1, 2] some new models of cosmic dynamics were suggested, that
gained the name of "bounded problems of n > 3 bodies®. We determined all of the
equilibrium points in the dynamic models in cases » = 4, 5, 6, 7 and investigated their
Lyapunov stability [3, 4, 5] using the well-known theorem by Amold ~ Mozer [6, 7, 8}.
We investigated a universal analytical algorithm of normalization of the Hamiltonians of
the models under consideration, perforemed by System of Symbol Computations "Math-
ematica 4” [9].
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Gridneva (Ivenova) LV.
(Voronezh State University)

Invarlant subspaces’ of families of Krein
space binoncontractions

This talk is based on a joint work with T.Ya.i Azizov and A. Dijksma.

The problem of research of invariant subspaces of sets of operators has been paid
alot of attention in the scientific literature. L.S. Pontryagin and S. L: Sobolev were first
who considered invariant subspaces for selfadjomt operafors with regard to problems of
hydrodynamics. It was examined in another wa.ys in works of M. G Krem, 1.8. lohvidoy,
G. Langer, PS Plu]hps, ete.

The problem of the ex:stence of mamma! semldeﬁmte mvanant subspaces for a
set ‘of operators which act in Krein'spaces and, in particular; in Pontryagin spaces, is
one of central problems in the operator theory in spaces with an indefinite ‘metric. It
was 'started in works of M.G. Krein. His statement of the problem was formulated as
follows: let 2 = {V'} be a commitative set of J- noncontractwe operators and let £4 be
their common invariant nonnegative subspace. Is there a maximal nonnegatwe subspace
C+ such, that £y C £+ and U L'..;. C £47 The solution of this problemis nat found
if to assume that £y is a completely invariant concerning U subspace and the set'U
is arbitrary. It is solved for unitary operators in J-space (if an appropriate group is
bounded), for m-noncontractive operator in Il., & = dim 11}, and for some other special
cases.

The main result of our work is a proof of the following theorem.

Theorem. Let ¥ = {V} be a commutative set of J- binoncontractions, let Ly and
£_ be a maximal completely invariant nonnegative and a maximal invariant nonpositive
subspaces of Y. If either defLy < co or def £ < co, then L4 and L.. are a maximal
nonnegative and a maxzma! nonpositive subspaces, respectively. :

This research snpported by the grants NWO-RFBR 047-008-008 and RFBR 99-01-
00391.

Grigor’yan A.
{Imperial College, London)

ngher elgenvalues for elliptic operators on
Rlemanman manifolds - :

Upper and lower estimates are given for heigher mgenvalues of certain second order
elliptic operators on Riemannian manifolds, including Schrodinger operators. Some ap-
phcat:ons are shown, in partxcular, est:ma.tes of the stability index of mlmmal surfaces,
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5 Grines V.2.
{sthmz Nougam:i State Agrzcultumf Academg)

On topologlcal classification of Morse-Smale . .
diffeomorphisins on three-manifolds”

" This report contatﬁs the resulis obtained by the author in coopération with C. Bon-
atti, V. Medvedev E. Pécon (see [1]-[3]) Let f: M - M be a Morse-Smale diffeomor-
‘phism on a smooth clésed crientable 3-dimensional manifold M. By S. Smale; a point 7 €
M is called heteroclinic point if it belongs te intersection W™ (p)NW*(g) where p; ¢ seme

.saddle different periodic points of diffeomorphism f such that dim W*(p) = dim W*(g).
If p, g different saddle periodic points of dzﬂ'eomorphsm f such that W*(p) N W*(q) :ﬁ 2
and dim W*(p) ;é dim W“(q) t.hen a component of the mtersectmn W"(p) n W‘(q) we
call 2 heteroclinic' curve. Az SO AN e vt s 2
Theorem. Let M be a tbree-dlmensmnal closed connected orientable manifold. Tbere
exists & Morse-Smale diffeomorphism without; heteroclinic curve on M adm:ttmg k saddle
periodic points and 1 sinks and sources if and only i M is the sphere if k = l -2, 00 M
is the connected sum of (k — 1+ 2)/2 copies of §% x S'.

- .. Next we solve the problem of topological conjugacy of Morse-Smale dlﬂ'eomorplnsms
on M which' do not admit any intersections of stable and unstable ma.mfold of saddle
periodic points (neither heterocb.mc _points, nor heteroclinic curves)

v To each diffeomorphism f we associate an enriched graph of Smale G(f) and for
each sink w, we define the scheme S(w) which is a ink of tori, Klein bottle and curves
embedded in S? x S*. This scheme describés the topological position of the juvariant
unstable separatrices of saddle points which are contained in the basin of w.

We show that two diffeomorphisms f; and f» are topologically conjugate if, and
only if: 1) The corresponding graphs are equivalent. The equivalence is a conjugacy
between the natural permutations induced by the dynamics f; and fo on the vertices
and edges of the graphs. 2) Two corresponding sinks have the same schemes (up to
diffeomorphism). 3) For any two corresponding saddles with one-dimensional unstable
manifolds the corresponding pairs of curvés associated to the separatrices are concordantly
embedded. The research'was partially supported by the INTAS gra.nt 97-1843 and RFBR
grant 99-01-00230
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Guliev V.S., Bandalievy R.A.
{Baku State University)

Some imbedding theorems for weighted Sebolev spaces

let B}y = {z: z € RP,z; > 0,i = ,...,n}, p(z)} = zllx;[‘/“", a; > 0,
=

o
i=1,...,n, la) = 3 a:. Let w be a positive measurable function defined on a2 domain
i=1
% +. Denote by Ly (R34 ) the space of measurable functions on R}, with finite norm
I fllip,“( R1,) = i) %, 1 @) Pw(z)dz, 1 € p < co. We define the anisotropic Soboley
space Wzl’fu’:;',d'f.....wn(32+): I =(h,.ln) 20 L 2 0i=1,...,n the nonnegative

integers, as the set of functions f(z), # € R}, that bave generalized derivatives D;-i £,
with and finite norm

n
s st oon BE|| = WAy + Do D Flltp st -
=1

Theorem. Letk = (k1,....kn), I = (f1, .., In) > 0, 2= (k,1/1) < 1, (k+1/p—1/q,1/1}) =
1,1 < p < q<coa=(a1,.,6n), ai = 1fli, i = 1,...,n, and let weight functions
W, Wo, W1, ... ,wn depend only on p(xz). Also, let the weight pairs (wj,w), 7 =0,1,...,n,
of monatone functions satisfies the following condition 1) or 2):

1) w and w; are increasing funetions on (0, o), and

2C > 0: ¥p € (0,00), w(p)?/? < Cwilp);

2) w and w; are decreasing functions on (0, co), and

rle
tf2 p—1

L 7 i
sup / w(p)dp ( f wi(p)' ¥ p~t el "'dp) < co.
>0 4 3

Then for = < 1 the continuous imbedding

D*Wsin . un (BR4) 2 Law(BLs). (©.1)
is valid. Theorem 1 was proved by Yu.S.Nikolskii [1] in the case wi{p) = p™(z),
i=0,1,... ,n.

REFERENCES
[1]. Yu.S.Nikol’skii, Trudy Mat.Inst. Steklov, 201 (1992}, p.302-323.
[2}. V.8.Guliev, Trudy Mat.Inst. Steklov, 204 (1993}, p.113-136.
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Gurevich P.L.
(Moscow State Aviation Institute)

On the Green formula for nonlocal ellitic problems

While considering nonlocal elliptic problems in bounded n-dimensional (n > 3)
domains in the case when support of nonlocal terms intersects with boundary of a domain,
we must study some model ponlocal problems in plane angles (see [1, 2]). As an example
let us consider the following model problem:

—~Outu=fly) (v€K) 1)

w(yjly, +au(Gy)ly, =a(y) (y€m), u¥)lvm =2(y) (v € 12). (2)

Hae K={y €R*: i <p<bln={yeR: p=bi}(i=1, 2);-7<bh <
0 < by < m; G is the map given by (¢, r) = (v + |1}, xir), where (g, r) are polar
coordinates in R?, x1 > 0. Let us introduce functional spaces, in which problem (1)~(2)
is well defined. Denote by EL(K) the completion of the set Cg°(K\{0}) with respect to

the norm lulig () = (= [yl (ly?AD + 1)|Dﬁu|2)”2. Denote by Ef,_ln('r) the
ISt K

space of traces on aray v C K with the norm H"’“EL'”’(-',) = inf lull gt (z) (v € ELNK):
]y = ¢). We study solutions u € E2(K) for problem (1)-(2) supposing that (f, o1, g2) €
E(K) x B3P (1) x E3/*(12). In order to establish necessary and sufficient conditions of
the Fredholm solvability for problem (1)—(2), we consider an auxiliary nonlocal problem
with the parameter A for an ordinary differential equation

fipp = N8 =0 (p€ (b1, &), 3)

(P Npmty + @MKo 4 [br])lgmsy =0, (@)lps, = 0. @

Theorem. Model nonlocal problem (1)-(2) is Fredholm iff the line Im A = a — 1 contains
no eigenvalues of auxiliary problem (3)-(4). The proof of this result is based on studying

the following nonlocal transmission problem:
—Dvitvi=fily) (yekKi;i=1,2), (5)

n(Wln = a(y) (¥ € n)y 2Bl =0(y) (yE€), ©
w2l — Wby =M@, 2y — F2 @) — X GG )l = haly),

where y € v. Heore Ky = {y € R* : b <p<0}, Ko={yeR?: 0< o <b}
y={y €R?: ¢ =0}; ny and n are the normals to 7 and 7 directed inside K and K>
correspondingly. Problems (1)-(2) and (5)—(6) are formally adjoint. This means that for
any u € E2(K) satisfying homogeneous conditions (2) and v; € B (K) (=1, 2)

2 2
satisfying homogeneous conditions (6) we have 3" [(~Au+tu)sidy= ), [ u(-An+
i=1K; =15,

7} dy. Purther, it can be shown that 1) kernals of problems (1)-(2) and (5)-(6) are of
finite dimension and 2) dimension of cokernal for problem (1)—(2) is equal to dimension
of kernal for problem (5)~(6}. This implies the Theorem. All the results are obtained for
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arbitrary elliptic differential operators of order 2m and general boundary conditions with
2 finite number of nonlocal terms, which may have quite a complicated form.

e i REFERENCES . - : 2
[1] A. L Skubachevslm, Madel nonlocal problems for ellzptzc equat:ons in dikedral
angles, Differentsial’nye  Uravneniya. 26, No 1 (1990), 120-131. English translation in
Differential equations. .26 (1990). .
[2] A.L. Skubachevskii,: Truncatsan fuﬂctmn metbod in tke theory of ronlacal pmb—
lems, Differentsial’nye Uravneniya. 27, No 1 (1991), 128-139. English translation in Dif-
ferential equations. 27 (1990)

Gushchin AK.
© (Steklov Mathematical Inststute)

Boundary propertles of ‘the solution’ of the Dmchlet
problem for an elliptic equatlon and 1ts ‘applications.

Tlus research is a natural continuation of works 1,2)- ‘Lét u is a solution of the
following Dirichlet problem

n a et a N - ‘
,§1 e (as,j(x)a—;-)v =0, .=z¢€ Q, (1)
uleg=us,' ' wo € L2(9Q),

for uniformly elliptic equation in bounded domain @ C.R, with a2 smooth boundary
8Q. We suppose, that the normal (outward and umt) to 8Q is Dini-continuous, the
coefficients a;; = a;; ave measurable and bounded in @ and they are Dini-continuous
on_the boundary (see {1]). We consider the case, in which index number (exponent of
smoothness) a >.0 is sufficiently small for snmphczty ' . ,

Theorem. Let measure ¢ supported in Q x Q satisfies the condition there exists constant
Co such that

[max{lx yl, f(z), f(y)}]‘z“ #(z,1) < Gor™,
RICXSH Iz—=°l$r.DEQ}U{(=»9) =EQ |y-:.-0 Isf} :
for any zo € 9Q and r > O iri{z) = djst{a:, 8Q} Tizen the ast:mate

[ lu(z) - uu)l®

|z — 2= ‘f‘ﬁ(""y)<C°n3f-||“0"t.=caqp :

Gx@
boIJs for an arbiiréz‘jr to € Lz(aQ) ‘with a constant independent on uy and ¢.

* This property is apphed to mveshgatnon of f.he solvabzhcy of non—local pmblems for
an elhptlc equatmn o
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Habibullin 1.7,
(Iastitute of Mathematics of RAS, Ufa)

The KdV equation on a half-line

An initial boundary value problem for the Korteweg-de Vries equation is considered
on a half-line with zero boundary conditions at the origin and with arbitrary smooth
initial values vanishing rapidly enough. The problem is effectively integrated by means
of the inverse scattering method when the associated linear problem bas no discrete
spectrum. In this case the global solvability theorem is proved. A kind of large time
asymptotics of the solution is discussed. Forinstance, at the end z = 0 the first derivative
decays as .
u=(0,8) = 1/t(1 +o(1}) for ¢— co.

" REFERENCES
[2] V.V .Khablov, Proceedings of S.L.Sobolev’s seminaire, (1979), # 2, pp. 137-148.
[2] A.S.Fokas, Lax pairs and a new spectral method for linear and integrable non-
linear PDEs, Sel. Math., New ser. 4 (1998) pp. 31-68. :
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Helemski A.¥a.
(Moscow State University}

Wedderburn type theorems in traditional
and ‘quantized’ functional analysis

From the time of von Neumarin there was an interest to conditions on a given
operator algebra that are equivalent (or closely related) to the existance of what could
be reasonably called the Wedderburn structure, on the lines of the classical Wedder-
buwrn theorem for semisimple finite-dimentional algebras. The homological approach to
this circlé of questions, inherited from algebra, lead us to the study of the condition of
the so-called spatial projectivity of a given algebra. It was shown (1994) that spatially
projective von Neumensn algebras form a class similar to that of Wedderburn algebras,
buf containing a little bit less algebras. Afterwards, the methods of "quantized’ functional
analysis provided the respective *quantized’ version of the mentioned condition. It turned
out (1999) that quantum spatially projective von Neumenn algebras are exactly those
with the Wedderburn structure. Quantum spatially projective operator C*-algebras and
quantum projective Hilbert modules over C*-algebras can be also completely described.
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Hryniv R. O
(Institute for Applied Problems of Mechanics and Mathematics, Lviv)

Sturm-Liouville operators with singular potentials

In this talk, we discuss some properties of Sturm—Lmuv:llc operators given by the
formal differential expression
af

if:= ——+qf

with complex-valued singular potentials ¢ € W;(0,1). In general, there are many oper-
ators that can be associated to ! and, say, the Dirichlet Boundary conditions. However, it
was shown in {1] that among them there exists a distinguished operator T that is the uni-
form resovent limit of Sturm-Liouville opeartors with regular potentials. Some properties
of the operator T" were thoroughly studied in [1] and [2]; in particular, it was proved that
T has a compact resolvent and asymptotics of its eigenvalues and eigenfunctions were
found. Our main objective is to study further properties of the operator 7. We show that
T is similar to a rank two perturbation of the potential-free Sturm-Liouville operator.

Theorem. The operator T with ¢ € W;(0,1) is similar to an operator M, defined
by (Mpf)(z) = ~" + m(s)f'(1) on the domain D(My) = {f € H*(0,1) | y(0) +
fo p2(8)y(t)dt = 0, y(1) = 0} with p1,p> € L2(0,1). The similarity is performed by the
operator I + K, where

(K f)(z) = L Kz, OF(8)dt

is an integral Volterra operator. Moreover, either g or p2 can be made identically zero.

As one of numerous corollaries of this result we get that for the operator T with
q € W;(0,1) all but finitely many eigenvalues are semisimple and the corresponding set
of normalized eigen- and associated functions forms a Bari basis of L2(0,1) (i.e., a basis
that is quadratically close to an orthonermal one).

REFERENCES
[1] A. M. Savchuk, A. A. Shkalikov, Sturm-Liouville operators with singular poten-
tials, Matem. Zametki, 66(1999), No. 6, 897-912.
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Iichenko E.V.
(Moscow State University)
1.G. Petrovsku. from a student to the rector

The entire Ivan Georgievich Petrjvsky’s path "From the student up to the rector”
can conditionally be divided into three parts. During each of them he got acquainted
with certain particulars of life of the Moscow university and of the country, as a whole,
he acquired experience and personal qualities, which subsequently became a basis of his
"rector’s credo”.

The years of 1922-1930. These are studemt’s and post-graduate’s years of
1.V.Petrovsky. During the twentieth years the ideology did not interfere with natural
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- sciences. - Authorities. aspired to attract all experienced experts - those wheo descended
from old intelligentsia to the side of the Soviet state (this policy discontinued in 1928
in connection with so called ”Shakhty’s Case”). The situation at Moscow university and
at its. physico-mathematical faculty was rather quiet.- All ‘this has in the end allowed
1.V.Petrovsky to successfully complete his student’s years obtaining high-quality profes-
sional mathematical education and to take firm decision on his further carrier of a scien-
tific worker and a higher school teacher. Out of numerous facts-and events of the 1920-th,
which have rendered or. could render perceptible influence: on I.V.Petrovsky’s formation:
as a’'person and as the future rector; it is worth to pay special atiention to activities of
the former Moscow university rectors V.P.Volgin, A.Ya.Vishinsky, I.D.Udaltsov; to orga-
nization of the scientific-research institute of mathematics and mechanics under the 1-st
MSU and D.F.Egorov’s fate;;

‘The years of 1930-1940. During.these years 1.V.Petrovsky develops as an original,
distinguished mathematic:an and'a university ‘teacher. In the second edmon of tbe book.
»Universities and scientific estabhshments” printed in 1935 it was stated: "As one of the
significant phenomenon of last. years ‘we should rather recogmze extremely great works of
A.N.Kolmogorov and 1.V. Petrovsky on analytlcal methods of the theory of probabilities
related to partial dlﬂerent:al equatlons of the second order, in particular. a deep “analy-
sis of the thermal conductivity equation ‘carried out by 1.V.Petrovsky who has brought
a number final results to this classical task”. The process of 1.V.Petrovsky’s personal
making coincided with the realization of scale and radical changes in the structure of
scientific and educational establishments of the country. At the same time, the beginning
of the 30-th was the period of hea.vy strmggle for. preservation of the Moscow university,
which had being led by the rectors V.N.Kassatkin and A.S. Boutyagin. 1.V.Petrovsky had
an opportunity to witness and to.analyze relations between the: umversﬂ;y, on the one
hand, and all the higher authorities, on the other. It was the time when almost ten years’
period of fast quantitative growth of higher school had been completed. A large technical
and engneenng sector had been created in it that had caunsed fast and wide growth of
education in the fields of na.t.ural sciences and espemally of mathematics. The task of
training national technical and engineering staff for. the country had been solved. The
function was defined for universities to become centers of training scientific personnel. A.
syst.em ‘of their state certification had been introduced. A number of 1mporbant. events
has occurred in the life of the Moscovw umvers:ty during this very decade including final
approval of its principle structure based on faculties, creation and consequent dismissal
of Moscow institute of a history and philosophy (MIPHLI); assignment of a name of
M.V.Lomonesov to the university, approval of the Charter MSU in 1939. I.V.Petrovsky.
- was a witness and a direct participant of these processes. At the same time a unified
system of the USSR Academy of Sciences was made out. In second haif of the 30-th years
1.V.Petrovsky runs into such a phenomenon, as a rise of scientific and pelitical opposition -
between various groups of soviet scientists, including opposition between scientists of the
Academy of Sciences and those of the Moscow university. Then came sharp political and:
ideological confrontations that accompanied conflicts arisen here (the most notorious of
them was so called "The Case of the academician -N.N.Luzin” and annihilation "of a
historical school of M.N.Pokrovsky”). I.V.Petrovsky confronted directly with these phe-
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nomena later, when in 1953 a group of employees of the physical faculty accused him of
discrediting ”scientists-communists”.

The years of 1940-1950. This interval of time is especially important. It was dur-
ing Great Patriotic war and immediately on its ending that ”an administrative self-
determination” of 1.V.Petrovsky took place. In the system of higher school he was
the dean of the MSU faculty of mechanics and mathematics; in the system of the
USSR Academy of Sciences he was the deputy director the leading academic scien-
tific establishment- the V.A.Steklov’s Mathematical institute of the USSR Academy
of Sciences, and the Academiciam-secretary of the Bragch of physico-mathematical sci-
ences of the Academy. The accumulation of administrative and political experiénce by
L.V.Petrovsky took place in the most extreme conditions - the war was going on. His
first managing administrative work was connected to evacuation (begun on October 14,
1941) and re-evacuation (completed by June 10, 1943) of the Moscow university. At the
end of the 1940-th 1.V.Petrovsky becomes already known, authoritative and indepen-
dent administrator. He clesely cooperates with leaders of the USSR Academy of Sciences
8.1.Vavilov, A.V.Topchiev, rectors of Mascow university 1.5.Galkin and especially with
A N.Nesmeyanov. The post of the rector of Moscow university was included into the
Pelitburo of CPSU’s nomenclature. After A.N.Nesmeyanov had been elected as the Pres-
ident of the USSR Academy of Sciences in 1951 a consent between the higher party, state
and academic hierarchies was reached to assign I.V.Petrovsky to the post of the MSU
rector.

V’yasov ¥.S.
- (Bashkir State University)

On the nonlocal investigation of bifurcations
for a class of nonlinear elliptic equations

Let F) be a real functional on Banach space W. We discuss the problem of the
calculation of sufficient and necessary intesval (Aj, Ajs1) C IR for the existence of the
solution for the equation Fa{u) = 0 on W when A € (A, Aj41) and nonexistence one
when A € R\ (Aj,Aj41). Generally, the calculation of the points A; in linear cases is a
subject of Spectral Theory. We present a method for constructive calculation of sufficient
and necessary intervals in nonlinear cases through the following example of a class of
nonlinear elliptic equations '

(1) ~Aptt = MeelP%u + f(2)ju]"%n, u>0in 0,

(2) u =0 on 92,

where © is bounded and smooth domain in R", A, denctes the p-Laplacian, 1 < p <
7 < 7°, where p* = npf(n — p) if p < n and p* = +oo if p > n. We suppose that the
problem (1)-(2) has indefinite nonlinearity, i.e. f(z) may changes sign. Define €} = {w €
C'(©)]w > 0 in 2 and w/dv < 0, = 0 on 80}, where  is the outward normal of 59.
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Let Ay be a first eigenvalue of —A, in Wy'? and ¢ eigenfunction associated with A;.
Define

R oo JIVulP3(Vy,
A" = sup {inf
ueg‘,{ ¢ ¢ JulP~2ué

W)I [ F@)Nul"us > 0,6 2 0,6 € C°(Q)}-

Our main result on an least upper bound for the sufficient and necessary interval of the
existence of the positive solution for (1)-(2) is the following:

Theorem. Let 1 <p < v < p"*, f € C(Q). Then

(i) * < +co if 9 = {z € Q|f(z) > 0} # @. Moreover the problem (1)-(2) has no
positive solution if A > A°. .

(i) A1 < A* iff F(¢1) < 0. Moreover YA € (A1, A") there exists a positive solution ux of
the problem (1)-(2).

Remark. It is well known that in suberitical cases 1 < p < v < ¥” there exists a pesitive
solution of (1)-(2) for all A € (—oo0, A1).

’in A.M., Melentsovy M.A.
(Institute of Mathematics and Mechanics, Ekaterinburg)

Justification of the asymptotics by
the separation of variables method at large times.

Let us consider the system:

{ i=591(I1‘P’5)
¢ = w(l) +592(I:‘F:6):

where g),¢; are indefinitely differentiable, periodic in ¢ functions. To get an asympthotic
solution of the system, we apply the separation of variables method [see, for exam-
ple, [1]] which consists in elimination of the fast variable from the first equation.
n the lecture it is proved that in the case when the limiting problem is stable the
approached solution received by this methed, approximates the reguired solution of
I=¢F(l,9)

¢ =w(l)+eG(I,p)

I(0) = 1;0(0) = 0, is considered. Functions F,G,w are indefinitely differentiable,
periodic in ¢ functions, bounded on\ I. For F the condition of stability is fulfilled:

2
J EFUID gp = —y < 0

an initial poblem for amy large values of time The sysiem {

Theorem. Under the given conditions for any given, k,p € N it is possible to choase
number n € N, such that partial sum of constructed asymptotic series received by the
separation of variables method will differ from the exact solution by O(eP*!) for any
tefo,e7F.

The proof consists in check of boundedness of the sclution for all £, construction
asymptotic solution on phase plane. Further, estimation is carried on a plane {¢,z).
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Tlyin V.A.
(Moscow State University}

TpauwsHoe ynpaBieHue IporeccoyM KoiebaHuil,
onuceiBacMuM ypastenneM K(z)[K(z)us(z,t)], — us =0

Inoue K.
(Science University of Tokyo)

On treatment of quantum chaos by chaos degree

There exist several approaches in the st.udy of chaotic behavior of dynamical sys-
tems. But these concepts are rather independently used in each field. In 1981, M.Ohya
proposed Information Dynamics (ID for short) to treat such chaotic behavior of systems
altogether. A chaos degree to measure the chaos in classical dynamical systems is defined
by mea ns of a complexity in ID. In particular, among several chaos degrees, the en
tropic chaos degree is applied to some dynamical systems [1]. In this talk, we study the
chaotic behaviour and the quantum-classical correspondence for the baker’s transforma-
tion. The chaos degree is computed and it is demonstra ted that it describes the chaotic
features of the model. The correspondence between classical and quantum chaos degrees
is considered. This talk is ‘main ly based on the joint paper [2].

REFERENCES
(1] M.Ohya, Complexities and their applications to characterization of chaos , In-
ternational Jornal of Theoretical Physics, 37, No.1 (1998} 495-505.
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Iohvidov E.L
(Voronezh State Technical University)

On operators collinear to the uniformly
J—nonexpanswe ones

We consider linear operators acting in Krein space H :

H=Hy®H., Hy=PsH, Pi=Pi=P:, Py+P_=I,
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with an indefinite metric [z, y] = (J=,y), J = Py — P-, z,y € H. An operators are no
supposed to be bounded, and they may be defined on arbitrary linear manifold of Krein
space H.
Definition 1. A linear operator V is called uniformly J-nonexpansive (with the constant
§>0)), if
[Vz,Vzl € [, 2] - Slfal* ¥z € Dv

(Dv denotes the domain of the operator V).
Definition 2. The symbol K. (a > 0) will denote the following set of vectors of Krein
space H :

Ka={z€H| allPs=ll® > |P-IF}.

It is easy to see, that Kp = H, and that for every @ < 1 the set K, is uniformly
positive, i.e. there exists the number ¥ = ¥{a) > 0 such that

[z,4] > llsl* Yz € Ka.

Definition 3. For an arbitrary Iinear operator,’f‘, D7 D L, where L # {0} is an arbitrary
linear manifold of the space H, we introduce the following numbers:

. [Tz, Tx) [Tz,Tz]
—(T|L)= inf T
w~(TIL) s€L,z3£0 M=l zeL,zz0 |zl

w we(T|L) =

Theorem 1. Let
TIL=X-(V|L),

where A € C, A#£0, the operator (V|L) is uniformly J-nonexpancive with the constant
8 > 0, and let the condition

w-(TIL} > —]AP-(1+9). ©1)
fulfils, Then ' A

. AP - 8) — w_(T|L)

AP+ 8) +w—(TIL)

Theorem 2. If under the conditions of Theorem 1 instead of inequality (0.1) the in-
equality

LC Ko, where a=

w_{T|L) > -, (0.2)
holds, then the linear manifold L is uniformly positive with the constant
1

~ f-(TIL) + 1AP8](> 0).

T hr

Theorem 3. Let L # {0} be a uniformly positive linear manifold, L C Dr, where T is
a linear operator, and let the condition

wi(T|L) < +eo
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is realized. Then the operator (T|L) is collinear to some uniformly J-nonexpansive oper-
ator. In particular, under the additional condition

ws (TIL) < e~(L), ©3)

where
P ( y= [3:,2:]

selis =P
(T|L) is itself uniformly J-nonexpansive operator with the constant

8 = e(L) ~ w (TIL)(> 0). *

Ivanauskas F.
( Vilnius University, Institute of Mathematics and Informatics, Lithuania)

Meskaunskas 1.
(CERFAGS, France)

Numerical modelmg of derivative nonlinear
Schrédinger equation

The problem of our interest is given by the derivative nonlinear Schridinger equa-
tion

] 82
% =5 1)

where u = u(z, £) is unknown complex function, (z,£} C Q = (0,1) x (0, T}, and ¢c;, a, B
are real constants. The information on the applications of the model (0.1) can be found
in [1}. In computer simulations, the initial boundary-value problem is dealt with. We
consider boundary conditions of two different types, both coming from physical models.
Namely, Dirichlet boundary conditions

9|
+ dealulPu + desful'u + otlul2 Bu =T Bu M

u(0,t) = u(1,£) =0, 0t T, (0.2)
or periodic ones

Su
8::

Bu

%(0,£) = Bu(1,t), 3z,

ogtg T (0.3)

are assumed. The complex parameter (phase shift) @ is such that || = 1. In this note
we provide with the main results (convergence and stability), proved in [2], about two-
step algorithm, proposed to solve the above models. We also confirm these results by
numerical experiment. In the first step, we employ some invertible transformation [2],
which can be computed to the required precision pumerically, to obtain the system of
two eguations which, redenoting the solution u, appears as
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%1:- = igz; + fifu, f‘,‘s ”:”.}’
x ol (0.4)
£ = 15'33 + f2(u: u”,v, ”.)v

here f; and f> are polynomials. Note that, by the applied tramsformation, we have the
following relation between u and v:

ou | .a
v= o + 3—2-|u|2u. (0.5)
The boundary conditions (0.2) transform to
dy 3y
u(O, t) = u(l, t) = 0, -3; o = % . =0. (0.6)
and the transformation of (0.3) boundary conditions is
u(0,£) = fu(1, 1), dul _g0u ,
oz z=0 Oz z=1 )
s 8 (0.7)
~ y 5 dv
2(0,t) = 8u(1,¢), B » =9 % e

here i§| = 1. Then, as a second step, we apply Crank-Nicolson finite difference scheme to
solve (0.4), (0.6} or (0.4}, (0.7) numerically. To linearize obtained difference problem we
employ iterative method and prove its convergence [2). Denote p, g to be the solutions of
difference scheme and & = 4 — p and § = v — ¢ to be the error functions.

Theorem 1. (Convergence, Dirichlet problem). Suppose that there exist the uni-
que solutions u,v € C*® of (0.4), (0.6). Then there exist constants 7o, ho > 0 such that,
if 7 € ™, b < ho, then there exists the unique solution p, g of finite difference scheme
and

Melle.s + léllen =O(7+h),  7h—0. ‘ (08)

Thedrem 2. (Convergence, periodic problem). Suppose that there exist the unique
solutions duf8z, dv[dz € C** of (0.4), (0.7). Then there exist constants 7, ho > 0 such
that, if T € T, h € ho, then there exists the unique solution p, q of finite difference
scheme and

llelzrne + Wollzsn = OG* +27), 7k o (0.9)

Theorem 3. (Stability}. For any of the considered initial boundary-value problems,
Let p1, @1 be the solution of the difference scheme with initial functions u§°’ (=), u§°’ ().
Let also py, g2 be the solution of the same difference problem with another initial functions
u®)(z), v (z). Then there exist constants 7o, ho > 0 such that, if T < 7o, b < ho, then
the following estimate hold:

llox —pellzris +llar — @llzsn < o5 (1 — e farnn +108” — 5} . (0:20)
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Constant cs does not depend on the grid steps 7 and h.
Remark 1. Due to the imbedding H! — C, by Theorem 2, the convergence in C
norm follows with the same rate as in (0.9). Also, by Theorem 3, the stability in € norm

follows.
Remark 2. Due to (0.5), the proposed two-step numerical algorithm converges and

is stable in C! norm.
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Ivanov A.O.
(Moscow State University)

Extreme networks in normalised spaces

Criteria for networks exremality with respect to the length functional in a nor-
malised space are presented, Considered both cases of deformations preserving and chang-

ing the topolofy of the network.
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Ivanov S.A.
(Russian Center of Laser Physics, St.Petershurg State University)

Control Systems governed by PDE and exponential
families™

Let us consider the control system

3(£) = Au(t) + Bu(t), (0) =0,

14This work was partially supported by the Russian Basic Research Foundation {grant # 99-
01-00744}. .
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where A is a (differential) operator in H with eigenfunctions ¢, and eigenvalues An; u is
2 control
u(t) €U, u(-) € U = L*(0,T; ).

One of the possible of statements of control problems connected with this system is to
describe the reachibility set R(T) — the set of all final staies y(T) = y*(T) when u runs
the whele control space. Using the Fourier method we reduce the control problem to a
moment one relative to the exponential family £ := {B*pne***}. This approach reveals
the deep connections between properiies of the control system and properties of £ [1].
In particular, under natural conditions, R(T) = H iff £ forms a Riesz basis in its span
in L*(0,T;U); R(T) contains all eigenmodes n iff £ is minimal in L*(0,T;U); These
connections allow us to involve the well developed theory of exponential families in order
to find R(T). Let us present three examples, which use this connection in both directions.
(i) Let we have the heat equation

N
n=20y+ ) biz)ui(t),z €Q,
1

where b; are fixed functions, u; — controls. In this case £ = {f),,e”‘"‘}, 7 €CY. It
is known [1] that £ is minimal in L*(0,T;C") only if the spectrum {),} is separated:
infmza |An—Am| > 0. In view of the Weil asymptotics of An, for dim$Q > 1 the reachibility
set of the system does not conlain all eigenmodes ¢, (i} Let we have the wave equation

e = DBy, z € D, yle=0 = %o, Mtle=0o =y1, ylon = .
1t is well known that the system can be steered to the rest in time T > 2diam Q for
any initial state {yo,1n} € W} @ L? by the control u”. This implies that the family
£ = {a—en-e*"‘/x’} forms a Riesz basis in its span in L{0, T;8Q). Using this fact it was

proved that the L?-norm of u” decreases as 1/v/T while the L'([0, T}; 82))-norm of u”
is approximately constant [2]. (iii) Let we have a gibrid system (coupled beam and string)

P = s+ Awy + Bug =0 ; R
3EM ™ + Auy + Bug = in(0,7) xR,
. ot .
3 + prs +Cuy +Dux =0 in(0, 7) x R,
U = up = 5;5"2 =0 forz =0,m,
a8
h =3 € H&(ﬁ, ), G =®nE L*(0, ), fort =0,
Uy =§U2 =0 fort=10

(A, B, C, D are constants). The problem is to prove the partial observability

a
[2uo0] =l + e (01)

2
L3(0,T
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It means that we can recover the initial state via the observation || Zu1(0,)|3,,, ) dur-
ing the time 7. Also using the Fourier method, C. Baiocchi, V. Komornik, and . Loreti
[3] have proved (0.1) for T > 4z (for almost all 4-tuples (A4, B,C, D}). The authors
conjectured that the system is probably partially observed even for T > 2x. In [4] this
conjectured has been proved. The point is that the spectrum is not separated, what com-
plicates the study of the system, and it was suggested to use so called divided differences
of exponentials (functions of the form e*’, (e — *3)/(u — A) etc.).
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Chisato Iwasaki
(Himeji Institute of Technology)

A local version of Riemann-Roch theorem
on a compact complex manifold and symbolic calculus

Let M be a n dimensional compact complex manifold, and let Lq = 8,185, +838,
be the Laplacian actiong on differential (0, g)-forms A®9 (M) = D(A®9T*(M)). Then
Riemann-Roch theorem states as follows:

n
o (-1 dim H = [ (2m) [T M)
q=0 M
where H, is the set of all harmoniq (0, ¢)-forms for L, and T4(TM) is the Todd class

defined as

@) TATM) = det( 2

e“-—l)

with the curvature form 2. Analytical prooves of the above thorem is based on

n

3) Z(—l)qdim Hy= ./M Z(—l)” treq(t, =, z)dvz,

q=0
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where treq(t,z,z) is the trace of the kernel eq(t,z, z) of the fundamental solution Eq(t)
of the following heat eguation;

{ (& + Lq)Eq(t) =0 in (0,T) x M,
EL(0) =1 mM

So, an analytical proof for Riemann-Roch theorem is complete, if the following‘equation
holds;

/M ;(——1)" treqlt, 7, z)dy = /M(Zvrz')""[Td(TM)]gn

We call the following equation "2 local version of Riemann-Roch theorem ”

4) Zn:(-l)q treq(t, z, z)dv. = (2mi) " [Td(TM)2n + O{t%).

=0

We shall give a rough sketch of a proof of the above formuda (4), constructing the funda-
mental solution according to the method of symbolic caluculus for a degenerate parabolic
operator instead of that of a parabolic operator. Qur point is that we can prove the above
formula by enly calculating the main term of the fundamental solution, introducing a
new weight of symbols of pseudodifferential operators. In this paper, we study also "a
local version of Riemann-Roch theorem ” under the condition that M is a compct com-
plex manifold. In this situation, does ™a local version of Riemann-Roch theorem ” hold?
If this answer is negative, the next problem is to characterize manifolds where "a local
version of Riemann-Roch theorem » holds. Our results about this problem is following.
Let @ be the Kachler form of M. We remark that a complex manifold M is a Kaehler if
and only if dD = 0. Theorem

(1) If 852 # 0 and n is even, then we have

3 (1) breg(t, 2, 2)dvs = (27)(~1) "5 ﬁ‘;‘;—“‘ir‘% +o@3th),
q=0

D!

(2)If 9% = 0, then we have

i(—l)q tre‘dﬁ”: Z')dt}: = 0(1).

g=0

Jakobson M.
(University of Maryland)
Estimating measure of dynamical systems
with Sinai-Ruelle-Bowen measures

We consider one parameter families of non-hyperbolic dynamical systems and es-
timate measure of parameter values such that respective systems have attractors with
Sinai-Ruelle-Bowen measures.
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Kaliev 1. A. and Kazhikhov A. V.
(Laurentyev Institute of Hydrodynamics, Novosibirsk)

Gas—Solid Phase Transition Problem

The classical Stefan problem is concerned with phase transitions in an immovable
substance. Meanwhile, a lot of phase changes occurs in the presence of hydrodynamic flow
in a liquid phase. The interest in the study of these processes is motivated by numerous
technological applications. Phase transitions with convection have been considered for
incompressible fluids. However, the role of compress:bz]zty phenomenon still requires a
basic study. In [1] we propese a new approach to liquid-solid phase transitions within the
frame of complete Navier-Stokes model for a liquid (gas) phase, which takes into account
such properties of liquid as compressibility, viscosity and heat conductivity. Concerning
a solid phase, we suppose that
(i) the solid phase is immovable;

(ii) the density of the solid phase depends only on space variables;

(ili} the heat equation governs the solid phase. The accepted assumptions allow us to
formulate the initial-boundary value problem which describes a phase transition between
viscous gas (or liquid) and seolid including all conservation laws on the phase boundary.
The classical Stefan problem is the particular case of this new problem when a liquid
phase is at rest and the densities of both liquid and solid phases are the same constants.
The local existence and uniqueness of a smooth solution to the related one-dimensional
problem are proved. In [2] we neglect the terms with derivative of the velocity with respect
to the space variable in the heat equation for the liquid phase. Global existence and
uniqueness of ene-dimensional smooth solutions are proved for some class of boundary
and initial data providing a monotony of a free boundary. The work was supported by
Russian Fund for Basic Researches (grant code 00-01-00911).
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Kalita E.A.
(Institute of Applied Mathematics and Mechanies,-Donetsk)

On equality to unit of weight norms of Riesz projectors

Let T is the operator with the symbol (¢, /|¢],...¢nf |( |) — vector Riesz transform
on the functions on R", and T” is its adjoint. Let T%* = T*(T")*, s + ¢ is even, degrees
are in tensor sense. We cons:der the action of T%° on the space L2, = Lo(R";|z]*)
{rigorously speaking, from L2 o to L3 m) We establish for » > 3, s # ¢ that the norm
of T%* equals unit not only for ¢ = 0 (cbvicusly by Parseval’s equality), but on some
segment [a.,0] for £ > s or [0,a"] for ¢ < s. Morcover, the estimates stronger in lower
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‘terms are established inside the segment. We mention that the problem arises from the
degenerated nonlinear elliptic equations of high order and has the direct application to
existence and uniqueness of solutions.

Kal’menoy T.Sh., Bimenov M.A.
(South Kazakh State University named by M.Auezov)

One criteria of root vectors’ completeness of
Tricomi problem mixed type equations

Next result was proved in the work.
Theorem. The root vectors’ completeness of Tricomi problem is equivalent to their
traces’ completeness in free characteristics.

The main idea of the truth of this theorem is the study on iraces properties of the
Tricomi problem for the mixed type equations.

REFERENCES
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Kalyabin G.A.
(Samara, Russia)

Best extension operators for sobolev spaces on the halfline

Let W(I) be the Sobolev space of all functions f(z) defined on the interval
(@, B8) C R', having absolutely continuous derivative f{™~*)(z) and such that the norm

Wllwpao = ([ + 17 @) do)'”* < o

in [1] the extension operators Trm : Wi (RL) — W{*(R') have been constructed whose
norms do not exceed 8™, On the other hand in [2] it was shown that W{*(RL) contains
such function f(z) that any its extension onto the whole line has a norm in W*(R'}
greater than 0.08m /2™ f|] wp(at)- Our goal here is to establish the following (sharp

in logarithmic scale) asymptotic formula.

Theorem. As m-rco min In [Tnllwpirr)swpry = Kom where

4 xf4
Ko:= P [ In(ctg z) dz = 1.166... = In3.21...
0

Denote by y(=) := y(=; f),z > 0 the solution of the equation (-1)™y®™ 4y =0 tend-
ing to 0 as £ — +oco and satisfying the initial conditions ¥V (40) = a, = f{(-0),s €
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{0,1,...,m—1}. Then the extension of f onto the positive halfline by y (wh:ch is linear op-
erator) provides the minimal possible'norm in W;"(R!). The quantity ||y|| weiay) is posi-

tively determined quadratic form (Grna, a) of the initial values vector @ := (aq, a;, iy Qm)-
The matrices Gy, can be expressed by means of certain Vandermonde matrices and those
inverse to them. The study of Gy, (in particular their maximal and minimal eigenval-
ues and corresponding eigenvectors) is the central part of the Theorem’s proof. Author
would like to express his gratitude to- participanis of the Seminar on Function Theory
at the Steklov, Institute: Mathematics headed by S.M.Nikol’skii, L.D.Kudryavizev and
0O.V.Besov. The work was supported by the grant of RFBR—QQ—OI—OOOSGS
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(Institute of Mathematics RAS, Ufa)
Asymptotic solution of a problem on autoresonance

Autoresopance is a phase locking phent;:;{énoxi occurring in nonlinear oscillatory
system, which is forced by-escillating perturbation. ‘Many physical applications of the
autoresonance are known in nonlinear physics, The essence of the phenomenon is that
the nonlmear oscillator selfadjusts to the varying external conditions so that one remains
in resonance with the driver over long time. This long time resonance leads o a strong
increase of the response amplitude under weak driving perturbation. We consider a simple
mathematical model of forcing oscillations given by the nonlinear ordinary differential
equation

g e WA u=2af(t)cos(e()), £>0; 0<a <l . ...
where the, right hand side. represents a small exterpal force. The.zero initial condition
is here added (u, #')}e=0 =-(0, O), so- the system is starting from stable equilibrium. A
nonlinearity may have a different signs: ¥ = 1. The driving amplitude f is a slow - varying
function in contrast to the phase function so that f'f¢'(t) = o(1), a — 0. In the report
we find a condition under which the system’s energy grows up %o the order of 0(1) as
t — co while the drivér is being small: 0 < a € 1, f(2) = O(1). The WKB type anzatz
is taken as an asymptotic solution of the problem:

u=a'l® [A(et e)explie(t,e)) + c.c. + a*Pus(t,€) +0(a o), a-0

The nonlinear equatlon under the 2ex0 1m('.1al data is derived for the leadmg order ain-
phtude ‘ orts ST reo -
2iA! —20°A + 37|A|2A f, A(T)[,-_.o =0; (7 amc)
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Qur main discovery is a class of data @', f, under which a solution A(7) is infinitely
increasing as 7 —» oo. This slow increasing is interpreted as the imitial stage of the
autoresonance. Acknowledgments. This research has been supported by the RFFR under
Grants 00-01-00663, 00-15-96038 and by INTAS under Grant 99-1068

Kamenskii G.A.
{Moscow State Aviation Institute)

On the initial value problem for mixed linear
difference-differential equations

There is considered an initial value problem for the linear mixed difference-dif-
ferential equation in a nonrectangular domain

ao(s)y"™ (£, 9) + ar ()¢ (y, s) +- -+ +am(s)y(t, s) +
+bo(s)y(”)(t s—h)+01(8)y" V(8,8 —h) + -+ ba(s)ylt, s — B) = f(£,5),  (0.1)

where yw(t 8) = —B—j, h>085>0 Let y: [-h,5] 5> R, v € C'4(0) = 0 and
7'(s) < 0. On the set Ep = Ej UE@, ={{t,9)|-h<s<0,7(s+R) Lt <o}, B2 =
{(t,9)|7(s + h) < t < v(s)} there is given an initial function ¢(t,s) and the solution of
equation (0.1) must satisfy the initial value condition: y(t,s) = ¢(t,s) for (¢,3) € Eo.
About theory and applications of mixed difference-differential equations see [1] and [2]. It
is developed here a variant of operational caleulus which permits to reduce the solution
of a linear mixed difference-differential on a nonrectangular domain to solution of a
linear difference equation. y-original is called such a function y(¢,s),y : R = C,
which is defined on D{v(s) < ¢ < oo}, and satisfies following conditions: There is given
on Fy an initial function (4, s) and it is supposed that y(t,s) =(t,s) for (t,s) €
Eo, y(t,8)=0 for t< y(s+h). and there exist such constants A > 0 and g that
ly(t, )] < Me¥ for (t,s)€ D. v—transform corresponding to the y—original y(t, s)
is called the function )
Y(p,s) = f‘:’) y(t,s)e” P dt, p € C. By application of y—transformation to problem
{0.1) it is reduced to the difference equation

Y(p, s)(aop™ + arp Yhidan)+Y(p s - D(bop™ +bip™ 44 ) =
= F(p,s)+T(p, s) I(p,s), (0.2)
where F,T" and I are some functions determined by initial and right-hand functions in
(0.1). .
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] Kametaka Y.
Osaka University
Positivity and hierarchy of Green’s functions
for boundary value problems for deflection of a beam

‘We consider simple boundary value problems for deflection of 2 beam on an elastic
foundation under {ension. Proved positivity of Green’s functions and showed hierarchical
structure between Green’s functions with different boundary cenditions.

Kamont Z.
(Institute of Mathematics University of Gdansk, Polend)

Hamilton - Jacobi functional differential equations
with unbounded delay .

. Let H denote the Haar pyramid
H={(tz)=(tn,... ,g:,;) ERM™™: te[o,a], b+ R(E)<z<b— h(t)}

and E = (—o00,0] x [~b,5] C R™™ where b = (by,... ,bn) € B} By = [0,+0c0), and
k={hi,... ha) € C([0,a], R} ), a > 0. We assume that h in nondecreasing, #(0) = 0 and
b > h{a). (We use vectorial inequalities with the understanding that the same inequalities
hold between their corresponding components.) Let Y be the space of initial functions
w : E — B. We assume that Y is a linear space with the norm || - ||y and that (Y, [} - llv )
is a Banach space, For 0 < ¢ < a we put H; = HU([0,] x R®). Foreach ¢, 0 < t < q,
we consider the space X; consisting of functions z : EN H,; — B. We assume that X:isa
linear space with the norm || - ||x,. Write X = X, and || - ||lx =|| - [|x. and assume that
V: X - X(H, R} is a given operator. Let = H X R x R” and assume that f: Q@ - R
and ¢ : B — R are given functions. We consider the functional differential equation

Sz2(t,z) = f(t,2,(V2)(t, z),8:2(L, z)) (0.1)

with the initial condition
2(t,z) = ¢(t,z) on E ) (0.2)
where 8:z = (0:,7,... ,0z,2). We assume that the operator ¥ satisfies the following

Voterra condition: if 2, Z € X and 2{(7,y} = Z(7,y) for (7,y) € H; then (Vz)(t,z) =
(Vz)(¢,z). In this time ommerous papers were published concerning equation (0.1) with
initial condition given on a bounded domain. The following questions were considered:
functional differential inequalities, uniqueness of solutions, existence of classical or gen-
eralized solutions, numerical methods. We start the investigation of first order partial
functional differential equations on the Haar pyramid with unbounded delay. We give
sufficient conditions for the existence of solutions of problem (0.1), (0.2). The phase
space for the above problem is constructed. The Cauchy problem is transformed into
a system of integral functional equations. The unknown functions are z and 8:2. The
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method of bicharacteristics and integral functional inequalities are used. Examples of
phase spaces are given.

Kamotski LV.
(Steklov Mathematical Institute, St. Petersburg }

Rayleigh type surface waves in elastic wedge

The problem of vibration of isotropic elastic wedge with a free boundary is consid-
ered. The existence of the waves, which are oscillating along the edge and exponentially
decreasing at distance from it, was predicted in [1,2] on a base of numerical calcula-
tions. The forthcoming papers mostly deals with the methads of theory of perturbations,
asymptotic analysis and functional equations of Malyuzhinets type while trying to con-
struct such wave. We present a proof of existence of surface wave and give estimates
demonstrating its localization. The method we use is close to [3,4] and can be briefly
outlined as following: we associate with the problem a self-adjoint operator, deduce some
estimate of quadratic form which gives us the explicit information about location spec-
trum and by means of variational approach (by cheosing of test function) indicate the
point spectrum, which corresponds to Rayleigh type surface waves.
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Kamynin V.L.
{Moscow Engincering Physics Institule)

Inverse problems for parabelic equations
with final overdetermination

‘We prove the unique solvability of the inverse problem of identification of the pair
{u(t, z), f(z)} satisfying the equation

plt,z)ue — vzz = f(z)g(t, z) + h(t,z), (t,2) € Qr =[0,T] x [0,1],
the initial condition

u(0, z) = uo(z), z € [0, 1],
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the boundary conditions

u(t,0) = u(t, 1} =0, t € [0, 7],

and the condition of final overdetermination
u(T, z) = ¢(z), = € [0,).

Let us note that earlier one had obtained the results on unique solvability of the inverse
problem for parabolic equations with the condition of final overdetermination for the
equations with the coefficients independent on £ [1]. On the other hand, if the coefficients
of the equation depend also on time one had obtained only the Fredholm solvability of
the corresponding inverse problem [2]. THEOREM. Lei

VS p(t,z) €42, 0g p‘(t’z) < KP:
lo(t, 2)] < Ko, lo:(8,2)| < K, 19(T,2)] > 90 > 0,
h(t, z), he(t, 7) € L2(Q), uo(z),¢(2) € Wi ([0, 1),
1o (0) = uo(l) = (0} = ¢(I} = 0.
Suppose also that the following inequality holds:
M [(K: (32K3)2A2) ~Tiaae%) | (KG) A
2 [( Az ™ e + Ar <1

(Here 8 is the constant fram Poincare - Steklov inequality:

)

lletll oo < Ollezllagtons

valid for any function from the space V?’;([O, l]). Then the concerned inverse problem has
a solution which is unique.

ReMARK 1. If g(¢, ) = const, p(t,z) = const, then the condition (1) is always true. This
fact corresponds to the results of the papers [1,2].

REMARK 2. If g(t,z) = const, p(t,z) # const, then the condition (1) is valid for large
T>0.

REMARK 3. The obtained resulis are easily extended to the case of many-dimensional
inverse problem

p(t, zyue — Au = f(z)g(t,z) + b(t, z), (t,z) € Pr=[0,T] x Q,
u(0,z}) = uo(z), z € Q,

u(t,z)=0,t€[0,7T], z € 89,

u{T,z) =p(z),z €%,

where  is a smooth bounded domain in R™. This researh is fulfilled under RFBR
support, Graat N 00 — 01 — 00638.
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Kaplun Yu.l., Samoylenko V.Hr; - '
(Kyiv National Taras Shevchenko University).

On prolengation of solutions to the first order
nonautonomous differential equations on singular set

. We study properties of solutions {o ordinary differential equation
ot : dx . o
alt,=) 7 =1,. (1)

in neighborhoods of points where function a(t, z) is equel to zero, The same problem bad
been discussed by Petrovsky in [1]. The function a(t,z) is supposed to be defined and
continuously d:ﬁerenhable on R* The set § = {(t,7) € R?: a(£,z) = 0} is called [2] &
singular setof the equatmn )A problem of solution prolongamons to the equation (1) en
(via) the singular set S is studied: Similar problem was studied in [2] where, in particular,
an approach of solution prolongation by help of the first integral was developed. We have
proved the following theorems. Theorem 1. Let the smgular set S define a closed Jordan
curve, Int 8 be a domain bounded by the curve S, Bzt §'= R’\Int 5, the set S contain
none connected subset {(¢,z) : t = f,z € [a,b]}, where b > a,  are real. Then any
solution to the equation (1) with initial data be]ongmg to domain Int .S, defined on
maximal interval of its existence, feaches the singular set S. Mareover, a solution to the
equation ( 1) with initial data beIongng to domain Int S is proIongated v:a the singular
set S iff ﬁmctxon a(t 3;) bas dtﬂ"erent srgns m botlz domams Int § and Ext S Theorem

2. Let t:lze smga.dar set S contain none connected subset {(t :z:) t=%2€[eb]}, where
b > a, t are some real. Thea for every point (te, ) € 8 there are two solutions zx = z(t),
t € (ar,fr), k = 1,2, such as

lim zx(t) = 74 ‘where 't € (&£ Br), k= 1,2

£ty
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Kapustina T.O.
(Moscow State University)

Singular Problems for Parabolic Equations

Let us consider the problem
Euzz — At z)uz — C(t,z)u — ue = F(t,2), (¢,2) € D ={(8,T] x (0,c0)},

u(0, z) = ¢(z), u(t,0) = h(%), (1)
€ is a positive small parameter. We assume that the functions A(t,z), C(t, ), F(t,z),
h(t) € C*(D) and are uniformely bounded; ¢(z) is 2 bounded function with a finit
discontinuity at the point a > 0, and 4(z) is infinitely differentiable when z # a; ¢(0) =
h(0), A(t,z) € A <0, C(t, ) > 0. The solution of the problem (1) u(¢, z,¢) is infinitely
differentiable when ¢ > 0; at the same time the solution of the corresponding degenerated
problem (when € = 0) is discontimous at the characteristic line = = zo(t), defined by the
equation z5(t) = A(t, zo(t)), za(0) = a. We assume that the characteristic line z = zo(t)
intersects the boundary z = 0. Our aim is to construct the continuous asymptotic solution
of the problem (1), posessing the continuous first order derivative with respect to variable
z in D. Theorem. The solution of the problem (1) has the asymptotic representation

Unit,ze) =3 & {ui(t, 2} + 0i(6,8) + pi(r ) + it 1) + 2:(0:, &}

¢=zf?, r=tf*, n=(z— zo(t))fe. Here u;(t, z) are regular functions [1]; the rest ones
are boundary layer functions [1],[2] describing the solution near the boundary = = 0 and
characteristic line z = zo(t). The following estimate holds for all (t,z) € D

|u(t, z,€) — Un(t, z, )} < MV,

where constant M does not depend on ¢.

REFERENCES '
[1] A.B.Vasil’eva, V.F.Butuzov, Asymptotic metods in szngalar perturbatwn theory,
M. Vysshaya shkola, 1990.
2] O.N.Bulycheva, V.G.Sushko, Constructing of an approzimate solution for a
singularly perturbed problem with nonsmooth degeneration, Fundam. Prikl. Mat. 1, No
4(1995), 881-905.

Karchevsky M.M.
(Eazan State Universily)

Mixed finite element methods for nonlinear
differential equations of high order

The mixed finite element methods for quasilinear partial differential equations of
forth order

E D? A (z, 0, 42z ) ~ Z D A; (x,u %z) + Ao (m,u,u,) £ = Eﬂ
lil=2 =1
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with Dirichlet boundary conditions
" u=0, dufdv=0, z€dIN,

are considered. The approximate solution y is determined as element of the space H; of
Lagrangian splines vanish on the boundary and the integral identity

f(Z Aiz,y v ()wi(m) + 3 Ai(z,9.9:) D'n— fn)dz =0Yn € Hy
h b= i<t

satisfies. The approximation of second derivatives w®(y) is constructed by similarly of
Herman-Jobnson or Herman-Miyoshi metods. The solvability of discrete problems and
convergence of approximate solutions by condition of coerciveness of differential operator
are obtained. The error estimations by conditions on the functions A; that ensure the
strong monotonicity of the differential operator are established. The analogous methods
for partial differential equations systems with fourth order derivatives that arise in nonlin-
ear thin elastic shell theory and are formulated as minimization problems for functionals

in the form
Flu) = / ole, K)d — f u- £
i) Q

are constructed and investigated. The tangential and bending components of deformation
(e, k) are computed by the displacement vector u of the shell middie surface on the base
of nonlinear theory of middle bending of the shells.

Karpunin G.A.
(Moscow State University)

Combinatorial Morse theory and minimal networks

Consider a set K and a function f: K — R. Let & = {X;} be a given finite covering
of the set K by it’s subsets K; C K: K = UK. Like the classical Morse theory we study the
bifurcations of the set K¢ = {z € K: f(z) £ c} under the changing ¢ from —oo to +co.
Actually the bifurcations of the homotopy type of the K¢, is studied in the classical Morse
theory, but in our case we consider a nerve N(E¢.) of the covering B¢ = {K¢ . NK;} of
the set K. The number ¢ is called a eritical value if the combmatonal structure of the
complex .NQC is changed passing through . The set f~*(£) is the critical set corresponding
to the critical value é. Any point z belonging to a critical set is called a critical point.
The changing of the nerve A(Z¢.) at the critical point ¢ is characterized by the Morse
pair (N(Sgese), N(Egz-e)), where € is a sufficiently small positive number. We define
the indez of the critical value ¢ by the formula: indy & := X(M(Egape)) — x(N(Zga—e))-
Then the following theorem holds.

Theorem. The sum of the indices over all critical values of function f is equal to the
Euler characteristic of the nerve N(Z).

Now we apply the combinaterial Morse theory to some problems from the mini-

mal petwork theory [1]. Let K be the space of all linear network-traces spanning a given
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boundary set A and a function f be the length of a network. This space has a nat-
ural covering & = {K.}. The elements K; of L correspond to the spaces of all fixed
type binary trees spanning a given boundary set A. It turns out {2] that critical points
(networks), which has a binary tree as a canonical representative, are the local minimal
networks spanning the set A and are the local minima of the function f at the same
time. Estimating indices of the critical points and using the previous theorem we prove
the following assertions.

Assertion. The number of all local minimal networks spanning a given boundary set of
4 points in general position in the Euclidean or Lobachevskian plane is equal to either 1
or 2.

Assertion. The number of all local minimal networks spanning a given boundary set of
5 points in general position in the Euclidean or Lobachevskian plane is not exceed 8.

REFERENCES

[1] A.O.Ivanov, A.A.Tuzhilin, Minimal Networks. The Steiner Problem and Its Gen-
eralizations, Boca Raton, CRC Press, 1994,
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Kasymov K.A.
{Kazakh State University)

On a method of solving multipoint boundary value
problems for linear differential equations

Katanaev M.O.
(Steklov Mathematical Institute)

Tho-dimensional Gravity

Two-dimensional gravity model based on Riemann-Cartan geometry is considered.
A general Lagrangian quadratic in torsion and with arbitrary dependence on the scalar
curvature yields a system of nonlinear partial differential equations of motion. A general
solution to this system of equations is found. It describes (i) surfaces of constant curvature
and zero torsion and (ii) surfaces of nonconstant curvature and nentrivial torsion. The
last class of solutions contains physically interesting solutions: black-hele solutions and
solutions describing changing topology of space in time.
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Kersner R.
(Hungarian Academy of Sciences)

On equations of the type u; = u,, — 1/u
When studying the general reaction-diffusion PDE
u; = (D(w)tz )z + Fu) (0.1)
or the corresponding ODE for travelling-wave solutions u = f(z — ct)
(DUNHY +cf' + F(fy=0

with different initial and boundary conditions, one always supposes — explicitly or im-
plicitly — the integrability of DF. The variable

1/2

Q(s) =

2 / " Dir)F(r)dr

plays a definitive role (we suppose that u and D(u) are nonnegative, and, F(0) = 0; so
—1/u in the title means —1/u for u > 0 and O for u = 0). If Q(s) < co for s > 0, we are
usually able to build up a satisfactory theory of centinuous (often only weak) solutions:
we have existence, uniqueness, monotone dependence on the data; and, we can deal with
different inner properties, special solutions, etc. We do not know very much (in fact,
almost nothing) about PDEs and ODEs with Q(s) = co for s > 0. In my talk I try to
shed some light on “what can we expect”-type questions. This will be done by explaining
some facts for the simplest (0.1)-type equation with Q(s) = oo for s > O

u,=u,,—{é/“ :i:z_g z€R, t>0. (0.2)

One may ask what kind of phenomena correspond to (0.2) or, more generally, to (0.1) with
Q(3) = oo for s > 0?7 What will be clear from the talk (joint results with Brian H. Gilding
of the University of Twente, NL) is that the mechanisms behind the phenomena are rather
brutal ones. Here are some examples.

1. Consider first the Cauchy Problem with
u(z,0) = uo{z), =z €R,

where uo is nonnegative and continuous. Suppose that M > ue > m > 0. We know:
there exists a first moment ¢, > 0 and a point z, such that u(zg, ts) = 0. We show:
u(-,t) = 0 for t > tq . Thus, in general, u(z,-) is discontinuous at ¢, and looks like
a precipice.

2. If up is compactly supported (uo(z) = 0 for |z| > I > 0), then u(.,t) is identically
zero for ¢ > 0. This may also happen when uo(z) is zero only for s  Lior z 2 2 or
even at a single point. We see that any concept of solution cannot be applied here:
u(z,t) = 0 as t § 0 at any point.
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3. The classical Kawarada Problem is the following (see the vast literature on the
so-called “Quenching Problem”). Consider (0.2) in (—a,a) x (0,c0) with initial-
boundary conditions

u(£,0)=1, z € (—a,a), u(ta,t)=1, t>0.

It is well known that if @ > 0.8 (so we could take a = 1), then there is a first moment
tq > 0 (the “quenching time”) such that u(0,¢;) = 0 and that the profile as ¢ 1 ¢,
is parabola-like. ;From our results it follows that u(z,t) = 0 for z € (—a,a) and
t > t;. Thus one can see once agein that the global salution is discontinuous (at
t=t;and at z = Za for t > t,).

Khanin K.M.
(Isaac Newton Institute, Cambridge and Landau Institute)

Burgers Turbulence and Random Lagrangian Systems

The talk is based on a joint paper with Renato Iturriaga (CIMAT, Mexico) ([1]).
We discuss two closely related problems: construction of a stationary distribution for
solutions for d-dimensional spatially periodic inviscid random forced Burgers equation
and properties of minimizing trajectories for random time-dependent Lagrangian sys-
tems related to it The random forced Burgers equation was a subject of intensive study
in the physical literature in the last 5 years. Although it arises naturally in many different
physical problems recent interest was mostly motivated by the hydrodynamics applica-
tions and the theory of turbulence. The mathematical theory in the one-dimensional case
was developed in [2]. It is important to mention that the results proved in [2] allows
not only to analyse the qualitative properties of a stationary distribution for solutions,
but also lead to quantitative predictions for universal scaling exponents related to the
pdf (probability distribution function) for the velocity gradients ([3]). One of the main
aims of the present work was to study what happens in the d-dimensional case. The
methods which were used in [2] were purely one-dimensional and in order to achieve our
goals we use in a more systematic way the Lagrangian formalism and connection with
the random Hamilton-Jacobi equation. Qur results lead to 2 construction of a unique
stationary distribution for “viscosity” solutions of the random Burgers equation. We also
show that with probability 1 there exists a unique minimizing trajectory for the random
Lagrangian system which generates a non-trivial ergodic invariant measure for the non-
random skew-product extension of the Lagrangian flow. Finally we introduce the notion
of topological shocks and study their properties.

REFERENCES
[1] R. lturriaga and K. Khanin, Burgers Turbulence and Random Legrangian Sys-
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Khe K. Ch.
(Khabamusk State Techn:cal Unwerssty}

On Mixed Boundary Value Problems for the Degenerating
Elliptic Equations with the Bessel Operators

It is known in general the classical boundary value problems [1] are becoming ili-
posed [2-4]. On the whole in papers of many authors concerned with mixed boundary
value problems for degenerating elliptic equations there is Dirichlet condition on the el-
liptic part boundary and there is Neyman condition or its analog or the degenerating part
of the boundary curve is becoming free of boundary conditions {2-4]: At the talk mixed
boundary value problems will be. mvestlgated for two degeneratmg elliptic equations with
differential Bessel operators £ ~—-; +a = 81 and ¥ ——g +8L B .when Dirichlet condition is
given on the elliptic part and.a one-half degeneratmg part of the boundary curve and
an other one-half degenerating part of the boundary curve is given a analog of Neyman
condition with a weight function. In this case the order of the boundary differential op-
erator and the weight function are depend essentially on the coefficient of the differential
equations. There will be posed two, mixed boundary-value problems for two degenerat-
ing elliptic equatioifs and there will be formulated uniqueness and existence theorems.
Proof of uniqueness theorem is cartied out by the maximum principle of solutions for
degenerating elliptic equations [3] using properties of solutions of differential equations
with Bessel operators. Existence of solutions of the boundary value problems is proved
by methods of the theory of smgula.r mtegral equations. The details will be given at the
talk.
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K'hrennikm; A. Yu,
(Vézjo University, Vizio)
The theory of p-adic dynamical systems

Investgations in p—adic quantum physics [1}-{3] stimulated an increasing interest in
studying p—adic dynamical systems, see for example [3]-[5]. Some sieps in this direction
[3] demostrated that even the simplest (monomial) discrete dynamical systems over the
fields of p—adic numbers @, have quite complex behavior. This behavior depends crucially
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on the prime number p > 1 (which determines @p). By varying p we can transform
attractors into centers of Siegel discs:and vice versa. The number of cycles and their
lengths also depend crucially on p [3). Some applications of discrete p—adic dynamical
systems to cognitive sciences and neural networks were considered in [1]. Some of these
cognitive models are descnbed ‘by; random' dynamical systems'in the fields of p—adic
numbers [6].
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‘Khruslov E. Ya.
(Inst:tute for Low Temperature Physics & Engineering, Kharkov)

Soliton asymptotics of rear part of non-localized

" solutions of the Kadomtsev-Petviashvili equation
"+ We consider the KP—I'»equ«»ﬁtion ‘
) 3 1y s
SRR Eh(ut + Euuz + "uz:z) - _Z“yy =0 o
and construcb a spec1a.l class of non-localized solutmns u(z, y,t) — these soluhons tend
to zero asz —» —co but they ‘do not decrease as z ~ +o0o0. We study the’ long—hme
asymptotic behaviour of the rear part of the solutions. We prove that in the domains

DN={:z:,y x<C’(Y)t+ ——Int" oo<y<co}

2a (Y)
the solutions are represented as follows .

N1 " a’(.l.’) : e .
5 cosh? [a: o)t - -—(—ylnt"+‘/2+a (y)]

u(a:, Y, t) 0( tl%)’

where ‘Ni is an, a.rbltrary mteger, a(Y) C’(Y),an(}’) are functions of argument, Y= "'"
It means that. curved asymptotic solitons are graduately edjected at the rear part of the
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solution. Analogous phenomenon of edjection of asymptotic solitons ab the front of the
solution are described in [1}.

REFERENCES
[1] E.Ya.Khruslov and V.P.Kotlyarov, Soliton Asymptotics of Nondecreasing Solu-
tions of Nonlinear Completely Integrable Evolution Equations, Advances in Soviet Math-
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Kiguradze 1. T.
(A. Razmadze Mathematical Institute of Georgian Academy of Sciences)

On Boundary and Periodic Solutions
of Nonautonomous Ordinary Differential Equations

Problems of existence and uniqueness of periodic and bounded solutions of the
equation

o™ = f(t,u,...,u* V) (0.1)

are investigated, where f : Rx R® — R is a continuous function. In particular, in the case
where f is periodic in the first argument with the period w > 0, the following theorems
are proved.

Theorem 1. Let there exist ¢ € {—1,1}, continuous w-periodic functions ho : R = R,
h:R—[0,+co]and by : R~ [0, +cof (k = 1,...,n) such that on Rx R" the inequalities
|£(t,21,- - 20)| < iy he(B)lze] + h(2) and

(&, =1, zp)sgn(om) 2 ho(B)lzal = Y ha(t)izal

k=2

hold. Let, moreover, [’ ho(t)dt > 0 and

ztk/ hi(t)dt < 1,
o

k=2

m&/ () de + (1 +m)
(]

where i = [’ |hi(t)| dt/ [ ho(t)dt (i=0,1), bk = %(%)"—k_x (k=1,...,n-1), €a = 1.
Then the equation (1) has at least one w-periodic solution.

Theorem 2. Let there exist numbers ¢ € {—1,1}, Ax €]0,1] (k = 1,...,n) and w-
periodic continuous functions ho : R -+ R, h : R = [0,+co[ and hx : R — [0, +cof
(k=1,...,n) such that [," ho(t)dt > 0 and on R x R" the inequalities

F(t, 21, za)sgn{oz1) > ho(t))za ] - i hi(t)|zx] ™ — h(t),

k=2

£tz )] < 3 @)l + hit
k=1
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hold. Then the equation (1) has at least one w-periodic solution.

Kilbas A.A.
(Belarusian State University)

. Differential equations of fractional order
in the spaces of summable and integrable functions

We consider the Caushy-type problem for the model nonlinear differential equation
of fractional order anC, Re(a) > 0,

(D249)(=) = flz. 9(@)] (= = 1 <@ < m, n= —[-Re(a)],

(DT y)(z) =bk, bk €C (k=1,2,--- ,n),
on a finite interval {a, b] of the real axis. Here D, y is the the Riemann-Liouville fractional
derivative defined for a € C, Re(a) > 0, by

Oz = (1) mm [ e n=Rel@l 41,

where T'(n — o) is the Gamma-function and [Re(a] is the integer part of Re(a), see
Section 2 in [1] and [2). The above problem is studied in the space L{a,b) of summable
functions on {a,b] and in the weighted space C"~%[a,b] of continuous functions y(z)
such that (z — )"~ f(z) € Cla,b). The equaivalence of the problem considered and the
nonlinear Volterra integral equation is established. The existence and uniqueness of the
solution y(z) of the above problem is proved by the method of successive approximation.
The caorresponding assertions for the linear differential equations are given. The explicit
solutions of some types of such linear equations are presented in terms of special functions
generalizing the classical Mittag-Leffler functions.

REFERENCES
[1]) 5.G.Samko, A.A.Kilbas, O.1.Marichev, Integrals and Derivatives of Fractional
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Theory and Applications, New York. Gordon and Breach, 1993.

Kim D.
(Seoul National University)

Periodic and almost periodic hyperfunctions

Every periodic hyperfunction is a bounded hyperfunctionand can be represented
as an infinite sumof derivatives of bounded continuous periodic functions. Also, Fouri-
ercoeflicients ¢, of periodic hyperfunctions are of infra-exponentialgrowth in R™, i.e.,
co < Cee'®l for every ¢ > 0 and every a € Z”. This is a natural generalization of the
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polynomial growth of the Fouriercoefficients of distributions. To show these we introduce
these B, of hyperfunctions ofL? growth which generalizes the space D..., of distribu-
tions of I? growth and represent generalized functions as the initial values ofsmooth
solutions of the heat equation. Also, we show some related results on almest periodic
hyperfunctions.

O.N. Kirillov »
{Institute of Mechanics, Mescow State University
Bifurcation of eigenvalues of nonselfadjoint differential cperators and
stability of nonconservative systems

Behavior of eigenvalues of nonselfadjoint opera(:or‘due to changing of parameters
(the load parameter, for example) is of interest when deal with stability problems for
multiparameter nonconservative systems. In the generic case the spectrum of a family of
nonconservative systems contains multiple eigenvalues. Such eigenvalues can be critical
from the point of view of stability theory because of their splitting due to variation of pa-
rameters can lead to qualitative changes in behavior of mechancal system. In the present
paper eigenvalue problems for nonselfadjoint linear differential operators smeothly de-
pendent on a vector of real parameters ave considered. Bifurcation of eigenvalues along
smooth curves in the parameter space is investigated. The case of multiple eigenvalue
with Keldysh chain of arbitrary length is studied. Explicit expressions describing bifur-
cation of eigenvalues are found. The obtained formulae use eigenfunctions and associated
functions of the adjoint eigenvalue problems as well as the derivatives of the differential
operator taken at the initial point of the parameter space. As an application of the devel-
oped theory the extended Beck’s problem of stability of an elastic column under action
of potential force and tangential follower force is considered and discussed in detail.

Kiselev A.P.
(Institute of Mechanical Engineering, St.Petersburg)

Relatively undistorted progressing waves

in the classical monograph [1], much attention is paid to solutions of the wave

equation, o - T
CUzz b Uyy + U2z — 2 Uer = 0, ¢ = eonst,
of the specific form
u= g(m! %2, t)f(e)’

where f(8) is an arbitrary function of one variable, and the phase, 8 = 8(z,y,2,t},and
the amplitude, or distortion factor, g, are fixed functions. In [1] such solutions were termed
relatively undistorted progressing waves. The best known examples are plane waves with

8 = z4ct and ¢ = 1, and spherical waves, in whicli case, § = Rtet, R= /22 + 9 + 2%,
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and g = 1/R. Recently Bateman’s solution with 8 = z — ¢t + (z® + ¥*)/(z - ct), and
g = 1/(z +ct) (to be precise, its complexification) attracted much attention in the course
of seeking simple highly localised solutions (e.g. [2] and references therein). We present

new solutions of this form. One of several examples is
0= (ztiy)(zEct), g= A+ B(a® +4* ~ 22+ 32?),

where A and B are constants. A support from the RFFI Grant 00-01-00485 is acknowl-
edged.

REFERENCES
[1] R.Courant, H.Hilbert, Methods of Mathematical Physics, v.2, 1962
[2] A.PKiselev, M.V. Perel, Highly localised solutions of the wave equations, J.
Math. Phys. 41 No 4 (2000), 1934-1955.

Kiselev O.M., Glebov S.G.
(Institute of Mathematics, Ufa)

Asymptotic solution of primary resonance equation
in bifurcation layer'

We study a primary resonance equation with external fast oscillating force:
eidp + ||° = exp (i /(26)), O0<eg1 (0.1)

The studied asymptotic solution has fast oscillating behaviour with frequency of external
force when ¢ < t. and has {wo phase oscillation when ¢ > t.. Our goal is to investgate a
bifurcation layer in a neighborhood of ¢. and to construct a matching asymptotic solution
before and after the bifurcation. Formulate the results of our study.

When (t — ta)e~*/® 3> 1 The asymptotic solution has a form:

W(t,e) = exp (i87/(2€)) 3™ U (8) (0.2)

n=0

The main term is équal to a middle root of reots of algebraic equation |uf*u — fu = 1.
Other terms are algebraic functions of ¢.

When | — .| € 1 the asymptotic is defined by four expansions of different types.
First of them is:

b= (U. +&2° i ™% & (7) +ie°P i e B (r)) exp (it*/(2¢)), (0.3)

15This work was supported by INTAS grant No99-1068, RFBR grant No 01-00-00663 and 00-
15-96038
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here U, is 2 double root of the equation |u12u tau = 1. The coefficients of the expansion
are dependent on new scaling variable 7 = (£ ~ ta)e~*/%. The main term and corrections
are defined by their asymptotic as 7 — —co, when they are matched with (0 2) For

example the main term is a special solution of the Painlevé-1 equation: &"-38 +r=
with asymptetic behaviour as r — ~o0:

L
5"

a(r) Zan‘r o , and ao=1ﬁ,al=

n20

If 7 is bounded then & has poles on the real axis. Let’s denote the least of them by 7.
The expansion (0.3) is suitable as (7 — o)e /2 > 1.

In the neighborhood of 7 the coefficients of the asymptotic expaasion are dependent
on one more fast scale 8 = (7 — 7o)e™*/%. Denote by o = 8 + 52, €™/ 8 8o . Then as
~e~M% & 8y & €711 the asymptotic solution has the form:

:,9(.{, £) - (U.+ w (Bo) + €/ Z DB g (oo)) el;'p (i /(2=)j . (04)

n=1

The constants 90 may be defined by matching of (0.3) and (0. 4) The leading term of the
asymptotic expansion is separatrix solution of the equation:

i +U.(2|m|2 ®?) +U2 (&° ~ @)+ % b=0,

namely:  (8o) = —~2(f0 — iU.) 2.

As —0g > 1 the asymptotic solut,mn is defined by a sequence of two asymptotic ex-
pansions which are called intermediate and separatnx asymptotic expansions. Denote one
more scaling variable Ty = 0xe'/®,k = 1,2,. ... The intermediate’ asymptotic expansnon
has the form:

¢.(t,s):= (U. +e3 z €® A (Tk) + ie'f? z e B, (Tk)) exp ('t f(2e)) (0.5)

n=0 ., © n=0

The léad.ing term may be repreSénted by using of ‘the Weierstrass pﬁmctipn:

A () = ~20(Tn, M /2,35(k, ), @a(k,e) =83 () + f:e"’” gs (k).

n=1

Here A(e) = £'/° ( ThEQ; + T, N0 ) D 2,*). The Q; is a real period of
the function A, (T;). The constants Z;* and. G (k) may be defined by matching of the
nearest-neighbor intermediate (0.5) and separatrix expausions (0.6).

_ ‘This intermediate expansion is suitable in the intervals between the pules of the
Weierstrass function as —e~/*T, 31, 5‘2‘“5(’1}; + Q) > 1. '



194

" The separatnx expansxons are suitable in small neighborhoods of the poles of the
Welerstrass function. Denote by 8 = (Tk +O -3, enf30 xk"’)e—‘f ¢ k=1,2,.
Then as [lee" s < 1 the asymptotic solut:on of (0. 1) has a form '

n—l

i

= (U-+W(ek)+e"52 ‘““““wwn) o (1G). 09

The leading term of t.he asymptotic expansion W (8r) = —2(8x — :'U.)"2
The sequence of the mtermechate and separatnx asymptotm expansmns are suitable
when ¢ > £2 and e V8t 1) € 1.
) As (te — At)e"zlr 2 >1 the asymptotlc solutmn of (0. l) became two phase behavmur

b= ( O (titie) +eU (b e U (o, ) e (@ /(22)),

Here t; is new scaling variable {) = S(t)[e + ¢(t) The leading term of the asymptotic
expansion is situated on’ the ‘curvarepsilon -T'(t): LU - 4UP — (U + U") = E(¢), and
satisfy the equation )

=S~9¢1 U+|U| U—tU——,.

---- N

The functlon S (t) is solutlon of the Cauchy problem

is' / dy(3 + 2B+ OWi+ 2y + )72 =T, Slemo =0,
{t)

where T = const > 0. The function E(t) is a solution of a transcedental equatlon
3 fl‘(t) u*du = 7. The phase sl'uft éis deﬁned by a Cauchy problem . "

¢
&S

BB[ qS;, (t.) ¢a where I—z/ u’o’u.»‘ . o -
r{e) PR

in our work the values of the constants ¢p and ¢; remain mﬂmown

' REFERENCES :
[1] Diminpie D. C Haberman R. J. Nonlinear Sci., v.10, pp. 19?-221(2000) [2] Klselev
O.M. J. of Nonlin. Math. Phys., v.8, n1, pp- 65-95(2001) [3] Bour]and F J, Haberman
R. SIAM J.Appl. Math, v.48, n3, pp" 737-748(1988). :
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Klainerman S.
(Princeton University)

Recent developments in nonlinear wave ‘equations
The subject of nonlinear wave equamons has been transformed in the.last twenty
years by three fundamental developments.: : R R IL T -

. The emergence of sophlstlcated geometnc techniques, i ie. techmques ‘wich involve
only geometric constructions i’ the physical space.
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2. Systematic application of Littlewood-Paley decompositions and introduction of
paradifferential calcnlus.

3. The development of Fourier spacetime techniques such as Strichartz type inegualities
and Bilinear estimates.

The goal of my lectures is to discuss some of these new ideas and techniques and illustrate
them through the main new results which they led to. In particular 1 will discuss the
recent result of T. Tao on wave maps and the new result I have obtained in collaboration
with 1. Rodnianski on the Einstein field equations.

Kleptsyn V.
(Moscow State University)

. . .Cloud of points:
singular invariant measures in skew products

Consider a random dynamical system on a circle: we are given a finite number of
homecmorphisms, and while iterating them on each step we choose one of them randomly
and independently on different steps. In computer modeling of random dynamical systems
on a circle Maxim Nalskiy discovered the following strange effect, later called as "cloud
of points™: distances between iterations of different points tended to 0 as number of
iterations increased. In the talk a rigorous proof of this effect will be presented (joint
result of Maxim Nalskiy and the speaker). Namely, we will prove that under sertain
conditions on the homeomorphisms for any two points distances between their iterations
tend to O almost suxely. In [1} is obtained the following analogical resuit: we iterate one
diffeomorphism, and after each iteration the circle is rotated by random amgle. Then,
under sertain conditions, distances between iterations of any two points tend to O almost
surely.

REFERENCES

[1] T.Kaijser, On stochastic penurbatiéns of iterations of circle maps, Physica D, v. 68
(1993), pp. 201-231.

Kliem W.R.C.
(Technical University of Denmark)

Lyapunov Functiens and Solutions of the Lyapunov
atrix Equation for Marginally Stable Systems

We consider linear systems of differential equations 1% 4 B2 + Cx = 0 where [ is
the identity matrix and B and C are general complex n x n matrices. Qur main interest
is to determine conditions for complete marginal stability of these systems. To this end
we find solutions of the Lyapunov matrix equation and characterize the set of matrices
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(B, C) which gnarantees marginal stability. The theory is applied fo gyroscopic systems,
to indefinite damped systems, and to circulat ory systems, showing how to choose certain
‘parameter matrices to get sufficient conditions for marginal stability. Comparison is made
with some known results for equat:ons with real system matrices. Moreover-more general
cases are investizated and several examples are given.

Knejevich-Miljanovich J
{Belgrad Univessity)

Asymptotic properties.of differential equation

Asymptotic pmpemes of solutions have been considered for some nonlinear differ-
ential equations. The paper deals with investigation of bounded solutions; of prolongation
of solutions, oscillatory, solutions and another asymptotic properties. The example s have
been stated which illustrate the given 1 methods and have got physnca.'l interest. The paper,
is divided in two parts and, each of them investigating some of asymptcblc properties for
certain differential equation., For general information is refen'ed a short reference. The
part one deals with asymptotic behavxor of the solutlon of the diﬂ'erentlal equat:on (1) on
[0 ?), particularly with respect to oscillation. The. part two deals w;th asymptotic beha.v—
ior of solutions.- They are also related to, osczllatlon f.heory, to study the nonosc:llatoryl
solutions of the nonlinear equation (2) where r(x).is positive a.nd continuous on with and,
£(x,y) is continuous on with f(x,y);0 if ; ‘and for equation (3); ;1 .igyire +iis 5 - 1991
Mathematics: Subject Classnﬁcatlon 34—02 340‘10,.34D35 Key, words osmllatlon solu-
tions; zeroes, growth, boundary- solution Affiliation of author(s): Faculcy of mathemahcs
Studentski trg 16 Belgrade 11000,Yugoslavia knezevic@mat. bg.ac.yu Kobelkoy Georgy
Mikhajlovitch

Kochubei A.N.
Instituteé of Matheniatics, Kyiv)

Differential equations over fields of positive characteristic

it is well known that any non-discrete, locally compact field of characteristic p is
zsomorphzc to the field K of formal Laurent series: with coefficients from the Galois field
Fi,q= p ke Z.;. Lhe foundatmns of _analysis over K were. lznd by Carlitz, Wag-

classical calculus are’ not‘suﬂiczent $o' study behavior of Fq-lmear functions. For example,
if'such a function’ f is: differentiable then f’(t) const; and all the higher derivatives
vanish irrespective of possible properties of f- In paiticular; one cannot reconstruct the
Taylor coefficients of a holomorphic function - the classical formula' contains. the expres-
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sion !_.Ll where both the numerator and denominator vanish. The correct analogue of
the factonal has been, found by Carlitz. In this. work we give a counterpart of a higher
derivative. This results.in a formula for Tayler coefficients of a Fs-linear .holomorphic
function, a definition of classes of Fg-linear smooth functions which are characterized in
terms of coefficients of their Fourier-Carlitz expansions. A Volkenborn-type integration
theory for F,-linear functions is developed; in particular, an integral representation of
the Carlitz logarithm is obtained. We study. certain. classes of equations for Fg-linear
functions, which are the natural function, field counterparts of linear ordmary differential
Vequat.lons it is shown that, in contrast to both classical and p-adic cases, formal power
series solutions have positive radn of convergence near a singular point of an equation.
Our approach is based on a function field ana.logue ‘of the Schradmger and Bargmann-
Fock representations of the canonical commutat:on relatlons of quant.um mechanics i,
2, 3].

REFERENCES

1. AN. KOChU.bEI, Harmonic oscﬂlator in charactenstzc -8 Lett Math Phys 45
(1998), 11-20.
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Kogut P.I.
(Dnepropetrousk State ‘Technical University)

Homogenization of Optlmal Control Problems
in Banach Spaces with Nenscalar Criterions

We study optimal control problems with nonsca.lar criterion. All components of their
mathematical description. may depend on a small parameter ¢. Since pumerical research
of such problems is )mposs:ble with respect to small va.lues of £, the hrmt analysis of these
problems is considered as € — 0. As an example 16 us cons:der the following optimal
control problem. Let /' = V* be a control space, which is-dual of separable Banach
space V, U be an admissible class of control from U, K. be a weakly closed subset in
a separable Banach space Y, Y C X with continuous and.dense injection, where X is a
reflexive Banach space, Z; be'a Banach:space which is semiordered by reproducing cone
L. Let (Z2, 1) be a topologlcal vectar space semiordered by repmdnang cone A. Denote

(A).
by A—Inf (9) the set’ of al] -m.ﬁmum elements for 2 C 7. Now we have the followmg
) problem .
o A Tnf (Fe(,9)
AC(”! y) = fh" Ft(uay)‘> 0:’ ue U;; - ye Ktt
where f. is a fixed element from Y*, 4. : Us X (D(A) C X) 2 Y, F:Us xY = 2,
are nonlinear operators, which may arbitrarily depend on ¢, [ : Up x X — Z7 is a cost
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map. Thus we have the following problems: how to pass to the limit in such optimal
control problem as £ — 0; what can be expected as the result; what form (the structure)
can it take? Obviously we can rewrite the previous problem in another form

{<A_(u.§‘)’£st e, y)> €7 0} '

where =, is the set of all admissible pairs for the fixed . In this connection the abstract
sequence is considered, elements of which are the nonscalar optimization problems. For
this sequence the notion of variational V-limit is introduced (see [1,2,3}). The variational
V-limit (V -homogenization problem) is a result of the passage to the limit when ¢ = 0.
This limit is some problem of nonscalar optimization which has a certain structure. The
sufficient conditions under which there exists 2 ¥ -homogenized optimal control problem
for the above mentioned family of problems have been obtained.

REFRENCES
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Kolesov A.Yu.
(Yaroslavl State University)
Mishchenko E.F.
(Steklov mathematical nstituie)
Rozov N.Kh.
(Moscow State University)

The Phenomenon of Bufferness
In Nonlinear Hyperbolic Systems’®

One says, that in some system of the differential equations with partial derivatives of
a parabolic or hyperbolic type the phenomenon of bufferness is watched, if it is possible to
provide the existence it of any fixed finite number of its stable cycles with an appropriate
choice of parameters of this system (solutions, periedic on time).

It appears, that bufferness is a property of a wide class of mathematical models
that adequately describe physical processes in the terms of the hyperbolic equations. For
example, one can consider a nonlinear boundary value problem for system of a hyperbolic
type consisting of the linear system of the telegraphic equations (considered on the finite
interval with respect to the space variavie) and nonlinear boundary conditions (af the
ends of the interval). Such problems are mathematical models of different self-oscillators
containing a cut of a long line and nonlinear devices (say, tds) at the ends of a line.

18jn Ruassian
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Let’s assume, that in a problem on the stability of a zerc position of equilibrium
of some hyperbolic system from a class described above the critical case of dountable
number of purely imaginary eigenvalues is implemented, and with the change of some
parameters of this system there is a bias of a part of a spectrum of stability in the right
complex half-plane. Then the natural fashion a problem on existence and stability of
self-oscillations of such system, bifurcating from zero, arises.

Without of particular resonance relations between eigenfrequencies of system in the
indicated case there is a2 number of quasibarminic (i.e. close to harmonic with respect to
time) stable cycles, and this number can be made as much as major by the appropriate
choice of parameters. Besides there are still unstable quasiharmonic invariant toruses of
different dimensions dividing the domains of atéraction of different inconvertible cycles.

In case of a resonance spectrum of eigenfrequencies the study of self-oscillations
in systems of the indicated type leads to two model nonlinear boundary value problems
carrying, thus, generalpurpose character.

REFERENCES
[1] Kolesov A.Yu., Mishchenko E.F., Rozov N.Kh. // Trudy of MIAN 1998, Vol.
222, p. 1-192. _ ' _
[2] Kolesov A.Yu., Mishchenko E.F., Rozov N.Kh. // Uspekhi Matematicheskikh
Nauk 2000, Vol. 55, Ne. 2, p. 95-120. :

S Kolev M. .
Soﬁa. University of C'hefm'e, Technology anfi Steel
Simple states in gas dynamics

A geometrical approach for solving hyperbolic quasilinear systems PDEs in three-
dimensional space-time with coefficients depending on both dependent and independent
variables is developed. A system describing propagation of short waves in gas dynamics
is considered. The approach applied here is based on a detailed investigation of the
respective overdetermined system and through a special construction, involving the Pfaff
systems we reduce the system under consideration to system of ODEs.

Kolokol'tsev V.N.
(Nottingham Trent University)

. Boundary value problems for Hamiltonian systems
with degenerate Hamiltonians, small time asymptotics
for degenerate parabolic equations, and Young schemes

As is known, for Hamiltonian function of the form

H(z,p) = 3(G(a)p.p) — (A2).P) - V(2) M
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with invertible symmetric matrix @ and uniformly bounded (together with their deriva-
tives) G, G, A and V, the bmmdary value problem for the Hamiltonian system

== O =m() =, o
is always solvable. Moreover, there exists a solution which provides the absolute min-
imum S(t,z,z0) for the corresponding problem of the calculus of variations (with the
Lagrangian L(z,v) being the Legendre transform of H with respect to the second vari-
able) with fixed boundary points z,ze. At last, for small £ and z — z¢ such a solution is
unigue and the function £5(¢, z, z0) has a regular asymptotic expansion

tS(t,z,z0) ~ i Pj(zo}{t, x — 7o),

=2

where Pj(zo) are homogeneous polynomials of degree j in variables ¢ and z — zp.

Here we describe the whole class of Hamiltonians (which we call regular) of form (1)
but with possibly degenerate matrices G(z) such that the global existence of the boundary
value problem (2) giving global minimum for the corresponding problem of calculus of
variations (with now singular Lagrangian) still holds and the function tS(¢, z, zo) has
again a regular expansion in integer positive powers of t and z—zo with some constant o >
6. In particular, this class of Hamiltonians contains a large subclass, which corresponds to
the problems of calculus of variations with Lagrangians depending on higher derivatives
of minimised curves. In general, the Hamiltonians of this class are classified by means of
Young schemes which are well known in the theory of group representation.

To each Hamiltonian of form (1) there corresponds naturally a parabolic equation

2 2 e@ 2 Qyut (4e), 2) - Lv(apm,

where h is a positive parameter. It turns out that the same class of regular Hainiltonians
describes the class of parabolic equations of this form (with possibly degenerate G} such
that its Green function (or fundamental solution to the Cauchy problem, or heat kernel)
has the smalil time (and small h) asymptotic expansion of the form

uc(t,z, 7o) = (2rh)a1£% Reg: (&, z — zo, k) exp{—Rega(t, z — 30} /hi™*},

where Reg; and Reg, have asymptotic expansions in positive integer powers of £, z — ze
and h, a; are constants.

in particular, one can descnbe the corresondmg class of invariant degenerate
parabolic equations on mamfolds with such a nice behavior of the heat kernel. It con-
tains, for example, the following equation on the cotangent bundle T* to a Riemannian
manifold M (g(z) = G™*(z) is 2 Riemannian metric on M)

% = e b (o, 2 ) + (ctemn 22) - 3 (L ctomn. 2).
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which definés a semigroup that corresponds to the stochastic geodesic flow on T™M.
Using the above results, one can prove that the corresponding heat kernel has a trace,
and the coefficients of its asymptehc expansion in small times are geometric invariants
of M. '

These results can be also extended to a certain class of nonlinear parabolic equations
(reaction-diffusion equations) that recently became very popular in connection with the
theory of superprocesses.

The core of the results described above (and some of their generalisations to non-
local parabolic equations) is published in the recent authér’s monograph ”Semiclassical
Analysis for Diffusions and Stochastic Processes”, Springer Lecture Notes Math., v. 1724,
2000.

Koipakov A.G.
(Szberean State Unwerszty of Telecommumcatsans and Informatccs,
" Novosibirsk) -

Finite-dimensional model for conductivity of a
 system of the dense packmg partlcles

We consider f,aplas equation in the domain with the large number of small abso-
lutely conducting fillers. The solution takes the constant {not known) values on the fillers.
Earlier proposed methods {1,2] deal with the equations with the continuous coefficients
cannot be adopted to the such kind media. This paper demonstrates that in the particles
filled high-contrast media the énergy. fluxes. are concentrated in the necks between the
neighbour particles and the original continuum problem has a finite dimensional approxi-
mation.' Formulation of the problem. Consider the:domain P = [-1,1}x [~L, L] in which
the disks D;,i = 1,..., N of the radius R are distributed in a random way. Denote the
remaining part of the domain by @ = P\ UQ;. Consider the problem

Au=0,z € Qp,.
u(z) =tz € D;

./..., unds =0,i=1,.., N,
ap;
u(z, £1) = £1,8u/dn(xL,2) =0

The efective conductivity of the filled medium is defined as
A=(1/2L) undz
z=%1 .
. The "net” (finite-dimensional) model. The flux between the pair of disks (i-th and j-th)

is equal to gi;(£i—¢;), where gi; = / Rf6:;, Ris the radius of the disks, §;; is the distance
between the disks. Introduce the net z;, &, ¢ij3 4,3 = 1,..., N, where z; are the nodes and
t; are the potentials, which satisfy the equations :

Zg,','(t,' ~t;)=0,ie Lt =2X1,{i€ st
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I are the interior and S*? are the boundary nodes, corresponding to the disks belonging
to the boundaries z = +1. Theorem. The effective conductivity A has the order of \/R/§
as § = 0, where § = mazd;; and maxz is taken for the neighbour disks. The leading term
(of the order of /R/d } as § — 0 is expressed through &; - solution of the “net” problem
in the form A = 1/4¥ g {t: — t;)° .
REFERENCES

[1]. Borcea, L., Papanicolaou G., Network approzimation for transport properties of
high contrast materials. SIAM J Appl Math, 58(2}, (1998), 501-539. '

[2]. Kozlov, S.M., Geomelrical aspects of averaging. Russ. Math. Surveys, 44:22,
(1989), 91-144.

Komech A.L
_ Moscow State University . .
On attractor of a nonlinear U(1)-invariant

1D Klein-Gordon equation
An attractor is studied for all finite energy solutions to a model nonlinear U(1})-
invariant 1D Klein-Gordon equation. The attractor is a union of the solitary waves
psi(x)exp(i omega t).

Konenkov A.M.
(RGRTA, Ryazan)

C% solutions of the Dirichlet prdblem for parabolic
equations

In a bounded domain 0 C D, where D = R™ x (0,T), T < o0, n > 1, we consider
the parabolic operator of the second order:
Lu = u¢ — aij(z, t)8i;u — bi(z, )0iu — c(z, Eju.

We assume that the real-valued coefficients satisfy the following conditions:

(36>0) (YP €D, VE€ R") ai;(P)&&; > 8l¢Ns (0.1)
aij € Ha{®), bi € HE™N D), cec HE™(Q), a€(0,1). (0.2)

No assumption is made on the sign of the coefficient ¢. Here H, and H? denote anisotropic
Hélder spaces and weighted anisotropic Hélder spaces respectively, see [1]. The latter
spaces allow functions (or their derivatives) to blow up in a certain way near the parabol-
ical boundary 80 = Z U B, where % is the “lateral” boundary of  and the domain
Bo C R lies in the plane {t = 0}. Denote &, = ZN {t = 7} and

A = max {l[a.-j, Y\, J10:, ng—a), ]lc,ﬂ“g""")} .
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We consider the Dirichlet problem:

Lu
u|B,
uln

The following result is established.

Theorem. Suppose & € Hiyo and the coefficients of the operator L satisfy conditions
(0.1), (0.2). Let u € C(R) N C>(N) be the solution of (0.3) with ¢z, = Plz,. Then
u € Hz(::) (S2). Furthermore, there ezists a positive constant C depending on n, a, §, 9,
A, such that

f e HE(Q),
¢ € Ha(Bo), 0.3}
¥ € Ha(Z).

W

le, 272 < € [lié, Bolle + i, Sl + 1£, 2UE~] .

The special case of a cylinder 2 = Bgr x (0,T), where Bp is a ball, and Hélder in
the closure of 0 coefficients of the operator L was comsidered by G. Lieberman {1}.
The corresponding statement for elliptic equations was obtained by D. Gilbarg and L.
Hormander [2] under less restrictive assumptions en the coefficients a;;. The present
theorem is proved by the barmier method. We avoid local flattening of the boundary
with the help of a “global” barrier. The latter is constructed using a solution of an
auxiliary parabolical problem and results of E. Baderko [3] on smoothness and potential
representations of such solutions.
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Kon’kev A. A.
{N.E.Bauman Moscow State Technical University)

On solutions of nonlinear Emden-Fowler elliptic systems
We study elliptic systems of the form
Aug = po(z)u}®
Aui = piz)uy, - (1)
.
Aty = Pm—l(z)uo

where m 2 2,2 = (%1,...,%Zn), 7 2 2, Xo...Am-1 > 1, Ai 2 1, and p; are nonnegative
functions, i = 0,... ,m — 1. In particular, we strengthen the results of papers [1] and [2].
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Put: @ = {z : |z| < r}. For a real number o > 1 and a measurable function ¢ : R* = R,
we define ¢(r; 0) = ess inf, fo<|zj<re ©(7). Suppose that 7 € {0,... ,m—1}. The following
notation is used: a; = 24231271 I(4, 7), B; = )x,(n—Z)—n-(-z:’:' 13, 7Y (Aig i (n~2)~n),

and F. j{r) = pi(r;o) H:’:lpff;;’)(r o), where Ik, 5) = TIoca Misjs k= 1,... ,m. We
note that the sum of subscripts is taken module m. We also assume that elther pi €
Litoc (R™) (for solutions of (1) in exterior domains) or p; € L,oc (Q Ro \ {0}} (for solutions
of (1)in Qa, \{0}), Ro > 0,i=0,....m— 1.

Theorem 1. Let ¢ = (wy,.. . , um—1) be & nonnegative soluhon ofsyscem (1) in R \@ Ra?
Ro >0, and, moreover, -

[ Pt = o N
for some ¢ € (1,00) and j € {0,... ,m — 1}. Then

| o N\
ui{z) <C ( /Ro r“if‘F,J(f) dr)'

for all z in a ne:gbborhood of mﬁmty, where the consbant € > 0 depends only on o, n,
M, Aoy yAmer.

Theorem 2. Let u = (u1,... ,4m—1) be a nonnegative solution of system (1) in R"\Q Bo»
Ry > 0, and, moreover,

o0
/ £, i(r)dr < co
for some ¢ € (1,00) and j € {0,... ,m — 1}. Then

. ~x3r
ui(z) < C ( /. () dr)

for all z in a neighborhood of infinity, where the constant C > 0 depends only on o, n,
m, Ao,... ,Am_l.

Theorem 3. Suppose that u = (u1,... ,um—1) is a nonnegative solution of system (1)
in R” and relation (2) is valid for some o '€ (1,00) and j € {0,... ,m — 1}. Then u = 0.
Example 1. Assume that m -'2 XA > 1, and pi(z) ~ |z}* as z - co for some
si € R,i=0,1. if one of the conditionis g0 + Xos1 + 2ho + 2 2> 0 (the case of j =0) or
81+ A180 + 221 + 2 > O (the case of 7 = 1) holds, then, by Theorem 1, each nonnegative
solution of (1} identically equals zero.

Example 2. As before, assume that m = 2, AoA; > 1, but now pi(z) ~ |z|* In® |z as
z = co, i = 0,1, where 50 + X081+ 20 + 2 =0and 81 + X180 + 24 + 2 < 0. Then the
relation pp 4 Aogiy +1 > O implies that each nonnegative solutmn of system (1) identically
equals zero.

Theorem 4. Let u = (u1,... , m—1) be 2 nonnegative soiuﬁon of system (1) in Qr, \ {0},
Ro > 0, and, moreover,

/o £~ B, ) dr = o0 ' @
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for some ¢ € (1,00) and 7 € {0,... ,m — 1}. Then there exists ¢ > 0 such that

Ro -z
u;{z) < Cl=f*~" ( /; | 7' B i(r) ‘i")

for all z € Q. \ {0}, where the constant C > 0 depends only on o, n, m, Jg,... , Am=1.

Theorem 5. Let u = (41,... , ¥m~1) be 2 nonnegative solution of system (1) in Qr, \ {0},

Rg > 0, and, moreover, » , .

o ./.r“l"p" Foi{r)dr < co
1)

for some ¢ € (1,00) and 7 € {0,... ,m —~ 1}. Then thereexists € > 0 such that

2 = s R
ui(z) < Ol ( / e () dr)

for all z € Q. \ {0}, where the constant C > G dependsonly on e, », m, Ao,... , An-1.
Corollary 1. Suppose that u = (m1,... ,4m~1) is a nonnegative solution of system (1)
in QH, \ {0}, Bo > 0, and relation (3) holds for some ¢ € (1,00) and j € {0,... ,m —1}.
Then a singularity' at zero of u; is removable, ie., u; € W} (Qro) N Lo (@R, ), p,-u;‘_f_l €
L{QR,), and the j-th equation of system (1) is valid in the entire domain Qg, (in the
integral identity sense}. This work was supported by the Russian Foundation for Basic
Research, grant Ng 99-61-00225,
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Konstantinov A.Yu.
{University of Kiev)

On the essential spectrum of a non-elliptic boundary value

problem: an extension of the paper of
H. Langer and M. Moller

in 1996 H. Langer and M. Méller [1] applied the abstract approach of [2] (see also
{3). [4]) to determine the essential spectrum of matrix partial differential aperators of the

form .
—p" 8088, + b ~p"'81 023, —p~ Y1 pey
Lo == | —p™ '3 pad ~p"Bpade +b —plidapey |,
—iced) : —icoth d
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D(Lo) == {f = (f1, f2, ) € (WH O |81 L + & f2 € WH(R), 1 fr + 12 folon = 0}.

Here & = 3%, & = z&, @ C R? is a bounded domain with boundary 89 which is
Lipschitz continuous, piecewise C? and whose angles are all convex, v = = (v1,02) is the
outer normal of 2%, a, €1, €2, p ave: Lipschitz. continuous functions on Q and b, d are
continuous functions on §I. The functions a and p are supposed to be positive on 2. The
operator Lo is closable in (L*(R2, pdz))’. It was proved in [1] that the essential spectrum
of its closure L is given by the formula :

ciC2

a'esa(L)'r:‘ b(ﬁ) U (d )(Q)

Analogous results were obtained earlier by Ralkov [5}. for more spemal éase of a linearized
magnetohydrodynamic model. The main purpose of this talk is to generahze the results
of [1] on matrix partial differential operators of the form

~p"181pa8) + by —p P 31paB; +bi2 - —p tibipc
Ko:= | ~p7'820a0) + by —p 'Oapady +bn —p id2pc1 |,
. 2 . d

D(Ko) := D{Lo).
-—2'6231 —-iczaz -

'

Here &i;, t,7 = 1,2, are continuous functions on §2 such that for any z € Q2 the 2 x 2
matrix (bi;{(z))? 2 =1 is Hermitian. Coefficients a, €, ¢z, d, p are supposed to be as above.
Denote by Ai{z), d2{z) (Mi{z) < Az(x)) the elgenva.lues of the matrix (Rebij(£))?;=1

and set

wm=min{ A(z) : 2 €0}, M :=max{)(z): z€0}.

Denote by I the closure of the dperafo;' Ko n (L3{(Q; pdz))*.

Theorem. The essential spectrim of th’é"'opemtor K is given by the formula

am(}f) = m, Mju(d~ 22)@).
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A Yu.Konstantinov :
Department of Mathematics and Mechamcs
University of Kiev, Volodymyrska 64
01033, Kiev, Ukraine

Konyaev Yu. A.
(RUDN, Moscow) On Singularly Perturbed Problems with
Singularities

Kopachevsky N. D.
(Simferopol, Ukraine)
lete second order linear differential equations
HPbert space and hydrodinamical applications

There were investigated Cauchy problem for linear complete second order differen-
tial operator equations in Hilbert space #

';t:‘ +(Fril) P = % +Bu=f(t), u(0)=12° u'(0)=u,

where F, K and B are self-adjoint operator coefficients acting in #. Theorem on strong
solvability is proved, applications to the famous S. Krein problem on small movements
of a viscous fluid in an open vessel and to other problems are studied.
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Pryadiev V.L., Kopytin A. V
(Voronezh State University)

On a D’Alembert type formula on finite one dimensional
networks

We want to suggest a new presentation of the solution ﬁ(z, t) of the Cauchy problem
for the wave equation on a finite weighted graph T’

8u  8u
e £20
u(z,0) = ¢(z) (0.1)

Ju,
| zE0=9=) . ;-
in the form v e
u(z,t) = fz,8) + 2 fi(z, t)coswit + gi(z, ) sin w;i
i=1
where f(z,t) is a 2-periodic in time function, fi(z,t) and gi(z,¢) are 1-periodic in time.
cosw; € a(8) N(~1,1) (1 € ¢ £ g), where 6(S) denotes the spectrum of a dispersion

matrix S.'S is a:2|E| x'2|E| matrix depending on the geometrical structure of I'. The
functions f(z,t); fi(z,t) and: gi(z, £) are difined like f(z, £) =-uo(z, 1),

fi(z, )= ! ‘(u;(z, t) sin w,-(t + 1) - u;(x, £ 4 1) sin wit),
gi(z, t) (u,(:z: ¢+ 1) cosewit — ui(z, £) coswi(t 4 1)),
where ui(z,t) (0 < q) is t.he solution of (0 1) with the initial da.ta

ui(z,0) = i(z), (x 0) = #i(z).

The functions. ¢i(z) and ¥:(z) (0 < i < g) can be obtained :_Ey the oriééonal projecting
on the proper subspaces of S. The details will be given in the talk. '



209

Koralloy L.B.
Random Perturbations of 2-D Periodic Hamiltonian Flows

We consider the motion of a particle in a periodic two dimensional flow perturbed by
small (molecular} diffusion. The flow is generated by a divergence free zero mean vector
field. The long time behavior corresponds to the behavior of the homegenized process
- that is diffusion process with the constant diffusion matrix (effective diffusivity). We
obtain the asymptotics of the effective diffusivity when the molecular diffusion tends to
zero. In the case of cellular flows the effective diffusivity has the order of the square root
of molecular diffusien.

Korney ALA.
(Moscow State University)

On globally stable approximation schemes

For a semigroup {5x,(£,-}} in a Banach space X corresponding, for example, to 2
evolution equation and having global attractor M™® the globally stable apprmdmatio?
(GSA) schemes are studied. GSA scheme has attractor M* and in addition M > MA(
when the approximation parameters A tend to a limit Ao. An approach to approximate
a global attractor of a semidynamical system with error estimates in Hausdorff metri
is presented. This approach is based on the properties of a function of rate of attracti n
to an attractor and on some new results for an unstable manifold in a neighborhodd
of an essential nonhyperbelical point. For some classes of the semidynamical system we
construct an unstable manifold in the neighborhood of a fixed isolated point, prove that
each trajectory is attracted to the manifold and find the function of attraction.
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Korotyaev E.
(Humboldt University, Berlin)

Inverse problem and estimates for Schrédinger operator
with periodic potentials

We solve the inverse problem for the Schrodinger operator Ty = —y" + q{zpy
acting on L2(R), where ¢ € L*(0,1) is a l-periodic real potential and k alz)dz =
0. The spectrum of T is absolutely continuous and consists of intervals separated by
g2ps Y = (87,64),n > 1. Let pn,» > 1, be the Dirichlet eigenvalue of the equation
~4" + gy = pay on the interval [0, 1]. Introduce the vector gn = (gen,gon) € R?, with
components gen = (e +al) — pn, 20d gun = 1417nl® ~ g2nlsn, where the sign sn = +
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or s, = — for all » > 1. Using nonlinear, functlonal analysis in Hilbert spaces (the direct
method) we show, that the mapping g : ¢ — g(g) = {g.}° € £ ® £ is a real analytic
isomerphism {3]. In particula, this implies a corresponding trace formula, Moreover, we
give the new short proof 2] of the well known Marchenko and Ostrovsk: result. In our
approach we do not use the equation of Gelfand-Levitan-Marchenko or a trace formula.
Using our method we solve the inverse problems for Zakharov—Shabat systems and for
weighted operators [7-8]. We formulate the key result of the direct method, proved in [1].
Theorem A. Let H, H, be real separable Hilbert spaces equipped with the norms |||}, ||-|2-
Suppose the map f : H — H, satisfies the following conditions: i) f is real analytic
end for each g € H the operator df [dg has an inverse, ii} there ezisis a nondecreasing
function F : [0,00) — [0,00), F(0) = 0, such that |lg|| < F{l|f(a)llh) for all ¢ € H, iii)
there exists a linear isomorphism J : H — H, such that the mepping f — J: H -5 H; is
compact. Then f is a real analytic isomorphistn between H and H,. In the second part
we prove estimates. For example: |jg|| < 2||7|I(1 + |[7|l” 3), where H'y]lz Zn>l |¥a)? and
[tal = 0,1 > 1, is the gap length of T [4-6] e
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Korovina N.V.
‘Moscoi' State University
.« Orbital equivalence of some classical
integrable cases in rigid body dynamics

Two smooth dynamical systemns on manifolds M;, Mo are orbitally equivalent
if there exists a homeomorphism from.M; onto My which transforms the trajec-
tories of the first system to the trajéctories of the second system and preserves
orientation (so the trajectories are the same up to the change of time}. In this work
the pair of integrable cases of the rigid body dynamics is regared. It’s formed by
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so-called Lagrange and Euler cases. As for the Euler case which describes the rota-
tion of the rigid body about its center of mass, the special case is taken, when two
of three principal moments of inertia are equal, so that the body is axisymmetric.

It’s proved; that! undér some conditions these two cases are orbitally’ equivalent
on their rather hrgh 1soenergy levels. These systems can be determined by hamil-
tonians Hy = 3 (s1 + 52 + ?) 4 V(rs) and Hg = (sl +s% + -i) respectively.

Here V(z) is a convex smooth function (potential). It caracterizes the force field in-
volved. The additional integral in both cases is F;= sa. The classical Lagrange case
deseribes the rotation of an axisymmetrical heavy rigid body about a fixed point
on the symmetry axis, and it corresponds to the potentlal V(z) = az. It s well
known that on the hlgh-energy levels these two problems are Liouville’ equwalent
(see for example {1]) This means that their Liouville foliations are diffeomorphic.

Orbital equvalence is more delicate. It turns out that the systems vg = sgrad Hg
and vy = sgrad Hi 3 for the specially selected parameters are orbitally equvalent
on the constant energy suifaces for enough great values of energy. In particular.
it means that from the qualitative point of view the motion of the axisymmetric
rigid body about’a fixed point situated on the symmetry axis in gravity force field
would; be ‘the 'sameas the motion of another axisymmetric rigid body>about its
center of mass (and without any poténtial). The precise result can be formulated
in the following way:

Theorem. Let the'value of area. mtegral be‘g'= 0. Then

The Lagrange system wrth parameter [3 and potentlal V(a:) TEsUTICEea 10 e
constant-energy surface @ = {Hy = h} for enough great b is orbitally equiv-
alent to thé Euler system with some parameter’y = y(h).

2. For any 7, # and .k there exists a family of potentials ¥ (z) so. that Lagtange
system with parameter # and potentla.l V(z) on the energy level QP={H,=
h} i is orbltally equzvalent to ‘the’ Euler system vnth parameter 7.

In [2] Lagrange systems were rega.rded from the pomt of view of the orbltal classrﬁ-
cation, but this was done by, means of computer ana.lys1s But there was formulated
a hypotesns which states that, Lagrange systems, correspondmg to the same param-,
eters f#, V{z) but to the different i isoenergy levels are not eqmvalent (orbntally)
So the resulis obtained do not contradict to the hypotesis mentioned from {2].
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Korzyuk V.I.
(Belarus)
I'panuynsie 3ajgaun gas r*xmepﬁo.:mt:ecxmx YpaBHeHUMN
BTOPOTO ¥ TPEeThero nopaaKa

Koshelev A.L
(St. Petersburg State University)

Regularlty of solutions for nonlinear problems of
continuum media

The main question of regularity for weak solutions of some boundary values
problems concerning the elliptic and parabolic systems describing the continuum
media are discussed. For example the regular (Halder continuous) solutions for
the nonlinear elastic system,the system of Navier-Stokes and some other ones.
Since thise problems are described by, more or less deneral second order partial
differential system it is impossible to use in general the maximum principle. So, the
main results follov from some coercive explicit estimales with sharp constants. The
functions which gives the optimal situations for these inegualities help to obtain
sometimes exact conditions for the loss of regularity for weak solutions of the
problem. For example in some problems of nonliniar elasticity with these results
we come to sharp conditions for the appearance of unbounded solutions. For the
Navier-Stokes system the chaotic solutions can appear in the case of sufficiently
big Reynolds numbers. The details will be given at the talk.
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Kosmodem’yanskii A.A.
(Moscow State University of Railways (MIIT))

The comparison theorems to solutions of
Neuman problem for elliptic equations

Let D C R® be a bounded domain with C? boundary T. Let u(z) be a
solution to the following problem



213

- Ou ; .
Eax (aiga ) ku ‘.5;!‘—3>0, : (1)
4,5=1 - .
where 8/8v is conormal derwatwe and L is- uniformly- elhpt.lc operator We note
by A and p the corresponding Lebesgue measures of domain D and boundary T.
The solution of problem (2) can be represented as e

R - s Dl
u—-»m-l-z-i—w, - RANE sy (2)
where w satisfies the inequality ‘max|w) < Clk|in D and z does not depend on
k. This result follows from [1] and [2]. Let u; be the so]uttons to (1) in t.he doma.ms
D; (i = 0,1). From (2) we immediately obtain: '
‘Theorem. Let domains Do and Dy be such that inequality

Ty A7 &

A

“

holds. Then there exists a number kg > 0 such that for any positive number k < kg
the inequality

. inf up > supuy,
H - Dot 1. Y I

holds.” **
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- Kotlyarov VY. P.
(Institute for Low Tempéerature Physzcs Kharkov, Uicrame)

Nonlmear Schrodmger equatmn on the half- hne

" The present talk is concerned with the d:rect and inverse scattermg problems

_for compatible differential equatlons “connected with the nonlinear Schrédinger
equation on the half-line: The cortesponding initial boundary valué problem (z,t €

‘Ry) was studied recently by A.S.Fokas and A.R.Iis. They. found that the key to
“this problem is to lineatize the initial boundary value problem using a Riemann-
Hilbert problem. The main goal of this talk is to obtain characteristic properties
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of the scattering data for compatible differential equations. Our approach uses
the transformation operators for both z- and t-equations. For the Schwartz type
initial and boundary functions we get the characteristic properties of the scattering
data and derive the so-called z¢- and #-integral equations of the Marchenko type.
The zi-integral equations guarantee the existence of the solution of the nonlinear
Schrédiger equation as:well an expression of the solution with given scattering
data. In turn, the t-integral equations guarantee that one can recover from the
scattering data boundary Dirichlet data #{t) and corresponding Neumann data
w(t) consistent with the given initial functiq‘n u(z).
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Kovaleva A.S.
(Russian Academy of Sciences, Mechanical Engineeering Research Institute)
Energy criteria for separatnx crossing in '

W e near—Hamxltoman stochastlc systems , .

R I P R A A8 S e
The separa.tnx—crossmg processes in near—Hamlltoman systems have ‘until recently
been studied for deterministic systems. In this work we examine the efiect of small
random petturbatlons on these processes. The phase space of a near—Ha.m:ltoman

system can be dwzded into domain correspondmg to different types of motions:
librations (oscillations) within the domains inside the separatrix and rotation in
the domains beyond the separatrix. Unbounded rotations in the outer domains are
associated with failure of the system, domains inside the separatrix are considered
as safe regions: Small perturbations may. induce passage through separatrix into
a safe region (i.e., capture) or out of a safe reglon {ie., escape), or passage from
one safe region to another (ie., jump) From the physwal point 'of view, captured
motions occurs if the full energy of the system decreases due to dissipation in the
near-separatrix, domain, «and escape occurs if the’ energy increases due to effect
of .-nonconservative forces in this. domain. ThlS study develops the perturbatlon
method . for. computmg the difference of energy assocxated with the crossmg of

the separatrix. in stochastic systems: It is shown that the dlﬁ'erence of the energy
can: be approximated by. the Melnikov integral., The perturbatlon method gives
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a procedure to calculate the probabilities of escape out of the safe region and
capture into the safe region. In addition, we demonstrate that the Melnikov method

-and the perturbation method exhlblt. equivalent criteria. for wcape and capture in
stochastic systems :

Kozhanov A. 1. .
(Sobolev Institute of Mathematics, Novosibirsk}
Nonhnear evolution equatlons on noncylmdrlcal domains

Kozyrev S.V.
‘Wavelet analysis as a p-adic spectral analysis’

New orthonormal basis of-eigenfunctions for the Vladimirov operator. of p-
adic fractional derivation is+'constructed. The map of p-adic numbers onto real
numbers (p-adic change of variables) is considered. This map (for.p = 2) provides
an ‘equivalence between: the constructed basis of eigenfurnictions of the' Viadimirov
operator and the wavelet basis in':L2(R) generated from the Haar wavelet. This
means that the wavelet analysis can be considered as a p-adic spectral analysis.

Krasil’shehik 1.S.
(. Independent Umverszty of Moscow)

Deformatlons and mtegrable systems

Geometrical a.pproa.ch to differential equations’[1] glves rise to important
cohomological theories providing invariants of equations. A theory of C-cohomology
introduced in [2] relates to deformations of equation structures.

1. Deformations. Let M be a smooth manifold and #: E — M be a locally
trivial bundle, J¥(7) be the manifold of k-jets, and £° C J°(7) an infinitely
prolonged equation, assumed to be formally integrable. Then 7o : £%° — M pos-
sesses a flat connection C: D(M) — D(£%), where D(:) is the module of vector
fields (if N is a manifold and P is & C®°(N)-module, ‘then D(P) is the module
of P-valued derivations C®(N) — P). The connection form Ug(£) € D(A}N(E™))
is called the structural element of £. Consider the operator ¢ = {Uc, -], where
[-, 1 is the Frolicher-Nijenhuis bracket. (D{A*(£%)}, &) is a complex. Its coho-
mology H(c) is called C-cohomology. H'(8:) consists of equivalence classes: of
deformations of the equation. H?%(8;) contains obstructions for continuation of
infinitesimal deformations up to formal ones.
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2. C-cohomology and recursion operators. X € D(A*(£%)) is vertical,
if it vanishes on C*°(M). Denote the module of such derivations by D”(A*(£%)).
Restriction of 8¢ to D¥(A* (£%)) gives the vertical complex (D”(A*(£%)), 8¢). Its
cohomology is denoted by Hc (£). H3(E) is the Lie algebra of higher symmetries.
Modules H;(£) inherit the inner product. HA(£) is an associative algebra with re-
spect to | and H2(E)|HA(E) = HY(E) is a representation of this algebra. Elements
of HZ(£) act on symmetries and are recursion operators. Let CA(£%°) C A}(£%°)
be the submodule of 1-forms vanishing on the horizontal distribution % of C.

Theorem. Nontrivial recursion operators are in 1-1 correspondence with solutions
of the equation £eQ = 0, @ € CAY(£®) @ T'(r), where £ is the linearization
operator of £, T'(w) is the module of section of 7.

3. C-cohomology and Bécklund transformations. Let W be a manifold
with a dim M-dimensicnal mtegrable distribution 7. A bundle 7: W — £ is a
covering over &, if d‘r(?iy) Hz(y)» ¥ € W. Then C is extended to a connection € in
Tie o7 and the previous theory can be constructed in the same way for this bundle.
v € C®(W) @ I'() is a shadow of a nonlocal 7-symmetry, if £z = 0, where £¢
isa na.tural hftmg of the linearization operator to W. A BT is a pair of coverings
51 — W 5 £5°. A standard situation where nonlinear superposition effects
arise is as follows. Conszder family of nonequivalent coverings 7a: W — £%, A € R,
and a diffeomorphism A: W — W preserving #. Equivalently, one can consider a
covering 7 = 7y and a family of diffecomorphisms Ay: W — W.

Theorem. Let 7: W — £ be a covering and Ay: W — W be a smooth family
of diffeomorphisms such that Ag = id and 7\ = 70 A, Is a covering for any A.
Then Uy, is of the form U, = Ur + M[U,, X] + O(A?), where X is a 7-shadow.
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Krichever 1. M.
(University of Columbia)

Vector fibrations and Lax equations on algebraic curves

Krutitskii P.A.
(Department of Mathematics, Faculty of Physics,
Moscow State University)

Helmholts equation in 2-d domains bounded
by closed and opened curves

The boundary value problems for elliptic equations in plane domains bounded
by closed and open curves were not studied before. Solvability of problems outside
open curves in the plane [2,3,6] and solvability of problems in domains bounded
by closed curves [1,6] were treated separately because different methods were used
in their analysis. The present note is attempt io join these problems together and
to consider external domains bounded by closed and open curves. From practical
stand-point such domains have great significance, because open curves can model
cracks, screens or wings in some physical problems. In the present note we study the
Dirichlet problem for the 2-D Helmholtz equation in an external domain bounded
by closed and open curves [4]. The existence of classical solution is proved by
potential theory. The problem is reduced to the Fredholm equation of the second
kind, which is uniquely solvable.

In the plane z = (z;,22) € R? we consider the external multiply connected
domain bounded by simple open curves T},..,T}, € C** and simple closed
curves T%,...,T%, € C?*, A €(0,1], so that the curves do not have points in com-

Ny Ny
mon. We put T'! = U Ik, M= U T2, T=T'UTI?% The external connected
n=1 a=l
domain bounded by I'? will be called D. We assume that each curve T% is para-
metricized by the arc length s : T% = {z : z = 2(s) = (21(s), z2(s)), s € [ak, 5]},
n=1,.,Ni, k=1,2,s0thata] <bj <..<a} <by <af<bf<..<a},<
b}, and the domain D is to the right when the parameter s increases on I'2. There-
fore points z € I" and values of the parameter s are in one-to-one correspondence
except a2, b2, which correspond to the same point z for n = 1,..., Na.
We put CR7(I2) = {F(s) : F(s) € C*7[al, b2}, Fim(a2) = FIm(32),
N

2
m=0,k}, k=0,1,r€[0,1] and C*"(1?%) = (| C*"(T2).
n=1

‘We say, that the function w(z) belongs to the smoothness class K if
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1) w € C%D) N C*(P\IM),
2) Vw € C’°(‘D\I‘1'\X }, where X is a pomt—set consisting of the end-points

of T, so that X U (z(al )UZ( ))

3) in the nelghbourhood of any pmnt z(d) € X for some constants C > 0,
€ > —1 the inequality holds

(1) IVwI $Clz— z(d)l ,

where z — z(d) and d = @} or d= b, n=1,..,N,.

Let  us formulate the Dirichlet, - prob‘lem for the
Helmholtz equation in the domain D\T?. ’

Problem U. To find a function w(z) of the ‘class K which satisfies the
Helmholtz equation - | | . _ ,

(2) N wz‘:z: (‘t) + wx:za (2.‘) + ﬁzw(r‘) 0 z G p\rl, ﬂ= éo.ns'; >‘ 0’ i
the boundary condition e ' ’ co
@ . e =),

and the conditions at inﬁnity' : ; . - C e
w=0(=""?), 2 6I i~ :ﬂw = o(|z|"l/2), Izl af+a3 o0

Al conditions of the problem U must be satisfied i in the classncél sense.”

On the basis of the Relhch lemma. and energy equahties we can easily prove
the following assertion.

Theorem 1. If T €'C%*; "X €'(0;1], then the “pmbteme .has at most one
solution.

“To construct the'solution of the problem we assume ‘that f(s)'from (3) is an
arbitrary, function from the Banach space C}A(T), A € (0, 1]. With the help of the
single layer potentlal and the double layer potentlal we reduce the problem to the
boundary integral equation. By means of some transformations [2], [3], we reduce
this eqnatxon to the Fredholm equation of the second kind, which is uniguely

- solvable in the appropmate ‘Banach space. The solution of the Fredholm equation

and therefore the solution of the ptoblem can be easﬂy computed by standard
codes. The'theorein holds. '
Theorem 2. If T € C**, (s) € C""(I‘), A€ (0,1], tlze'n the solution of the
problem U exists and. can be represented in the form of single and double layer
potentials for the equation (2). The denszty in potentials can be found by solving
the Fredholm equation of the sgcond kind, which is uniquely solvable. ,
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It can be checked directly that the solution of the problem U satisfies con-
dition (1) with ¢ = —1/2. Explicit expressions for singularities of the solution
gradient at the end-points of the open curves can be easily obtained with the help
of formulas presented in [2].

The Dirichlet and Neumann problems for the dissipative Helmholtz equation
in both interior and exterior domains, bounded by closed and open curves has been
studied in [7], [8]. Similar problems for harmonic functions in exterior domains were
treated in [9], [10]. A nonlinear problem on stratified fluid flow over obstacles and
wings has been studied in [5).
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Kucherenko IV.V.
(ESFM Instituto Politecnico Nacional Mezico D.F. )

Semiclassic for the N particles Schrodinger
equation with binary potential

We want to suggest a new representation of the spectral problem for th
N >> 1 particles Schrodinger equation at the torus M = (R3/Z3)N '

N .
D Baft Y Vlm—z)f=)f

=1 1KECIKN

in the symmetric (boson) subspaceHp (M )of Lo(M). When N tends to infinity that
representation allow us to find asymptotic of some low-energy series by semiclas-
sical method. Let us suppose that the binary potential V(|z —y|) is a sum of finite
numbers of Fourier harmonics with Fourier coefficients vy = v > 0;1 < k| <
g.We consider an algebra of functions A generated by the countable set of symmet-
rical functions uy = N~1/2 Ef__l exp{i2n(k,z;)}, k € Z°. That algebra 4 is dense
in Hp(M); therefore we can consider functions from Hp(M) as the functions in
ug; g where k € P. Here P is such subset of Z° that PN (-P) = @; PU(-P) =
Z3\ 0. By direct calculations we obtain for the sum of binary potential the formula:
zlngsﬁ V(lzi~z;]) = N(N-1)2" vo—(N/2) Dk|=1 9% +27IN kai=1 Uk Uk Uk
and for the eigenfunctions f(...ux,...) of the N particles Schrodinger equation
we obtain exact equation: C

' 8 f of of
2 2 2 2
—87 Eepm F— + 47 Ee m (um——au + Ty F )+ (0.1)

q
%{( Z vkugg) f + -—I—Lz(...%...,u)f = uf,

v Isf=1 VN
def ] ’f 2 f
Ly = -2 47°(k, m) Ug—m + 4k, m)upyma— +
k;ﬁm;zh,:mEP aukaﬁm k,szP 6“[;3“{3
af
2 - .
> 4n(k, m)Tpsm T

k,meP

here p= A—=2"1N(N — 1) +2~1N Efk[:l ;. Dividing equation (1) by N we ob-
tain the equation with the little parameter N~/2 near derivatives. Therefore, the
WKB method can be applied, and the main term of low energy spectral asymptotic
can be obtained from the system of noninteracting quadratic oscillators,which is
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obtained from equation (1) by neglecting the term N~Y2Lyf The details will be
given at the talk.

Kudryavtseva E.A.
(Moscow State University)

Periodic solutions of the N-body problem
and applications to planet systems with satellites

The periodic solutions of the N-body problem were investigated in partial
cases by Hill (Sun and a planet with a satellite}, Poincaré (Sun and two plan-
ets} and later by Krassinskii (Sun and planets), Tkhai (Sun and a planet with
satellites). We consider the planar N-body problem for the Sun and the arbitrary
number of planets and the arbitraty number of satellites. Here the mass of the
Sun is supposed to be 1, the masses of planets have orders O(y}, and the masses
of satellites have orders O(pv) where p and v are “small parameters”. We inves-
tigate the periodic solutions of the N-body problem under consideration applying
technics of the perturbation theory. The solution of the N-body problem is called
relative periodic or periodic if there exists a pair of real numbers (T, a), called rela-
tive period, such that T > 0, —7 < a € 7 and, for any £ € rR, the configuration of
the mass points at time ¢ + T is obtained by rotation of the configuration at time
t of the angle a around the ‘barycenter. The solution is called symmetric if there
exist time at which all the mass points are on the same line (i.e. one can watch all
the planets and the satellites of the Solar system on “parade”) and their velocities
are orthogonal to this line. As the “unperturbed problem” one considers the col-
lection of N — 1 Kepler problems for independent motions of planets around the
Sun and satellites around planets. As the “generating periodic solutions” one con-
siders the “circular” solutions of the Kepler problems with the common relative
period (T, a). That is, planets uniformly rotate around the Sup along different
circular orbits with constant angle velocities w;, and satellites uniformly rotate
around their planets along different circular orbits with constant angle velocities
w;;. We prove: The N-body problem under consideration has (T, a}-periodic solu-
tions close to the generating solutions, provided that the nondegeneracy condition

le| > ﬁ"- 2T holds, that the fractions I;“':J—l of the “months” to the “years” are
sufficiently small, and that the parameters g and v are small enough. Moreover,
exactely 2V~3 of these solutions are symmetric, and hence, every half-period %
one can waich a parade for them. In the case a = 0 there does not exist, in gen-

eral, such a solution. For the case that all planets rotate in the same (positive)
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direction, sufficient conditions are given for the stability of some penodac solutions
in linear approximation.

Alo;s Kufner
(Prague)

The crltlcal exponeni: of the welghted Sobolev embedding

it is well known, that the pumber p* =/ N , 1< p < N, is the critical
exponent for the embedding of the (classical) Sobolev space W1P(Q) into L‘f(ﬂ).
this embedding is continuous for 1 < ¢  p* and compact for 1 < ¢ < p". In
the talk, an analogous quest.lon for the case of weighted spaces is investigated. We
deal with the embedding Wo ?(Q; P)HL‘? (Q; Q) wnth p> 1fixed and P,Q welght
functlons, ie. ‘with the mequahty

( / su(z)lqcz(z)dx "< f iVu(z)v’P(z)dz)

and: denve for some spemal cases a formula for the crltxcal value 7 such that the
embedding mentioned is continuous and even compact for ¢ < f and does not take
place for ¢ > p. For the particular case P = Q = 1, § coincides with p*. For the
one-diménsional case, where @ = (0, R}, Wo?(0, R; P) = {u = u(t), u(R) = 0,

fo [u’(t)l?P(t)dt < o0}, thls formula. reads as

: t
s L QOB
. 1‘_’_0 logff lepl(t)dt A

with p’ = e —EZ, For ¢ = p, the embedding mentioned can be either continuous, or
compact, or mvahd accordmg to the cholce of t.he welght funcmons P,Q.

v Kuksm 's.B. i
(Steklov Institute; Heriol-Walt Umuerszty)

The couplmg techniques. and the turbulent Iimit
. . Tfor randomly forced dissipative. PDEs

1 shall discuss a couplmg—approach to study ergodlc propertles of dissipative
partlal differential equations, forced by a random force. In particular, the apprcach
apphes to the 2D Navier-Stokes equations under periodic boundary conditions with
a random nght—hand side, with arbitrary viscosity 4. For any 4 the equation has a
unique stationary measure ys and the problem of two-dimensional turbulence can
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be stated as studying of limiting properties of this measure as § = 0. Most of the
- results of my talk are obtained jointly with Armen Shirikyan. Corresponding pub-
lications can be found on the web-page http : [fwww.ma.hw.ac.ukf ~ kuksinf.

: Kulikov V.S.
(Steklov Mathematical Institute RAS)

Generic coverings of the plane

It is well-known that the restriction f of a generic linear projection P* — P2{o
a smooth surface X C P™ of deg X > 3 has the following properties: (i) § is a finite
morphism unramified over P? \ B, where B is an irreducible plane cuspidal curve
whose singular points are ordinary cusps and nodes only; (i) f*(B) = 2R+ C,
where R is irreducible and C is reduced; (%) fir : R — B is one-fo-one over a
generic point of B. '
A morphism f : X = P? of a normal surface X is called a generic covering if
it satisfies these three conditions. Two generic coverings (X1, fi), (X2, fa) with
the same branch curve B are said to be equivalent if there exists an isomorphism
h 1 X7 = X, such that fi = f» o h. The set.of generic coverings of degree m
with the same branch curve B is in one-to-one correspondence with the set of
epimorphisms p : m {P?\ B) — S (up:to inner automorphisms of the symmetric
group Sy,) transforming a geometric generator of m(P?\ B) in a transposmon
There are three natural problems .

Exxstence Problem. For given numbers of cusps and nodes, does there exist a
plane caspIdaJ curve B having these invariants and such that B is the branch curve
of a generic covering of the plane of given degree?

Unigueness Problem. How many non-eqﬁivalent generic coverings do exist for
given B?

Problem of the Existence of Invariants. Do there exist invariants which define
a branch curve and; respectively, a generic covering of the plane uniquely up to
symplectic isotopy? In the talk, a survey of recent results concerning these three

problems will be given.
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Kypuna I'.A.
(Bapoueax)
IipuBogumMocTs J-aKKpeTHUBHEIX onepaTo?-(byHKnnn
K GJo4uHO-JHaroHaabHOH dopmel’

B goxaaje npaEBOgATCA TeopeMul, obobuiaomuae pesyasTaTh pabor [1,2)],
HOCBAIIEHAMX YCAOBHO# IPHBOANMOCTH HEOTPRIATEALHO MNaMEILTOHOBHX oHepa-
Top-yaxnuMA K 6409HO-AUArOHATLHOMY BHAY. IlycTh G — BemecTBEHHOE WM
KOMIJIEKCHOE THALGEPTOBO IPOCTPAHCTRO H o

H=G®G. . (0.1)

3ajasBad B2 oTpeske [0,1] co 3matuenuamu B8 L(H) dynxuzna H(t) sasrizaeTtca ra-
MEALTOHOBOH, €CAN OHA HMEET OTHOCHTEAbHO padioxernd (0.1) Marpuanoe mpea-

craBicaEAC R
Al B(t
no=[ 29 5% | 02)

rae B(t) m C(t) — camoconpaxensEie onepaTops npa Kaxgom ¢ € [0, 1). #(t) za-
3niBAETCA HEOTPANATENLHO TaMEALTOHOROH, €C/d OHA FaMBAbTOEOBa B B(t), C(t)
— HeoTpHHaTeAbHELIE ODEPaTOpH mpH KaxgoMm & € [0, 1].

Ouepatop-byaxmma # () BaohiBaeTcd 2-ABXOTOMHYECKOH, €CIH HPH KaxjoM i
coextp o(?#(t)) oneparopa #(f) He nepecexaeTca ¢ MEEMOH ochio, T.e. a(#H (1)) C
G, UG, rge gepes C,. 1 C; o6ozHa3eHH OpaBas ¥ eBad OTKPHTEE ROAYILAOCKOCTA
COOTBETCTBEHHO.

Henpepripaas Ha [0, 1] >-guxoTomuteckas oneparop-gysxuza H(t) co snazenu-
avn B L{H) sassBaetca ycaorso {H,, Ho)-npusognmoii, ecia (i) H = Hy @ Ha,
(ii) cymecTByeT Takad mempepHBHad W ofpaTEMad mpu KaxjgoMm t € [0, 1] onepa-
Top-gyuxuga V() co 2pasennama B L(H), 7ro Hy > AHBapHAHTHE OTHOCHTEALHO

Hi(t) =V UGHHEV(E) : Ha(t)H12 C Hiz, u o(Malt)lm, ) C Cryt.

Ecan #(t) — 1-mepmognaeckas dynxund, T.e. H(0) = #(1), To Takoe xe Tpebo-
BaH@e 1-mepEOAMIHOCTH NpeAbaBadeTcd u K Gyskumg V(1).

JlmuelnpA orpadnacHERM ofiepaTop T’ HasrBaeTca J-aKKPETHBHBIM, €C/H €r0 Be-
mecTBeEH24 9acTh Rel = %(T + T°), rae T° —J-conpaxennnii k T omepaTop,
asagerca J-geoTpanaTeALERM onepaTopoM (ompeaencana cM. B [3]).

Theorem 1. Henpepuisuas na [0,1] fynxyus co anauennsmu so muoxcecmee
J-axxpemuenniz s-duzomosmuvecxur onepamopos uz L(H) sessemca ycaosHuo
(H*, H™)-npusodumoii, 2de

HY :=ker(J - I), H™ :=ker(J + I).

17PaGora noagepxana P@PH(rpanTa 99-01-00391, 99-01-00968)
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Ilpusegem ycnosnﬁ,goc*l‘afro'mae AN 3-FAXOTOMETHOCTE J-aKKDETHBHOTO ONEpa-
TOpAa.

Theorem 2. Ecau das J-axxpemusnozo onepamopa T exinoanexo toma 6t 0duo
ua yeaosuii: (a) onepamop ReT' umeem ozpanuvennsiii obfpammupiit uau (b) onepa-
mop iImT = (T — T°) seasemca o-duzomomuecsus, mozda T — »>-duzomo-
Munecxuii orepamop.

Theorem 3. Henpeprisnaa xa [0,1] HEOMPUUGTIEMLHO 2AHUIBTONOBE 2-duzomo-
Muuecxas onepamop-Pynryus H(t) ssasemes ycaosno (G, G)-npusodunoi. Bo-
aee mozo, V(&) moxcuo suibpamp max, umo Hi(f) — 2amnusemonos onepamop.
Ecau #(t) — nepuoduuecxas fynxyus c nepuodon 1, mo Gyuxyus V(t), a ana-
wum, u Hy () sosym 6uimv euibpans nepuo&uuecnmm ¢ mex e nepuoao.u

,Hox.na,q ocuoaan Ha COBMECTHOR paboTe ¢ Aanaozum TH n Knpnaxngn B.K.
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Kuvshinov M. Yu.
(Mocxoscxuii Focydapcmeenuiti Yuusepcumem)
V—axc'rpemanbnue peme}ma HpOﬁﬂeMH MOMEHTOB.

PaccmaTpuBaeTes ‘aajja%a O WIOTHOCTH MHOKECTBa MHOTOWICHOB B Hpo-
CTp2HCTRE L,(—oo,oo), tae.¢ — nponanonbnaa Mépa ¢ KOHSHHLIME MOMEHTAMH.
Hogzoa x 7ok 3aja%e, npegaoxenatit M.A. Hafimapkom (cm. [1]), ocroran ma
ncnomonam MEeTOJOR Teopun npoﬁnemm momenToB. O noseoaseT ehopmy-
AEPOBATH AOCTATOMHEE YCIOBHA IIOTHOCTA MHOPO'WIEHOB B TepMAHAX (yEKiui
'Hepan/iMHEH HpeICTARICERA PeTieani Heonpe/ielcHEOH HPOGAeME MOMEETOB (CM.
[2). Honyqemm aBTOPOM PE3yALTAT ABAAETCA HPOJOKEHAEM €0 HCCAeOBAEHT
AaunoR TPoGAeMbl (cm. [3]).
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Kuwamura Masataka
(Department of Computer and Commaunication Sciences, Wakayama University

A General Criterion for the Eckhaus Instability in
: Gradient/ Skew—Gradlent Systems

A stablity problem is considered for a fa_rmly of spatlally periodic stationary
solutions in 1-D gradient/skew-gradient systems. We found that the equation for
stationary solutions have a first integral. Regard this integral as a functional on the
set of stationary solutions, we show that a stability-instability, transition occurs at
extremal points of the functional. The result gives a geneéral but simple criterion
for the Eckhaus instability in various pattern formation equations such as the
szburg—Landau equatmn, the Smft—Hohenberg equa.tlon, and actwator—mhlbltor
reaction-diffusion systerns. This is a joint work with Professor Eiji Yanaglda. of
Tohoku University, Japan.
keywords: gradient/skew-gradient systems, Eckhaus instability

. Kuzhel s.
(In.stztute of Mathematzcs, NAS of Ukmme}

On dependence of Lax—Phillips scattering matrix
on choice of incoming and outgoing subspaces

The posmblhty of applying the Lax-Phillips scheme [1] for studymg the scat-
tering of evolution system described by an operator~dlﬁerentlal equation

Wy = -Lu, BN . (0 1)

where L is a positive self-adjomt opera.tor acting in an abstract Hilbert space 9,
depends on the existence of incoming D_ and outgoing Dy subspaces for the group
Wy, (¢) of solutions of the Cauchy problem for Eq. (1). Assume that the following
condition is satisfied:

Condition 1. there exists a simplé maximal symmetric operator B acting in a
subspace $g of the Hilbert space $ such that the operator L is a positive self-
adjoint extension (with exit in the space 5)) of the symimetric operator B2,
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Then subspaces Dy exist and are defined explicitly by the operator B ([2]). Choos-

-ing the operator B and subspace $jo in different ways, we obtain different subspaces
Ds. A simple algorithm which allows us to construct various examples of such
subspaces for the group Wi(t) is following: Let B be a fixed simple maximal
symmetric operator in $g, for which Condition 1 is true. Consider an isometric
operator A acting in the Hilbert space fio and such that AB = BA. Then the
operator By = ABA*, D(Bs) = AD(B) is simple maximal symmetric in the
space H4 = AfH and, for Ba, Condition 1 is also true. We denote by D and
D4 incoming and outgoing subspaces for Wy (t) defined by operators B and Ba,
respectively. Let S(d) and Sa(8) be the Lax-Phillips scattering matrices for the
group Wy (t) that are associated with the subspaces Dy and D4, respectively. We
investigate the relation between functions S(d) and S4(d) in the case where the
isometric operator A is a function of the operator B of the following form:

o

A=a(8)= [ sle)a (02)

where Eg is the spectral (nonorthogonal) function of the operator B and g(2) is
a function from the Hardy class H* in the upper half-plane such that |g(d)] = 1
(6 € R). We note that any isometric operator A of form (2) commutes with B.

Theorem. If an isometric operator A has form (2), then the Lax-Phillips scatter-
ing matrices S(§) and Sa(d) are related as follows:

_ g(~é)
Sald) = £ 755(0) G ER).

The theorem shows that the Lax-Phillips scattering matrices S(4) and Ss(d) can

have different singularities. In particular, the appearance of ‘false’ zeroes of the
scattering matrix in the lower half-plane, which are not related with evolution
system (1) and are caused only by the choice of incoming and outgoing subspaces
D4, is possible.

REFERENCES
(1] P.Lax, R.Phillips, Scattering Theory, Academic Press, New York, 1967.

[2] AKuzhel, S.Kuzhel, Regular Eztensions of Hermitian Operators, VSP,
Utrecht, 1998. :
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Kuznetsov V.V.
(Lavrentyev Institute of Hydrodynamics of SB RAS)

Prandtl boundary layer continuation problem
in nonsnandard situations

Considered is problem on continuation of boundary layer of viscous incom-
pressible liquid near a rigid wall in the case of downstream pressure increase. It is
known [1] that classical solution of this problem can’t be continued to the domain
z >z, (z is the longitudinal coordinate), where 'z, is the stagnation point of
the external liquid flow refering to boundary layer. Also it is known [2] that there
exists some class of preseribed initial profiles of longitudinal velocity for which the
solution of this problem doesn’t exists even for = > z,, where z, € (0,z,). Built
here is the other class of initial velocity profiles for which boundary layer can be
continued up to the stagnation point of the external flow. Let the salient point of
rigid boundary of the motion domain to exist. There was extracted the asymptotic
form of the Navier-Stokes equations for the motion of a fluid at-large Reynolds
number in the angle sector, which is aii analog of the system of Prandtl equations.
It is shown that the equations are reduced to the classical Von Mises boundary-
layer equation’ by change of variables. Here the’problem statement exibit some
specific features: discontinuity point. of longitudinal pressure gradient; moreover
this point is the stagnation point of the external flow. The existence conditions
for generalized solution of this problem are found. It is shown, that the solution is
regular in the whole motion domain with the exception of (may by) one line.

This work has received financial support from the Soviet of Leading Scientific
Schools Support, grant No. 00-15-96162.

REFERENCES

1. OLeinik O.A., Samokhin V.N. Mathematical Methods in the Boundary-
Layer Theory Nauka Fzzmatht Moscow, 1977.

2. Khysnuidinova N.V. Separatlon flows in a boundary layer. Dokl. Akad.
Nauk, Vol. 359, No. 3, 334-336, 1998.
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Lapin A.V.
(Kazan State University)

Iterative solution of variational inequalities with several
M-matrices and maximal monotone operators

Iterative solution for the problem
Au4By+d6=f, y€Cu, S€Du (0.1)

is studied, where A, B are M - matricies, while C, D are diagonal maximal mono-
tone (multivalued) operators. Finite element and finite difference schemes for the
free boundary problerns with several constraints and/or with several convex non-
differentiable functionals lead to the problem under comsideration. We can cite
among others Stefan problem with prescribed convection (including continuous
casting problem) and the problems of fluid flows in porous medium under the
gravity forces. Existence of the unique solution for the problem (0.1} and conver-
gence of iterative methods, mcludmg alternating Schwarz methods, are studied.
Theorem 1. Let

A,B be M — matrices, o - (0.2)

C, D be diagonal mazimal monotone operators in RY . (0.3)

Let also there exist the subsolution tg, %4), 1 € 'C'y_, 8 € Du and the supersolution
(%,7,3), 7 € C%, & € D of the problem (0.1):, . . -

(4,7,8) & (8,7,8), Au+By+8&f& Au+By+3, (0.4)
where u > 0 means the componentwise mequalzty Then the equation (0 1) has a
solution (u,%,6) for any f € RV.
Theorem 2. Let the assumptions (0.2) - (0.4) be fulfilied,

A, B be weakly diagonally dominant in columns matrices (0.5)

and one of the following properties holds: (a) either A or B is strictly diagonally
dominant in columns or (b) C is either contmuous monotone or strictly mazimal
monotone operator. If (u*,7!,8") and (u%,4%,6?) are the solutions of (0.1) with
right-hand sides f‘ and f2 carrespondmgly, then the inequality f1 > f? implies
the inequalities u* > u?, 7' > %,6' > §%. We look for a variant of the multi-

plicative method (which includes, e.g., the additive Schwarz alternatmg_method).
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Letfor{ =1,2,...,p A= A, — A}, B = B} — B! be the splittings of matrices A, B
such that A}, BO are M - matnces and A‘ > 0 B! > 0. Let also E; > 0 be the
diagonal matrices and Y b, By = Id, where by Id the unit matrix is denoted. We
consider the iterative method: .

Aot + Byt 4+ 8F 4 = AluF + Biy* + 4,

e Cuf Y, SF e DUt 1=1,2,..,p

ZEwk“ 7’6-{-1 ZE k41, 5k+1 ZE'JIH-I (06)

=1

for k = 0,1,2,... with initial guess (u%,7%). Theorem 3. Let the assumptions
of Theorem 2 for the problem (0.1} be fulfilied. Then iterative method (0.6) con-
verges for any initial guess (u%,4%) from the ordered interval < (u, 7), (&%) >,
and if (u%,7%) = (&,7) ((«°4°) = (u,7)) then the sequence {(u*,~*,8%)} con-
verges monotonically decreasing ( increas?ng) to the unigue solution (u*,v*,8") of
the problem (0.1). Linear rate of convergence of the iterative methods is also proved

under some additional assumptions to input data.

G.G. Laptevy
(Steklov Mathematical Institute, email: laptev@home.tula.net}

Some nonexistence results for higher—order
evolution inequalities in cone—like domains'®

Let SM¥—1 be the unit sphere i m R, N > 3 and (r,w) be the polar coordinates
in R¥. Let K,, be a domain of SV~ with smooth boundary 8K,,. We shall denote
by K the cone

K ={(r,w):0<r < +oo,w € K, }.
The lateral surface of the cone K is K. “Cone-like domain” Kg, B > 0 denotes

the set {z € K : |z} > R} with full surface 8Kp. Reca.ll that the Laplace operator
A in polar coordinates (r,w) has the form

1 B8 (ya0N,1, & N-10 1
A—m—-na(" é:)*ﬁAw-w‘fTaﬁ,-z’-‘*w

18The author was supported in part by the Russian Leading Scientific Schools Grant 00-15-96047
and INTAS 97-30551.



231

where A, denotes the Laplace—Beltrami operator on the unit sphere V-1 C RY,
We shall use the first Helmholtz eigenvalue A, = A;(K.,} > 0 and corresponding
eigenfunction ®(w) for the Dirichlet problem of A, in K,

AL+ 20 =0 K, :
: 0.1
{q)lag“ =0. . B ( )

It is well-known that ®(w) > 0 for w € K,,. We assume ®(w) < 1. Let £ € IN. Our
model problem has the form .

Au > |ulf in K x (0,‘00),

u!‘afl(x[o 09) > 0 . . B . (0.2)
Gth=02>0, uZ0.

Let us introduce the parameters

. N-2 N -2\? _ N-2 /N—'z 2
s = ) + ( 5 )+Aw, 8y =— ) + ( D) )"‘Aw-

(03)

Theorem 1 Let

s +2/k+2 2

1<¢< = s* 4+ 2/k —1+s"+2/k’,

where s* is defined in (0.3). Then the pmblem (0. 2) has no nontrzmai global solu-
tion.

Thls theorem includes the sharp results for parabolic equatlon and inequality (i.e.
=1):
Theorem 2 Let 2
*+2
where s* is defined in (0.3). Then the problem

i<ggg=14+—%

8 _Au luff in K x (0,00),

"laxx[o,eo) 20,
uli=e 2 0, uZ 0.

has no nonérivial global solution.
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Let us consider the system .

Ze_Aupllr i K x(0,0),
k ! : .
g% — Av > lule in K x (0,00), (0.4)
ul&ll(x[o,oo) 2 0, 2'61Kx[0.oa) 20, :
k=020, Z=tl=020, ‘u#0, »£0.
Theorem 3 Let g3 > 1, g2 > 1 and
s*+2/k at+l g2+1
max: > , where = , = .
{7ls 72} z , 9 - n 21?2 = 1 Y2 7192 — 1
Then (0.4) has no nontrivial global solution.
Let us consider the inequality of p’brous medium type
y %_:%’"Au”‘;'lul‘? inKx(0,c0), m21, ¢>im, '
: ﬁlax %[0,00) =20, ) ’ ; , (0.5)

3—‘,2‘—3':;’0 20, v w0
Th"éorem 4 Let

1gmeqgq =2EXALUE_ ym—m/kt1/k

s* +2/k s +2/k
where s* is defined'in (0.3). Then the problem (0.5) has no nontrivial global solu-
tion. ,
In the “parébolié” case k = 1 we obtain

Theorem 5 Let

T
I<m<gsgyq =m+'s,—+—2,
where s* is defined in (0.3). Then the problem

S Aum [l inKx(0,0), m21, ¢>m,
u|ak x[o,c0) 2 0, :
U= 2 0, uZ 0.

has no nontrivial global solution.
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. Kuznetsov. A.V., Laptev G119
(Tula)
Unbounded weak nonhnear pertubatlons
of monotone operators

‘Let X, Y be separable reflexive Banach spaces, which are continuously em-
bedding in a local convex space. V. Suppose that interception Z = X NY is dense -
in X and Y. It is well known that Z is a separable reflexive Banach space. Let X/,
Y', Z' be conjugate spaces. Let 4 : X — X’ be a radial continuouns bounded coer-
cive operator. with (M)-property and B : Y.— Y’ be a radial continuous bounded
_ coercive operator. The domain Y of the operator B has a dense interception with
the domain X of the operator A and in this sense the operator B is unbounded
with respect to /A. The sum Su.= (A 4+ B)u is well defined on the space Z and -
S : Z = Z* is a radial continuous bounded coercive operator. Let for the oper-.
ator B : Z — Z’ with the new domain Z the following two conditions hold: iB.
B :Z — 7' is a weakly compact operator; 2B. The functional {Bu, u} defined for
u € Z is weakly lower semicontinuous

Theorem 1 Let the conditions above are satzsﬁed Then the equation Au+Bu = f
has at least one solutzon o e Z for any eiement f E Z’ .

Example 1 Let us conszder the' equatzon in a bounded domain @ C R® wuth a
regular boundary 9Q2:

(—1)'" Z D“(ID“uP"*D“uH( A)‘u-f(z),
; }a]-*m

'Dﬁulm =0, Iﬂl + I < max(m,l) (0.1)

Here P > 1 and m,l 2 1are natumE numbers wh:ch are arbttmry s0 it is posszble
to take m l or m > 3 Let us mtroduce the spaces X = Wp (SZ) and Y

Wz(ﬂ) The opemtor A s deﬁned by the first sum in (0. 1) under the boundary
conditions DPulag' = 0, |8| < m — 1. The operator B = (~A)', DPulsq = 0,
|ﬂ| < l 1. Usmg the Theorem 1 we conclude that the pmblem (0.1) has a solution

u € Wp (Q) n Wz(ﬂ) for any given functcon f € W—m(ﬂ) + WD)

Now we. cons;der the evolution equatlon '

d S o
Au + EBu = (t), . u(O) =up. - . (0.2)
‘9The second author supported in part by RFBR-01-01-00884

T oy
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In addition to the previous conditions on the spaces X, Y let us suppose that Y
is a Hilbert space. For a fixed number p > 1 we introduce the spaces of abetract
functions X = L2(0,T;X) and ¥ = L?(0,T;Y). Let A : ¥ — X’ be a radial
continuous bounded coercive operator with (M)-property on the set W = {u €
X;Bu' € X'+Y'}. And let B : Y — Y be a linear bounded selfconjugate operator
with the coercive form (Bu, u) > ¢||u||%, ¢ > 0. Considering the left hand side of
the equation (0.2) as an unbounded perturbation of the operator A one can prove
the folowing assertion.

Theorem 2 Let the conditions above are satisfied. Then the equation (0.2) has at
least one solutionu € X NY foranyug € Y and f € X' + Y'. The equation (0.2)
is considered as an equality of elements in the space X'+Y'. The function Bu(t) €
C(0,T;w—2') and as a continuous function takes the value Bu(0) = Bug. In this
sense the initial condition is satisfied.

Latushkin Y.
(University of Missouri-Columbia)

Spectral mapping theorems for semigroups and
nonlinear Schrodinger and Euler equations

There are many examples of strongly continuous semigroups on Banach
spaces for which the spectral mapping theorem a(e*4) \ {0} = expia(4) does
not hold. In particular, the position of the spectrum ¢(A) does not, generally,
determine uniform stability of the semigroup. It is well-known that on Hilbert
spaces the semigroup is uniformly stable if and only if the resolvent of the gener-
ator is bounded in the right-hand half-plane. However, even this result does not,
generally, hold on Banach spaces. In the talk we will use operator-valued LP-
Fourier multipliers to give a generalization of this result for Banach spaces, and to
present its applications for stability in control theory. We also prove the spectral
mapping theorem for the group generated by the linearization around a bound
state of the nonlinear Schrédinger equation with space-dependent nonlinearity. As
a consequence, we derive the existence of locally invariant manifolds around the
bound state. Also, we prove the spectral mapping theorem for linearizations of two
dimensional Euler equations. Moreover, using Friedlander-Vishik bicharacteristic
amplitude equations, we give explicit construction for approximate eigenfunctions
of the linearized Euler equations in dimensions two and three. As a consequence,
we give a rigorous poof of the fact that a steady state of the Euler equations is
hydrodynamically stable if and only if the linearization has pure imaginary spec-
trum.
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Akhmetov D. R., Lavrentiev M. M., Jr.
- (Sobolev Institute of Mathematics, Novosibirsk}
Spigler R.
(Universita di “Roma Tre”)
A nonlinear ultraparabolic type equation
with space—periodic solutions

A nonlinear, Fokker-Planck-type, parabolic integro—differential equation,
is studied. It arises from the statistical description of the dynamical behavior
of populations of infinitely many nonlinearly coupled random oscillators, sub-
ject to so-called “mean—field” interaction (the space-integral term in the equa-
tion accounts for this). Such a model, proposed in [1], generalizes and improves
the celebrated Kuramoto model 2], which describes a variety of phenomena,
in particular self-synchronization, in fields ranging from Biology and Medicine,
to Physics and Neural Networks. Statement of the problem is as follows. For
(6,w,1,9) € Qr = [0,27] x R x[0,T] x [-G,G], find a function p(8,w,t,9)
which solves the problem: '

2
%%=§;€-—wgz—+g—w-(wp)—ﬂgs—ﬁ,(0,t)%, (1)
P|9=0 = P|8=2m (2)
pli=o = polf,w, 2}, - (3)
where '
+o0 beo 21 _ ‘
K.(6,8) =K / ' f f 9(Q) sin(yp — 8) ple,w, t,Q) dpdw dQd. (4) -
~00 —co O

The broblem (1)~(4} has been studied under the following assumptions: A) The
initial profile, po(8,w,Q), is supposed to be: (a;) a continuous function in all
variables (0, w, ) € Q@ = RxRx[—G, G], belonging to the Holder space C?+e0(Q),
oo € (0,1) being a real constant; (az) 2n—periodic in angle, 6; {as) positive;
(a4) normalized for all © € [-G, G],
2% 4oo .
/ po(f,w, Q) dwdf = 1;

g ~x

and (ag) possesses an exponential decay property, in w, at infinity, namely:

. sup.. |D;I,Lf?é‘;p0 (9’ “, Q)I < Co e—-Mow’
OER. QE("GIG]
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forw € Rand ) +1p+13 < 2, where Cy, Mg > 0 are constants and I; > 0,
i =1,2,3, are integers. B) The frequency distribution density, g(f), is assumed to
be: (b1} belonging to the space L!(R); (bz) compactly supported on [-G, G); and
(bs) bounded. C) The coupling strength, K, is a constant. The problem should
be considered nonstandard by several reasons, namely:

1) The governing equation (1) is of the second order with respect to w, but only
of the first order with respect to & and ¢. Therefore, even besides of the integral
term, equation is neither of the parabolic nor of the hyperbolic type.

2) The governing equation (1) is considered in the slab @7, that is in a domain un-
bounded in w, which serves as a coefficient of the equation. This fact gives rise
to singularity phenomena typical for equations with unbounded coefficients.

3} The governing equation (1) contains an integral term taking on unbounded
domain.

4) There is an additional variable, the natural frequency of the oscillators, £,
with respect to which no derivatives appear, but the integral is also made
with respect to it.

5) We are interested anly in solutions, periodic in 8, while the governing equa-
tion contains the first time-derivative with respect to @ (cf. “time-periodic
solutions to parabolic equations”).

Therefore, results available in the literature concerning nonlinear parabolic or even
integroparabolic equations cannot be applied in our case under study. Space-
degenerate diffusion suggests to consider a regularized equation, where a small
spatial diffusion is incorporated in the model equation. Moreover, to avoid the un-
bounded coefficients of equation, w, we also replace w by bounding function Fiy(w),
which is supposed to be smooth, bounded, and Fy = w for |w| < N. So, instead of
equation (1), we first study its parabolic regularization, that is a family of equations
satisfied by p*V(8,w,t,9),

ape,N 62;)";'” azps,N ap:,N 8 LNy 3‘0;:,N' ' ape,N
5= e team — N gt gy (FnetY) - Q5 - KON =
(5)

in Qr N {t > 0}, for any given € > 0 and N > 0. Here ¢ > 0 and N > 0
are regularization parameters. The term K5V is defined by formula (4) with the
function p*'V replacing p. Adding the second derivative term in 8, we modify the
periodic boundary conditions (2} to

(pa PG)|9=0 = (P’ p9)|0=21r‘ (6)

forw € R, t € (0,7)], and © € [-G, G). Estimates uniform with respect to the
regularization parameters have been obtained. These estimates allow taking limits
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which identify the solution o the original problem in certain Sobolev and Hoélder
spaces. Ezistence of strong solutions is thus established. Precise estimates for the
decay of convolutions with the fundamental solutions to linear parabolic equations
on unbounded domains are used intensively as an essential tool for general linear
parabolic equations in R”. ’

Theorem. Suppose that data of the probiem (1) —:'(3‘)”.§dt‘z'sfy hliaééﬁﬁzptiohs A, B,
and C. Then there ezists a strong solution, p(6,w,1,%), to the problem (1}-(3).
Moreover, this solution p is nonnegative in Qp and is normalized,

27 400 :
lffﬂh%@@ﬂ:ﬁ
i L—m [

for alit €[0,T) and 2 € [-G,G].

This research was supported, in part, by the’ Russian Foundation for Basic
Research (Grants 98-05-65280, 00-15-99092, and 00-01-00912), the GNFM of
the Ttalian C.N.R., UNESCO under the contract UVO-ROSTE 875.629.9, and
CASPUR.
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Leandre R.
(Institut Elie Cartan. Universite de Nancy)
Stochastic Wess-Zumino-Novikov-Witten model
" _on the sphere =

We define 4 measiire over the space of applications from the sphere into a Lie
Group. We show that the spheres are almost surely Hoelder. We do a stochastic
cohomology theory of the space of random spheres, which allow to define a general
stochastic topological Wess-Zumino term. We show that the Wess-Zumino term is
related to stochastic integrals on the sphere
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Leonov G.A.
(Saint-Peterburg State University)

Ljapunov dimension for Hennon and Lorenz attractors

Consider the Hennon mapping F : R? - R?

z —a+by—z?
y—re,

where @ > 0, 0 < b < 1 are the parameters of the mapping.

Theorem 1. Let K C R? be an invariant with respect to F set, (z-,z_) € K.
Then

1
1-Ind/lnay(z-)

where ay = \f22 +b—2_,2_ =L (b—1~+/(1-b)% +4a). Let us consider the

Lorenz system

dmg K=1+

z=—0oz + oy,
y=rz—y-— 22, (1)
z = —bz + zy,

where 7,b, ¢ are positive. Suppose that the following inequalities are true

622,721, 04+1-2b30, @
ro2(4 — b) + 20(b — 1)(20 — 3b) — b(b — 1)2 > 0.

Note that the most often considered in numerical experiments values of parameters
r=128,b=28/3,0=10and r = 40 b = 4, 0 = 16 are included in the set (2).
Theorem 2. Suppose the inequalities (2) are true and the set K is invariant with
respect to the shift operator along the trajectories of the system (1), 0 € K. Then
the equality

Ae+b+1)
c+1++/(6-1)2+4rc

dim; K =3~

is true.
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Lerman L.M.
(Research Institute for Applied Mathematics & Cybernetics, Nizhny Novgorod)

Amost invariant elliptic manifolds in a singularly perturbed
hamiltonian system

We study a singularly perturbed Hamiltonian system of the type

€z = é-{{- w = OH
= ay ’ i = '5’;,:,
L .= 1,...«, . .1
ey = _.@_ [T _?ﬂ z " (0 )
v = oz’ T By’

Here z and y are scalar variables, #,» € R™. To this form many equations from
applications can be transformed. Qur main assumptions concerning this system are
the following. 1. The system 8H /8y = 0, 0H/dz = 0 can be solved with respect
to z,y, 2 = f(z,y),y = g(z,y) in some domain Dy of variables (u, v); 2. There is
a neighborhood of the slow manifold (i.e., the graph of z = f(z,y}),¥ = g(z,¥))
where determinant

o2.H 8% H
Alu,v) = det ( ;z a;y )
o;.H 0o H

z=f(u,2},y=g(n,v),e=0

is positive, A{u,v) > C > 0. It means that fast variables z, y are elliptic. 3. The
Hamiltonian is analytic in all its variables in some complex é-neighborhood of the
slow manifold. Qur main result is

Theorem Then there is a_canonical change of coordinates ® : (z,y,2,v) -
(X,Y,U,V) and constants d,¢c > O such that in the new coordinates the Hamil-
tonian H takes the form

Ho® 1= Ho(I,U,V;e) + B(X,Y,U,V;e), (0.2)
where I = 2(X? +Y?) and
R=0(%). (0.3)

The change of coordinates and the new Hamiltonian are analytic with respect to
(X,Y,U,V) in D1(6/2), and bounded in €. The theorem implies that I is almost
an integral of the system: I’ = O (e~%). The equation X = Y = 0 defines an
almost invariant (normally) elliptic slow manifold, In particular, in the case n = 1,
the system (0.1) has two degrees of freedom and in some neighborhood of this
manifold it is exponentially close to an integrable system. This allows one to use
powerful methods of Hamiltonian perturbation theory to a further study of the
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system. For instance, suppose that the slow system (it is derived from (0.1) if one
plugges into #,#~equations the functions f, g, this system is Hamilionian with 1
" degree of freedom) has a saddle equilibrium with a homoclinic orbit to it (common
situation). Then for € > 0 the full system has a saddle-center equilibriumn whose
one-dimensional separatrices are splitted and this splitting is exponentially small. If
the initial system is, in addition, reversible with respect to some involution, and the
homoclinic orbit and slow manifolds are symmetric with respect to this involution,
then, under some generic conditions, one can prove that the system possesses multi-
round homoclinic orbits as € — 0. Several important applications will be discussed.
This taik is based on the joint paper with V. Gelfteich. The anthor is thankful for
a partial support to the Russian Foundation of Basic Research (grant 01-01-00905)

Levenshtam V.B.

Exponential dichotomy criterion of parabohc operators
. with almost-periodic coefficients

1. We’ll consider parabolic equations like

du

Pu= Zt Z aq(z,8)D% = f(z,t), (z,t) eR" (1)
lel<2m .
where o = (@, a9,...,0n) is multi-index, |o| = a3 +oa 4+ -+ + @y, D% =

m"-’g—’-w Let C1%, 4,8 € [0,1] designates Banach space of read functiong

u{z, t), which satisfy a condition

(=", 1) — u(=', )|

= i b
flullcrs (z,:ﬁggnﬂ I“(‘c: 4oy v, [e" — zf ¥
u(z, ") — u(z,?
g MO o o, bt e g0

Lét Ga, f € C1/2™ 4 € (0,1) and condition of parabolicity is fulfilled

(1™ Y aalzt)6" 2 holg™, VEER,

laj=2m

where Ap = const > 0. All solutions are considered in classic sense.
2. It is supposed in this point that coefficients a, are 27r-penod1c up to (z,1)
functions.
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Theorem 1. If equation (1) with f = 0 has no unzero solutions, which belong
to C%0, then equation (1) has an only in C®°® solution u with any right part
fe ™ peing Bufdt, D*u € CT?™ | |a| < 2m.

Theorem 2. Operator P possesses an ezponential dichotomy on time azist € R
if and only if uniform equation Pu =0 has no unzero solutions in C%Y.

3. Let coefficients (1) be (almost-) periodic according to Bohr. Let H(P) designates
a set of parabolic operators

+ Y bal=,8)D%,

Jelg2m

D)

Q=

coefficients bq(z,t) ate the uniform (i.e. in C%%) limits of all possible sequence
@o(z + £k, + 7k}, where (£, 7) € R™*1. Parallel with equation (1) we’ll consider
the class of uniform equations

Qu=0, QEH(P). @)

Theorem 3. Equation (1) with any right part f € C71/%™ has the only C%°
solution u if and only if equation (2) have no unzero solutions in C%°. In this case
du/dt, D°u € CV1I?™ | |a| € 2m. If f — is almost-periodic function, then u is
almost-periodic solution. : '

Theorem 4. Operator P possesses ezponential dichotomy on time azis if and only
if equations (2) have no unzero solutions, which belong to C%°.

Levitin M.
(Department of Mathematics, Heriot-Watt University)
Commutators, Spectral Trace Identities, and Universal
Inequalities for Eigenvalues
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~Lexin V.P.
(Kolomenskzy Pedagogical Institute)
. KZ equations as isomonodromie deformations and solutions
of the Schlesinger and Garnier systems

Under n-pointed KZ equation we mean a integrable meromorphic pfaffian system
on C* the following form

dm;;(z:[, ,Zﬂ) Q m'nd(ZI, Zn), (1)
I = lesqgn —J%;_-’_;;Ll'
Here ;; are constant matrices from si(p, C) that sa.tisfy relations

[tfjstkl] :" 0: {i:j} n {k:l} = Q,i,j = 11 ceay
[s5, 8k + 256 = [tk 8ig + tan) = [an, ti5 + 255] =0, 1 Si<j<kgn. (2)

The relations (2) are equivalent to the Frobenius conditions of the integrability
of the (1). Let W, 3(z1,...,2n~1) and ¥,(z1,...,2,) be denote a fundamental
matrices of solutions of the n ‘and (n—l)-pomted KZ eguations. If we: consider
(21, 22, - » 2n1) € O~ = C\ ;{2 = 2;} as deformation parameters then the
KZ equation: (1) gives us the unnormalized KZ isomonodromic deformation of the
Fuchsian system : -

nel

(Z & S =LA e

on Riemann sphere €. The transformation ¥, = ¥, ¥, in some small neigh-
bourhood U of the 2° € €*~1 reduces unnormalized the KZ deformation (1) of
the (3) to the Schlesmger deformation (see,[1])

2= (Z o "‘"‘)““’""‘*’) v )

i=1 Zn =%

The maftrices
Bi(z,.. s Zn—1) = 11‘_1(21, s Zn—aftin®(z, .., Zn-1), j=1,...,n~1 (5)
in { are some hypergeometric type solution of the Schiesinger equations

d(z; —

2 — 25

Z 1Bi, Bjl——=*

=1, j#i

i=1,...,n—1 (6)
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The sclutions (5) of the (6) can be exiended to the whole universal covering Z of
the space €~ as holomorphic functions. So, this solutions don’t have movable
poles as singular points (see,[2]) For p = 2 the Schlesinger equations in suitable
coordinates on the space formed with (By,..., Br_3), B; € sl(2,C) are reduced
to Garnier system (for n=4, it is reduced to well-known Painlevé VI equation)
(see,[3]). Hypergeometric type solutions give us some solutions of Garnier system.
For p = 2 we solve of the algebraic system (2).General solution is parametrized with
four parameters. For n=4,5 we give explicit form of hypergeometric type solutions
of Schlesinger equations and also Painlevé equation and Garnier system. We study
the action of the pure braid groups on these solutions. In terms this action and
some asymptotics we formulate sufficient conditions when a holomorphic solutions
on Z of the Sclesinger equations are hypergeometric type solutions.

' REFERENCES .
1 A, A. BoLIBRUCH On isomonodromic deformations of fuchsian' systems. Joumal
of Dynamica.] and Controi Systems 3, No. 4(1997}, 589—604 ‘

[2] A.A.BOLIBRUCH. On orders of movable poles of af the Schlesmger equatzon
Journal of Dynamical and Control Systems 6, No.1(2000}, 57-73.

[3] R.GARNIER 'Solution du probleme de Riemann pour les systemes dzﬁemnt:els
; linéaires du second ordre. Ann. Scn Ecole. Norm. Sup 43(1926) 177-307.

[4] K.TAkanNoO A reduction theorem for a linear Pfafﬁan system with regula.r sin-
gular points Arch.Math., 31(1978-79), 310-316.

This work supported by the INTAS, Grant 97-1644 and by RFBR Grant
00-15-96107

Konyukhova N.B.
(Computing Center of RAS, Moscow)
P.M.Lima and M.P.Carpentier
( Centro de Matemdtica Aplicada, Instituto S'uper:or Técnico, Lisboa)
Asymptotic and numerical approximation of a nonlinear
smgular boundary—-value problem

, In this work ‘we consider a singular boundary-value problem for a nonlinear
second-order dlﬁ'erentzal equation of the form

o' () = ug(w)%/q, )
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where 0 < u < 1 and ¢ is a known parameter, q < 0. We search for a positive
solution of (0.1) which satisfies the boundary conditions

g =0, (0.2)
i o(0) =l 1~ ) () =0 ©9

This problem arises in the study of boundary layer equations for the stationary
flow of an incompressible fluid over an impermeable, semi-infinite plane. We assume
that the fluid satisfies a power law, that is, a relation of the type

Ty =k (g—;) ) (0.4)

where 7;y is the shear stress, u is the velocity, z, y are the coordinates on the plane.
Particular cases of such fluids are the newtonian fluids (» = 1), the pseudoplastic
fluids (n < 1) and dilatant fluids (» > 1). Under condition (0.3), the equation of
one of the components of the shear stress may be reduced. to the form (0.1),with
g = —1/n (see [4], [5] and [2]). The existence of solution to problem (0.1-0.2-0.3)
was proved in [5]. In [4], an iterative method for the computation of the solution
was introduced and numerical results were obtained for some particular values of
g. In [2] and [3] a numerical method was introduced, based on the use of lower
and upper solutions, which enabled to obtain accurate numerical results for a
wide range of values of ¢. In this work we analyse the asymptotic properties of the
solution near the singularity, depending on the value of g. We show the existence of
a one-parameter family of solutions of equation (0.1) which satisfy the boundary
condition (0.3). By means of variable substitutions, asymptotic expansions are
obtained for this family of solutions. Three different cases are considered: ¢ < —1,
—1 < g < 0and g =-1. In each case,the asymptotic expansion of the solutions
near the singularity has a different form. If ¢ < —1 and ¢ = -3 , for example, we
obtained the following expansion:

o, ) = [(1~ 0 [2g(1 + )™ (1 — ) T257 .
. {1 —[(14 9)/[(1 — )@+ (1 ~ w) + a(i — u) T + 0 (1 - u)w)} ,

as # — 1 — 0, where g = min(1, :(2111—:)51 and a is the parameter of the considered
family of solutions. Using this asymptotic expansions we can choose the value of
a by the shooting method in order to satisfy the boundary condition (0.2). The
same approach was used in [1}, where this and other nonlinear singular boundary-
value problems were analysed. Numerical resulis are obtained and compared with
the ones presented in other papers. The authors were supported in this work by
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the project NATO PST/CLG 976878. The first author was also supported by the
RFBR pro_;ect 99-01-00331.
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Liskevich V.
(School of Mathematics, University of Bristol,
United Kingdom}
Estimates for Fundamental Solutions for some
classes of Second-order Parabolic Equations
wﬂ:h smgular coefﬁcnents

We study the second—order parabolic equation ,
Bult,z) = V - alt, z) - Valt, ) — b(t,2) - Vult,z)
+ Vb(t, z)ult, z) + V(t, 2)ult, 2),

in 2 domain [0, 7] x B¢ C R%*, where a = (a;;)¢;, is matrix of bounded mea-

surable coefficients, b = (b;)3~1, b= (61)2_1 are measurable (in general, singular)
vector fields, V is-a measurable potential, T is a fixed positive number. We intzo-
diice a new class of coefficients in the lower order terms for which we prove the
existence and the unigueness of the weak fundamental solution and for this we
derive Gaussian upper and lower bounds. Our condition on the potential V is the
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non-autonomous extension of the Kato class introduced by Qi.Zhang and J.Voigt.

The condition we impose on the drift coefficients b a,nd bi is slightly more restric-
tive than the non-autonomous extension of the class Kd.,.l This is caused by the
lack of regularity of the coeflicients a;; in the main part. We also discuss the case
when the Gaussian estimates aze no longer valid. We obtain pointwise two-sided
estimates for the integral kernel of the semigroup associated with second order
elliptic differential operators AV (aV)+b-V+ V- b + V with real measurable
{singular) coefficients, on an open set & C- RN, The assumptions we impose on
the lower oider terms allow for the case when the semigroup exists on L#(Q) for p
only from an interval in [1, 0}, and neither enjoys a standard Gaussian. estlmate
nor is ultracontractive in the scale L?(). We show however, that the semigroup s
ultracontractive in the scale of weighted spaces LP(Q, gazds:) with a sultable welght
(p and derive an. upper‘ and lower bound on its mtegral kernel. ; ;

B L L WS LR YT FRTITRN IESREEE

P

. Lomov LS.
Moscow State Unwerszty)
“On the convergence rate of blorthogonal

function expansions

A 1

ot ’, B ‘{-"

" We con51der a restnctmn an arbltrary dlﬁ'erentlal operator L generated by
the differential operatlon S L

d2n d2n-i
L=—m +ng(z)d e 2E€G=(0,1)n2 (0.1)

nl=) € £1(6,0).f > ) \/¢(§) ?5(9 hi=¢€..., €\ (0.2)

on the class Dz,, of functions absolutly contmuous on G' together w1th their (2n-1)-
order derivatives, which system of root functlons possess some useful for applica-
tions properties: generalized Bessel mequahty, generalization of Riesz (Hausdorff-
Young) theorer?, convergence of biorthogonal expansions on.the entire interval G
in L,. We obtain estimates for the equiconvergence rate in L,(G) indicated expan-
sions with the expansion of the same function in the ordinary Fourier trigonometric
series. We detect, that the equiconvergence rate of these expansions in certain cases
substantially depends on s - integrability degree of function py(z). We define the
root functions of the operator L in generalized (I1’in) sense by considering them
as regular solutions of differential equations without any particular boundary con-
ditions. In this case restrictions are imposed on the properties of the spectrum
and the root functions of the operator. This allows one to study function systems
like systems of exponentials.: To obtain the above-mentioned estimate, we do not
use the adjoint L* of the operafor, L, becouse the existence of L* is an additional
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restrictin on the smoothness.of the coefficients pi(z}. The case of substantially
nonself-adjoint operator (that is, operatoers whose systems of root functions con-
tain infinitely many associated eigenfunctions) is also admissible. The restriction
of the operaior is determined by the three Il’in conditions 1)-3), described below.
We choose an arbitrary numbers r € [1,00),7 > 0, an arbitrary eigenvalue system
{2}, and an arbitrary system {ux(z)} of root functions of the operator L cor-
responding to these eigenvalues and satisfying the following three condltnons 1)
ME{AEC:RIAZLIZP K 7} E;qx l-age @ € LYA 2 1 2) {m} is
a closed and minimal system in £¥(G), llﬂuﬂvlll:"llv: j Y, {ux} is the system
blorthgonal to {ux}; 3) so-called anti- a priori estimate is valid for {uz}. Let us
impose an additional condition 4) ||ugllee < clluzll-, ¥k. For an arbitrary function
F(z) € LY(G), consider the partial sums 65(z; f) = : 2 wigr Fruk(z), A > 0, fi =
(f,vx), of the biorthogonal éxpansion: By Si(z, f) we denote the partial sum of
the trigonometric Fourier series of the function f(z), viewed as the orthogonal
expansion of f for the operator. Lo t Lou = u”,u € Dy, u(0) = u(1), «/(0) = u’(l)

Suppose that 5) Jw=const > 0: ofe =O0A"), Al 2> 10 = llolot, in
the following we suppose that 1y > v in the same condition for the operator Lg (if
fFeV(G),thenyp=1,and v: o:,,(l ) = O(A")).

Theorem 1 Let conditions 1)-5) be satisfied for the operator L, p € [1,00). Then
the estimate ||oa(z, f) — Sa(z, fllp = O(max(A~1/7, A~ 1""))) § = min(2, g, 5),
g= -2— is ualzdﬁfor all suﬁiczently large k > 0

Note that the theorem conditions do not guara.ntee basis property of {uk} in £V
even forn=1.

" L s B, AT

Corollary 1 Let p€ (1,00),f € L V' '(G) and conditions 1)-5), v > 1/8 are
fulfitled. Then ||f —oa(z, fillp 2 0, A= o0, -

Note that if ¥ = 1/6 = 1/q,p > 2, then the statement of corollary is not valid
even for s = co. The work was supported by the Russxan Foundation for Basic
Research (pro_]ect N 99-01-01260). :

" Lopez-Gomez J.
" (Complutense University of Madrid)
Spatial heterogeneities in evolution problems

. We analyze the effect of varying coefficients in a general class of semilinear el-
liptic boundary value problems of subhnear and superlinear type. As a consequence
of our analysis it follows the necesity of mtroducmg a new class of generahzed so-
lutions, which are not distributional, to describe the asymptotlcs of the positive



248

solutions of a general class of sublinear problems with vanishing coeflicients. Those
solutions are referred to as METASOLUTIONS in the specialized literature. Then,
we analyze a general class of indefinite superlinear problems characterizing whether
or not the problem possesses a stable positive solution and showing the uniqueness
of the stable solution when it exists. The uniqueness result is very striking as there
are models exhibiting an arbitrarily large number of positive solutions, as an effect
of the spatial inhomogeneities of the problem.
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Mailybaev A.A.
(Moscow State University)

Geometry of boundaries of stability domains
for periodic systems

We consider a linear periodic system governed by the equation
= Gt)s, (+)

where z is a real vector of dimension m; G(t} is a real matrix of dimension m x m
continuously depending on time ¢ with a peried T, G(t) = G(t+T); dot represents
the derivative with respect to ¢. It is assumed that the matrix G(t,p) and the
period T'(p) smoothly depend on a vector two or three parameters p. Stability
condition for the system (*) determines the stability and instability domains in
the parameter space. It is well know that the boundary of the stability domain
can have singularities, the nonsiooth points, which affect physical properties of
the system and lead to computational difficulties. The classification of all generic
(typical) singularities of stability boundaries for linear periodic systems of general
form is given, and the local form of the stability domain is determined up to
a smooth change of parameters. The classification is carried out with the use
of methods of versal deformation theory. Explicit formulae for perturbations of
simple and multiple multiplies, which determine regular and singular points of
the stability boundary, are derived using perturbation theory for eigenvalues and
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formulae for derivatives of the monodromy mairix with respect to parameters.
The forinulae describing sensitivities of multipliers to the perturbations of the
parameter vector p allow determining the stability domain in the vicinity of a
boundary point. Explicit first order approximations of the stability domain near
regular and all types of typical singular boundary points are given. The formulae
for the approximations use only information on the system at the boundary point
under consideration, which is usually available from the stability analysis at this
point. This property is especially useful for numerical analysis, since together with
calculation of the stability boundary point we get the local information on the
stability domain both in the regular and singular cases. The suggested approach
is general and can be useful for the analysis of nongeneric singularities appearing
in systems with symmetries as well as in the case of four or more parameters.
As an example, vibrations of a tube consisting of two equal parts and conveying
pulsating fluid are studied. The parts of the tube are connected by an elastic hinge
with the stiffness coefficient ¢. The left side of the tube is attached to the wall by
an elastic hinge; the right end of the tube is free. Local analysis of the stability
boundary of the straight equilibrium of the tube is performed in the space of three
parameters p = (4, w, V'), where § and w are dimensionless amplitude frequency
of pulsations, V is the mean velocity of the fluid. Using the obtained formulae
we found a linear approximation of the stability domain near the smooth point
of the boundary. Then it is shown that the stability boundary has a singularity
“dihedral angle”. Linear approximation of the stability domain in the vicinity of
the singular boundary point is found. Numerical calculations confirm the obtained
resulis and show that the computational time spent for finding the approximation
is considerably smaller than the time needed for the numerical stability analysis
using Floquet method. This work was done together with Alexander P. Seyranian
and was supported by the Russian Foundation for Basic Research, grant RFFI
99-01-39129.

Malamud M. M.
(Donetsk National University)

Deficiency indices and selfadjointness
of Hamiltonian systems

The purpose of this talk is to investigate the formal deficiency indices Ny (I)
of a symmetric first order system

(1) Jf'+Bf =Hf

on an interval I, where ] = R or [ = Ry. Here J,B,H are n X n matrix val-
ued functions and the Hamiltonian # > 0 may be singular even everywhere. We
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obtain two results for such a system to have minimal numbers M1 (R) = 0 (resp.
Ni(Ry) = n) and a criterion for their maximality A1 (R4) = 2n. Some conditions
for a canonical system to have intermediate numbers N1 (R4) are presented, too. '
We also obtain a generalization of the well-known Titchmarsh—-Sears theorem for
second order n» X » matrix Sturm-Liouville type equations

@) Pr=—p(A@) L + Q) + @@L + Ry = Uiy,

where A,Q, R, € L},.(R) and A(z) is positive definite for all z € R and #(z} >
0. In order to present the corresponding statement we put

max(L, |A(z)"?3(z) 7)), det(A(z)?(z)) #0,
(3) e(z) = .

oo, otherwise.
Theorem. Let Pyy=Hy (P_y= )\?iy) be the equation of the form (2) considered
on R4(R-) with A(z) being positive definite for z € R (R-), # > 0 and ¢(z) be
defined by (3). Suppose also that V := R— Q" AQ > —q¥ where ¢ > 6 > 0 and

) 1 _ L] v 1
[ wammte== (. @@

Moreover, assume that one of the following two conditions is satisfied: ( 1) g~V2
is absolutely continuous and | £¢~(z)|e(z) K C1  for =z €R4(R-); (2) ¢(z)
is monotone increasing (monotone decreasing). Then Ne(Py) = n (Ne(P-) =
n). Moreover, Nu(P) = 0 if Py satisfy the above assumptions. Our criterion
generalizes results due to Lidskii {1] (and coincides with it for A = # = [ and
@ =0) and Krein 2] (n =1, @ =0,A=1 and R 2> 0) and may be considered as
an essential (in our opmlon) generalization of the well—known Titchmarsh-Sears
theorem. Results on selfadjointness of second order elliptic differential equations
are presented too. The results are obtained jointly with M. Lesch (Koeln)(see {3]).
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Maltsev A.Ya.
(L.D.Landau Institute for Theoretical Physics)

The averaging of non-local Hamiltonian structures
in Whitham’s method

‘We consider the m-phase Whitham’s averaging method and propose the pro-
cedure of ”averaging” of ”weakly-nonlocal” Hamiltonian structures having the
form :

Jij = Z BE(‘P,S”:: .. )3:' + z eklszk)(‘Pa Ly .)5-18&)(@, Py .- ')

k30 S k20

The procedure is based on the existence of a sufficient number of local commuting
integrals of the system and gives the Poisson bracket. of Ferapontov type

I = ¢ (U)ox + BRI} + 3 eutSti (UIE 078t (U)U
, k20

for the Wbltham s system. The method can be considered as the generalization of
the Dubrovm—Novrkov procedure for the local field-theoretical brackets.
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Malyuga V.S.
(Institute of Hydromechanics, National Academy of Sciences of Ukraine)

Stokes problem in a three-faced corner

The flow in a trihedral corner induced by a non-zero velocity distribution
over one of the corner’s sides is considered in the Stokes approximation. A similar
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problem in a slightly different geometry was studied in [1}. An algorithm of solution
developed in the present study is based on the method of superposition. The
velocity and pressure fields are presented as sums of three vector and scalar fields,
respectively,

3 3
U=r" D ul(e®, ¢),  P=rt 000, 4@, (o)

i=1 i=1

where (7, 8¢, ¢(i)), ¢ = 1,2,3 are three spherical coordinate systems with a
common origin at the corner’s vertex. These coordinate systems are chosen in such
a way that i-th corner’s wall occupies the domain 0 < r < oo, 8%) = w/2,0 <
o < a;, i =1,2,3 in a corresponding coordinate system. It is not necessary for
the corner to be a canonical domain. Hence the developed approach may be applied
to a more general class of the trihedral corners. However in what follows we restrict
our consideration to the corner of a cubic cavity. The intermediate mathematical
treatments and the final representation of the solution are considerably simplified
" in this case. The functions p!¥) are surface spherical harmonics, whereas u(¥) are
expressed via three surface spherical harmonics by the Lamb’s general solution.
Choosing the spherical harmonics in the form of Fourier series with respect to ¢{},
one can present the velocity as follows

[+ [5+]
uf) = 3 ¢8@W) sin(2me®), ull), = 3 s@(8@) sin(2me!),

[+)
uly = COP cos o) + 3 t(09) cos(2me™),

m=1

where q,(,';), ss,';), tg,) are expressed via Legendre associated functions of the first
kind. Satisfaction of the boundary conditions leads to a triple infinite system of
linear algebraic equations for the unknown coefficients of the solution. Asymptotic
behaviour of the unknowns was studied by means of the Mellin transformation [2].
it allows one to show that the local behaviour of the velocity field near the corner’s
edges, where a discontinuity of the boundary conditions is assumed, coincides with
the Goodier-Taylor solution for a two-dimensional wedge, while near the quiet edge
the Moffatt-type eddies exist. The first integral of motion is found for the flows
presented by (0.1) that reduces the number of independent coordinates. If the
velocity field is a linear combination of (0.1) for various n, the flow becomes essen-
tially three-dimensional that results in a complicated behaviour of the streamiines.
As an example, rotation of a corner’s side about a centre displaced from the vertex
is considered.
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Malyutin K.G.
Star Function of Type Baernstein for the Half-Plane

Let u(z) be d-subharmeonic {§.s.h.) in the closed disk C(R) : |z| £ R. Baern-
stein [1] defined a function 4*(2) s.h. in the half-disk C*(R): |z| < B, Imz > 0,

u*(z) = s%pL u (re™) dw+ 22N~ (7),

where the supremum is taken over Borel sets E in (—m,7) whose measure is 24.
Then Baernstein’s Fundamental Theorem asserts that »*(z) is s.h. in C*(R) and
continuous in C+(R)\0. We shall consider 4.s.h. functions in the half-disk. Suppose
that u(z) is 8.s.h. in the half-disk C*(R) : |z| < R,Imz > 0. We associate with
u(z) a function u*(z) s.h. in the fourth-disk D*(R) : |z| € R, nf4 € arg 2 < 37/4.
For z € D*(R), z = re'®, we define

u*(z) = sup -::E/u (re™) sinwdw + N~ (7}, | (1)

where the supremum is taken over Borel sets E in (0, 7) such that

[ . 4 T
/Esmgbdqb_ ;(”‘Z) .
Theorem 1 (The theorem on the ster function). Suppose that u(z) is the

function of class J6(R) and that u*(z) is defined by (1). Then |z|u*(2) is continuous
in D*(R}\0 and s.h. in the interior of D* (R). Let g(z) be areal-valued measurable
function on [0, 7]. The distribution function of g is the function m(t) defined to be
the measure |E(t)| of the subset E(t) of [0, 7], where g(z) sinz > {. We now define
for nf4 < 8K 3n/4

g (@) = snép /E g(z)sinz dz, (2)

where the supremum is taken over Borel sets £ in (0, 7) also as in (1). We denote by
®(y) a convex non-decreasing function of y. The relation between convex means
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and the star function arises from the following theorem. Theorem 2. If g,k €
L[0, 7] then.the following three statements are equivalent: (a) for every & we
have

/H @ (g(z)sinz) dz < /ﬂ @ (h(z)sinz) ;
o 0
(b) for every t € (—00,00)

T + T +
/ [g(:t:) sinz — t] dz < / [h(z) sing — t] dz;
0 ]
{c) o 3
SO <O (% <0< {-) .
The details will be given at the talk. |

REFERENCES
{1] A.Baernstein, Proof of Edrei’s conjecture, Proc. London Math. Soc., 26,
No 3(1973), 418-434. .
[2] W K.Hayman, Subharmonic Functions. 2, London, Academic Press, 1989.

Mamedov Kh.R.
(Baku, Azerbadzhain)
Obratnay zadacha teorii rasseyania dlya
uravneniya Shturma-Liuvillya so spectralniym
parametrom v granichniyx usloviyax®

In this work we develop the right and the inverse problem of the theory
of dispersion on half an axis for the Shturm-Liouville equation with the spectral
parameter in the boundary conditions. We have learned about the spectrum. We
have derived the formula for eigenfunction expansion and the Levinson formula.
‘We have also derived the basic equation and solved the inverse problem using the
dispersion data.
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- Mamedov Yu. Al
(Baku State University)
On Sturm-Liouville problem for the equation
with the complex-valued density

Let’s consider the problem on eigenvalues (e.v.)
o = Xa¥(z)y=0, 0<z<1, W

y(0) =0, =0, . . @

wheré a(z) = a1(z) + ias(z), az(z) # 0.'Tt must be noted, that we don’t know
at least one result (ex.[1]) on distribution of e.v. of such problem (1), (2), when
arg a(z) # const. Namely this case is considered hiere. We suppose the fulfillment
of conditions:

1°. Function a(z) is contraction of integer function on the segment [0,1};

2. ay(z) > 0, af(z)az(z) — ar{z)ay(z) > 0, when z € [0, 1]. We introduce the set
of complex-valued'z and: X determined by equalities -

1 =
S PR " :
M={z=z+izs: Im[ al§)df - [ al§)dE =0,

Sp={Ax (~1/=1Rela(0) > 0, (—1) ReAa(1) >.o} | G '=:1,2). o

it is easy to prove that M N [0,1] = {0;1}. We suppose . the fulfillment of the
candi.ti\on: v :vf . '  ' "‘, - - R : .V \ u ‘:’ i , :
30, .Let the set M contain connected component-the line I with the ends at the
points z = 0 and z = 1 such that on it and on domain which is bounded by curve
10 [0; 1] there is no turn points of equation (1) (i.e. the points on which a{z) is
tern to zero). Let’s-denote.that the example of fanction a(z), satisfied conditions
19-3%is
g st gfz) =2+, Imb>0,120+1]> 1,

-méi'eover .fof'iﬁ_éténée Whélf‘l‘l.‘Reb = -1 /2'rthev Equétion of line  has the following
‘explicit form: : ’

g = -Imb-!-.\/;%—zl+(fmb)2, 0z 1.
We has to prove ‘ » o '

Theorem. Let conditions 1° —3° hold. Then the problem (1), (2) have countable
set e.v. AZ, where numbers Ay which except of may be finite number of which lies
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in sectors S; (f = 1,2) and allows asymptotic representation

A = [ /1 a(z‘)dz] ) wr? [1 +0 (-21;)] (v - *c0).

(1]
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Manfurov V.0O.
On Cohomologies of Homogeneous Spaces and Relevant
Integer Equations

It is known that su(n) can be embedded in su(N) by using some represen-
tation R, where N = dimR. Thus the most important question for the study of
the quotient homogeneous space homology ring is whether such an embedding is
entirely homologic to zero or not. For the case of symmetric power of su{n) these
embeddings are entirely non-homolegic to zero, thus the Poicaré polynomial of the
homogeneous space is just the fraction of the two polynomials of su{N) and su(n).
The same question for the case of exterior powers of su(n) representation was first
studied by O.V.Manturov [1, 2). 1t is proved in [1], that p-th exterior power for
su(n) gives non—trivial homological map in the generator of degree 25 — 1 iff the
following equation holds:

-1 _ n(p— 1)3—1 + C,f(p - 2)3—1 don= 0’ (1)

In [2] this equation is solved for p = 3. It is easy to see, that the case p = n
(dimensional 1) and p = 2 (symplectic or orthogonal representation) gives us
solutions for this equation for many s. The main result of the talk is the following

Theorem 1 For p=2' the number of solutions for (1) is finite.

In particular, for p = 4 there exists only one non—trivial (not belonging to the two
series described above) solution: s = 6,2 = 12.
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Manuilov V.M.
{Moscow State University)

On operator homotopies

Let b € A is a selfadjoint, u € A is 2 unitary in some nice C™-algebra
A (e.g. unitalized compacts K*) and let the norm of their commutator [u, k] is
small enough. We show that one can then connect u with the unity by a unitary
path u(t) so that the norm of [u{t), h] would be also small enough along this
path. The idea of the proof uses a canonical form for a pair of almost commuting
matrices. Let H(A) denote the space of selfadjoint elements of A and let G(4)

denote the quotient metric space of classes of approximate unitary equivalence of
H(A). The above described homotopy makes it possible to 1ift continuous loops in
G(A) to continuous loops in H(A). This result, being trivial for 4 = K*, is less
trivial for more complicated C*-algebras, e.g. for type II; factors. Similar technique
helps to give a construction to solve the following problem. Let u,v € Kt be two
unitary matrices that almost commute. Then there exist two paths u(t), v(t) in the
unitary group of K*, ¢ € [0, c0), starting at u and v and such that the commutator
[u(t), v(¢)] is small enough for all ¢ and vanishes at infinity. This construction shows
that any matrix almost representation of a finitely presented abelian group can be
extended to an asymptotic representation

Marchuk N.G.
Dirac equation in Riemannian space



258

Markushevich D.G.
Some agebro-geometric integrable systems
versus classical ones

Abstract. Several classical integrable systems are linearized on families of
Jacobians of genus-2 curves: Kowalevski top, Jacobi problem, Neumann system,
periodic Toda with three particles. It turns out that all these systems are related
to certain singular K3 surfaces which are double covers of the projective plane.
Namely, the genus-2 curves under consideration move in the K3 surface and are
just the inverse images of lines in the plane. A general explanation of this phe-
nomenon is provided, and under some nor-degeneracy conditions, any Lagrangian
fibration of Jacobians of genus 2 curves is of this form. A local result of this type
was obtained by Hurtubise-Markman. A question of description of one integrable
system by different families of genus-2 curves is discussed, and the example of
the restricted Kowalevski top (that. is, the orbit (1,g)=0, where 1 is the angular
momentum of the top, g the constant gravity vector) is worked out in detail. It
is shown that an infinity of different families of genus-2 curves can be obtained
from Kowalevski’s by applying Richelot’s transformations. Among these families,
there is one coming from the Reyman-Semenov-Tian-Shansky Lax representation
of the top. Some generalizations to families of Prym surfaces and examples of more
abstract algebro-geometric systems are described, namely, those corresponding to
symmetric powers of K3 surfaces, moduli of sheaves and families of intermediate
Jacobians of threefolds.

Markush Ivan Ivanovich
Development of Asymptotic Methods in the Theory of
Ordinary Linear Singularly Perturbed Differential
Equations

Marusié-Paloka E.,
(University of Zagreb)
Newtonian Flow Through a Network of Thin Pipes

We study the fluid flow through a network of intersected thin pipes with
prescribed pressure at their ends. Pipes are either thin or long and the ratio be-
tween the length and the cross-section, denoted as usual by ¢, is considered as
the smal 1 parameter. It is well known that the stationary Navier-Stokes system
describing the viscous flow in straight pipes with impermeable walls governed by
the prescribed pressure drop has a solution in the form of the Poiseuille flow with



259

perfectly parabolic velocity pr ofile. In real-life situations, often two (or several)
pipes are interconnected (watering systems, water-works, systein of blood vessels).
Also, pipes can be curved and constricted (particularly in case of blood vessels).
In such situation the flow is not so simple any more and the velocity profile is not
necessarily parabolic. We study the above situations using the'asymptotic analysis
with respect'to . Some numerical illustrations are given.

AMS subject classification. 35B25, 76D30, 76D05
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Matrosov Viadimir Mefodievich
Methods of Nonlinear dynamical analysis and its
applications.

- Matsumoto Waichiro.
(Department of Applied Mathematics and Infermatics,
Faculty of Science and Technology, Ryukoku University)

On the Strongly Hyperbolic Systems
Introduction. The systematic study of the Cauchy problem was started by
1. G. Petrovsky [19], [20]. When a scalar and higher order operator has constant
coefficients, its characteristic roots must be simple for the strong hyperbolicity.
On the other hand, O. A. Oleinik’s results in [18] include the following example
for which the Canchy problem is well-posed in C™ class:

Example 2
92 ok 92 k10 :
(5:—) -t (-a;) +8(t, z)t 5;-}- e(t, =) , (z€R, keZy). (0.1)

In case of k = 1, the lower order part has no restriction, that is, ()% — t%(£)?
is strongly hyperbolic even if it has the double characteristic at ¢ = 0. After this
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paper, the study on the strong hyperbolicity of scalar equations made hardly and
obtained the necessary and sufficient condition. { See, V. Ja. Ivrii and Petkov [5],
V. Ja Ivrii[4], L. Hérmander [3], N. Iwasaki [6], [7], {8], etc. )

On the other hand, for first order systems, K. O. Friedrichs [2] showed that
if the principal part is symmetric, it is strongly hyperbolic. Therefore, we hope
that if the principal part of a system is diagonalizable, it is strongly hyperbolic.
However, 1. G. Petrovsky [20] gave a counter example: there is a system with
constant coefficients and its principal part is pointwisely diagonalizable bui it is
not strongly hyperbolic. The uniform estimate of a diagonalizer is reguired. K.
Kasahara and M. Yamagnti [9] characterized the strong hyperbolicity of first order
systems with constant coefficients.

In case of first order systems with variable coefﬁc:ents the study of the strong
hyperbolicity has been made many mathematicians, for example, K. Kajitani [10],
T. Nishitani ( many papers ), etc. Unfortunately, we have not yet arrive at the
perfect characterization. Here, assuming every coefficient depends only on the time
variable ¢, we give a necessary and sufficient condition. The resulis have been
announced partially in [15] by H.Yamahara and me and in [12].

Definition and Results

We consider the following Cauchy problem:

(Pi(t, D¢, D;) — B(t,z))u = Dyu — Y ov, Ai(t)Do,u — B(t, 2)u = f(t,z)

uls=e, = uolz)

(0.2)

where, A;i(t) (1< i< £) and B{t, z:) are NxN ma.tnces of C*-class, u, u, and f
are vectors of dimension N, D; = ?—57 and D; = 7—-5—

Definition 1 (C* well-posedness )

(1) We say that (0.2) is C* well-posed at (t,,2,) in @ C RI* when there ezists
a neighborhood w of (t,,%,) where a solution u in C*®(w) of (0.2) exists for every
F(t,z) € C®(w) and every u, € C°(w:,) and it is unique in C*°(w,) for arbitrary
positive c. Here, we =w N {|t —t,] < )} and wy, =w N {t =1,}.

(2} When (0.2} is C™ well-posed at every (to,,) in 2, we say that (0.2) is C*
well-posed in 1.

‘We can easily obtain an a priori estimate.

Proposition 1 { A priori estimate )
If the Cauchy problem (0.2) is C* well-posed at (i,,%,), for each M and
each positive ¢, there ezist M' and positive C such that

luiM,wc < C(l"oIM',wc + |f|M’,w¢,) s (03)
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where |u|pw = Ljajgm, aez.y 1+ 03K n)ew () ult, 2)]-

Definition 2 ( Strong hyperbolicity )
We say that P, is a strongly hyperbolic system when the Cauchy problem for
P, — B is C™ well-posed in Q for arbitrary B in My(C™(£2)}.

We fix w in §¢! and put £ = pw for positive p. We set Py (¢, D¢, p) = Pift, D, po).
We count the order of Pi(t, D;, p) by the order of D; plus the degree of p.

Lemma 1 There ezist To > to, d € N, d, € Zy, {m;}i_, e N? (2;1!:1 m; =N ),
{pi}Yimgys1 € N4%, {di}g, 41 €NV, {“:k}:’;z ENY, Aji (do 4174,
i 2 0 ) and Noft) = Noo + iNoy + t2Noz + --- € GL{tN; C{[t]]) such that, in
anft, <t <D},

No—lpl(t, D, p)No = ®1gj€de(t, Dy, p) mod 0(i°°)p

Ini(Di— %) (17 <do Casel),
Pi(t, Dy, p) =
¢ De.r) I,,.,(Dt — Xi(2)p) + (1731 Ajo + 1Pi Ajy + O(tPi+1))p
(d,-!-l < j €d Case2),
(0.4)

where Aj(t) = S og Ajit’ ((in Case 2, 3 ;- is replaced to Bt L AEMGE

?

0 1

Ajo = @igrga;J (jx), J(n) = . : axn and Aj; € My, (C).

0
When the coefficients of Py are real analytic, A;(t) converges and O(t*®) = 0.
Standing on Lemma 1 and Proposition 1, we obtain the following.

Proposition 2 If P, is strongly hyperbolic, all A;; are real and Ajo and A; in
Case 2 satisfy

Ajo(41)* 450=0, (0Sk<m;). (0.5)

Allowing the smgularlty L on the lower order term, we can reduce Case 2 to the
form with new p; and d greater than the original ones under the conditions (0.5).
Further, we can establish a similar proposition as Proposition 2 corresponding to
the operator with the singularity 1 on the lower order term.
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Definition 3 ( Diagonal Fuchsian ) A diagonal Fuchsian system means an oper-
ator P(t,z, Dy, pw) with a diagonal first order part of real symbol modulo O(1%)p
and lower order term with the singularity 1.

Theorem 1 If P(t,D:,D;) is strongly hyperbolic, for each w in S§t1,
P(t,z, D;,pw) = Pi(t, Dy, pw) — B(t,z) is reduced to a diagonal Fuchsian by a
similar transformation by a matriz N(t) in My(C[[]]) N GL(N; C[{t]}[t~?)) for ar-
bitrary B(t,z) in My(C™()). When all coefficients of Pi(t, Dy, D) are real an-
alytic, N(t) and N(t)~* converge and O(t*)p = 0.

Theorem 2 If the dimension of z-space is one and Py (t, Dy, D) has real analytic
coefficients, the converse of Theorem 1 holds good.

We also discuss the case of general £.
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s TS . (Moscow State University)

Jump decay problem for Hamilton-Jacobi equation
in non-selfmmﬂar case

An mltlal condition j jump deca.y problem is considered for the general nonlin-
ear first-order PDE: F(z,y,u,p,¢) = 0 in the half-plane y > 0, p = u,, ¢ = uy, the
Hamilton-Jacobi equation g = H(z,?, u,p) being a particular case (with substitu-
tion g — t). This is a fully nonlineat analog of the Riemann problem [1]'in terms
of the weak waves. The derivative of the initial value function w(z) = u(z,0) is
supposed to have a jump of the first kind at the origin*©Q and the finite left and
right limits denoted by p* and p~. Consider the function g = g(p) of the variable
p running in the segment [p",p'*‘], generated by the PDE at the origin. For the
Hamilton-Jacobi case one has g(p) = H(0,0,w(0),p). Consider the line L which
convexifies the region g > g(p) of the (p, g)-plane (the epi{g(p)}). Suppose that L
‘consists ‘of the finite number of straight line segments and the convex arcs of the
graph of the function g(p). Suppose that these segments are simple, i.e. do not
'ha,ve common points with the graph of g(p) except for their ends. The segments
tangent to the graph at the ends will be called tangent, those tangent to the graph
at only one end are semitangent. Consider 2l the convex subarcs of the line I and
put in corzrespondence to each arc a family of solutions of the characteristic system
[2] emanating from the origin with the initial conditions in p ranging between the
p-coordinates of an arc’s ends. Such a family is called an integral funnel. In the
(=, v)-plane an integral funnel forms a curvilinear finite angle at the origin O. The
right (left) family of the mgufar characteristics is called the (=, y)—pro_]ectlon of
the set, of the solutions of the characteristic system starting at the semiaxis'z > 0
(z < 0). Left and right families and integral funnels may intetsect each other or
leave blank curvilinear angles. The following propos:tlon related to the character
of the discontmulty lines of the first derivatives of the generalized viscosity solution
to.the PDE under consideration (i.e. wea.k shack waves) represents the main result
of the present paper. ai

Proposition. The jump decay problem ha.s t.he unique solution in some
neighborhood of the origin. The solution involves exactly M smooth lines of dis-
continuity of the derivatives (weak shock waves}, where M is the number of simple
segments arising in the above mentioned convexification.. The shock waves can be

" constructed as the solutions of the certain ODE systems (singular characteristics
[3]) whose right hand sides are defined by: a) the left and right families of regular
chavacteristics or integral funnels (so-called equivocal lines); b) the Hamiltonian
only (so-called focal lines), or as the solutions of certain algebraic equations de-
fined by the left and right families of regular characteristics or integral funnels
(so-called dispersal lines). An effective algorithm is developed to determine one
of the aforementioned types of the shock waves to which the given shock wave
belongs. The algorithm uses the signs. of the certain functions of two variables
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A, p"), A%(p',p"), for which the explicit expressions are obtained in terms of
the Hamiltonian and its derivatives (here p/,p" correspond to the ends of seg-
ments). All statements given above for the Hamilton-Jacobi case (for the sake of
simplicity) are true for the general equation F = 0 with appropriate modification.
For the definition of equivocal, focal and dispersal lines and singular (generalized)
characteristics see [3].
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Mel'ayk T. A.
. (Kyiv University)
Low and high frequency convergence of the spectrum
of some perturbed operator

An abstract scheme of,investigation of the asymptotic behaviour of eigen-
values and eigenvectors of some family of self-adjoint positive compact operators
{A: : £ > 0} acting in a Hilbert space #, will be presented. This scheme general-
izes the procedure of justification of the asymptotic behaviour of eigenvalues and
eigenvectors of boundary value problems in thick junctions of different types [1-6).
Such junctions are the union of some domain (junction’s body) and a large number
of e-periodically situated thin domains along some manifold on the boundary of
Jjunction’s body. These problems have specific difficulties in the asymptotic inves-
tigation: the absence of extension operators that would be bounded uniformly in
€ in the Sobolev space W, the loss of compactness in the limit passage as € — 0,
as a result the limiting operator Ag : Ho ~ Ho is noncompact and its spectrum
has both the poinis of the discrete spectrum and the essential one. Gur scheme
with respect to his ideology is close to the scheme in [8, Sec. I11.1}, but there exist
principal distinctions between these schemes. Some of them are the following ones.
Firstly, the limiting operator Ay in {8] is compact. Secondly, the family of operator
{Ac} is uniformly compact. The facts of this condition for spectral problems in
domains depending on a small parameter € mean that there exists an extension
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operator in a domain, which is independent of €, and this operator is bounded
uniformly with respect to ¢ in the corresponding Sobolev norm. The uniformly
boundedness of extension operators is the necessary condition in the statement
of many problems. Such extension operators exist, for example, for domains that
are e—periodically perforated by holes with diameter of order . But for thick
junctions, as was mentioned above, there exist no extension operators that are
bounded uniformly in . We study the low and high frequency convergence of the
spectrum of the operator A.. The asymptotic estimates of the differences between
eigenvalues of A and points of the spectrum o (Ao} (both of the discrete spectrum
and essential one) are obtained. The asymptotic estimates for eigenvectors of A,
are also proved. This scheme can apply to other perturbed spectral problems that
satisfy conditions of the scheme. Some results have already published in [7].
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Zhevandrov P., Merzon A.
(Institute of Physics and Mathematics, University of Michoacan)

Asymptotics of eigenfunctions for the
Schrodinger equation with a shallow potential well

it is well-known that the Schrodinger equation (—~A 4+ U)y = Ev in the case
when U describes a shallow potential well (i.e., U = eV(z), V(z) € C3°(R™),
€ — 0) has exactly one eigenvalue By = <%, B € R, below the essential spectrum
[0, 00) in the case when [, V(z)dz < 0 and the dimension n of the configuration
space is 1 or 2. This was established for » = 1 and in the radially symmetric
case for n = 2 already in the famous textbook of Landau&Lifshitz [1] and later
was demonstrated in the general case in dimension 2 by Simon [2]. The methods
used by those anthors are quite different and consist, in brief, in the following.
Landau&Lifshitz construct the asymptotics of the eigenfunction in the domains
where V = 0 and V # 0 separately and then glue then together; thus, the asymp-
totics of the eigenfunction is nonuniform and the method per se is applicable only
in the radially symmetric case for n = 2. The asymptotics of the eigenvalues is ob-
tained from the gluing conditions. On the other hand, Simon reduces the problem
to an equation for the eigenvalues (secular equation) which he solves by means of
a Taylor expansion using the implicit function theorem; thus in his approach the
asymptotics of the eigenfunction does not appear at all. Moreover, Simon’s method
is by no means trivial because it uses, for example, the theory of nuclear operators.
Qur goal here is to construct a uniform asymptotics of the eigenfunction in this
situation assuming that ||¥fj = O(1) as € — 0 (the norm is that of Ly(R)). It
turns out that this construction is completely elementary when one passes to the
momentum representation. More exactly, we prove the following theorem. Denote
V(p) = 2m)"/2 [, e”P*V (z)dz.
Theorem. (i) n = 1. 1) Let g V(z)dz < 0. Then ¢ = g2 I e‘l"‘p%‘j—l_([%dp,
where f = -—e\/— V(0), Aolp) = V(p), is the asymptotzcs of the eigenfunction
belonging to the eigenvalue E = —f3(1+0(e)), i.e. | — vol| = o(1), Ihbo" = 0(1)
as € = 0; 2) Let fp V(z)dz = 0. Then ¢p = fo [5 erz A—"(?-L"'—“%ﬂ’)p—ﬂlp, where
fo =€ \/g_fn L‘ﬁt;)-'-dt, Ao(p) = (p), Ay(p) is a function from the Schwartz

space whose explicit form we do not give here for lack of space, is the asymptotics
of the eigenfunction belonging to the eigenvalue E = —f3(1 + O(¢)) in the above

sense. (ii) n = 2. Let [, V(z)dz < 0. Then o = fo Jpa €77 —,é%l—dp, where By =
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exp(1/(eV(0)), Ao(p) = V(p), is the asymptotics of the eigenfunction belonging to
the eigenvalue E = —f%(c + Ol¢)), where c is 2 nonvanishing constant calculated
in terms of V, in the above sense.

Remarks 1. A result analogous to (i) 2) is valid also in the case n = 9,
fR? V(z)dz = 0; we do not give it here for the lack of space. 2. It is possible
to construct corrections of any order to the asymptotic eigenfunction . In fact,
the proof of the theorem consists exactly in an explicit construction of these cor-
rections using the same representation for ¥ with Ao and By changed to the
corresponding expansions. The theorem on closeness of formal asymptotics to the
exact solution [3] provides the final step of the proof. 3. The (strange at the first
sight) presence of the correction €4; in the formula for 9o in the case (i) 2) is due
to the fact that A9(0) = 0, A;(0) = 1; and thus the Ly-norm of the ”correction”
turns out to be even greater than that of the leading term.
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Mikhailets V.A.
(Institute of Mathematics, Kieu)

On the spectrum of a positive elliptic operator

Let Q be a bounded domain in R™ n > 1, with a smooth boundary, and
let A(z, D) be a strongly elliptic on Q formal differential operator of order 2m
with smooth coefficients. We assume that A(z, D) = A*(z, D) and the minimal

o
operator Amin > 0 in the Hilbert space Lo(€2). Then D(Amin) = H?*™(Q) and the
maximal operator Amax = Apy, acts as the mapping « — A(z, D)u on the domain

D(Amax) = {u € H&T(ﬂ) N Lz(ﬂ) : A(-’B, D)u € Lz(Q) }

This domain depends on coefficients of A(z, D) and contains functions with sin-
gularities near the boundary. The singularities are such that

D{Amex) € HYQ),  Ye>0.

Let A be a positive self-adjoint extension of the symmetric operator Amin. In the
general case, the spectrum of A is not discrete. If the operator A is generated by
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regular boundary conditions, then the spectrum of A is discrete and the corre-
sponding counting function of the eigenvalues satisfies the asymptotic formula

N{X, A) = w2 . o(A-02my - )\ 5 oo, (0.1)

with the standard Weyl coefficient w = w(4',Q) > 0.
Theorem. Under the assumption

DA} Cc H*(Q),  s€(0,2m],

the following asymptotic formulas hold:

wA™ 2™ 4 O(A=1/%), 5 € (s9,2m],
N} A) =< =< xn/2m s = sgq,
O(A»—1)sy, s € (0, sg),

where the critical exponent sy = 2m(n — 1)/n.

These formulas are precise in the following sense: for any fixed §, A(z, D),
and s € (0, sp) U (s0,2m), we can not replace “0” with “o”. The case s = 2m has
been studied by many authors. In this case, the asymptotic formula is precise in a
different sense: under some additional assumptions on 2 and A(z, D), the operator
Ap with homogeneous Dirichlet boundary conditions has the second term of the
form wA=1/2m 4 £ 0, in the asymptotic formula for N (A, A).

Mikhaikin G.B.
(POMI St.Petersburg and the University of Utah)

Maximal real algebraic hypersurfaces

Consider non-singular real projective hypersurfaces of the same degree and
dimension. If we were to consider the complex case they would all be diffeomorphic
as smooth manifolds. However, over the real numbers, we have a finite number of
distinct diffeomorphism types. Among these types #ve may consider those which
have the highest possible total Zs-Betti number. It is known that there is a huge
number of diffeomorphism types which are maximal in this sense. Nevertheless it
turns out that most of them cannot be maximal with respect to the foric struc-
ture of the ambient projective (n -+ 1)-space or, stating this in another language,
with respect to (n + 2) distinct hyperplanes. (Recall that the projective n-space
minus (n + 1) coordinate hyperplanes is the algebraic torus (R*)?*+1.) In the talk
1 present the uniqueness theorem for diffeomorphism types of torically maximal
hypersurfaces of dimension 2 and a partial uniqueness resnlt in higher dimensions.
These results are higher-dimensional counterpart of the main theorem of [2]. The
main tool of the proof are amoebas of algebraic varieties introduced in {1}.
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Mikhlin Yu.V., Manucharyan G.V., Savenkova S.N.
(Kharkov Polytechnical Unwerszty}

Analytical construction of homoclinic orbits of"
two-and three-dimensional dynamical svstems

New approach for a construction of homoclinic trajectories (HT) of nonlin-
car dynamical systems is proposed here. Let a solution under consideration is a
function of some parameter (an amphtude or an energy of the | system etc) ‘At
small values of the’ parameter the sclutlon can be presented as’ power series of
the paramet.er whzle at large values, as power ‘series of inverse parameter. In or-
der to mvestxgate the solutlon at arbitrary pa.ra.meter values, PadeT approximants
(PA) are used. Comparmg it with reduced local expansions, one has a succession
of linear algebralc systems “for a determma.tlon of the PA coefficients.’A necces-
sary condition for a convergence of the PA succession is the following: normalized
determinants of the algebraic systems tend to zero. It is possible to adapt the con-
dition for obtaining some unknown parameter or an initial value. On the closed
HT a dynamical system behaves like a conservative one. It is proposed here a
potentiality condition along the HT; a corresponding line integral, wich coincides
with the Melnikov function; must be equal to zéro. The condition was used ear-
lier by author for a construction of closed trajectories in nonlinear n-DOF systems
close to conservative ones. HT of the nonlinear Schrodinger equation is considered.
The sought solution can be expressed in Taylor series. Substituting the reduced
series to”the line integral along. the HT aind integrating, we'construct then PA
which is an’ analytlcal continuation of the local expansion ad infinitum. A condi-
tion'at infinity givés us-an algebraic equation for computing the. HT amplitude
valiie. Quasi-Pade approximants (QPA) which contain exponential functions and
powers of unknowns, joins together local expansions and describes the closed HT.
The potentiality condition, convergence conditions and conditions at infinity give
us algebraic equations which permit to.obtain initial values of HT of the nonau-
tonomous Duffing equation, just as an amplitude of the:external action. There isa
good correspondence of the analytical solution and a checking numerical computa.-
tion. The- approach proposed here is. more exact than the generally a,ccepted one,
because it is not necessary to'use here a separatrix frajectory of the autonomous
Duffing equation. HT of the Lorenz system is analyzed too, Using the potentlal—
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ity condition along the HT with the help of reorganization to PA, one obtains
an algebraic equation for computing an initial value of HT. Condition of the real
value existence give us points.of two first bifurcations. Local expansions at zero
and infinity can be used for a construction of HT in the form of QPA.
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" Alain Miranville
‘ (Université de Poitiers, France)
Generahzatlons of the cahn-hilliard equatlon

" The Cahn-Hilliard equation is very important in materials science. It is a
conservation law which describes important qualitative behaviors of two-phase sys-
tems, namely the transport of atoms between unit cells. Although this equation is
physically sound, it should not, according to several authors, be regarded as basic
(for instance, it is not clear how the classical theory should be generalized in the
presence of pmcesses such as deformations, see [G]). Our aim is to present a more
general theory propesed by M. Gurtin and to discuss the mathematical problems
related to the models derived (boundary conditions, existence and uniqueness of
solutions, existence of finite dimensional attractors). In particular, we shall con-
sider models that take into account the working of internal microforces and the
deformations of the material.
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Mirzoev K.A.
(MATI, Moscow State University)
Priznaki neopredelennosti Jacobievych matric s
matrichnymi elementami (jointly with A.G.Kostyuchenko)

Maslov V.P., Mishchenko A.S8.
(Moscow)

Geometry of Lagrangian manifolds in thermodynamics

It is comsidered, that the classical thermodynamic properties of substance
are defined by relations connecting voluine, pressure, temperature, entropy and
energy of the given substance. Generally substance is characterized by some num-
ber of magnitudes, wh ich half is intensive, and half — by extensive magnitudes.
From this point of view pressure and temperature are considered as intemsive
magnitudes, and volume and entropy - extensive magnitudes. The modern point
of view consists that in a condition of a thermodynamic equilibrinm the substance
should be characterized by a point in the space R?"+1(p, q, ®), where coordinates
¢ = (41,92, . . .,9n) are intensive magnitudes, first two of which are pressure and
temperature (g3 = P, ¢2 = —T), and coordinate p1,ps,...,pa) are extensive
coordinates first two from which are volume and entropy (pn = V, p2 = 5).
First four coordinates (P, V,T,S) describe, so fo tell, variables of a mechanical
nature for homogeneous substances. generally follows to consider heterogeneous
(i.e. multicomponent) systems, and also variables not mechanical nature (for ex-
ample, electromagnetic properties). In any case, the space R**+1(p,q,®) is sup-
plied by a contact structure, i.e. differential 1-form w = d® — pdq, and the set
of thermodynamic equilibrium states of substance is represented by a submani-
fold L C R*t1(p,q,®), such that w = 0. Hence tha projection Ly C R*(p,q)
is a Lagrangian submanifold in symplectic space R*"(p,q) with the symplectic
form Q = dp A dq. Function ¥ is function of action on Lagrangian manifold Lo,
d® = pdg. For classical thermodynamics it coincides with a thermodynamic po-
tential (@ = E+ PV ~TS). By Gibbs ([1]) the energy E is a function of variables
(V,8), as, however, and all remaining thermodynamic magnitudes. It hence, that
Lagrangian manifold Lg bijectively is projected on a domain in the space R*(P, S),
i.e. the manifold L is defined by the graph of function £ = E(V,S). Implicitly
Gibbs actually assumed, that the surface E = E(V, S), being noncompact, its any
plane of support has by property, that touches a surface in each common point.
This condition ensures realization of the following statement: from minimization
thermodynamic potential at fixed P and T the positiveness of Hessian of func-
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tion E = E(V,5), Hess(v,5)E(V,S) > 0 follows. By Maslov ([3]) such condition
are called essential. Then in essential condition are fulfilled local thermodynamic
inequalities ([2]). Let’s consider function
dL(q)= min__ @(z),
(9) en (=)
under condition of existence of the minimum in question. Consider a symplectic
transformation ¢ of symplectic spaces

¢ : R*(p,q)— R™(P,Q)

and Lagrangian manifold T'y, C Ran{P, p, Q, q), which is the graph of transforma-
tions @. Let S - be function of action on Lagrangian manifold T, dS = PdQ—pdq.
Let’s assume, that manifold T, is uniquely projected on the space R?*(Q, q). Then
" function S can be understood as function of variables (@, ¢), S = S(@,9): In this
case the function S is called genérating function of transformation ¢. Symplectic
transformation naturally extends to contact transformation of contact spaces

¢ : R+ (p,q,8)— R (P, Q, ).
Let L, = ¢{L)%nd &L1(Q) be defined similar to manifold L;.

Theorem 1. At an approaching choice of boundary conditions on manifold
L and transformation ¢ the following formula takes place - :

#1(Q) = min (S(@,9) + $(0)) .

Similar, if p1,92,...,9n is a sequence of symplectic transformations which admit
generating functions

51(Q,91), S2(91,92), - - -» S (=1, @),
and Ly = $182 -+ @n(L), then

#(Q) = min_ (51(Q,0) + S2(a1, ) + -+ 5ala-1,90) + $400))

15

The choice of boundary conditions should supply existence of a minimum at
an evalnation of ®%*. The theorem 1 supplies the map of insignificant points of
manifold L into insignificant points of manifold L, (compare [3]). the Lagrangian

L.

Theorem 2. Assume that the Lagrangiar L(q,§) satisfies the conditions that
the indez of inertia of Hess, 4L equals to (n,n). Let 5(Q,q,t) be the generaling
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function of tmnsformatzon induced by Lagrangian L. Assume that there is a min-
imum

&(Q) = min (S(Q,9) + (s)) .

Then
Hessq®™*(Q) < 0.

The theorem 2 ensures realization local thermodynamlc inequalities in essen-
tial points of Lagrange manifold L;.

Theorem 3. Let L be a Lagrange manifold which uniquely projected onto
p~coordinates. Then at an approaching cheoice of boundary conditions in essential
points the local thermodynamic inequalities are fulfilled, i.e.

Hess;®"(q) < 0.

As approaching boundary conditions for the theorem 3 the following condition
can serve:
Condition 1. The function E(p), dE = —gdp, E = ®*(p) — pq is locally convez
upwards in all domain of definition G(p) C R™(p) behind elimination of some
compact set K C G(p). The condition 1 is fuifilled for the majority of modelling
examples of gases (ideal gas, Van der Waals gas , degenerated Fermi gas). The
theorems 1 and 2 allow to coustruct such Lagrangian manifolds, which are not
projected uniquely on p - coordinate, but in all essential points satisfie to local
thermodynamic inegualities.
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Mityagin B.
(Okio State University, Columbus)
Spectral gaps of periodic Schroedinger operator
and smoothness of its potential

The rate of decay of instability zones (spectral gaps) of Schroedinger opera-
tor with periodic poiential depends and is well determined by the smoothness of
its potential. This relationship was well known for potentials of Sobolev classes
(V.A.Marchenko, 1970°s) or analytic potentials [E.Trubowitz, 1977]. We went be-
yond of these classes of potentials. Series of results (joint with T.Kappeler {1, 2]
and P.Djakov 3, 4]) to this direction will be presented. As a typical example let
us formulate the following statement. Let V(z) = 3 v exp(2mikz} be a periodic
potential of Schroedinger operator

L=-d*/d2®+ V(z)
such that
>t exp(2alk]®) < 0, @>0,0<a<1. (0.1)

Then the gaps 8, = AT — A7, where AL are eigenvalues of periodic (or antiperiodic)
boundary problem on [0, 1], satisfy a condition

3" 1. % exp(2a(21)°) < co. (0.2)

Moreover, in the case of real-valued potential (0.2) implies (0.1).
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Maochizuki K.
(Tokyo Metroplitan University)
- Inverse scatiering for a nonselfadjoint small
perturbation of the wave equation

We consider the wave equation of the form
Wye + b(z)wg — Aw = 0, (I,t) eR? XFR,

where n 2> 3 and b(z) is a complex valued function decaying sufficiently fast at
infinity. In this talk we discuss the following three scattering problems for this
equation: -

1) To show the existence of the scattering operator,

2) To obtain the expression of the scattering amplitude,

3) To develop the reconstruction procedure of b(z) from the scattering am-
plitude.

1) is studied in [7] in case 8(z) > 0. To obtain 2) we follow the argument of
[6]. 3) is studied by Faddeev [2],{3] (cf. also [5]) for the Scrédinger operator. This
approach is not directly applicable in our case, and we have to employ another
approach based on the works of Faddeev [3], Eskin-Ralston [1] and Isozaki [4].
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- Moiseev E.I.
O peiuenuy HEKOTOPHIX KPAaeBHIX 3aja4 AiA yPaBHeHUHU
CMEeIIaHHOT'0 THIIA ClieKTpaidbHBEIM MEeTOAOM

Mokhov O.1.
(Centre for Nonlinear Study, Moscow)

Flat pencils of metrics and integrable
reductions of the Lamé equations

' We solve the problem of description for nonsingular flat pencils of metrics
in the general N-component case. Flat pencils of metrics or, in other words, com-
patible nondegenerate local Poisson structures of hydrodynamic type (compatible
Dubrovin-Novikov structures) play an important role in the theory of integrable
systems of hydrodynamic type and in the Dubrovin theory of Frobenius mani-
folds. In the general form, the problem of description for flat pencils of metrics
was initially considered by Dubrovin in [1]. In [2] Dubrovin proved that the the-
ory of Frobenius manifolds (they correspond to two-dimensional topological field
theories) is equivalent to the theory of quasihomogeneous flat pencils of metrics.
In our work, the nonlinear partial differential equations describing all nonsingular
flat pencils of metrics are found and integrated by the inverse scattering method.
First, the problem is reduced to integrating a special nonlinear differential reduc-
tion of the classical Lamé equations, and then we use the Zakharov method of
differential reductions in the dressing method (a version of the inverse scattering
method) (see [3], [4]).
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Mond D.M.Q.
(Mathematics Institute, University of Warwick)
Sandwiched simplices and the topology
of the space of explanations

This is joint work with Jim Smith (Statistics, University of Warwick, Eng-
land) and Duco van Straten (Mathematics, University of Mainz, Germany). We
use polyhedral Morse theory to describe the homotopy type of the space of n-
dimensional simplices contained in a given convex solid W in n-space and con-
taining a given convex solid V. The question is motivated by statistics: our space
of simplices is in fact the space of stochastic factorisations of a given stochastic
matrix. Determination of the number of connected components of this space, and
of their geometry, is important for the understanding of the convergence of algo-
rithms seeking stochastic factorisations. We use the term “Space of Explanations”
since a stochastic factorisation of the (stochastic) matrix of conditional probabil-
ities of random variable X with respect to random variable Y, is given by the
existence of a third variable Z with respect to which the variables X and Y are
conditionally independent. It is customary to regard Z as an explanation for the
correlation between X and Y.

Morales M.L.
(Virtual University of the Monterrey Institute of Technology)
On the Cauchy Problem for Higher Order
Parabolic Equations

In the present work we consider the higher order linear parabolic equation

Lusw—~ Y. ax(t,z)Diu= f(t,z) (1)
el 2m

in the layer iy = [0, T] x E, with the initial condition

# fe=o= ¢(z). : 2

Here ¢ = (z1,..,#5) is a point of the n- dimensional Euclidean space E, .
te0,7], k=(ky,skn), Bl=k1i4+ .4 ka, ki20,i=1,. 2,

_Ou e @My
e = E’D” u= 8zk1, .8z

We establish new a priori estimates for solutions u (¢, z) to the problem (1), (2)
in general anisotropic norms, under the assumption that the coefficients ax(t,z)
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and the independent term f (¢, z)are continuous functions in the layer Ilz =
[0,7] x E, and they satisfy the general Holder condition in Ilp = [0,7] x E,
of exponent a(l), I > 0 with respect o the space variables z = (2;,.._ %) only . In
this connection, however, we also obtain an estimate for the modulus of continmity
with respect o the time ¢ of the leading derivatives Df u, |k| = 2m . Note
that in others works , the a priori estimates of this type have been obtained
under the fulfiliment of a (general) Holder condition with respect to the totality
of variables (£, z) on the coefficients and the independent texm of equation (1}. On
the basis of our new a priori estimates for the solutions to the problem (1), (2},
we establish the corresponding solvability theorems for this problem in general
Hdlder anisotropic spaces . We assume that the coefficients of Equation (1) satisfy
the uniform parabolicity condition: for any non-zero vector

£ = (61 En) € B

and
(t’z) € HT,

)™ 3 et m)Ek > Al (3).

|ki=2m

A= const. > 0&% = (Ef‘,...,fﬁ").

We apply our results in the linear theory to establish the local solvability
with respect to the time ¢, in general Hélder anisotropic spaces, of the Cauchy
problem for the nonlinear parabolic equation,

us = A(t, z,%, Dzu, ..., D2™) (4)

T2 Dlg

in Tlp with the initial condition (2), where Dyu = ( Ju isr"—) and Dlu is the

set of all derivativesD¥u of order » = |k|,1 € 7 € 2m. In the present work,
the equation (4) is linearized directly. No conditions are imposed here on the
nature of the growth of the nonlinearity of the function A (t,z,p%p...,2"™), (
See [9] ), where p%-scalar, p” = {...,p},...) , which is defined for (f,z) € Hr
and any 7° 97,1 < 7 € 2m. The main assumption concerning to the function
Alt,z,p%p"...,p"™) is the parabolicity condition: for any non zero vector £ =
(61,. ) € Eqand any (t,z) € Ty and p%p'...,p""

(-t { z Apam (t,z,2" 7., 2’")} >0, (5)

|k|=2m

(€,7) here and below denotes the usual scalar product in E, . In all the work
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we suppose that in the equatmn (1), the function f = f + fz, the functions
ax (t,z), |k| = 2m and ' fysatisfy the general Holder condition in Iz of exponent
B(l) ,I'> 0 with respect to the space variables z = (21,..,zn) only and f; satisfies
the general Holder condition in Tlp"of exponent « (I), 1I'>0 with respect to the
space variables 7 = (z3,.. :c,,) only. All the coefficients and the independent terms
of equation 1 are continuous in the layer Il7. We require less smoothness conditions

from the functions A {£.2.5% p1.. . 5?™) and wfz) than in othérs workk

Maorava J.J.
(The Johns Hopkins University)
Virasoro actions on quantum cohomolo
following Dubrovin-Zhang and Madsen-Tillmann

Work of Kontsevich and Witten has exhibited a rather mysterious action
of the Virasoro algebra on the stable rational cohomology of the moduli space
of Riemann surfaces. Recently, I. Madsen and U. Tillmann have shown that the
infinite loopspace Q(CP{® provides a good model for the integral cohomology of
the moduli space. We use their work to construct a Heisenberg group structure on
the cohomology of the Mahowald prospectrum C P, ; the Virasoro representation
arises na.turally from this, by the Segal-Sugawara construction. More generally,
the Vu:asem action on the quantum cohomology of algebrmc varieties constructed
recently by B. Dubrovin and Y. Zhang : seems also to anse ﬁ:om this construction.

Morozova E.A.
(Moscow State University)
Shtrihi k portretu Ivana Georgievicha Petrovskego:
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Sabitov K.B., Mugafarov M.F.
(Sterlitamak State Pedagogical University)
To a question on existence of the solution of a
Tricomi problem for one class of systems of the mixed
type equations %

We consider a system

7
L;U = K(y)uiz‘z + Uiyy + Ai(z, y)ua'a: + B.‘(Z, y)“iy + Zcik(z: y)uh = 0: (0‘1)
k=1

where yK(y) > 0fory #0,i =17, 7 > 2,U = (u1,uy, ..., #,) in bounded domain
D ¢ R?, with boundary consisting for ¥ > 0 of Lyapunov curve T' with endpoints
A(0,0) and B(l,0), | = const > 0 and for y < 0 of characterictics AC and CB
of system (0.1). Let z = z(s), ¥ = y(s) — parametric equations of a curve T, s -
length of an arc curve T, counted from a point B, L - length of a curve T'. We
pose analogue of the Tricomi problem for system (0.1) in D. Problem T. Find a
function U(z, y) satisfying the conditions:

U(z,y) € C(D)ACHD)ACHDyUD.);

LiU(z,y) =0, (x,y)GD.,.UD., i=1,n;

Uz, y) Fz ®(s), 0<s< L

Ulz, y) =¥(z), 0<z /2,

where @ = (1,92, ...,¢n) a0d ¥ = (z/;;, ¥, ..., ¥n) — are given, sufficiently smooth
vector - functions, @;(L) = ¥;(0), D+ = DN {y > 0}, and D- = DN {y < 0} The
existence theorem regular or generalized solution of the problem T for system of
mixed type equations in many papers are established. This results were obtained
under the additional condition that the curve I in points A and B ended in small
arcs of a "normal” curve. Qur theory of a maximum principle for the system
allows to remove this limitation concerning a curve I'. By a regular solution of
the problem T for a system (0.1) in the domain D we mean a function U(z,y)
satisfying conditions of the problem T. A limit of a sequence of regnlar solutions of
the problem T uniform in D is generalized solution of the problem T for a system

21This reseach was supported by an Russian fund of basic researches, the code of the
grant 99 ~ 01 - 60934
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(0.1). In domain D_ we introduce characteristic coordinates (£, 7). System (0.1)
in these coordinates transforms into system

LU(€, 1) = uigy + ail€, MYuig + b€, Musn + 3 cin(€,m)us = 0, (0.2)
k=1

and the domain D_ is mapped in A = {(£,9) : 0 < £ < 7 < I}. Vertex of a
triangle A designate through A¢ = (0,0}, Bg = (1,1}, Co = (0,1); o; = a;8;, B =
exp [ bid€, h; = ai + a;b; — ci;. The coefficients a;, aje, b;, cjx in A except for,
maybe, segment AgBg are assumed continuous and satysfying the condition:

o€, ) - fﬁ:(t 7) (Ih @ ﬂ)l+zlcsk(t ) )dt >0,0<€<ngl (03)

k#i

Theorem 1. Let: 1) the coefficients of a system (0.1} in domain Dy are limited
and

GCii(z,9) + Y _ |Cir(=,4)| < 0
ki

2) the coefficients of a system (0.2) are smooth and satysfying the condition (0.3);

3) U(z,y) - a generalized solution of system (0.1) in D, equal to zero on charac-

teristic AC. Then, if [max max |lui(z, y)| > 0, this mazimum is reached only on a
{Ikn D

curve T. We assume, that the coefficients of a system (0.1)

K(y) = sgny y|™, m = const > 0, Cix(z,y) € C(Ds U D_),

Ai(Z’,y), B,-(x,y) € CI(E'F ) AC?(E—)

and satisfy the conditions of theorem 1.

Theorem 2. Let the regular solution of the problem T for a system (0.1) in domain
D under the condition that the curve T’ in points A and B ended in small arcs of
a "normal” curve are existed. Then if the function ®(s) is continuous on I' and
U(z) is sufficiently smooth on AC, ¥(0) = ®(0) = ®(L) = 0, there is a unique
generalized solution U(z,y) of problem T with the boundary data U =@ on T and
U = ¥ on AC at the arbitrary approach curve I’ to an azis y = 0, ezcept for a
case, when in enough small neighbourhoods of the points A and B dz[ds changes
a sign and dyfds = 0.
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Muhamadiev E.M.
(Khujand Scientific Center,-Academy of Sciences of Tajikistan)

- Bounded -solutions of dynamic systems

Consider the autonomous system
z' = F(z) v : (0.1)

where F: R® — R® - is a smooth vector field. Continuously differentiable on R,
the function V(z) is called the quldmg function for system (1), if (V'(z), F(z)) >
0 when |#| > po, where V’(z) - is a gradient of the function V(z}, and po -
some positive nember ‘We say, that guiding functions Vj(z),. .., Vn(z) derivate a
complef.e set, if [Vil(z)| +...|Vim(z)] = 0 when |z} = 0. The guiding function
V() for system (1) we shall call own, if for any solution z(t) of system (1) from
boundedness of a sequence of values V(z(1x}) of the function V the boundedness
of a sequence of values z(#;) of solution z(¢) follows. =

Theorem 1. Let ¥i(z), ..., Va{z) is 2 complete set guiding functions for the
systme (1). Then V(z) = Vl(m)+ . +Vm(z} is the own guiding function for the
system (1). o o

Theorem 2. Following properties are equivalent: 1) system (1) has no saddle in
infinity and its set of bounded on axis of solutions admits a prior estimation; 2)
for the systerm (1) there is a complete set of gmdmg functions; 3) for the system
(1) there is an own guiding function. Let f{z) - is a smooth function on R®, which
doesn’t have critical points outside of some sphere |z] < po. Let’s consider smooth
prolongation g(z) of funtcion f(z) into the sphere ]xl £ £, p 2 po with nonde-
generate critical points (Morse’s function). Through M (g, p) we shall designate
" an amount of critical points of the function g in the sphere |z| < 'p, and through
M.(f,p) we shall designate a minimum of numbers M (g, p); when g transverses
the every possible Morse’s functions, which are smooth prolongat.lons of the func-
tion f into the sphere |z| < p. The function M,(f,p) does not increase p. The
limit M. (f) of the function M,‘ (f,p) at p = cowe shall term asa Morse’s number
of the function f at the mﬁmty :
Theorem 3. Morse’s numbers of any two own qmdmg functions of the system (1 )
in infinity coincide and they are equal to zero, if the system (1) has not bounded
- solutions on an axis. We shall formulate the important application of the theorem
3. Theorem 4... Let system (1 ) has no stationary solutions and Morse’s
number of the own gmdmg functwn of the system ( 1)in znﬁmty is not
equal to zero. Then there is at least one bounded at all azis solution of
system (1), By Birkgof’s theorem in conditions of the theorem 4, system (1)
has a recutsion driving,.
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‘Muravaik A.B.
(Moscow State Aviation Institute)

Fundamental solutions and Cauchy problem solvablhty
for parabolic dlﬁ'erentlal-dlﬁ’erence equatmns

The following problem is investigated:

Ou

e . n B .

5 = Aut E_l apu(z — bih, t), zeR™”1>0 ‘ (1)
ul = up(z); zERP . (2)
o ‘ .

Here up is continuous and bounded, h isa parameter fmm R" ab are parameters
from R™. :
Theorem. Let

u'(x,t)=-(—2—;_—y; R/ s(n)(z—g,t)uu(g)de, a @)

where

: boylert) = / e—c(lsl - £ axcostung) cos (2: £~ asinbyh .5)d§, )
i - k=1

R»

Then (3) satisfies .(1) in the classical sense in R™ x R} and
u(:c £) 2% ug(z) for any z € R™.

. The principal steps of the proof are as follows. The fact, that the fundamental
solution (4) satisfies (1), is checked by means of the direct substitution. Then we
have to prove the convergence of (3). In the one-dimensional case we do that
by means Wiener Tauberian Theorem. Then, in case of several spatial variables,
we use the invariantness of Laplacian with respect to rofation and expand the
integrand of (4) to plane waves. Finally, it is left to prove, that (3) satisfies also
(2). For that purpose we fix an arbitrary zg from R” and consider the integral
over R”, presenting the difference u(zg,%) — uo(zo, ), and estimate it as a'singular
.integral with a non-vanishing kernel, breaking R™ into two subsets and estimating
the corresponding terms by means of two different ways. :

22This research was supported by RFBR grant 99-01-00045



285

Mustonen V.J.
(University of Oulu)
On resonance for systems of wave equations

‘We prove new resonance results for linearly coupled systems. The main con-
cept is the matrix spectrum which is a natural extension of the standard definition.
As an example we consider the system of wave and beam equatlons with linear
coupling and perturbatmn of monotone type.

‘ Mykytyuk Ya, V.
(Lwiv National University)

Schrédinger operators with singular Gordon potentials

1t is well known that the spectrum of a Schrdinger operator

42
| | ) S= —:i?i +4

with periodic locally integrable potential is absolutely continuous. If the poten-
tial g is quasiperiodie, then the spectral properties of 5 are far from being simple.
However, Gordon [1] introduced a class of bounded below L 1, (R)-potentials that
are well enough approximated by periodic ones and for which the corresponding
Schrodinger operators do not possess eigenvalues. Damanik and Stolz [2] enlarged
recently this class to L o (R)-valued functions and showed that the point spec-
trum of the Schrédinger operators with generalized Gordon potentials is empty.
Here we extend these results to singular potentials ¢ € W, 2, > oo (R} to inlcude point-
like interactions of one-dimensional quasicrystal theory The exact definition of
the operators S for such potentials can be found, e.g., in [3]. We observe that the
spectmm of Schridinger operators with periodic smgular potentials g € W2 10c(R)
is absolutely continuous as in the regular situation [4]. We introduce a class of
smgular Gordon potentials that are well approximated by singular periodic ones
and prove the follomng result :

Theorem Suppose that q isa singular Gordon potential. Then the operator S
«does not have any eigenvalues. Typical examples of singular Gordon potentials are

potentials of one-dimensional quasicrystal theory of the form

(1') a1(z) + g2(az +0),

where the ¢ € Wy, ,oc(lk) and 92 € In w,_-(IR) are 1-periodic and a is a Liouville
number.
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Myshkis D.D., Rozov N.Kh.
Ileaaroruueckas AearenbHocTs U.I'.Ilerponckoro

PaccMatprBasd MHOrorpansyio angsocts U.T.IleTposckoro, ciefyeT cOenuaibHO
OCTaHOBATLCA Ha €r0 MPENojaBaTelbCKod AesTeAbHOCTH, €r0 BKAaJe B COBEp-
[IeHCTBOBaHUE MaTeMaTHIeCKOro 06Da3oBaHES, 70 NeAATI OTHIECKHX BO33PEHMAX.
OTO0 BHOAHE €CTeCTBEHHO, MOCKOABLKY BCA €ro XHu3HER Oiila HEPa3pHIBHO CBA-
3aHA C CAMBIMA Da3HOO6DasHLIME A PasHOYPOBHEBBIMM HpobieMamu pealim3a-
n@nA yge6E0ro nporecca i HOATOTOBKA HayTHO-HEZATOTASECKHX KaPOB ~ B Mac-
mrabe KadeAprl, QaKyALTEeTa, yEHBEPCETETa, Beeil crpanki. [lpoiiga 8 MI'Y Bee
CTYmeHH - OT CTYJAEHTa O PEKTOpa, OH PealbHO HOHEMAI HYXABI CTYACHTOB
H acOEMpaHTOB, HpemojaBaTeled ¥ mpogreccopon, OB He HOHACABUIIKE 3HAKOM
¢ npo6iieMaMu PYKOBOACTBa mejarormdeckumn xomnekTusamu. H.T.Tlerposckuit
BCcerfia BAYMUHBO OTHOCHACE K BOHpOCAM COfepXaHmA y4JeOHBIX KYPCOB H HX
OpenojaBannd, NOCTOAHHO WCKaJ BETPHBH2JLHBIC IYTH HDPENOAHECCHHA MaTe-
pHana Ha JEKIEAX B CEMHHADCKEX 3aHATHAX, ocofoe BEEMaRHe YJAeldd Hayw-
HOMY ¥ mpOgecCHoRaIbHOMY KadecTBY yueCuaxos. BeemApHyIO B3BECTHOCTE 32~
cayxeRHO moaywmnn yuebmuxu camoro H.I.Ilerposckoro. O o6aagan ocobuim
A2poM ToAGupaThs Hamoiee NMEPCUEKTHBHEIC KAZDPH, HEYCTaHHO AoGHBalCA He-
Pa3spHBHOTO €JMHCTB2 HaydHOH ¥ HE/JATOTHYECKOR KOMUOHEHT B AeATeNrHOCTH
YHUBEDCATETCKAX TpenojaBaTeieii. Baxmeiimee 3HatieAne OH NPH/aBal OCHOB2-
HAIO ¥ Pa3BUTHIO Kadep # CHEHAAIBHOCTEH. CBA3AHHHIX ¢ HOBHIMEA 3KTYalb-
HHMH HayTHEMA HANDABICHEAMH: 346Ch ADKO MPOABMICS MAPOIAlIIEA KPYT ero
HHTepecoR B pa3amtidnx obacTdx smapmi. B paboTe KadepH, PYKOBOJAMOR
W.T.TlerpoBcknM, B pa3fbie IOl aKTHBHO YIaCTBOBA/H Taknhe GlecTaume yie-
gne ¥ megarord, xkak U.H.Bexya, C.K.Togynos, U.M.Jlagumn, E.©.Mamenko,
O.A.Ounesmux. JI.C.Ilonrparan, C.J1.Co6oaes, J.H.TuxoHos, Apyrie Xopomo H3-
BeCTHLiC CHCHUANECTH. Ycmamamu xacdeAphl GhLlm co3jaHbl COBPEMEHHRBIE KOH-
Hennad Kypcos gaddepesEaibEEX yPaBHeHHH ~ OORIKHOBEHHREIX B € JaCTHRIMU
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mpouspogabivi. Ocobyo polb B HOATOTOBKE HaydHOW MONOAEXH CHITPAJA Ha-
yunnie cemuuapnl W.I.Ilerposckoro, a Takxke ero o63opasie CTaTHE [0 AKTY-
anbHEM mpoGaeMaM maTeMaTakE. Boabinoe sanmanne H.I.IeTposcknii yaensn
gpoonémaM o6ydcHEA IOHOWIECTB, CIUTAA KIIOICBHM 3BCHOM B HMOATOTOBKE Kar
APOB OTHICKAHUE A BCEMEPHYIO HOAJCPXKY TaIABTAABOR Mo.no,qe)xn, oco6eHHo B
» ruy6uexe”  Ipa ero aKTABHOM KOHKDETHOM ysacTum 651 peand30BaHE] TaKAe
o6pasoBaTelbAkE IPOEKTH, KaK DPH3EKC-MATEMATHYECKAS KO- HATEPRAT IPA
MI'Y, Saounas MaTeMaTHIeCKad mixoaa opu MI'Y; niamomepHad paﬁoTa MY
f0 DOBLUNEHNIO KBaAuGDHEKANAR YIATeACH A Heooxognmou nonom{wre.rmaou nog;—'
roToske abaTypueHTOB. . . .

[

Meomxaae AWM., duaamvonos AM.
(Mocroscrui 2ocydapcmeennniil yuuecpcumem nymet coobwenus)
+1+ T'no6aibHad HelpephIBHAA Pa3peIMOCTS.
cmemanﬂon 3ajatu AJIH rnnepﬁonntlecxnx cacTeM
BRI R R KB&SHJIHH&HHHX ypaBHeHHH B PR

¢ JiErepec K BOHPOCY O BOSMOXKHOCTH cymec'moaaﬂnﬂ 062 IbHEIX BENPEPHIB-:
HAHX pelleHul runepGOAnIecKHuX CUCTEM KBAJWIMHEHHEIX YDaBHEHHHA YCHABICA'
nocie paGorsi Jlakca [1]. B arofi pabore Jlakc mpefuoxmi BOBHIA HOAXOA K
HOMNTKAaM OCMBICACHUA Pe3YALTATOR 3HAMEHATOrO BHYACIATEALHOT'O DKEUepH-
menTa Depmu - Tacra - Yaama {2). Tloere paSora Jlakca [1] CopMUPOBATHCE
ABa Banpasienns. OHO W3 HAX CBAAHO ¢ YCTAHOBICHHEM yeaopulk o6pa3oBanua
pasphieos pemieHzd (M., nanpmep, [3]). Apyroe HaTpaBCHHE CRAAEO C HOUC-
KOM JOCTaTOYHHX YCAOBHE r06aIBEOR HeTIPEPHIBHOH Pa3penmIMOCTH (oM., Ba-
mpamep, [4]). B gokaage 6yaeT paccxaaa.no 0 TONY9eHHMX HaMH AOCTATOTHHIX
yea0BRAX rA06aIBEON HEMPEPHBHEOH PaspeHIEMOCTH CMEIIaRHOR 32a%H CCAYIo-
mero o6mero Baja:

Bu(us) + Mloyt, w)0s(m) =0,  i=L...m w=(u1,...,tm)
Tu(z,0)=alz), 0zl a=(a,...;2m),

) =), €] = (k00,0 1,

T 0= Aue ), ekt =B 0,0==1}

Ho:xytzennue H3MH ycnoana cogepzsaT Hexo'ropue ecTeCTBeRARE TPEGOBARAA MC-

BOTOEBOCTH aa,qanamx dbynknui, a Taxxe TpeGopanne’ f,qoc*ra’l‘o*mo 6ricTpOro
0Cn267eRAAA 32BACAMOCTH HPABHIX qacfreu KpaeBhiX ycnomm oT u mpA ¢ — 00l
CymiecTREeBHOCTS HOCASAHETO YCIOBAA HAM HE ACHA. © ° RN
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- Naboko S.N.
(St.Petersburg State University)

On the spectral analysm of infinite selfadjoint Jacobl matmces

¥!

A class of unbounded selfad,;omt Jacobi matnces is cons:dered For its spec-
tral analysis we use various asymptotic mthods and Gilbert-Pearson subordinacy
theory.Applications to spectral. shift transition of 1-st and 2-nd order,quantuin
optics and Markov processes to be presented

Nadirashvili N.
( University of Chicago)
_Global solutions to the Kolmogorov—Petrovskn—P:sknnov
equation

Nakhushey A. M.
(Nalchik Institute of Applied Mathematics and Automatization)

On Some Fundamental Properties of Riemann-Liouville
Operaror and Their Application to Partial Differential
Equations of Fractional Order '

At the present time, when fractal structures arise in many branches of physu:s,
chemlstty and biology, it became evident that fractional calculus. wnll be of impor-
tance in creating of mathematical models of different processes | which proceed in
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fractal dimension media, on development analysis on fractals, on building correct
analogues of V-operator V, = (8/82,,0/02,,...,8/82,) ~ of laplacian A, [1],
of Canchy-Riemann operator and of wave operator. .In the report the monograph
of author will be presented ([2]), which is devoted to basic elements of fractional
calcalus, to essentially new properties of fractional integration differentiation op-
erators and thier application to local and nonlocal partial differential equations of
basic types; on the basis of fractional calcalus analogues of indissolublity equation,
Fourier’s, Fick’s and Nernst laws for fractals will be offered, and corresnonding
diffusion and transfer equatlon will be rec1eved lmportant samples of these equa-
tions, which may become a basis of nonlocal processes mathematical physics, are:

generalized Lapface-equétian - : C

| am=Ypps 0, u=ufa),
ST T e gt h-—-l o
where a= (051,012, a,,) ﬁxed point in R" z = (3:1,.7:2, .»Za) ER?, Dg‘_',,z _
- fracnonal dlﬁ'erentlatmn operator a;. €)1, 2[ with begmmng at point z; and with .
end at point a; [2); generalized (or nonlocal) wave equatzon .

s Dmu(z 1}) = cﬁA"‘u(z 1), ¢cg = canst > 0, t> o) 1 < B< 2;
fmctal dz_ﬁ'usmn equatwn Feat R . ST

B S el e
ffsgu(z:, 7= ﬁﬁégu(f,t),J / Dhu(e,1) du= égzl ff (“ffﬂ : a‘ﬂ ))

1

e

Dten =Sl (o)

= dzp

Ve

1
 of Dlyata,m = zua, 1),
i . P . ‘. a-. . » N
R e N FE S LY o N T S R PEP T R T PO B
where ¢, ¢, - constants, >0, ,0<r< 1; generalized Tricomi equation

& u(z,y)

signy - |y|™ ~—5 35— + Dgyu(z,7) = 0-

These equamons aré loaded differential equations [3]. -
w0 REFERENCES

-

[l] R S Stnchartz, Analyszs on F’mctals Notlc@ AMS 486, 10 1199—1206
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(2] A.M. Nakhushev, Elements of Fractional Calcalus and their Application,
Nalchik, KBSC RSA, 2000.
[3] A.M. Nakhushev, Equations of Mathematical Biology, M. Vyssh. shk, 1995

Natanzon S.M.
(Moscow State University)
Formulas for Witten’s solutions of Gelfand-Dikii
hierarchy

Among solutions of Gelfand-Dikii (n-KdV) hierarchy there exists a remark-
able solution, which is also a solution of the string equation, generates a vacuum
vector of W-algebra and has a representation on a form of matrix integral. We
call it Witten's solution because according to the Witten conjecture it is the gen-
erating function for numbers of intersection of Mumford-Morita- Muller stable
cohomological classes of moduli space of n-spin bundles on Riemann surfaces with
punctures. In this talk we produce formulas, permiting to find the coefficients of
formal power series expanded, which are the Mumford-Morita-Muller numbers if
the Witten conjecture is true. Using these formulas we prove also some new special
case of the Witten conjecture. a remarkable solution, which is also a solution of the
string equation, generates a vacuum vector of W-algebra and has a representation
on a form of matrix integral. We call it Witten’s solution because according to
the Witten conjecture it is the generating function for numbers of intersection of
Mumford-Morita- Muller stable cohomological classes of moduli space of n-spin
bundles on Riemann surfaces with punctures. In this talk we produce formuias,
permiting to find the coefficients of formal power series expanded, which are the
Mumford-Morita-Muller numbers if the Witten conjecture is true. Using these
formulas we prove also some new special case of the Witten conjecture.

Apushkinskaya D.E., Nazarov A.lL
(Saint-Petersburg State University)

Quasilinear elliptic Dirichlet problem
in domains with smooth edges

Let n 2> m > 2. We consider the boundary value problem
—a*i(z,u, Du)D;Dju + a{z,u,Du)=0 in £, ulan =0, (1)

where 2 is a domain in IR® with compact closure £2. It is assumed that the bound-
ary 812 is smooth (belongs to W2,,., ¢ > n) with the exception of (n — m)-
dimensional closed submanifold M (an "edge” for m < n or a conical point for
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m = n). In a neighborhood of every point of M the boundary £ is locally dif-
feomorphic to a wedge with edge of codimension m (a cone if m = n). Moreover,
we suppose that all such wedges are "acute”, i.e. are subsets of the half-space.
The principal requirements on the coefficients of (1) are: 1. Uniform ellipticity of
matrix (a'/):

vl < a¥(z,2,p)6i6; v, VEER®, »=const>0,
2. Quadratic growth of @ with respect to the gradient: |
la(z, 2,8)| < plpl + b(z)[p| + @1(z), = const >0,
b, @1 ELr(a)(2), a<l—nfr, n<r<co;

(here Ly, (q) is the space L, with the weight (dist(z, M)/ 7). Under some natural
structure conditions we prove the existence theorem for the problem (1) in Kon-
drat’ev spaces. A-priori estimates required for this theorem are based on a new
variant of Aleksandrov-type maximum principle established in [1]. For details and
proof we refer the reader to [2]. This work was partially supported by Russian

Fund for Fundamental Research, grant no. 99-01-00684.

REFERENCES
[1] A.lLNazarov, The mazimum estimates for solutions to elliptic and
parabolic equations via weighted right-hand side norms, Alg. & Anal., 13, No 2
(2001) (Russian).
[2] D.E.Apushkinskaya, A.1.Nazarov, The Dirichlet problem for quasilinear el-
liptic equations in domains with smaoth closed edges, Probl. Mat. Anal., 21 (2000),
3-29 (Russian).

Nazarov S.A.
(University of Westminster, Harrow School of Computer Science)
Effect of localization for eigenfunctions
in a thin domain near its edge

For the thin cylindrical domain Qo(€) = w x (—£/2,£/2) C R with the lateral
side T'¢(€) = Ow x [—£/2,€/2], by separating variables, one can easily calculate the
eigenvalues and the eigenfunctions

(')  —2:2_2
A7 (e) = e722a% + A,

u{™ (e, z) = w'™ (y)sin{jn(e 'z + YY)}, im=1,2,..., (1)



292

of the mixed boundary value problem
~Asu(e, z) = Meue, ), = = (v, 2) € Qle),
ule,z) =0, z € T*(e) = w x {*e/2}, (2)
dyule,z) =0, z € T(e) = 8Q(e) \ (T*(e) UZ(g))-

Here € € (0, 1] is a small parameter, 8, stands for differentiation along the inward
normal and the couple {A(™), w(’")} in(l)isa solution to the two-dimensional
spectral problem

—Aywly) = Auily), v = (11, %2) € w; 3nw(‘;u) =0,y € dw. (3)

The simple asymptotic structures (1) of eigenfunctions and eigenfunctions are not
preserved under any perturbation of the lateral side of the thin domain.
Moreover, the procedure reducing dimensioni can replace the two-dimensional re-
sultant problem (3) by a one-dimensional ordinary differential equation on the
contour dw’ while eigenfunctions take a form of exponential boundary layer near
I'(c). Here we demonstrate'those localization effects for the Laplacian only but,
of course, they are observed for another differential operators as well. In particu-
lar, the isotropic plate $2p(€) possesses localized elastic eigenmodes when its bases
Z%(¢) are clamped and the cylindrical ( unperturbed ) lateral side is free of
tractions. Let s denote the arc length on dw and n the distance from dw;n > 0in
w. The perturbed lateral mde is given by

TMe)={z:s¢€ aw, Iz} < €/2,n = —T(e"12)}
where T € C°[~1/2,1/2], T(¢) >0 as (| < 1/2 and

1/2
/ T{() cos(2n()d¢ > 0, T (:!:%) =90.
-1/2

The following assertions describe the ‘localization phenomenon for eigenfunctions
of the spectral problem (2) in the domain (e} bounded by the surfaces Tg(e) and
Y*(¢): 1. There exists p € (0, n°); such that the problem -

—~8;%(n) = p2(1), 7= (m, ) €11,

- ®(m,+1/2) =0,m > 0; 6,8(—T(n2),m2) = 0, Ina] < 1/2,
possesses an ezponentially decaying solution @ having ||®; Lo(T1)|| egqual to one;

here Tl = {n : |n2] < 1/2,m > =T (m2)}. 2. If w is a circle, then solutions to (1)
have the asymptotic form

M) (g) = e=2p — e~ 2boko — (b — m?)k3 % + 0(1),
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N u™(g,z) = ®(e~'n, e 12)exp(imsko) + ..., m = 0,%1, ...,
where ko is the curvature of the circle, by depends on T and @,

bp = — f ¢(n)(2—¢(n)dn > 0.

3. Let k(s) = k(so) K(s — 50)2 + Olls — sf®), K > 0, i.e., 5o a'etwers a local
mazimum for the curvature k of B, Then e;genualues of prob!em (2) take the form

A () = e — e Ybok(s0) + € lfz(m,bg)l/?(l +2m) 4 o~ */?),

m=0,1,2,.

and the corresponding eigenfunctions have, the behavior O(exp[—d(c— n+e~2/2|s~
sol?)]), i.e., they decay ezponentially at a distance from sy. Asymptotic formulae
for elgenfglnctlons are derived along with estimates of their remainders.

REFERENCES,

{1} Nazarov S.A. Asymptotics of elgenvalues of the Dirichlet problem in a
thin domain // Sov. Math. 1987. V. 31, N 11. P. 68-80.

{2] Kamotskii 1.V., Nazarov S:A: On eigenfunctions localized in a neighbor-
hood of the lateral surface of. a thm domain /, / J. Math Sei. 2000. V. 101, N 2. P.
2941-2974.

‘ Nef'edéva.N., Sakamoto K. .
(Lomonosov Moscow State University, Hiroshima University)

Asymptotic method of differential inequalities

and new speciral and geometric variational problems
for reaction-diffusion systems.

We consider a spatially inhomogeneous reaction-diffusion equation

czgt—u:.ezAu f(u =, e) (zreDCcRY,t>0), .
o o (0.1)
324
én
and investigate the existence of equilibrium internal layer solutions under the fol-
lowing important for applications assumnptions.

;b (z€ 8D, 1>0).
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(A1) The equation f(u,z,0) = 0 has ezactly three solutions u = ¢'*)(z), ¢(°Nz),
and

$0)(z) < 69(z) < 6P (2), i (2) = fu(6PN(2),2,0) >0 z€D
and the function I(z), I(z) := [ ﬁ(_ﬁ)((:)) f(u,z,0)du, satisfies [(z) =0 m D.

Let us define a function V;(z, ') for closed surfaces I by Vi (z,T) = —&(z, I)m(z)+
J{z;T) where x(z,T) is the mean curvature of T,

miz) = [=, (22)) ar s,
Jz D)= 2, [r (’\7, f(u,z,0) L=Qo(7;x)-u(z; I‘))
+f€(@ﬁ(r; 3)3310)] a—Q:';i}..'ﬂdT zeT,

and Qo(‘r; z) is the solution for the zero order internal layer equation.

(A2) There ezists a T such that Vi(z,T)=0 =zel.

We also define an elliptic operator AT by ATR(z) = divp (m(z)VpR(:c)) +
G(z)R(z). The principal part of this operator is the Laplace-Beltrami operator
on the surface T' and G(z) is known function which is determined by the nonlin-
earity.
(A3) The spectrum ¢(AT) does not contain 0.

Theorem. Assume that the conditions (A1) — (A3) are satisfied. Then there exist
€0 > 0 and a family of equilibrium solutions u(z,¢) of (1.1) such that for each
dp > 0 fixed

$-)z) =z eDTNDP)
}i_x)% u(z,€) = _ (0.2)
¢¥() = e DT

uniformly where T'{%) stands for the do-neighborhood of T. Moreover, if the prin-
cipal eigenvalue of AT in (A}, Mo is negative, u(z,¢€) is asymptotically stable. If
there are a few positive eigenvalues of A”, then u(z,€) is unstable with instability
index equal to the number of positive eigenvalues.

The work of the first author was partially supported by the RFFI grant
N01-01-00753. ‘
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Neiman-zade ML.L
(Moscow State University)

Shroedinger operators with singular potentials

We consider operator T + @, where T is the Laplace operator in R”, and @
is multiplication on a distribution g. '

It can be shown that this operator is uniquely defined if the potential g
belongs to the space of multipliers from Sobolev space H} to negative Sobolev
space H; . Also, we can demonstrate that if a sequence of smooth functions g,
converges to ¢ in the norm of the space multiplier from H} to Hy 1 then the
sequence of operators T + @y, converges to T' + @ in sence of uniform resolvent
convergence.

We present several tests and inclusion theorems to verify belonging and con-
vergence in M[H2 — H;']. In addition we give several known and new examples
of admissible potentials.

This talk is based on the joint work with professor A.A.Shkalikov.

. REFERENCES

[1] Neiman-zade M.I., Shkalikov A.A., Shroedinger operators with singular

potentials from spaces of multipliers, Matem. Zametki, 86, N4.

Neishtadt A.1
(Space Research Institute RAS)

Sidorenko V.V .
(Keldysh Institute for Applied Mathematics RAS)

Treschev D.V.
(Moscow State University)

Stability islands in the domain of passage through a
separatrix in systems with fast and slow motions

A Hamilonian system with two degrees of freedom and Hamiltonian function
of the form E = E(p,q,y,z) is considered. Here (p,¢) and (y,61z) are pairs of
conjugated canonical variables, £ is a small positive parameter. Variables (p,q) are
fast ones (p,§ ~ 1), and variables (y, z} are slow ones (#,% ~ €). It is supposed

"that for all fixed values of slow variables the sub-system for fast variables (so
called fast system) possesses a saddle stationary point and two separatix loops
passing through this point similarly to the motion in a potential with {wo minima.
Separatrices divide the phase plane of the fast systems into three regions: G,
G, (surrounded by the separatrix loops), and Gz. Under some assumptions it
is proved that on the level surface of the Hamilionian there are many, ~ 1/e,
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periodic trajectories with periods of order of 1/¢, and for any such trajectory the
projection of the phase point onto the plane of fast variables passes periodically
from the region G; to the region (3 and back spending in any of these regions
time of order of 1/¢ (and similarly for passages between regions G and Gs}). Every
such trajectory is surrounded by a stability island of measure ~ . Therefore, the
total measure of the stability islands is bounded from below by a value which does
not depend on £. The conditions used are that in the system averaged over fast
motions on a given level surface of the Hamiltonian periodic passages between the
choosen regions take place, and some general position-conditions are satisfied. The
case of a Hamiltonian of the form E(p, q,¢t) was considered in [1], [2].

REFERENCES
[1] A1 Neishtadt, V.V Sidorenko, D.V. Treschev. Stable periodic motions in
the problem of passage through a separatrix // Chaos. 1997. V.7. N 1. P.2-11.
[2] A1 Neishtadt, V.V. Sidorenko, D.V. Treschev. On stability islands in a
domain of the passage throngh a separatrix. In V.M. Matrosov, V.V. Rumyantsev
and A.Y. Karapetyan, editors, Nonlinear Mechanics. Moscow, Fizmatlit 2000 (in
Russianj.

Nekhoroshey N.N.
(Moscow State University)

Generalizations of Gordon’s theorem.

Gordon’s theorem claim that period of solution of Hamiltonian system, which
have only periodical solutions, depend only of value of Hamiltonian function on
trajectory of this solution. Generalizations are obtain for case of invariant isotropic
tori of arbitrary dimensions k instead & = 1, which fiber submanifold N C M of all
phase space M. One suppose that system ha.ve some collection Z = (Zl, s Zg) of
k integrals in involution on N such that the corresponding vectorfields are tangent
to this tori A C N. Then frequencies wy,...,wy of quasiperiodic motion on such
torus are depended only of values of these first integrals on this torus. It is true also
for the circular action functions, but sufficient conditions are essentially different
in this two cases. The formulatwn of main generalization is following. Theorem.
Let additionally the collection Z = (Z;, Zg) of restrictions Z; = Zi|x) on
N of functions of collection Z define the regular map Z : N - Rk, that is
without critical points. Then frequencies wy,...,w; are depend only of Z, that
is w; = wi(Z).
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Nesenenko G.A.
(Bauman Moscow State Technical University)

Solving of singularly perturbed nonlinear heat conductivity
problems in unsmeooth domains by medified
?geometrical-optical” asymptotic methed

The approximate analitycal method for obtaining the Poincare [1] asymptotic ex-
pansions of the solutions to the singularly perturbed nonlinear boundary value
problems of a non-stationary thermal conduction in multidimensional domains
with angular points is proposed. As is known [2] when the boundary of a-multi-
dimensional domain contains angular points, the singnlar solutions to the corre-
sponding boundary value problem arise. Due to a small parameter at the Laplace
operator the modified ”geometrical-optical”. asymptotic method [3], [4] allows to
obtain the approximate:solution to the nonlinear boundary value problem in the
form of a Poincare asymptotic expansion in powers of both small parameters and
corresponding boundary variables including angular boundary variables. The pro-
posed method dlﬁers from ones developed by a number of authors for the same
purpose, see for mstance, [5], in that it is based on 2 Poincare asymptotic expansion
instead of 'an Erdelyi one [1]. As is known, the coefficients of an Erdelyi asymp-
totic expansion are some functions of small parameters. An Erdelyi asymptotic
expansions has serious disadvantages compared to a Poincare one. As an exam-
ple, it does not possess mqueness and causes con31derable difficulties in practical
calculatlons [6] PETRRELAED : ;

)ld 3 'i:! ‘‘‘‘
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Novikoy L.Ya.
(Voronezh State University)

Asymptotics of Compactly Supported Wavelets

The talk is devoted to investigation of zeros of Bernstein polynomials approx-
imating piecewise linear function. Such polynomials are used in the construction of
modified compactly supported wavelets which, in contrast to classical Daubechies
wavelets, preserve localization with the growth of smoothness [1]. It is proved that
the limiting curve for zeros is the boundary of the convergence region of the Bern-
stein polynomials on the complex plain. This result is used for investigation of
asymptotics of corresponding scaling functions and wavelets.

REFERENCES
1] Nowkov, 1.Ya, Modified Daubechies wavelets preserving localization with
growth of smoothness, East Journal on Approximation,i (1995), 341-348.

Novikov S.Ya.
(Samara State University)

Similarity and difference between factorized
and weak type operators

Two - theorems will be presented, they give the possibility to distinct.the
factorized through the spaces L, (weak L,-spaces) operators from the weak
type operators (i.e. bounded from a quasi-Banach space X. to the space Lp o).

Theorem 1. Let 0 < p < co. For the operator T : X v+ L, with the only
condition |T{yz)] = WI|Tz| a.e. the following assertions are equivalent: 1) there
exists a function g € Lo, g >0 such that

1z

7 { 1, ||z||g 1, ie. the operator T = M, -1,

P0

where the operator Ti : X v Lp.o, Mgy = gy. 2) For any € > 0 there exists
C. > 0 such that for each finite sequence (z;) from X we have

(swira) @ <0 (Sher) ™
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where z* denotes the decreasing rearrangement of 2. Two theorems of E. Nikishin
[1] aze the corollaries of theorem 1.

Theorem 2. In notations of theorem 1 the following assertions are equivalent: 1)
The function g € Leo, i.e. the operaror T : X v Lp . 2) There exists ¢ € (0, p]
such that for any sequence (z;) C X

with (||2|]) € Iy, and for any sequence of independent (in probabilistic sense)
functions Y;, equimeasurable with T'z;, we have sup; |Yi| < 0o a.e. 8) There exists
C > 0 such that for each finite sequence (z;) from X we have

(sworral) @ < 15 (Siea?)™, 0.1

If a quasi-Banach space X is shift invariant, and the operator T is superlinear [1]
and shift invariant, then the difference, marked in theorems 1, 2 disappears and
all the five assertions are equivalent.

] REFERENCES
[1] E.M.Nikishin, Resonance theorems and superlinear operators, Uspechi
Mat. Nauk 25, No 6 (1970), 129-191.

Novokshenov V.Yu.
(Institute of Mathematics RAS, Ufa)

Weak Dispersion Management in NLS Model.
Inverse Scattering Approach

A simple recursion formula is derived for the amplitude and phase of the
optical pulse propagating over a DM fibre with zero mean dispersion. Under the
assumption of zero dissipation and constant dispersion along the adjacent legs of
the waveguide, the integrable NLS models can be applied within each leg: iu, &
Uzz +2Ju|2u =0, u=u%(t,z). The pulse is continuous through the interfaces of
adjacent legs u~ (T, z) = ut(—T, =), where 2T is the length of each leg. Choosing
the legs to be long enough (T" 3> 1) to ensure the formation of a self-similar profile
one can use the well-known asymptotic formulas for the non-soliton initial pulses.
Matching them through the subsequent legs we get the recursion formulas for
the pulse amplitude and chirp (phase modulation). The analytical results are well
justified by numerical simulations (see [1}).

REFERENCES

{1] A.Y Mikhailov, ¥.Yu.Novokshenov The period map for nonlinear pulses
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300

Nursultanov E.D
(Karagamda State Umverszty}

A theory of interpolation of anisotropic spaces.

Let A; be a Ba.na.ch space, Az a Bana.ch lattice. Let us deslgnate by A =
(A1, A2) the space of measurable functions f with values in A; and such that
If(z)lla, € A2 . The norm in A is defined by ||| = ||| f(=)ll 2, ll4,. The definition
of the space A = (43,...,4n) is.inductive. We shall call it anisotropic space of
dimension n. _

Set B = {e = (61,....€a) : g5 =0 org; = 1, j=1,..,n}. Given any two
anisotropic spaces Ag = (49, ...,A]), A1 = (A},...,AL), then for every e € E we
define the space A, = (A}',...,A5") with the norm .

Nlalla. = |I--fiallags -Nage-

The pair. of anisotropic spaces Ag = (4),...,49), A; = (4},...,AL) is said to
be consistent, if there exists a linear Hausdorﬁ' space which contams the spaces
A, €€E.

Let * = (f1,...,7n) be a fixed permutatlon of the sequence (1 2,. ,n). For
any € = (€1,...,6s) € E we denote by £* = (g;,,...,€;,) € E. Define the K* -
functional : o

K*(t,6; Ao, A) = mf{zfua,.nA,. ta= 6, 6 €A},
; . E€B | EE" ’

here #* = #3...85m. Let 0<6 (91,. n)<1 0<g=(q,...,a5) < ®
Denote by A3, = (Ao, Ai)jq the lmear subset_ of ) ez Ae, for which:

IlallA = ‘I’Oq(K"(t a)) =

([ oot )

here (f (G(t))th)lfq = sup’>nG(t), if g = oo . Let m = (my,...,m),
* = (_71, .3Jn) be. a fixed permutation of the sequence {1,2,...,n}. For any
measurable function f(z1,...,25) on BR™ = R™ x ... x R™» we denote by
Fr(t) = friv%in(ty, ..., Es) the function, obtained by app'lying decreasing rear-
rangement, consecutively with respect to the variables z;; € R™4, ..., 25 € R™n,
considering the other. variables fixed. The space Lj,(R™) is defined.as the set of
all functions for which

Il ) = Boa(tF (1)) < oo,
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“here #=1-1/p. ) )

Theorem. Let 1 < pi = (p,...,pL),oa = (0},...,0)) < o0, i=0,1,p0 # P1,
6<q={q,. 1) S0, 0< 0= (6g,...,0:) < 1,1/p = (1-6)/pa+6/ps,
*=(f1,...,jn) - be a certain permutation of the sequence {1,2,...,n} , A% . =

PoCo
.
(Lp‘;;ag: yees ,qu ng) ’ Amaz = (L? 10;1 yooo ’L?:linazl' ) , then

(Apoao) plal)eq: (Lpnoo’ wo);q

Nobuaki Obata
{0 Graduate School of Information Sciences Tohoku University) .
Quadratlc Quantum White Noises and the Lévy Laplacian

On the basis of white noise theory we shall discuss quantum noises which are
singular from a usual aspect of quantum stochastic calculus and an unexpected
relation with the Lévy Laplacian known for its peculiar properties. The white noise
theory i is based on a particular Gelfa.nd triple:

wc I‘iLz(R)) Lz(E*,p) cw,

where the middle is the space of L3-functions on a Gaussian space (£, ) which
is isomorphic to the Boson Fock space over L?(R).due to the Wiener-It6-Segal
theorem. The annihilation and creation operators at a time point ¢ are denoted
by a; and af, respect.lvely These are also called the quanfum white noise. It is
known that a; € L(W, W) and o} € L(W*,W"). Thus, the Brownian motion
and the white noise process (time-derivative of Brownian motlon) are respectively
represented as

2
B = / s +al)ds, Wi=a+d. {0.1)

In general, a continuous operator = € L(W, W") is called a wblte noise operator.
With the help of the general theory for white noise operators [3] many concepis
in quantum It6 theory can be generalized. In particular, a quantum stechastic
differential equation of Hudson-Parthasarathy type:

dX = (L1dA; + LadA] + LadAy + Ladt) X, X(0) =1,
is brought into an ordinary differential equation for white noise operators:

dX
——-(Llag+L2at + Lazaja; + L) o X, X(0) =1,
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where o stands for the Wick product (normal-ordered product). ;From a mathe-
matical aspect it is more natural to consider a linear differential equation for white
noise operators of the form:
d o L = = —_—

G o= Lo, E(0) =1, (0.2)
where {L;} is a quantum stochastic process, i.e., t — L; € LW, W*) is a con-
tinuous map defined on an interval. An equation of the above form is called a
normal-ordered white noise differential equation. A unique existence of a solution
to (0.2) is proved in terms of weighted Fock space [2,4]. The normal-ordered white
noise differential equations cover a wide class of quantum stochastic differential
equations with very singular driving noises that are not reached by the traditional
It6 theory. For example, the simple case of Ly = a? + a}? is already non-trivial;
moreover, the solution {Z;} is unexpectedly related to the Lévy Laplacian. In
fact, the solution to a heat (or Schr6dinger) type equation associated with the
Lévy Laplacian:

a @ =2

)
where o € C is a constant, is obtained by the Laplace transform of the classical
stochastic process {®;} corresponding to {=:} in such a way that &, = E¢q, where
¢ is the vacuum vector. Further properties are examined.

ALW: ? te R1
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Toshiyuki Ogawa
(Graduate School of Engineering Science Osaka University)
Modulated periodic waves appearing in a perturbed KdV or
a convection problemn

A family of periodic travelling wave solutions parameterized by the wavenumber is
shown to bifurcate from the trivial solution in a perturbed KdV equation. Studying
linearized eigenvalue problem about each periodic travelling wave solution, all of
them are shown to be unstable immediately after the bifurcation in contrast to the
Eckhaus stability /instability. Analysis from a dynamical viewpoint suggests that
“modulated periodic waves” are obtained by a secondary bifurcation from periodic
travelling waves as a super critical Hopf bifurcation. The normal form approach will
be introduded to understand the dynamics about the unstable periodic travelling
wave solution.
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Chya M.
(Science University of Tokyo)
NP-complete problems with chaos dynamics

In theory of computational complexity, there is a famous unsolved problem
whether NP-complete problem can be P problem. In [1], we discussed this in
SAT (satisfiability) problem, and it is shown that the SAT problem can be solved
in polynomial time by means of quantum algorithm if the superposition of two
orthogonal vectors is physically detected. However such a physical detection is not
easy to realize. In the case that one of the aroplitudes for two vectors is very small
so that its measured value can not be distinguished from 0, we have to amplify
the small value so as to distinguish from zero. For this purpose, we proposed in
[2] quantum chaos algorithm combining usual quantum algorithm with chaotic
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dynamics amplifier based on the logistic map [3], by which we showed that the
SAT problem (so all NP-complete problems) is solved in polynomial time.
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Oinarov R. O.
(University of Eurasia, Astana)
Postanovka kraevyh zadach dlya vyrojdennyh
differencialnyh operatorov

Olshanski M.A.
(Moscow State University)

Stabilized Galerkin method for the steady
incompressible Navier-Stokes equations and
an iterative solver .

The talk concerns with the accuracy of a finite element (FE) method for the
incompressible Navier-Stokes equations and numerical performance of linear alge-
bra solvers for discrete systems resulting from a FE approximations. Apart from
the standard (SUPG iype) stabilization another consistent stabilization method
is studied numerically and understood from the theoretical point of view. The
method is intend to reduce the loss of accuracy, which the FE solution may suffer
for small viscosity values due to the presence of the first order pressure term. To
solve non-linear problem we apply quasi-Newton iterations for the coupled system.
Every non-linear iteration requires a linearized problem to be solved. Therefore we
use a Krylov subspace iterative method to solve linearized Navier-Stokes problem
(Oseen type problem). The latter has non-symmetric and non-definite matrix of
coeflicients. However the saddle-point structure of the matrix admits a specially
designed preconditioning. Two elements of the preconditioning are of major impor-
tance. They are multigrid method for velocity problem and a preconditioner for the
Schur complement (pressure operator) of the system. The design of both elements
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(but especially of the second one) is a non-trivial task and a topic of on-going
research in several research groups. We will present our results in this direction.
Additionally we will see that the stabilization mentioned above is important also
for the advanced performance of the linear solver. One more point of interest is
the rotation form of Navier-Stokes equations. We use it as a predictor with a more
‘traditional’ convection form and on its own right. It appears to be of much help
both as a starting point for a FE approximation o the Navier-Stokes system and
as a convenient form for a numerical analysis of iterative solvers. The theory is
complimented with numerical experiments with two type of problems. One prob-
lem has analytical smooth solution, another one is the driven-cavity problem for
moderate and high Reynolds numbers.

Olver P.
(School of Mathematics, University of Minnesota)

Moving Frames — in geometry, the calculus of variations,
computer vision and numerical analysis

In this talk, I will describe a new approach to the powerful Cartan theory of mov-
ing frames. The method is completely algorithmic, and applies to very general
Lie group actions. I hope to discuss a wide variety of new applications, including
classical geometry, classification and syzygies of differential invariants, invariant
variational problems and their Euler-Lagrange equations, object recognition in
computer vision, and the design of symmetry-preserving numerical approxima-
tions.

Omel’yanov G.A.
(Moscow State Institute of Electronics and Mathematics)

Dynamics and interactions of nonlinear
waves: multidimensional case

This paper deals with the problem of describing propagation and interaction
of singularities of solutions to nonlinear equations in the multidimensional case
(z,1) € R**!, n > 1. The main result, the model equation describing the evolu-
tion of singularity support, can also be treated as the result of averaging in non-
linear nonintegrable models. Qur basic approach is the weak asymptotics method;
the main examples are the phase field system and the Kadomtsev—Petviashvili
type equation. If the dimension increases, the problem becomes significantly more
meaningful and new interesting effects appear. One of the main features that are
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new as compared with the one-dimensional case (n = 1) is the appearance of geo-
metric effects, namely, the dynamics of the singularity support T'; is closely related
to its geometry. As an example, consider the KP type equation

'{ut + f(u)a: + Ezuz:c:}z + ouyy = 0, | ek1, (1)
for some f(z) € C*°, f (0) = 0. The weak asymptotic mod Opr(r2)(€?) solution of

Eq. (1) has the form » ‘
Awo (ﬂz — ¢,A) +6u"wsy (ﬂz ; y’.-.,A)

A
= eaEJ(:c —P) +eu™ (1 — H(z — ¢)) + Op(e?),
where H(z) is the Heaviside function and 4 is the Dirac d-function. It was proved
that the amplitude 4 = A(y,?) and smgularlty support T; = {(z,y),z = ¥(y,)}
can be uniquely determined by the solution of equations of gas dynamics

u

'.ﬁg + ;(Pw)y =0,  plw +wwy) +py =0,

= a(4), B = p(A), and »~ can be found from the linear equatmn in
{(:c wi)z < Plyt)t > 0} -with conditions on Ty, ¢ > 0 and for ¢ = 0. In
the special case of f(z) = 2™, m 2 2, m #.5 we have B = /\2.4”“ a=1,

= kop®, k = (m+3)/(5—m), p= pgfl("“"‘)/2 w = —2a1y,, and A, kg, po are
some constants. Another fact that is no less important is that for n > 1 there may
exist singularities with codimT; > 1 along w1th the traditional case codim@; = 1,
which is the only possible forn = 1. .

Orochko Yu.B.
(Moscow State Institute of Electronics and Mathematics)

On the deficiency indices of ordmary higher—order
symmetric dlﬁ'erentlal operator degeneratmg inside interval

Let H be the zmmmal operator in Lz(I ) correspondmg to real differential
expression s[f] = (=1)*(e(z)f")™), n. > 2, defined on some interval 7 C R.
Suppose ¢(z) vanishes in a finite or countable set of interior points of I. Then the
meaning of the defomency indices Def H of operator H may be any nonnegative
integer and even 4co. We present results concerning the dependence of Def i on
the orders of zero’s of coefficient c(z) of s[f].

o REFERENCES -
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[2] Yu.B.Orochko, Ezamples of Degenerate Symmetric Differential Operators
wzth Infinite Deficiency Indices in L?(R™), Proc. Roy. Soc. Edinburgh. 1294,
(1999), 165-179.

Orudzhev E.G
On a kernel of resolvent of a special elass
of bundles of differential operators.
(Baku State University)

Let’s consider in the space Lz(—co,co) a bundle of the differential operators
L), generated by the differential expression

i
La(Y) =4*)(z) + Z (2 (P (=) + aue(2)) J\") -1 (1)

=1 \k=0

where py, qu are real numbers, and che functions py (z), k < I contain only positive
exponents of Fourier series

cQ ;
pi(z) = Z Pueme™, 1=1,2n, k=0,I—1

m=1

2n~1 00 -~
and it is supposed that the series ». Y m |pikm| converge. Relative to intro-
: ! . i=1 m=1 ;

duced in pi (z) perturbed functions qix(z), k < I we assume that g (z)}e®! < ez,
CE>0, c;k are eonstant numbers. We also assume that the roots 6, of the equation

F(6) = E (psi + 2::) 6™, poo+q00 = 1, are various and different from zero and

. such that the plane A is-divided into the sectors Rk, k < 4n, in each of which for
suitable numaration of these roots, the Tamarkin type inequalities are satisfied. In
work [1] meromorphic by A solutions of the equation £,(Y) = 0 is constructed, the
structure of resolvent is investigated, it is shown that the spectrum of the bundle

9 (corresponding to the case gi(z) = 0, I = 1,2n in expression (1)) consists
of some rays for which infinitly many spectral singunlarities are located. Here the
resoivent R, of the bundle L, is studied. By using the meromorphic Fredholin
theorem, it is obtained that the kernel of the resolvent R, is the solution of the
integro-differential equation

2n fi-1

K(z,6,)) + f Ko(:c LN an; ()X ) = tK(t £,2)dt = Ko(2,6,3)

I=1
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belonging to the special chosen Banach space with poles at points of discrete set.
In addition, at every sector By in a small neighborhood of any sufficiently distant

2n~1 .. .,
solutions A2, of the equation ) ((‘—’,%ﬁF("“)(B,,)/\z“““’ =0,m=1,23,...,
v=0

the kernel of the resolvent R, has poles different from A2, on o(1). The poles of a
kernel lying on the boundary Ry will be a spectral singularity of the bundle L.

REFERENCES .
[1]. Orudzhey E.G. A resolvent and a spectrum of a class of differential oper-
ators with periodical coefficients.// Functional analisys and its applications. 2000,
v. 34, No. 3, p.87-90. (Russian)

Osipov A.S.
(NIISI RAN, Moscow; University of Oulu, Finland)

On some properties of the infinite band matrices
with operator elements

We consider the band matrix A = (4;x){%=o the elements of which are
bounded operators in a separable Hilbert space H:

Aij € L(H), Ajr =0 (zero operator), k>i+4r, i>k+g,
Aiigr, Airgi invertible, ¢2>0. (0.1)

If sup; x)|4i x| € C < co then matrix A generates the bounded operator in 12 =
L(H,I?(H;[0,00))) with the pseudoscalar product [U, V] = U*V, U,V € 12 [1] .The
following analogue of the Stone theorem gives the characterization of operators in
1? which admit a band matrix representation (band operators).

Theorem 1 A bounded operator in 1* has in some pseudoorthonor-
mal basis the matrix representation (1) iff there exist pseudovectors
Vo,..., Va1, o, ..., U1 such that the system {V*}22., where V5 = A*VJ,
fork=gqs+3j, s3>0, j = mod(k,q) is dense in 12 , admits a pseudoorthogonal-
ization and for any n 2 0

span{V?,...,V*} = span{U°,...,U"};

where U¥ = (A*)*U*, k = rs +1i, i = mod(k,7) and operator A™ is adjoint to A
with respect to the pseudoscalar product [ ,]. For the band operators in 12 the
following criterion of resolvent set is valid:

Theorem 2 Let operator A in 1* admits a matrix representation (1) such that
sup; jizill4ijll € C < oo. Then an arbitrary complex A belongs to the re-
solvent set of A iff there are constants C > 0, 0 < ¢ < 1 and matrix
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M = {M; ;NI 8, Mij(N) € L(H) such that

IS @O < ™, 0 m<n;

=1

q
1L NS Ca™™, 0Kngm, mn320,
=1 .

where {®%(}) = QL (MM — PINIZ_,, {850 = MQL+(0) - Pit(M}e_,,
and {QL(N}2 g, (PRI i {QEF NI, {PEH(X)}52_, are the funda-
mental systems of polynomial solutions of the difference equations -

An nnqyrz-q +---F An n-{-rYn-i-r il }iY,-,,,
Y harnt 4V Ansgn =27}, n30.

REFERENCES
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Ospanov K.N.
(Espasuticxuti 20cydapcmeennind ynusepcumem uM. JI.H.T'ymusesa)
I'nagxocTs peuenus oﬁoﬁmenuon cucremul Komm-Pumana
B HeorpaHquHHOM obaacTu

Pa6oTa noceaiena uccaeOBaHAI0 HEOAHOPOARON 0606HicHEOM cacTeMul Ko-
my-PraMara
Lw = d;w + A(2)w + B(z)B = F(2), z€ E, (1)

rie E— xoMmnexcHas mAOCKOCTh,d; = % ( = tig ay) (1) mpeacraBaser coboit
KOMIIIEKCHYIO 3alHCh CHCTEMEl ABYX BEIIECTBEHHLIX YPAaBHEHHH B YACTHEIX TIPO-
E3BOJAHBIX
Uz — vy + alz, yju + bz, v)v = f(z,y)

{ Uy + vz + ez, y)u + d(z, y)v = g{z, ),
KOoTOpag HrpaeT BaXHYIO PO/ib B TEODAH ABYMEPHHIX CUCTEM YDaBHEHNH HEPBOTO
mopafka. OTMetdens nipuMeRennd cactemsl (1) B rRAPOUAAMAKE, TEODHHA HOBEPX-
HocTel B o6omouek. Korga

421, B 1A (2) 78 (1) € Lp(81) (0> 9 B = (€ B < 1)
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eJUHAYHRIA KPYT, OHA CUCTEMATHYECKH 3y Hadack B paboTax U.H.Bekya u ero no-
cnefgosaTeneli. OTHOCATENLHO Madlo MCCIeAOBaH CiyHai, Korja 064acTh 3aaHnd
GeckoHedHa, a koopduuuentsi A(z), B(z) meobasarensno cymmupyemsi. Toraa
[/i% OAHOPOJHON CHCTEMBI, COOTBETCTBYOmeH (1) MOXeT He MMeTh MecTa U3BECT-
nag TeopeMa JluyBuand, 6osee Toro a4po onepaTopa L MoxeT okazaThca Gecko-
neanomepasiM. Hanpuvep, cucteme d;w+2z(1+|z|%)w = 0 ygoeaeTropaoT dynx-
mwuit wy,(2) = 2 exp[—(1 +{z1%)%] (n=1,2, ... ). Jas cucrems (1), xorga B(z)—
raajKad orpaEuiennad Qyekuzs, A(z) = 0 B.C.BusorpaioBsiM HaligeHo ycioBue
eAMHCTBEHHOCTH DEIlenns, a Jjif orPaHMYeHHBIX H TeabjepoBrix A(z), B(z), yao-

BACTBOPIOUIUX YCAOBHIO I-I)Z?ﬂ me}}él(lA(z) — A(p)| +|B(z) - B(n)]) = 0 2.Myxa-
2 2=

magaeesim 1 C.Baizaeerim B Kiaacce C(E) ycTaHOBACHR! CYIHECTROBABNE H CTPYK-
TYpHBie CBOBCTBa DellleHHd, HeTepoBocTh omeparopa L. B pabore cucrema (1)
HCcaefyeTCA B clyHae, KOTAa Ko buuueRTH MOTYT pacT Ha 6eckodedHOCTH. Ha
OCHOBE AETAZLHOTO M3YJEHMA KDPaeBhiX 33/ja49 ¥ METOMA JOKaAbHAEIX ONCHOK, PH
6AE3KAX K MHHEMAALHBIM YCIOBHAX Ha Ko>GOUIHEHTH, JOKa3aHa OfHO2HaIHAA
ee pa3pemIMMOCTb AAfA BCceX mpasbix dacteil m3 Ly(F). Tlpnm HekOoTODHIX Aomol-
HETeALERX OrpaHH4eHuAX JOKAALHOT'O XaDaKTepa MOKa3aHO, YTO AAA PEllieHHd
HMeEIOT MECTO KOIPIMTHBHbLIE ONEHKH B HOpME BecoBoro npocTpancTBa Cobonera,
a TakKXe HalJACHH YCIOBUA KOMIAKTHOCTH 4 ciabad acAMUTOTHKA QYHKIUHA Dac-
npefiefeHAd ANNPOKCAMATABHAIX THACEN PEI0ABBEHTH onepaTopa L.

Otelbaev M. G.
(University of Eurasia, Astana)
Vychislenie sebstvennyh chisel differenciainyh operatorov

Padula M.
(Ferrara University)

Techniques for existence theorems in problems with
free boundary.

The problem of evolution of a fluid with free boundaries constists in the
determination of the domain £2;, the velocity vector v and a scalar pressure p sat-
isfying the equation of motion, and stress-free boundary conditions. This problem
has been studied for compressible and incompressible fluids, when the domain is
a layer with rigid bottom and free upper surface, or when the boundary is totally
free (drop of fluid). Several existence theorems have been proven local or global
in time for small initial data, and explicit steady solutions have been computed



311

when there is a stabilizing surface tension. Open problems concern the existence,
uniqueness and stability of the se steady solutions at least locally, and some hint
has been proposed by Padula & Solonnikov.

Here, we reconsider different techniques used to solve some global existence
probelms, and propose some coordinate change that suit better the problem for a
rotating drop of an incompressible fluid, and for a piece of horizontal layer of com-
pressible flu id having upper free surface. In both cases we provide first uniqueness
(for small rotation in the first case) of the given steady-solution, and then existence
of global regular solutions, starting by a small perturbation of the steady solution,
finally, the asymptotic decay of these solutions to the corresponding steady one.
Interesting enough, the method changes deeply with the geometry of the problem,
below I quote a result in collaboration with ¥.A. Solonnikov..

Theorem Let To = Qo be given by R = Ro(y), y € Si,"Bo € C3+2(5),
a € (0,1), and let vo € C*+2(Qg) sathfjr tbe boundary compatxbzbty conditions.
Assume additionally that :

IVolc%-(nu) + |Ro - 1!03+~(s1) (0.1)

with € > 0 sufficiently small. Then tbete ex:sts 2 unique solutmn (R,v,p) defined
in an infinite time interval t > 0 and possessing the following properties: R(-,t) €
C3e(8), v(-,t) € C*e(y), p(-,t) € CH(Qy), ¥t > 0, T; = 8Q; is given by
equation (1.3). The solution satisfies the inequality

supeeo,7) I¥i(- o=@y + subse(o.r) I¥(1 1) — Yooloasaqay)

+ 8P (0,7) (-, t) ~ Peo Ié”*(ﬂ}) + SUP;c(0.7) IR( ) — Rcolf_.'“"'“(sn) (0.2)
(e Voolcm(no) + IRo Resloosa(sy) €7, - VT € (0,00),

with some constants b > 0 and ¢ mdependent of T

Meanep H.A., Haaenes B.B., Xnonesa E.T.
. (Bumucaumessuviil yenmp us. A. A. j{opo&nuquna :‘PAH)
O uncieBEOM METOAE C paclienjeHaeM paarYyHbIX yCJIOBHK
A%A CTALMOHAPOHOU CHCTEMEL HaBbe-C'roxca B IIAapOBOM
Cjioe B CiiyHae OCGBOB cnmvxefrpxm

B [1], [2] 6rum npeanoxent: 1 uccAcAOBAHL! BOBHE GEICTPOCXOAAITAECA ATE
palEoHHEe METOARI C HEUOAHKM ¥ NOAHBIM DaciielieHueM TPaHUIHHX YCAOBUR
(I'Y) pemesus 1-# KpaeBoi 355390 A4 MEOTOMEDHOH CHATYIAPHO BO3MYIleHHOH

23PaGora pEMONHEHA npu dunanconoi nogaepxke POPH, kog npoexTa 99-01-00852



312

cucrembl Tana CTokca ¢ 6oABIIAM I2DaMeTPOM [t
—~Aun 4 pPu+gradp=1£, diva=0 3 Q,

) uloq =g, [(g: n)ds =0, [pdz =0.
. 80 ' o

MeToasi NpHBOAAT Ha HTEPaUEAX K CYHMICCTBEHHO 60Ace HPOCTHIM CKAAADHEIM
WA SKBUBANCHTHHIM TAKOBHIM O TPYJHOCTH PEUWICHWA BEKTODHEIM MIMNTHIE-
CKUM KpacBHIM 32f342M, H Hambojee GBICTDEIE HX Bapnam €XOAATCa TeM Gbi-
cTpee, HeM GOMbIIHEe 3HaTCHAA NPAHAMAET CHETYAspHEH: mapametp p. B [3}-[5]
6LlIM TDOCTPOCHE! B CAydae MOACCHE! NPH 'YCAOBEE HEepBEOAWIHOCTH GniamBelnbie
xomeano-aMeMenTane (KO)-peainmsaing >THX METOAOB, KoToprie (Hiocle Bpeogo-
JeEnA TpyABOCTeH, cM. [5], BLBBABHLIX CYIECTREANEIM HNaACHAEM HO CPABHEHHIO
¢ AndepeHIEATLERM CIyJaeM CKOPOCTH CXOAUMOCTHE Ha BHICOKAX FApMOHHKAX
y BenocpeacTBeEBRX KD-peannsanyii) HacAefYIOT B OCHOBHOM BCe JyHHiAe Kade-
CTBa MeTOACB i o6ecmeTURAOT BTOPOH NMOPAAOK TOYHOCTH M JAA CKOPOCTeH 1
aaa gapiesma. B [6] 6mina paspaboTana MOAEGEKARNA METOAOB C HMOAHEIM pac-
menaeanem I'Y B maposoM caoe jad cucTemel Crokea (g = 0}, T.e. B ToM ciydae,
KOT 42 yXe HeT GOBuIoro NapaMeTpa it Kak $akTopa, 6AaronpasTCTBYIOmero no-
BLIICHAIO CKOPOCTH CXOAUMOCTH. TeM He MeHee, BHICOKOH CKOPOCTH CXOZNMOCTH
Takol MoJuUKANYY — YMeHbIeHna omubKy 2a .1 wrepaumio Be MeHee, 3eM B 10
pa3 — yAaaoch JOCTHYb 32 CHET YCAOKHEHAA GOpMY] HepeceTa, BBCACHAA B ANX
Tpex penaKCcanHoHHHX HapaMETPOB A CHeIMalbHEEX onepaTopos Tna liyaskape—
CTex0Ba fiepecajKa ¢ OHOR MparmIROH cdeprt Ha APYTyio. MTepamuoHasIl Opo-
necc 65 ABYXUIATOBEM JiA TOHKAX ¥ TDEXMATOBHIM JAA TOACTHX cioes. B (7]

[8} 6HUIE HOCTPOEHL! 1 HCCAEAOBANNCE TUCACHARS PEau3anuy Ha OCHOBe Guan-
neimpix KO 3THX mTepanHOHHEX MeTOJIoB AuA cucremn: CToxca, a Takxe THIA
Croxca B II2POROM ClIO€ B clIydae ocepoll cumMeTpun. MeToas Takxe o6HapYXu-
BaloT 2-ii mopafok Tousoctd. CoaepXanme HacToamero Aokaaja. 1. Homysenn
cmoco6H ONTAMAZANEA 3HA4CHEN TDEX PEIaKCATMOHHAIX NAPaMeTPOB BEMIMCAH-
TeanHE0 6olee 3hpEKTABHOTO OAHOMIATOBOT'0 BapranTa MeToAa 2 [6] Aas cacTeMnl
Croxca Bo BCeX ciiyHasix: TOHKHX, TOACTHX A NPOMEXYTOTHON TOANMHE Iapo-
BHIX ciloeB. 2. YcTaBoReHO (MHCACHHEIMA SKCIEPAMERTaMH), 9TO pa3paboTaHHElR
B [6] MeToz 06a2730T CACAYIOMEM 3aMEIATAIBALIM KaTeCTBOM: ¥ HENOCPEACTRER-
HEX ero KO-peannsannit, ocymecTriaeBHEX B [7] 7 [8], B oTamane oT TaKOBEIX
OAA METOJOB AAf cmcTemn! gmma CTOKCa, OTCYTCTBYET Taxoe BechMa Hexena-
TeAbHOS ARACHAC KaK CYIIECTBEHHOES N deHae CKOPOCTH Ha BRICOKAX rapMOBHKaX,
HputeM gaxXe AAS OUeHb TOMCTHX HIADOBLIX C/I0eB, KOTja Ko>hIUIHeHT yMeHb-
iieHna oumOKY JOCTHTACT MHOTEX COTeH pas 2a 1 mrepanmio. 3. Ha ocnose aTax
aATOPETMOB B METOJA HOCICAOBATEALEbIX NPROAMKEHAA CO3/3H TACICHHEHA Me-
TOJ pemeHna 3aAa9H O CTAIHOHAPHLX TeICHAAX BA3KOH HeCKAMAeMOR XKUAKOCTA
nipu ReGoabnmx Yncaax PeliHoAbACa B MapoBOM clioe B CIY'iae OCEBOH CHMMETPUH.
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PaspaboTanti gpa BapraaTa KD-annpoxcuManin KORBEKTHRHEEIX 4ICHOB — NOAHAS
# 6odee DpocTas, OCHORAHHAA Ha KOHCEDBAaTHBHOH mX dopme. Jrcaennrie sKcHe-
PUMEHTEH], NPOREAEHALIC Ha CEPAH TECTOB OGHAPYXHBAIOT 06m|i BTOPO#E HOpH-
JAOK TOYHOCTH [0 HIAL'Y CETKH 3TOPO METoAa Aia cacremsi Hasne-Crokeca. Me-
TOJ TO2BOAACT HPOUSBOANTE PacieTH Ha CeTKaX ¢ BRICOKAM Da3pemicHHEM — A0
HECKONLKAX MUAAAOHOB SACMEBTOB. 110Ay3eH PAJ BHCOKOTOYHEIX THCACHHLIX Pe-
HIeBRH 323498 O TEUCHUA BA3KOH HECKHMAEMON KHAKOCTA MEXJY ABYMA COOCHO
BpaulaioAMEcA chepaMy HPE HEKOTOPHIX 3330DaX CIOA ¥ PasAHTHHX PeXAMAaX
Bpaillenna. DTH PE3YILTATH YTOIHAIOT W JONOABAIOT HEKOTOpHIE, HMEIOmAecH K
HACTOSMIEMY BPEMeHH, Cp., HaOpAMep, PaGoTH, IATHPOBABELIE B CTaThaX B [J].
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Panasenko G.P.
(University Jean Monnet)
Method of asymptetic partial decomposition
of domain for singular problems.

Method of asymptotic partial decomposition of domain was proposed in {1,2]

for thin domains and tube structures (finite connected unions of thin cylinders).
The main idea of this method is to replace the original 3D or 2D problem by
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a hybrid 3D-1D, 3D-2D or 2D-1D model; i.e. we reduce the dimension of some
parts of the domain where the solution has a regular asymptotic behavior of the
solution while the dimension in subdomains of singular asymptotic behavior of the
solution are kept unchanged. Usually subdomains of singular asymptotic behavior
of the solution are the domains of boundary layers. This approach permiis to
reduce essentially the number of nodes in the grid when a numerical analysis is
applied. The same approach can be applied when the domain is not singular but
the equation is singular. Of cours the most important question is: what are the
interface conditions between subdomains of singular behaviour and subdomains
of regular behaviour (usually with reduced dimension of the problem)? The main
principles of construction of such conditions are as follows:

a) the asymptotic expansion of the exact solution of the initial problem should
satisfy these interface conditions with great accuracy; b) the reduced problem of
hybrid dimension with the interface conditions (i.e. partially decomposed prob-
lem) shounild be well posed, i.e. it should have the unique solution and it should
be stable with respect to small perturbations in the right hand side. Some similar
hybrid models appeared earlier in mechanics and computations. They are based
on some heuristic approaches (see for example, a numerical simulation of shallow
water equation in the system lake-river” [3]). Some other approachs of specially
precised boundary conditions were considered in [4,5]. In the presented paper we
give a variational version of the method of asymptotic partial decomposition of
domain [6]. In this version we consider the variational formulation of the original
problein stated in some Hilbert space. The main idea is to replace this Hilbert
space by a simple Hilbert subspace which contains the asymptotic solution (or
asymptotic expansion of the solution). The variational formulation of the initial
problem restricted onto this subspace corresponds to some hybrid 3D-1D, 3D-2D
or 2D-1D model. 1t is well adopted to an application of finite element method
with some elements of various dimensions and some ”super-elements” of combined
dimension. We consider also partial domain decomposition for some singular prob-
lems for integral and differential equations.

1. General deseription of the variational version.

Let H, be a family of Hilbert spaces (depending on a small parameter ¢).
Consider a variational problem: find u, € H, such that

Yw € H,, B(u,,w) = (f,w). (1)

Here B(.,.} is a bilinear symmetric coercive form and (f,.) is a linear bounded
functional. We suppose that

Yw € He, B(w,w) > ere"lluwll?, @

where ¢; > 0 and 7 > 0 do not depend on &, and that Yu, w € H,, B{u,w) =
B(w, ), Yw € H,, and |(f, w)l < ||7llllw}l. Let H gec be a subspace of H,. Let u?
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be an;asymptotic solution such that (i} u¢ € H, gec, and such that (ii) there exist
Pe. € H, such that ||¢fc|| < e2, where ¢ does not depend on €, and such that

Vw € Hy, Bl w) = (f,w) + 5 (e, w), (3)

where K > r. Subtracting (1) from (3) we obtain Yw € H,, B(u? — u,,w) =
eX (e, w), i.e. for w = u? — u, we obtain c1e”||u? — u.f| < e¥||be|| € ¥eq, ie.

Il - uel| = O(EK") (4)

Let Hg goc be a subspace of He and let u? be the solutlon of the partially decom-
posed problem' i.e. of the 1dent1ty_ (1) restncted onto the subspace He dec :

Yw € He ,dees B(“ea W) (f: U)) (5)

‘We assume that thls subspace has amore sm)ple structure than H, for example the
functions of H, & dec aT€ polynomlals on the regular part of the domain. Therefore the
problem (5) is easier than the. problem ( 1). So the variational version is related to
the special choice of asimple subspace He gec (ie. specaa,l restriction of the ongmal
problem), satisfying the conditions (i), (u) To justify the variational version lef
us subtract the identity (5) from (3} for any w € H doc. Then we obtain Yw €
Hy gec, B(u? uc,w) = EK(TIJg,w), ie. forw=u?— ul we obtain ¢;e”||u? — uf|| <
€Ku¢5" < EKCZa 1.e.

Ilue — = O(e=). | (6)
Comparing the estimates (4} and (6) we obtain
llue — ull = 0= ™). (M

This estimate justifies the method.
- 2. Model example. - ' A
Consxder the elastlclty system of equatlons stated in

* PR Gé='(0,1)x(—§,§)

1.0 .

(below the conVentlon of the summation from 1 to 2 in repeatmg indices is ac-
cepted): i

a
—5—(Am “) = f(2),e € G, ®
where Ay, are the constant 2 % 2 matrlces thh the components akt,

ak;n = Mrk Oim + P(arm‘sk' +6r16gm),
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X and p are the positive constants ; here u., f are two- dimensional vector-valued

functions, suppf(£) belongs to the square (0, 1) x (—5, 3),and f € L%, Let us state
the following boundary conditions: free lateral boundary and fixed ends:
du,
A2m8 =0,z =%e/2 9
ue =0,z =0,1. (10)

The variational formulation is the integral identity (1) where
T 3‘“;
Blug, w) = ) Ay ggdn, (fyw) = = | fuds, (11)

H, is the subspace of vector valued functions of [H*(G,)]? vanishing on the seg-
ments {z; = 0} and {z; = 1} . As it follows from [5,6], the asymptotic solution is
almost a polynomial at some distance § of order Ofelin(e)| from the extremities,
i.e. for any K there exist such K € IR independent of ¢ that if § = Kelin(e)| then
z of the rectangle (4,1~ 8) x (—%, §) the discrepancy is of order O(e¥).

This polynomial solution has a form

v = 2% + {55 — m)ad + 5 ey — Weabol (12)
Uy — ﬂ’\z—”mzv’l + mﬁm(:ﬂ% 1262)1}
where
n(z1)=az +b, (13)
va(z1) = 23 + dz? +ex; + ¢ (14)

a_
are polynomials with some undetermined coefficients a, b,¢,d,¢e,g9, E= 242

We introduce the subspace H, 4. of partially decomposed problem as the sul:?é}z.)a,ce
of H,, such that its elements have the form (12)-(14) for all z of the rectangle
(9,1~ 4) x (—%,%)- It can be proved that slightly corrected asymptotic solution
[7,8] satisfies the condltlons (i) and (ii) of the section 1 and therefore as in the
section 1 we can obtain the estimate (7), i.e. for any K there exist such KeR
independent of ¢ that if § = Ke|ln(c)| then the estimate (7) holds true. (In order
to prove the coercivity (2) we should use the Korn inequality for thin domains; it
gives the estimate (2) with some r £ 3, see [ 9]).

This result can be generalized for the rod structures described in [7] and tube
structures from [2]. The case when the right hand side f is different from zero and
depends on the longitudal variable in a regular part can be reduced to the previous
case.



317

REFERENCES

[1] Panasenko G.P. Method of asymptotic partial decomposition of domain,
Mathematical Models and Methods in Applied Sciences , 8, 1 (1998), 139-156.

[2] Panasenko G.P. Partial asymptotic decomposition of domain: Navier-
Stokes equation in tube structure, C. R. Acad. Sci. Paris , 326, serie Il b (1998),
893-398.

[3] Shugrin 8.M. Coupling of one-dimensional and two-dimensional models of
water flow, Water Resources , 5 (1987), 5-15.

[4] Nazarov S|A. Two-tenn asymptotic of solutions of singularly perturbated
spectral problems, Math. Sbornik, 181, 3 (1990) 291-320.

[5] Goldenveizer A.L. The approzimation of the plate bending theory by the
asymptotic analysis of elasticity theory, Pr. Math. and Mech., 26, 4 (1962) 668-686.

[6] Panasenko G.P. Method of asymptotic partial decomposition of rod struc-
tures, International Journal of Computational, Civil and Structural Engineering
(Begel House Publ.), 1, 2 (2000) 57-70. '

M Panasenko G.P. Asymptotic solutions of the etastzczty theory system of
equations for lattice and skeletal structures, Math.Sb., 183 , 1 (1992) 89-113 (in
Russian). English transl. by AMS in Russian Acad. Sci. .S’bormk Math. 75, 1 (1993)
85-110.

(8] Panasenko G.P. Asymptotic analysis of bar systems.l, Russian Journal of
Math. Physics, 2, 3 (1994) 325-352. II, Russzan Journal of Math. Physics, 4, 4
(1996) 87 - 116.

[9] Oleinik O.A., Shamaev A.S., Yosifian G.A. Mathematical problems in elas-
ticity and hamogemzatmn (North Holland 1992). '

Panayotova G.
( Unwerszty of Chemieal Technologies, Burgas, Bulgarza}
Jordan Tabov
(Institute of Mathematics, Bulgarian Acad. of Sei.)
‘Wave type solutions of hyperbolic systems of
conservation laws with relaxation terms

In this paper we consider the system of PDEs

5:!? + az.? = 0

.1 1,, ..
&+ ‘é‘é‘azp = —;5?-'(1?)1
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with relaxation terms. Here the relaxation time is given by ¢, the nonnegative
function k(p): represents a collisional cernel, whereas the ‘quantities p and 7 de-
note, respectively, the density mass and the flux of the particles. Such systems
occur in the kinetic theory of gases, in gas flows with relaxation, multiphase and
phase tramsition, turbulence, water waves viscoelasticity, and reactive flows (for
references and more information see [1]). We study the problem for existence and
uniqueness.of wave type solutions of the above system (usually called simple states,
or solutions, constructed by means of Riemann invariants; see [2])..I turns out:
that the problem stated above reduces to the problem of investigation of the exis-
tence of integral manifolds of a certain involutive system:of Frobenius type; which
is equivalent to a system of ordinary DEs and can be treated by standard methods.
Ce o TP L S I S I T
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Paneah B. vt L,
e AL q e, v o (Technion, Haifa).
Flrst Boundary Problem for: High- Order Hyperbohc
Equations and Related Topics in Analysis

Boundary value problems for linear PDE in bounded domains with data on
a whole boundary are studied well in the case of elliptic equations of an arbitrary
order. Almost nothing is known about solvability of such problems in nonelliptic
case. Some separate results which appear from time to time have a negative char-
acter. In particular the Dirichlet problem for second “order hyperbolic differential
equations in a bounded domain is usually regarded as an ”unnatural” problem of
mathematical physws Its solution Tnay neither exist, nor be uniquely determined,
nor depend cont.muously on the data. When dealing thh a boundary problem for
hyperbolic differential equations of an arbltrary ordei i’ a bourided domain a part
of the boundary remains usually free of a priori information about unknown solu-
tions. The evolutionary character of hyperbolic equations seems to impose taboo
on a priori information about a solution on the whole boundary of a domain.
On this background the results to:be represented in this talk turned out to be
unexpected to a large extent. With any third order strictly hyperbolic differen-
tial operator P with constant coefficients in the plane we associate a curvilinear
(two-dimensional) triangle D = 05, 52. Its sides 08, 'and OS; coincide with two
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characteristics of P and the side T' = §, 5, is a generic smooth curve, connecting
points §; and Sz. The angle 51085 is supposed to be less then and it contains a
segment of the third characteristic of P. The first boundary problem we deal with
is as follows:

Pu=f in D, u=¢ on 3D. (1)

To solve this problem we introduce some noncommutative finitely generated semi-
group Op of maps in T intimately connected with P and T'. This semigroup gen-
erates naturally a set Op of orbits in I'. Let 7 be a set.of characteristic (with
respect to the operator P) points in I'. In terms of the sets Op and T we for-
mulate, as the main result, the necessary and sufficient condition of the unique
solvability of problem (1) in C***¥(D) for arbitrary functions f € C*(D) and
¢ € C**(8D), k= 0,1,..., (p is continuous on 8D and k + 2 times differen-
tiable on each side of triangle 051 52). In particular if 7 = Q (noncharacteristic
first boundary problem!) then problem (1) is uniquely solvable for all above func-
tions f and . The inverse operator {f,p) —+ u is continuous in the corresponding
pair of spaces. If the above mentioned condition is violated then for some T’ prob-
lem (1) becomes Fredholm problem of index zero. It is worth noting that the first
boundary problem (1) turns out to be equivalent to some new problem in Integral
geometry, reminding the well known Radon problem. In a domain D of the de-
scribed type let us consider a parallelogram D; = Og19g2 where ¢ is an arbitzary
point in T and ¢ € OS), g2 € OSz. Then the problem in question is: given a
function A € C(T) to find a function f € C(D) such that

fp fdo=h(g), g€T. @

We give the exhaustive answer to the following question (which is known to be the
main problem in Integral geometry): for which classes of functions f is the map
f v h is one-to-one, and which functions h(g) can be represented by the integral
(2). When solving this problem we reduce it to a functional equation on the curve
T of the following form:

F(2) — a1(2)F 0 81(2) — e2(2)F 0 62(2) = G(z), z€T. 3

Here G and F are given and unknown (respectively) functions on T, 8 and 4, are
twomaps in I’ and a;, aq are given functions. To the best of author’s knowledge
such equations (except for the case of linear functions 4; and &;) has never been
investigated. It is in this part of the work that the above semigroup ©r (generated -
by 6; and d2) of maps in T and all accompanying dynamic conceptions are used
to the large extent. The main result related to equation (3) consists of conditions
(in terms of Or) which guarantee the unique solvability (or Fredholm property)
in C(T") of the equation for all functions G € C(T'). Some preliminary resulis
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Panina G.
(Institute for Informatics and Automation)
On Minkowski decompositions of polytopes

Briining J., Dobrokhotov S.Yu., Pankrashkin K.V.
(Insitut fiir Mathematik, Humboldt Universitdt zu Berlin,
Institute for Problems in Mechanics, Russian Academy of Seiences)

Global semiclassical description of the spectrum
for two-dimensional magnetic Schrodinger operator

We study an asymptotic of the spectrum for the operator

s 1( . 8 IRYAEAY
H= 3 (—zh-a—a + zz) + 3 (—'o'h%) +ev(z1, 22),

where v is a real-analytic two-periodic relative vectors a; = (27,0) and a; =
(@21, az2) function, as k, ¢ tend to 0. The corresponding Hamiltonian is

1 1
H(p,z)= §(P1 +z9)% + §P§ + ev(zy, 22),

‘and it corresponds to a non-integrable Hamiltonian system. Nevertheless, by using
modifications of Krylov-Bogolyubov—van Alfven—Neishtadt averaging methods we
show almost integrability of the Hamiltonian system for H with exponentially small
disrepancy relative £, and reduce it to a one-dimensional one on a torus. Using
the topological methods for integrable Hamiltonian systems and some elementary
facts from the Morse theory, we give a general classification of the classical motion
defined by H. According this classification, the classical motion is separated into
regimes with different topological characteristics (like rotation numbers and Maslov
indices). Now using these regimes, the correspondence principie, the semiclassical
approximation, and the Bohr-Sommerfeld quantization rule we give a global semi-
classical description of the spectrum for operator H. If the flux 7 = ax /his
rational, by some heuristic considerations we can give a more complete picture of
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the spectrum for H. In particular, the estimation of the number of subbands in
each Landau level is obtained. From the point of view of this description for the
spectrum, the above mentionad regimes are classical preimages of spectral series
for the operator H . The work is partially supported by the project DFG-RAS 436
RUS113/572.

Panov E.Yu.
(Novgorod State University)

On locally integrable entropy solutions of the Cauchy
problem for a first order guasilinear equation *

Consider the Cauchy problem for a first order quasilineér equation
u, + divg @(u) = g{t, z) € Lllac(nT): u(0, z) = uo(z) € Llloc R™), (1)

©=(p1,...,¢a) u=1ult,z), {{,2) €llr = [0,7) x R*, T > 0. The flux vector
¢(u) is assumed to be only continuous and to satisfy the growth restriction:
J(u)] € Col1+ Jul), Co = const. We study generalized entropy solutions ( g.e.s. )
u(t,z) € L} (T7) of the Cauchy problem (1) in the sense of §.N.Kruzhkov (see
{1]) and present the following results. : -

Theorem 1. A g.e.s. of the problem (1) exists. Moreover there exist the maximal
and the minimal g.e.s. of this problem.

Theorem 2. Let ug € LP(R?), g(t,z) € L}(0,T),LP(R*)), 1 L p L o0, u =
ult, z) be 2 g.e.s. of the problem (1). Then for a.e. 1 € (0,T) u(t, ) € L?(R"} and
lett, My < luollp + g lla(, Hllpdr

Theorem 3 (uniqueness). Suppose that |@:{u) — vi(¥)] < wi(lu —9]), i =
1,...,n, where wi(r) are nondecreasing subadditive functions on Ry, wi(r) >0

7
for 7> 0 and liminf, ;04 7~ ] wi(r) < co. Then the g.e.s. of the problem (1)
iz

. =
is unique. One could define a g.e.s. u € IZ,  for any p > 1 changing the growth
condition to the requirement | (u)] < Co(1+|ulP) ( with no restriction for p =c0}.
But in this case the Cauchy problem seems to be ill-posed. Evenfora =1, =0
all of the positive results above are no longer valid.
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‘ Pastukhova S.E.
(Moscow Institute of Radio Engineering, Electronics, and Automatics)

. Homogenization for some problems
with inequality type boundary condition in elasticity theory

Let € € (0,1), Y = (0,1)3, and let V be a smooth bounded domain in R3,
0V = 8. Suppose that the unit cube Y contains a closed piece of a smooth surface
MUT, ={z€Z:¢Y +2) € V), then we set M, = U,er.e{M + 2) and
Ve = V' \ M,. The inner boundary of Yar =Y \ M consists of two copies of the
surface M : M* m M~ . In accordance with this the inner boundary of V. consists
of M} and M, . We define a unit outward normal vector n*(n~) on M} (M_"). For
an elastic body with fissures occupying the domain V, we study its displacement
field «* when the body is subjected fo the external forces having volumetric density
vector f while it is fixed on its outer boundary § and when sides of fissures do
not overlap. The latter condition supposes some system of one-side constraints on
the inner boundary of V.. Let o(u)} be a commonplace stress tensor considered
for a displacement field u within the framework of the linear elasticity theory.
It defines on M} (M) a stress vector o (o} ), which decomposes into mutually
ortogonal components o} = o}, nt + o} (¢ = 6,7 +67). If u- v denotes a
scalar product of vectors u,v € R3, then [u - al|y, = ufpgs -0t fulp- a7 is
mutual approach of two sides of fissures across the normal for given displacement
field u in V.. We consider in V; the folowing mixed problem (1,) for the system
of Lame equations: —~dive(u*)+ f=0 in V., #*=0 on S; [u°-n]<eh,

ot =0;=0, o}, =0;,<0, ([u°-n]—ch)oi,=0 on M,.
Here h = const 2> 0 and ch stands for width of fissures in an initial state. The
solution u° is treated in the generalized sense as a solution of some variational
inequality considered in a set of geometrically possible displacements. We prove
that as £ — 0 solution u* and energy functional of the problem (1) converge to
the displacement field and energy functional for the homogeneous body without
fissures which occupies the domain V' and is subjected to the same external effect
and fixation on S but with nonlinear state equation (defined with a help of auxiliary
variational problem on Yjps.) Thus, we verify the hypothesis stated in [1, ch.6]
about the hyperelastic law of deformation of linear-elastic body with numerous

“small periodically distributed fissures.
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Pechentsov A.S.
(Moscow State University)

Regularized traces of differential operators:
method of Lidskii~Sadovnichii

Eigenvalues for wide classes of differential operators are zeros of character-
istic determinant A(A) wich is an entire function (see {1}-[3]), having asymptotic
representation as A — co:

R I :
AQ)) ~ zee-» AN pPAE, (0.1)

k=1 v=0

where hRE€N, p, nx €%, p < h,0g,, B( ) e C, mthﬁ(k) Z£0.M 0 =0 for
£# 0 and 91:0 # 0, then A(]) is an entire function of class K. V.B.Lidskii and
V.A Sadovnichii have suggested a method of calculating regularized sums of roots
Ae, £=1,2,3,... of entire function of class K., i.e. sums :

i()\f‘ ~An(f)) =Sm, mEN o (0.2)
=1

where An(f) are concrete numbers, guaranteeing the convergence of the series.
The method of Lidskii-Sadovnichii [1] of introducing zeta-function, associated with
class K is extended on entire functions A(}), having asymtotic representation (1).

Zeta-function assocla.ted mth the function A(A) is mtroduced via integral

Z(e) = /A"AA((:))JA Res >1— %,“

where the contour T is chosen on the Riemann surface of ¥/ and the multifune-
tion A~° is determined by fixing a regular branch of the logarithm in exterior of
I'. Regularized sums of roots (2) are expressed in terms of the values of the ana-
lytic extention of Z(g) to the left half-pla.ne Example. Consider boundary value
problem second order

V' = D+ (e~ A+ My =0, 3(0) = 9(1), ¥0) = o), la) € G711

Characteristic determinant A(A) of this problem has asymptotic representation as
A~ o

A AM3 o, ,\_ 1/2 [£3]
A(A) ~ e ~ ( EA.,}Q) A (1+ZM';)

=1 w=1
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where the coeflicients a1, ag,, » = 1,2, ... are computed successively by recur-
rence relation. The formula for the first trace is

[s] Ls1
EZ(Aks—as —( 1)‘ﬁk1/2~__}g’%5_%)= ’

k=1 s=1

where a; = gy = 2mi, ag = aq = —2wi,

] =‘7§’,;(f<p dt—-),r=1,2,ﬂ[13]~n[2] =,
2
B =G (fs”)fsa(ﬁ dﬁdt—~(f¢(t)dt)) =T1.
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' Henxan 0.M.
(Bopoueaccruti 2ocydapcmeenuniii ynusepcumen)
SAAUTTHYECKAe HepaBeHCTBa HA
CTP&TH@HHKPOB&HHHX MHOXecTBax.

Tloapo6uoe onmcanne 3aTParuBacMEIX 34ech HoEATAN ameeres 8 [1-3]. Ctpa-
TR(UNNPOBAHHOS MHOXECTBO {) — cBazmoe mogMHOXecTBe R™, cocTaBicHAOE U3
KOHEJHOI'O 9HCA2 TAAKEX Maorooﬁpaanﬁ oy; (cTpaToB), "npapaabEO” HPUME-
KaIomEX ApYT K APYry. BextopHoe noae F masmipaerca KacaTelbHEM K 2, ecn
€ro CYXeHMA Ha CTPATH KacaioTcd mX. JIe6eroBsi MepE Ha CTPATaX 3243107 Mepy
¢ Ha Q. B TepMaBax 5To# Mephl MOXHO OUDEACANTS NORATHE gABeprennan VF
KacaTeALHOTO BEeKTODHOTO 1104f Ha £); B ToUKe £ € Op_y; OHA ompegenseTcs mo
dopmyne

VF@E) =Viafm)+ Y, (F. F)I__(z),

Crir>Ch~15

B NpaBOH ACTH KOTOPO# CTONT kKiaaccuieckad k — 1-Mepras gueeprenmus Vi
(62 cTPaTe G%_1; Kak HA PMMAEOBOM MHOTOOGpa2AH) M cyMMa mpoexmui F Ha
HOpMaJld B TOUKE Z, HalPaBACHHEIE BEYTDb CTDATOB O, IPAMBIKAIOMAX K O —15;
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IpUMBLIKAHEEE 320BCHIBaSTCA B BAJE" Or; >’- 0']; 1']) 3anxcr> ul O3BaYaeT mpogoa-

XEHNE Ha Gki CYXKEHAA U HA Oks. Onepa'rop (A,,u)(x) V(qu) aHajor onepa-
TOpa JUBEpreHTHOTO THIa. B Kaxjom cTpate ok; npe,qnonaraefma as6o p > 0,

anbo p = 0. Cogepxca.'re.nbﬁa.a SMANTAYECKAA Teopua ¢ omeparopoM A, moxy-
9aeTCA B OpEUONOXEANN NPOIHOCTA CTPaTHGUIHPOBAHHOI0 MEOXecTRa. lipod-
HOCTH O3HAMAET, ITO JIOGHE JBAa CTPATa MOXHO COSAWHATEL TaKOH cmsoﬁ me-
TOUKOR CTPATOB Ohiiys e vy Thpips TTO [kqr1 — kgl = 1mpr g = 1,...p— 1. fan
DOCTAHOBKHA KDaeBHIX 332 MHOXKECTBO £} paaﬁnaae'rca Ha jgBe qa.c'm, Qo moboe
OTKpHTOE (B TOROJOTHE Ha {), HEAynEpoBaHHOH 73 R™) 1 caa3H0e OAMHOXECTEO -
2, cocrasaernce W3 ero cTpaToB, u 2\ Qg = Q. 3azaqa Jupuxie umeeT BAA:

(Beu~ (@) = 1G), ), |, =4

N
R PR

Ipu ecTecTBeHARX TpeGoBaHNAX HA KOXDOBIHEHTE OHA OHOIHATHO PaspemuMa
B mpocTpancTBax Co6oneBckoro Tana. MOXHO MOKa3aTh, ITO OHEPATOD A; mo-
POXA2eT AHAANTHICCKYIO WoAyrpynny B L2 #(9); aTo mozponseT mOAYIATH pe-
3YALTATE O PazpelaMOCTa napaﬁo.m'lecm KpaeBHX 3aja4. Hoayden cnabriii
NpARNEN MAKCEMYMA [jid DAAANTAIECKAX HEPABEHCTB B OOMIEM CAydae M CHilb-
Hbifi NPUANAN MAKCAMYMa JIA JBYMEDHOTO CTPATH(GUIUPOBAHHOrO MHOXECTBA.
Tipa 8Q = @ oéaapymniaaxowca AHANOTHA ¢ KIACCAYECKAM CIyIaeM HAIHNTHEE-
CKOT'O OBEPATOpa Ha 3aMKHYTOM PHMAHOBOM MHorooGpaswd. K mpmMmepy, Hepa-
BercTBO: (Ayu — qu)(z) >-0'mpa ¢ > 0 gomyckaeT JHE TOCTOAHHEIE DEHICHHA
(aemMa Boxxepa) Paﬁo'ra qacmqno nog;;epxaaa P<1><I>I/I (I‘pas’rm 01-01-00417,
01-01-00418) ,
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Perel M.V., Fialkovsky L.V.
(Physics Faculty, St.Petersburg University)

Highly localized solutions of
the Klein-Gordon equation

For the Klein-Gordon equation
h% (use — Uzs — Uyy) +u =0, h = const (0.1)

we present here two new precise explicit solutions up, up

up = Ppe’Se/h, up = e Selh, (0.2)

Sp = 0 — %, Sp = i [(8 + ie)(B ~ i4s%¢)] vz (0.3)

¢ = (B — ic)~ M2, ¢ = [(B—ie)(B - its?e)] /%, (0.4)
where

9=z—t+;%i;, .ﬁ=2+t. (05)

Functions u = up and u = u, satisfy (0.1) for any non-zero constants €, s
and for any choice of square root branch in (0.3). Both complex phases S = S
and S = S, are the precise solutions of the Hamilton-Jacobi (eikonal) equation

8s\? (as\*® (as\?
(7 -(z)-&) =+ (©6)
. Therefore solutions 4 = up and u = u, can be considered as complex ray

expansions of the solutions of (0.1) at k — 0 consisting only of the zeroth order
term. If € > 0 is fixed and 2 — 400, the asymptotics of solutions are as follows

‘ (kz — wt) ¥
u, ~ Cpexp (z A - hA; , t+zike, (0.7)
(kz —wt)  (z~ut)? e
Up Cy exp (z ; WAL~ R A7 ) ftl<e, (0.8)

where Cy = (—ie)'/2, Cp = iexp (—2x¢e/h) 2x¢ and
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1 w
— e — /52 - 9w
k=2 o’ w k2 +1, v T (0.9)
Az=2'€x, Ay = iy
w P

The formula (0.8) is valid under the additional assumption that we choose such
a branch root in (0.3) that ImSp > 0. Thus u, is localized near the axis y = 0
and behaves like a beam. The solution u, is localized near the point moving along
the axis y = O with the speed v and behaves like a particle. The parameter s
governs the degree of localization of both u, and u, as it can be seen from the
evident asymptotics Az ~ 24, if > 3> 1. Because of this the greater is » the less
are A; and Ay and the stronger becomes the localization. It should be mentioned
that the beam-like solution uy can be viewed as a reference one for the Masloy
asymptotic construction [1]. Large-time asymptotics of u, u, are also gained. The
construction of these solutions is based on the beam-like [2], [3] and particle-like
[4] solutions of the wave equation belonging to the class of the so called “relatively
undistorted progressing waves” introduced by Courant and Gilbert [5). We thank
Prof. A.P. Kiselev for his interest in our work and for the stimulating discussion.
The work is supported by the RFBR grant A 00-01-00485.
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Ilepos A.HA.
(Boponedecxuii zocydapcmeennutil ynusepcumem)

Ilpuznaksm yCTOMHYUMBOCTH B KPHTHICCKHX CAYdIagx

IlpeaaaraioTes pasAm3HEEe TOAXOAN K YCTAHOBACHA YCTONMMBOCTA B KPH-
TAYECKAX CAYHafX jAf MAHEARHIX A HEAMACHHHX CHCTeM Da3HOCTHEIX HIH JUd-
depennnansarx ypasaennil. [lpegiionaraeTed, 770 XpajpaTHad MaTpuna (onepa-
Top) A yaoeaeTBOpaeT ycnosasm: AX = XS5, YA=TY,YX =0,spSNspT = &,
rge X 5y - TIPAMOYTObHEIE MATPHUB MaKCAMATBHONO PanIa, S aT — xBa-
ApaTHEE MaTPHIE TMPOCTOH CTPYKTYPH! € TACTO KPATHICCKAMA cnexfrpa.ma (sp
CAYXKHT Aif 0GO3RATEHAA CEKTPR).

Mepeniit n0dzod OCHOBAH Ha H3yHeRmH HOprI Ha + AA“ (oaa AOJHKHa
6LiTHL MeHBHIC . CIUANNE) B JUCKPETHOM Ciydae MAX JorapadMutdecKoli HODMED
len ||A4 + AA4|| (oma gomxma 6HiTE OTPUNATENbHOW) B. HENPEPHBHOM CIY-
sae, tae AA = XU + VY - TPOH3BONBHEQE JOMYCTHMOE BOSMYINeHze. .Orme-
TuM, 310 Im X C kernel Y, wTo RaéT BOBMOXHOCTE HOCTPOHTH GAKTOD-
ApOCTPaHECTRO kernel Y/Im X; specs Im X -~ mog@pocTpaHCTRO, HATAHYTOS
Ha cToabmpi MaTpunnl X, a kernel Y - agpo marpumet Y. Paxrop-onepaTop
R= (Ajkernel Y)/Im X, peficTrytonmii B dakTop-mpocTparcTee kernel Y/Im X,
Ha3EIBACTCA OCTATOIHNM; 3deck Alkernel ¥ - cyxerue onepatopa A Ha HoAupo-
crpaucTeo kernel V.

Bmopoii nodzod ocEOBaR Ha HEMOCPEJCTREHHOM BHIACACHAN (/AN OLEHKE) HOPMEI
BB nora,pmbmmecxoﬁ HOPME! OCTATOYHOTO OUEPATOPa ¥ BCHOABIOBAHAA COOT-
momennii: spr R < ||B}l < 1 mmmspa R < lga ||B|| < O (spr - cnex'rpanbnmn
pajmyc & spa - cuekpaabHad abemucca).

Tpemuii nodzod oCHOBaH Ha OHEHKaX CHEKTPATHHOTO PAAEYCA H cnex'rpa:xmon
aGCIuCCEl, BHITEKAOIMAX M2 JOKAMN3aNACHALX TeopeM lepumopnaa a OcTpop-
ckoro. OcHoBHAS TPYAHOCTD — AOKAIATENECTEO HPOCTOTH JAEMEHTAPHHX Felna-
Tefel, OTBEIAWAX KPETHICCKEM COGCTEEHHRIM 3HA4EHAAM,; — MPEOAOAeBAeT A
¢ MOMOMIBIO HOMYIEHEEIX HEARBHO ONEHOK HMEMEHTOR OOPATHEIX MATpH B YCio-
BHAX KPHTepHeB peryasprocTa Ajamapa, Bpayspa u p;p Pa6oTa BrnOTHEH APH
noaaepxke POPH (rpanT N0001-00664). . . -
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Piatnitski A.L.
(Narvik University College and Lebedey Physical Institute RAS)
Ground state asymptotics for singularly perturbed
locally periodic operators

Given a smooth bounded domain @ C R*, we consider a family of eigenprob-
lems '

Ap=)p, peHNQ), (1)
for singularly perturbed locally periodic elliptic operators of the form
8 z, & z
[ ks Yl . ol
A =—e Bz,-a"(z’ E)az‘j +c(:c, 6)’

and study the asymptotic behaviour of its ground state (the principal eigenfunc-
tion and eigenvalue) as € } 0. Our assumptions are as follows: the coefficients
a;;(z, 2) and e(z, 2) are [0, 1]*-periodic in z sufficiently smooth functions, the ma-
trix {a;;(z,z)} is uniformly positive definite. In order to formulate one more con-
dition, we identify periodic in z functions with functions on the torus 7™, and
consider an auxiliary eigenproblem

é a
Afz)g = "a_z,-“""(x’ Z)a—z;q +e(z,z)g=pq, 2€T™ (2)

here z appeats as a parameter. Denote by p(z) the principal eigenvalue in the
latter problem. We suppose that p(z) has only one giobal minimum point in Q
which is attained at an interior point of @, and that the quadratic form in the
Taylor series for () about the minimum point, does not degenerate. We use the
following notation: p§(z) is the normalized principal eigenfunction in problem (1,
H7§llza¢q) = 1, %o is the global minimum point of u(z), and go(2) is the principal
eigenfunction in (2) at £ = zq.

Theorem. Under the above assumptions the eigenfunction p§(z) admits the
asymptotics

z Dz —z¢) - {z—=
Po(z) ~ Ceto(=) exp (— ( 0)5 ( °)),
where D is a positive definite constant matrix, and C; is a normalizing constant.
The cstimate holds '
T
. — — —
75 - CegotZyexp (

< ev/e.

LAQ)

D(z — za) - (z — 2a)
( oE( o)
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"‘This is a joint work with G.Allaire.
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Piceirillo A.M., Toseano L., Toscano S.
(Second University of Naples)

On the solvability of some nonlinear systems
> of elhptlc equations.

Settmg by © 2 bounded connected open set of RY with locally Llpschltz
. boundary, we study the existence of solutions to the following probilems :

—'AP'“I + }sﬂull”'z‘ul =layu; + asua[""*(ayus + azuz)as + fi - cQ (1)‘
-Ap'uz + A2|u2|P 2“2 = |ayuy + agua|V" 3 (@11 + aouz)az + fo .

uy = up = 0 on 8%,

21Z—1

=Apuy — M2y = |ayud + axu ayuy — by Y2 '
21 — M| 1"‘=}11 i ety - Een, (2)

—Apuz — doluslP 2wy = |asuf + aguf|3~azug — bolua|?~?
ui_ug—()onBQ . \

“The' funchons a;, b; are essentlally bou.nded in Q and b; is nonnega.t.lve,

f_, € W-12' X; are real parameters : D

 The range ofexponents isl<p < ¥<p* (p = Np/(N pyif) N> p, +oo
otherwise in the case (1), 1 < p< I < p*in the case (2). -

.. . The analysis of the problems starts from the companson between the pa-
rameters A; and the first eigenvalue of the p-Laplacian operator. Under suitable
assumpt.xons it was shown that there exists ai ieasi one solution (u3,u3) with
#; > 0 and in some particular cases it was obtained the existence of multiple solu-
tions.Our approach is based on the Lagrange multzphers and, more genera.]ly, on
the” ﬁbenng method” introduced by Pohozaev a few years ago
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Pileckas K.
(Institute of Mathematics and Informatics, Vzlmus)
Stokes and Navier—Stokes problems in domains
that are layer—like at infinity

The Stokes problem is studied in a domain Q which, outside a ball, coincides
with three-dimensional layer {z € R®: z = (y,2) € R? x {0, 1)}. Asymptotic for-
mulae for solutions are derived. In order to justify the asymptotic expansions the
procedure of dimension reduction is employed together with estimates of solutions
in a certain weighied function space 'D;, () with the norm determined by a step-
wise anisotropic distribution of weight factors {the direction z is distinguished).
The smoothness exponent [ is allowed to be a positive integer, and the weight
exponent B is an arbitrary real number. It is shown that the Stokes problem is of
Fredholm type for all # except for the integer set Z where the Fredholm property
is lost. Dimensions of kernel and co-kernel of the Stokes operator are calculated in
dependence of B. It turns out, that at any admissible 3, the operator index does
not vanish. Based on generalized Green formula, asymptotic conditions at infinity
are imposed to provide the problem with index zero. Weak solutions to stationary
Navier-Stokes problem with either finite or infinite Dirichlet integral are proved to
exist. Solutions to Navier-Stokes problem that drives a nonzero flux over cylindri-
cal sections of the Ia.yer are found. It is shown that for arbitrary large data such
solutions have the same asymptotics at infinity as that of solutions to the linear
Stokes problem. Results concerning the linear Stokes problem and the existence of
weak solutions to the nonhnear Navier-Stokes problem are obtained jointly with
S.A. Nazarov

Pilyugin 8.Yu.
(St.Petersburg State University)
Usual, inverse, and weak shadowing properties

Consider-a dynamical system generated by a diffeomorphism f of a closed
smooth n-dimensional manifold M. Let dist be a Riemannian metric on M. Denote
by N(e, A) the a-neighborhood of a set A and by O(p) the trajectory of a point
p in the dynamical system f. We say that a sequence £ = {z, € M }is a d-
pseudotrajectory of f if the inequalities dist(f(z1), £x+1) < d hold. We say that a
point p € M e-shadows the pseudotrajectory £ if the inequalities’

dist(f*{p), z¢) < 0.1)

hold. The usual shadowing property of the system f is formulated as follows: given
€ > 0 there exists d > 0 such that any d-psendotrajectory of f is e-shadowed by
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a point p.. We say that a family Ty of d-pseudotrajectories is a d-method for f.
A family © = {T} of methods is called a class. We say that a system f has
the inverse shadowing property with respect to a class © if, given € > 0, there
exists d > 0 such that, for any point p € M and for any method Ty € ©, there
exists a d-pseudotrajectory £ = {zx} € Ty satisfying inequalities (0.1). We say
that a system f has the first (second) weak shadowing property if, given € > 0,
there exists d > 0 such that, for any d-pseudotrajectory £ = {zx}, there exists
a point p with the property £ C N(e,0(p)) (with the property O(p) C N(e,§),
respectively). In the talk, we discuss relations between the introduced shadowing
properties and the properties of structural stability and Q-stability. We show that
the usual shadowing property, the first weak shadowing property, and the second
weak shadowing property are related to qualitatively different characteristics of
the dynamical system.

Pivovarchik V.
(Odessa State Academy of Civil Engineering and Architecture)
Inverse Sturm-Liouville Problem on a Simple Graph

The spectrum of small vibrations of a graph consisting of three joint smooth
stringswith the free ends fixed can be reduced to the Sturm-Liouville boundary
problem on the graph.The spectrum of such a problem is investigated in com-
parison with the union of spectra ofDirichlet problems on the rays of the graph.
It is shown that the spectra interlace in some sense, thus an analogue of Sturm
theorem is established. The inverse problem of recoveringthe potentials from the
given spectra is solved.

Alexei Kokotov, Pekka Neittaanmiki, Boris Plamenevskii
(St. Petersbourg State University)

On the Neumann problem for hyperbolic systems
in a wedge

A class of hyperbolic systems including the dynamical equations of elasticity
is considered in a wedge. The original problem is reduced to a problem with pa~
rameters in a cone. Solutions are estimated in "combined” weighted norms. Near
the vertex of the cone (the edge of the wedge) the estimates are coercive elliptic;
far from the singularities of the boundary they become hyperbolic. This allows to
derive the asymptotics of solutions near the vertex (the edge). Formulas are given
for the coefficients in the asymptotics (that are functions on the edge depending on
time). Sharp estimates on the coefficients are obtained in Sobolev’s norms. The re-
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sult obtained allow to establish similar facts for problems with variable coefficients
in an arbitrary domain with smooth edges on the boundary.

Podiapolski V.V.
(Moscow State Aviation Institute)
Existence of an Abel basis consisting of root functions for
some nonlocal problem

Pokornyi Yu.V.
(Voronezh State University)

Lebesgue-petrovskii derivatives in sturm-liouville problem

Oscillation spectral properties (the number of eigenfunction zeros and interchang-
ing of zeros) of the Sturm-Liouville problem for the equation

~ () +Qu=2M"y (agz< < 0) (1)

with generalized coeffitients appear to be unaccessible in the frames of the distri-
bution theory. But if p, @ m M are the functions of bounded variation then for a
certain strictly positive p(z) the equation (1) is equivalent to the following

(@) o

where -‘;—{‘; denotes the p-derivation in the Radon-Nikodim sence. The basis of the

analysis of respective derivatives gé was made by A.Lebesgue and 1.G.Petrovskii

for the case of continuous u(z). The technique of the derivation of respectively
discontinuous function was introduced by Feller who defines the operation
Lu= ——d——u'_,_ (where »*,. denotes the right derivative}. The same technique was

used by M.G.Krein, B.S.Kats and others for the analysis of the equation connected
to the Stiltjes string: the equation — 7 Mu + = Au means the symbolic denotion
of the integrodifferential one

z40

wi(zg)=v'_(a) - A / u(s)dM(s}.



334

The form (2) of the equation (1) allows to consider the usual Sturm-Liouville con-
ditions as the relization of the equation (1) at the endpoints of the interval [a, 8]
and to establish for the corresponding spectral problem (using the natural modi-
fications of traditional methods of ODE) the complete list of classical oscillation
(Tchebyshev) spectral properties which are similar to harmonic properties of the
usual string. '

Pokrovski L.L.
(MGTU im. Baumana, Moscow)
An approach to Fuéik spectrum
medskip The elliptic boundary value problem with jumping nonlinearity

~Au—Aut + A u— =0, z€9Q,
o 0

U
an

where u* = max{2u,0}, @ C R" is bounded domain, posed by S. Fuéik [!], is
considered. The suggested approach to the study of the spectrum, that is the set
of pairs (A4, A-), when the problem (1) has nontrivial solutions, is based on the
construction of the special functional A(u), which can be referred to a spectral
parameter. Furthermore for any point A(A4,A_) let’s define the set

M(8)= {u e W3Q) : IVall= 1, Agllat|l? = A fu? > 1}

The application of the Morse - Palais - Smale theory allows us to recieve the
following results.

T heoreml. On any connected component p of the resolvent set Re of
the problem (1) the homotopic type of the set M(A), A € p, is constant [3].

Corollary 1. Let the points A and B belong to the set R. Let the sets
M (A) and M(B) are homotopically unequivalent, M(A) 5 M(B). Then on any
continuous curve, connecting the points A and B, there are some points of spec
trum of the problem (1). _

Let us consider the linear problem along with problem (1)

-Au—Au=10, z€4,
uI =0, @
an
obtained from (1) when A4 = A_. The following result is also proved.
Theorem?2. Let A, < ¢ < Ay, where Ay is the eigenvalue of the problem
(2). Then the set M(C) for the point C(c, ¢) has the homotepic type of the (n—1)
-~ dimensional sphere.
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Formulated assertions allow us to establish for the problem (1) the existence
of points of spectrum in the domains more wide in comparison with the well known
" ones [?].
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Polosin A.A..
(Moscow State University)

On location of spectrum of a mixed
boundary value problem in a square

In [1-3] there were studied speciral problems in two-dimensional domains
for equation Au -+ Au = 0 under boundary conditions with a slope derivative. In
[1-2] one considered mixed boundary value problems in domains with a special
boundary, and one proved that under some limitations on the domain boundary
the spectrum lies in the Carleman parabola; in [3] there was investigated a speetral
problem in a circle with the slope derivative given on the entire boundary, and it
was proved that the spectrum does not lie in the Carleman parabola. Here we pose
2 mixed boundary value problem in a square. Let D be square with vertices 0(0;0), -
A(x:0), B(m; 7), C(0; 7). We consider there the following spectral problem:

Uz 4 tyy + APu =0,

u'co = ulOA = 2‘|A}3 =0,
. u',——kulec:O,. k;éO,_ keE,

where ¥ = u{z,3) € C (D)) C* (D). Main theorem: the spectrum of the problem
lies in the Carleman parabola |imA| € const. The proof is based on application of
the Fourier iransform and reduction to a conjugate problem for a pair of piece-
analytic functions and then to a singular integral equation on a finite segment,
which has no nontrivial solutions if [Im}| is large enough.
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Polotovskii Grigory Mikhailovich
(Nizhnii Nougorod University)
Topology of decomposable real plane algebraic curves

Honenencxain P.10.
(Mocroscxuii I'ocydapcmeennniti Ynusepcumem)

O nopMannHOU GopMe dIeMeHTa
ceobogHou aare6pul Craineda

B aarebpanrdeckoid TOHNOMOTHEA ¥aCTO BCTPEdaioTCA PE3YALTATH, OUHCHBa-
ollje CTPOCHUE TEX WAM HHHX KOAeH, TPYUH @ T.H., CBA3AHHEHIX C TOHOAOTHHe-
ckumu ob6bexTamu. AMeeTea OpUBNATEANLECE OTIUIRE PE3YALTATOB, TaK Ha3bi-
BaeMOro, KJACCAIECKOro Mepuoja aiarebpamEeckodl TOUONOTHE OT PEe3yAbTaTOBR
OOCAeHHET0 BpEMEHE. JTO OTIAIUE COCTOHT B XapaxTepe HCHOAL3YEMBIX aire-
6pamzeckux cTpYKTyp. Hanpumep, uapectao (M. [?]), 9To0 KoABHO KOMIAEKCHEIX
6opauamon QU geageTca KOABEOM MHOTOWIEHOR € HEHIMHE KOX(ODUIEEATAMHE OT
06pazyioliAX, DACTIONOXKEHHLIX O OJHON B XKaXA0o#H IeTHO# pasmepHocTH. Takoe
onucanne koabua NV moaBOALET MOAYYHMTH OKOBYATENLHLA OTBET Ha A060H BO-
mpoc, Kacatommica aarebpamdeckoro yerpoicTea Koanna Y. Pesyasrati cTa-
Teh [?, ?, 7] oTHOCATCA K pe3yAbTaTaM HOcAefHEro BpeMmend. B >THx cTaThax
6BLI0 TOAY9IEHO OmACaHHE Koromodordi aare6pei CTuEpoga B TepMmuHax airebp
Crameda, KOTOpEE DPEACTABAAIOT H3 ceb4 B JOCTATO9HOH CTeNeHH M30MIpeHHAbIH
anrebpamdeckuil 06HeKT. JTO OUHCAHEE He MO3BOAAET, KAaK B NpeAHAYHIEM OpPH-
Mepe, Cpa3y OTBETHTH HA BOIPOC KaKOBa Pa3MEPHOCTh, CKaXeM, 17-# rpynms
xoroModorei. FiMenHo HeO6XOAUMOCTE AONOAHATENBHOH PabOTH OTANYAST 3TH
pesyAbTaTH OT Kiaaccudeckux. OMHAKO 2TH DE2YABTATH HO3BOAAIT BHUYHCAATH
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Koromodoraa aare6pri CTEHPOZA Topasjio GHICTPEe U € MHOTO MEHBIINMHI 3aTPa-
TaME PECYPCOB 10 CPABHEHAIOC C BHTHCACHMEM, KOTOPOE HCROAL3YET CTaRAaPTHYIO
pesoanBenTy aarebpet Cruepoja. [lpegsapurensto ciefyeT DOCTPOATSL TEOPHIO
aJrOpETMHEYECKHX BHIYACACHAR B anrebpax CTameda, aHatoTHYAYIO TEODHY Bhi-
SHcAeHAR B 2CCOUMAaTHRARX anrebpax. B fokAafe Mx OTBeTAM Ha HEKOTODHIE BO-
OPOCH, CBA3aHHEE € ACHOJL3OBAENEM YNOMAHYTOTO ONECAHMA A4 TOYHOIO Bh-
AuCICHAA KOTOMOJIOrHil anrebpri CTuEpoja, B 0603HAHUM HECKOABLKO TPOGAEM.
B =nacTrocTH, mpefaaraeTca oNpejeieHnAe 3alACA HIEMEETa CBo60 O anre6phl
Crameda # sopmaneHoil hopmel 3amuch. IlpegaaraeTea aaropaT™, KOTOPEI 110
NpOR3BOAbHON 3alHCA JaHHOTO DAEMEHTa CTPOMT 3allich B HOPMaabHOH dopMe.
HoxazripaeTca TeopeMa O TOM, ITO CPE/IH 33MACEH A2HHONO JIEMEHTA CYIIECTBYET
U JAHCTBEHHEA 3a0HACh B HOPMAaIbHEOH (opMe.
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Ilomos A.IO.
(Mocxoscruti Iocydapemeennniii Ynusepcumem)

Hy.tm dysxkuuu Murrar-Jledgdaepa u o6paThEIe 3a424n

Dypxuun Marrar-Jleddaepa Eo(z, p} —~ nensie GyaKnEa KOMIICKCHOTO TIe-
peMeHHOTO z ¢ napaMeTpami p > 0 @ p € C - onpegenmiores KaK CyMME] CTeTCH-
[>2)

auix pagos E,(z,p) = 3 28 /T(u+k/p). Onn maxogsT pasamsnsie NPHIOKEHAS B
£=0

Addepennnaabibix ypasnernax (cm. [1,2]). B cratee [3] rosmnk sompoc o6 onu-
CaHAHE MHOXECTBa W, COCTOAMIEro 0O ORPEACACHEAIO U3 Beex Hap NOJOXHTENbHBIX
ancen (p, p) Taxux, 910 dysknua E,(z,p) mmeer B C TOALKO BelleCTBEHHLE
OTpHANATEALERE OpocTHie HyAd. OTOT BOTPOC HpEo6pen AOnOABATEAbHYI0 aKTY-
alBbHOCTD B CBA3M ¢ HaijeEHHM Hedanso U.B.Taxonosrm a 10.C.9# geanmanom
KPHTepHEM eAHMHCTRBEHHOCTH PeIleHAA OJHOTC Kiacca oSpaTHHX 23424 AlA An-
HEHBHIX aBTOHOMEHIX AadpepeEnaaILARY YPaBacHRAN

N
dd;ﬁt) = Auft) +p, 0<t<1, neN, (0.1)
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B TpomaBoAbHOM OamaxoBoM mpocTpaHcTBe £ (3gecs A ~ lajammbti Jmmed-
HHlI 3aMKHYTH# omepaTop ¢ o6iactsio ompefenemnd D(A) C £). Teopema
11.B.Tuxososa — 10.C.OfgensMana cocTonT B ToM, uro ypassemze (1) oTHo-
cuTenbHo memspecTHHX p € £ m u : [0,1] — D(A) mmee? mpm ‘ycaormax
2(0) = #'(0) = --- = «V"1(0) = »(l) = 0 mmn TpueuaibHOe pemenHe

u(t) = 0 @ p = 0 Torhga B TONLKO TOTA2;, KOTAa AH OAWH HYJb QYRKNAN
xn{z) = Eyn(z, N + 1) e apasetca coberpennbiM TucioM onepatopa A (mura-
POBaHHBIH PE3YABTAT ONy5IMKOBaH ¢ NOAHEM AOKa3aTEALCTEOM B [4] noxa
ang N = 1). Hyau gysxain x; () = (€° —1)/2 x2(2) = (ch\/z~1)/z TpuBRAABHO
"axogaTcd, #o upu N 23 MHOXECTBO Hynen 'xn({z), no-pEgEMOMY, He AONYCKAET
ABHOTO ONHECAHHA. Acnmn'ro'rm Byneli- gysxumii Mutrar-Jleddacpa npu Beex
3HAYCHBEIX HapaMeTpPoB 6buin HaffeHH B [5 6]: B [3] 6risa srickazana THRHOTE3A,
cocTommas B TOM, Tr0 W = {lo.p)I0< p < 1/2,0 < p < 1+ 1/p}; umrepecy-
fommii Hac cAydail p = 1+ 1/p necaefosan e Gein. ABTOpPOM JAOKA2aHO, ITO 3T2
THEIOTE2a HeRepHA B MHOXeCTEO W mimpe, deM TPeATIoNaraioch & [3).

Teopema. CrpapejiuBo. BKIOSeRHe {lo,pl0 < p < 1/2, 0 < p < 2/p—
1}CcWwW. B sacTHOCTH, Beeé Hyam dynxuna xn(z) mpr N > 3 #exar ma ayse
(—c0, —(2N)!/N'} u mpocte.
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Popov I.Yu.
(St.-Petersburg State Institute of Fine Mechanics and Optics)

Asymptotics of bound states and bands for
waveguides and layers coupled through small windows

Spectral problem for the Dirichlet Laplacian in two-dimensional strips (three-
dimensional layers) of widths dy,d_, dy > d_ coupled through small openings
aw;,i = 1,...n, (a is small parameter) is considered. Method of matching of asymp-
totic expansions of solutions of boundary value problem is used. The asymptotics
(in a) of a bound state A, close to the threshold #?/d% is obtained:

2

p g~ (3 T cwl?e? +ola), R?,
" m (e (-3 (T ) e (o)), RS,

Here c,, is a capacity of w; in R?, b,,, is an average virtual mass of w; in R®. The
case of two identical waveguides (layers) is considered too. Asymptotics of bands
for the case of periodic system of coupling windows (period L) for two waveguides
is constructed:

w 3 o2 2y W2 w2 2 2
{E—z;—2Ld?!_ +o(a ),dz—éL—dia +0(ﬂ )]x R,

+0v2 +042
i — 28O oy g SO oy,

Here A} is the first transversal eigenvalue, %7 is the value of the normal derivative
of the corresponding transversal eigenfunction at the centre of the opening. There
is a gap for suffisiently small a. For the case of layers coupled through singly (A1)
and doubly (Ag) periodic system of windows there is no gap, and the asymptotics
of the lower bound for the continuous spectrum is:

2

72 752

mm—a,‘z’. Ld{ 6)’ for A,

L b, |A| &

Amin = -‘E & +o{a®), for Aq,

where |A| is a square of the Brillouin zone for A,.
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Potyomin G.V.
(Nizhny Novgorod State Technical University)
On nondegenerated differential-geometric

Poisson brackets of the third order
The homogeneous differential-geometric Poisson brackets of the order n define
a certaine geometric structure on the manifold M with local coordinates u. The
classification of such brackets is the nontrivial differential-geometric problem even
on condition that the leading coefficient is nondegenerate. It is known the complete
classification of such Poisson brackets for n=1 and n=2 and the conditions for
Poisson brackets of the third order . The main new result is the comstruction
" of a special flat conection(with nonzero torsion) defined in the flat coordinates
of the so-called ”last” connection. Investigating the geometry of this connection,
author prove that Doyle’s anzatz actually provides a general form of the Poisson
brackets in question. Some examples of algebras associated with brackets of the
third order are considered. It is demonstrated how known examples fit into the

sceme proposed.

Prouse G.
(Politecnico di Milano)

Nonlinear Models in Elasticity and Hydrodynamics

We want to study the motion of viscous, incompressible fluid in a tube with
elastic wall, in particular the flow of blood in arteries. A simplified two-dimensional
model is introduced and it is shown that, under appropriate assumptions on the
data, a local existence theorem holds. The model considered may be taken as a
first approximation of more sophisticated models, in particular in 3 dimensions.
The proof is based on the Tychonov fixed point theorem.
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Pulkina L.S.
(Samara State University)

A nonlqcal problem for hyperbolic equations

Consider the equation
Lu = ugy + (Au): + (Bu)y + Cu = f(z,y,u) (0.1)

in the rectangular domain D = {(z,y) : 0 < = < a, 0 < y < b} and pose the
problem for (0.1) with the following non-local conditions:

a . b .
f u(z, yydz = 0, / u(z, y)dy = 0. (0.2)
0 0

We define the function space H!(D) as the completion of the set
U = {ulu € CY(D), uzy € C(D), [y udz = 0, f: udy = 0} with respect to
the norm {[ulf} = [ f,(u? + u2 + u2)dzdy. Let operator I : H* — L be defined
by . .

¥ T ¥ %
v = / / 'u(t, 'r)dtd'r - [ '0:,7(3; T)d'r - [ "’y(t: y)dt'
g JO ’ 9 [1]

Applying integration by paris we perform (Lu,Iv)o, u,v € U, and resulting ex-
pression denote by B(u, v). .

Definition. A function u(z,y) € H'(D) is called a generalized solution of the
problem (0.1)-(0.2), if for every v(z,y) € H'(D) B{u,v) = (f,lv)o. In order
to prove the solvability of the problem (0.1)-(0.2), we at first establish a priori
estimates for the corresponding linear problem.

Lemma. If the coefficients of Lu = f(z,y) and their first order derivatives are
bounded, moreover Al { M < 1, |B| < M < 1, C;y is bounded in D and
Coy20, AyB,—C*20, MAy—2A;+C)2 20, MB;—(By+C)? >0, then
there exist ¢; > 0, ¢z >0, such that e1||ull? < B(u,u), |l < e2||fllo- Using
a priori estimates established in Lemma and Schauder’s fixed point theorem we
have

Theorem. Let f(z,y,u) € Ly(D) for every v € HYD), |f(z,y,u1) ~
f(z,ya’“Z)l $ Lolul - “2|: lf(zxyau)' < Vla(lp(z,yﬂ + f—’f"‘ﬂzlul), where
p(z,y) € La(D), 0 < n < ¢2, and the conditions of Lemma hold. Then
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there exists at least one generalized solution to the problem (0.1)-(0.2) such that
[=))? < ﬂﬂg“—" If Lo < ¢y, then this solution is unique.

Pustylnikov L.D.
The proof of quantum chaos conjecture and the distribution
of distances between neighboring fractional parts of the
polynomial values

Pyatkov S.G. -
(Sobolev Institute of Mathematics, Novosibirsk)

Boundary Value Problems
for degenerate operator-differential equations

We study boundary value problems for the operator-differential equations
Mu=B(t)us — Lit)u=f, te€(0,T), T < oo, (1)

where B(t) and L(t) (¢ € (0,T}) are linear operators in a Hilbert space E en-
dowed with the inner product (-, -} and the norm | - ||. We do not assume that B
is invertible; in particular, B may have a nontrivial kernel. Equations of this type
arise in physics, geometry, population dynamics, and in some other fields. The
main assumptions for the operators L(t) and B(t) are as follows. 1. There exists a
Hilbert space H, densely embedded in E such that L(t) € Lo (0,T; L{Hy; H))
and B(t) € WL (0,T; L(H1, HY)) (i.e., without loss generality, we may assume that
B(t) € C([0, T); L(Hy, H!))). The operators B(0) and B(T) (if T < co) are selfad-
joint in E. The operators B(t) are symmetric on (0,T), i.e. (B(t)u,v) = (u, B(t)v)
for u,v € H;; H, is densely embedded into D(|B(0}|*/?) and into D{|B(T)|*/?}.
11. There exists a constant 4 > 0 such that

1
Re( (-1 - 3800 )u.u) > dlul,
for u € Hy almost everywhere on (0,T). Let E*(0) and E*(T) be the spectral

projections of B(0) and B(T'} corresponding to the positive and the negative parts
of the spectrum. Equation (1) is furnished with the boundary conditions

E*Ou(0) = o, Jimu(t)=0 (T=oco), @)

E*(0)u(0) = k11 B~ (0)u(0) + k12 BT (T)u(T) + ug,
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E~(TY(T) = hnE~ (0)u(0) + hnnB*(T)u(T) +up (T<o0),  (3)

where h;; are bounded operators in the corresponding spaces.

Queffelec H.
(Universite Lillel, France}

Some odd thin sets of integers in Harmonic
Analysis (joint work with D.Li and L.Rodrignez-Piazza)

Relying on results of F. Piquard and J.Bourgain, we randomly comstruct
subsets A of the integers which have both smallness and largeness properties. On

the one hand, they are small because they are very close in some sense to Sidon
sets : the continnous functions with spectrum in A have a. uniformly convergent
Fourier series, and the sequence of their Fourier coefficients belongs to £, f

or every p > 1; moreover, all the Lebesgue spaces L} are the same for
0 < g < co. On the other hand, they are big because they are dense in the Bohr

group of the integers, and because the space of bounded functions with spectrum
in A is non-separable. So, those sets are very different ﬁ'om the sets of integers

previously known in this area.

BREFERENCES
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Khrennikov A.¥u., Radyno Ya.V., Volovich LV.

A Spectrum of Vladimirov Operator on the Group
of Finite Adels.

Let P = {2, 3 § be a set of all prime numbers, Qp be a field of p-adic numbers
with p-adic morm | lp » Zyp be a ring p-adic integers, S(Q,) be a set of locally con-
stant functions with compact supports. The set of sequences z = (22, 73, ..., Zp, ...}
(zp € Qp, every @, € Zj except for 2 finite number) is called an adels group A. A
base of neighbourhoods 0 in A is given by subgroups Tlpen Vo X Ilpgn Zp, where
V, is a neighbourhood 0 in @, for all 7, where 7 is a finite subset of "P. The set
A with such topology is totaily disconnected and locally compact Abel topologi-
cal group. Any character of A has a form xo{{z) = exp 2mi(} ,{£pp }p(modl)).
There is a Haar measure dz on A, that is connected with measures on Q, by
de = dzy - dz3 - ... - dzp - .... Spaces Ly(A) and L{*°(A) are defined by standard
way. We consider on A functions ¢(z) = [1,ep #2(2p), such that 1) ¢, € S(Q,); 2)
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$p{(zp) = Ag,(2,) are characteristic functions of Z, for all p with the exception of
a finite number. Vector space of all linear combinations of such functions is a space
of Schwartz—Bruhat functions S(A) that is dense in Ly(A). We define a spectral
topology on 5(A}, in that the space is a separable, complete, nuclear and locaily
convex. Dual space S'(A) is called a space of distributions on A. Fourier transform
of functions from S{A) is given by

(FE)E) = d(6) = /A $(2)xo(—~£2)de

and this is an isomorphism F : S(A) — S{A). Theorem 1. Let
£ = (£3,85,..]) € A a = (m,as,..)] € R® be a multiindez. Formula
[€]* =TT,ep ola” defines a function from Li°(A) \ L2(A) #f limpseo aplnp = 0.
(*) Denote by V,, (if assumption (*) is true) Vladimirov operator that is defined
by

(Vad)(z) = [A IE1°3 () xo(~Ex)dE, V6 € S(A).

Theorem 2. Operator V,, is an essentially self-adjoint in Ly(A). Its elosure V,
has a range of definition
D(Va) = {6 € La2(A) : |E|°6(€) € L2(A)} and o(Va) =Ry

Pagsuenckuiz I'.B.
(Ancmumym mamesamuxuy HAH Yxpaunri, Kues)

O pajguyce roaoMopdHocTH dyrkuun F(zA)f
B TEPMHUHAX PACCTOAHUA BEKTOPa [ OT BEKTOPOB
KOHE4YHOH cTeleHl onepaTopa A

Bezge ganee A - arEeABR#A onepaTop, AelicTBYionmiA B 6aHaX0BOM HPOCTPaH-
ctBe X, R(A) - ero pesonbBeRTa, a Do, — mepecedenne obnacTedl onpejeiesni
onepatopor A7 npn j € N. Beegem ¢ = {g € D : ||479]| < e(9)é7, j € N} -
MHOXECTBO BEKTOpOB cTenmeEd He Baume £ > 0 oTHOcwTenrHO omepaTopa A #
E¢(f) == inf{||f — gll : g € B¢} - paccToamue anemenTa f w3 X ot &¢. Maa nenok
dyaknun F sagagum M(€) := max{|F(z})| : |2] = £}, € > 0, m G - obpaTryio X
M dynxumo. Ecan f € Dy, To onpefieies dopMaibaEbii cTenerHol pag F(zA)f,
pajayc roaoMopdbHOCTE KoToporo ofoznayuM Fepes 7{f). B caeayiomel Teopeme
YCTaHOBACHH cooTBomenns Mex gy 7(f) u aaciom

Ny 1
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Teopema. Hyctn

e
B M@ W

@ CYIecTBYET TaKad BO3pACTawilaf HOCACLOBATEAbHOCTE HOAOXBTEABHEBIX JHCeax

{gm}mEN; qTo
lim &2 < o0, (2)
a-teo Loy
gouTH Bee Toaxu oxpyxgocrelt {A 1 |[A] = (n}, m € N, oparagrexar pesois-
BEHTHOMY MHOXECTBY OHEpaTopa A u

. o M (G /7) ;
] + *
imw [ (s <0 @)

npu HexoTopoM cg > 1 B Beex 9 > 0.

Torja malifeTcs Takaa HOCTOAHRAZ ¢ > 1, 970 e 2s(f) < ~(f) < es(f) ana
Beex f € Deoo. Ecam xe neBrie FacTH B HepaBeacTBax (1) m (3) pasmet Byaio,
npmdem B (3) BpA BpoE3BOABELIX ¢ > 1 1 7 > 0, a AeBag vacTs B (2) pasEa 1, To
7(f) = s(f) gas Beex f € Do

Raiteri M.
(Universita’ di Torino)
Conserved Quantities And Entropy In

General Relativity
The notion of entropy of exact solutions of General Relativity and, more
generally, of gauge covariant field theories, is reviewed. A definition resembling
the Clausius formulation of classical gas thermodynamics is considered and ana-
lyzed by an extensive use of the geometrical framework for field theories as well
as Nother theorem. This new definition of entropy applies in particular fo all
covariant theories of gravitation, in any dimension and signature. A complete cor-
respondence with Brown-York original formulation of the first principle of black

hole thermodynamics is finally established.

Rakhimberdiev M.1.
(Institute of Mathematics, Alma-Ata)

On character of bifureation of exponential stability

it is known that the Lyapunov exponents of linear differential system depend-
ing even smoothly on parameter may be discontinues functions of this parameter.
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This lack of continuily can occur for every value of the parameter in a certain in-
terval (see [1]). Such behavior of Lyapunov exponents can reduce to a violation of
stability on the dense set of values of parameters on a some interval. The purpose
of given studies is to determine the possibility of similar behavior for exponential
stability of linear differential system depending linearly on a parameter and es-
tablish the most typical events. We consider the linear system depending on the
parameter w

7 =wAlt)z, z€R*, wel0,1), (0.1)

where A(.) : R — Hom(R", R") is a bounded continuous mapping. We say that
the value of parameter w € [0,1] is the bifurcation point of exponential stability
of the system (1), if in any its neighborhood the values exist for which there is the
property of exponential stability, and values for which it is absent.

Theorem 1. If n > 1 then a system (1) exists such that each value of parameter
w € [0,1] is the bifurcation point of ezponential stability .

Theorem 2. Let any value of parameter w € [0, 1] of system (1} is the bifurcation
point of ezponential siability. Then the set of such w , for which the system is
ezponentially stable, is denumerable.

Theorem 3. Let the system (1) is ezponential stabile almost everywhere on [0,1]
(in the sense of Lebesgue measure) . Then the set of parameters values where
exponential stability can be broken is not more, than denumerable nowhere dense
set on [0, 1]. Proofs of theorems 2,3 are based on assertion of theorem 3* in [2].
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Repin O.A.
{.S'amam State Academy of Economics)
Analog of Bitsatze-Samarskii problem for mixed-type
equation with degeneracy of the second kind

Consider the equation
Uzs + sgmplyl™uyy =0 (0<m<1) (1
in the domain D, bounded by lines A4, (z = 0), BB (z =1) y >0 and

characteristics

AC: Eﬁz—,

2=m

o C pmz4 et () =
(—y) 0, BC: g=z+s——(-y 7 =1
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of the equation (1), issuing from points A(0,0) m B(1,0). Let us introduce the
following notations:
J = AB,
Dy =Dn0{{z,y):y>0},
D, =DN{(z,y) : y < 0},
1 f)l—2ﬁ m 1

z
&) =5-(G=53) * FTam-zr “2<F<C

- Ll z
Eﬂa)i [z —8)* " F(a+ B,—m ;1 - L)plt)dt,
0
(Ig:ﬁsﬂg’)(z)_ (0(2( 1’ Cl>0, ﬁ,TIEC)
- =
(&) Ug™ ") (a),
(0<2<1, &<0, ﬁ)necz n:[—a]+1) -
— generalized operator of fractional integro-defferentiation in meaning of M.Saigo

[1, pp.135-136), (see also [2, pp.326-327}, [3, pp.14-15]).
Analog of Bitsatze-Samarskii problem. Find a function

u(z,y) € C(D) N CHD, U J)NCHD2 U J)NCHDy U Dy),

satisfying the equation (1) in all of the domains D;, i = 1,2 ans the boundary
conditions
u(0,9) =u(l,y) =0, 0<y<oo,

lim u(z,y) = 0 unformly with respect to z € J,
y—+o0
u(z, +0) = u(z, -0), ty(z, +0) = —uy(z, -0),

AP (Salol)(e) = BU wyt,~0)) +0(@), =€,

where (I, ¢)(z) — is a Riemann-Liouville operator, b{z) — given function, con-
tinious on [0,1], @ — a real number, 0 < a -8 < 1, A @ B — certain real
constants, such that A, B > 0 or 4, B < 0. The unique solvability of the posed
problem is proved.

REFERENCES

[1] Saigo M. // Math.Rep.Kyushu Univ. 1978. Vol.11. N2. p.135-143

[2] S5.G.Samko, A.AKilbas, O.1Marichev Fractional-order Integrals and
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Repin S.1.
( V.A. Steklov Institute of Mathematics in St. -Petersburg)

A posteriori estimates of the accuracy of varlatlonal
methods for elliptic type variational inequalities

Mathematical models related to variational inequalities often arise in applied
sciences. Existence and differentiability properties of their solutions were analyzed
by many authors: Also, much efforts has been directed toward-creating numeri-
cal methods for variational inequalities. We are focused on the problem, which is
important for verifying the accuracy of numerical approximations of variational
inequalities. Let u be the exact solution of a problem and » be an admissible func-
tion from the "energy” functional space V of the considered problem. Our goal
is to derive a functional defined by v and by the given data of our problem that
measuzes the deviation of v —u in the norm of V. This functional must be nonneg-
ative and vanish if and only if v coincides with exact solution u. Besides, it must
be explicitly computable and possess-proper continuity properties. We present a
new method of deriving such type majorants of the deviation. It can be regarded
as an extension of the duality technique earlier used for getting a posteriori error
majorants in variational problems with uniformly convex functionals (see, e.g.,
{1,2]). The performance of the above method is demonstrated for three classical
problems related to variational inegualities:

(a) problem with an obstacle,

(b) elasto—plastic torsion problem,

(c) a problem with friction type boundary conditions. Properties of the majorants
and practical implementation of the proposed techmques are discussed.

REFERENCES
[1] S. Repin, A posteriori error estimation for variational problems with uni-
formly convez functionals, Mathematics of Computations, 69 No 230(2000), 230,
481-500. .
[2]S. Repin, Estimates of dematzons from ezact solutzons of elliptic uarzatzonaf
inequalities, Zapiski Nauchn. Semin. POMI, 271 (2000); 188-203.

Ricci P.E.
(Universita’ degli Studi di Roma La Sapienza)
Differential equations for some
recurrent Polynomlals '

We consxder the factonzatlon method introduced b}' the phys:cxsts L. Infeld
and T.E. Hull, in. the fifties, and recalled in the classical book of W. Millér Jr.:
“Lie Theory and Special Functions”, in order to find the differential equation
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satisfied by some special functions. This method, under the name of “monomiality
principle”, has been recently used by Dr. G. Dattoli (E.N.E.A. - Frascati, Italy)
and his school, in connection with the solution of problems in the field of quantum
optics. In our approach, the factorization method can be applied to the general case
of hypergeometric and confluent hypergeometric functions, including consequently
the most part of special functions occurring in applications. As an application, we
construct the differential equations satisfied by some recurrent polynomials: the
Appel polynomials (including the Bernoulli and Euler polynomials), and lastly the
2-orthogonal polynomials, B3#(z) = 1Fp(~n;1+a,1+ 6; z}, which are related
to Bateman’s functions.

Lanza de Cristoforis M.
(Universita degli Studi di Padova)
Rogosin S.V.
(Belarussian State University)

Newton-Kantorovich method for
conformal representation of plane domains

Recently (see [1]) 2 new approach to the study of conformal representation of
a simply connected domain was proposed. It was based on the system of integral-
functional equations which was analysed in [1] in the framework of Schander spaces.
In our report we show that reparametrization 9. ,1” of of a curve { can be computed
by applying the Newton-Kantorovich method to the above system. Here g, is
the normalized Riemann mapping of the unit disc onto the domain encircled by
- the curve (.

REFERENCES

[1] M. Lanza de Cristoforis & S.V. Rogosin, Analiticity of a nonlinear operator
associated to the conformal representation in Schauder spaces. An integral equation
approach, Math. Nachr., 220 (2000), 59-77.

Romanov A.V.
On Alternative Conceptions of Reducing of Nonlinear
Parabolic Equations to Ordinary Differential Equations
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Rozanova O.8.
(Moscow State University)

On a class of globally smooth solutions to Euler equations
in several dimensions

Coansider a system of gas dynamics with a forcing term f in R x R, n 2 1

for unknown functions M(t,x), V(i,x), S(¢,%) (the density, velocxty vector and
entropy, correspondingly) of the form

M@V +(V,V)V)+ VP = Mf(x,t,V, M, P),

OM +div(MV)=0, &S+ (V,VS), (E)

where the pressure P = eS M7, ¥y = const > 1, f is a smooth in all its arguments
function. It is well known that solutions to the Cauchy problem for the system may
lose the initial smoothness, often there is a possibility to estimate the time on the
singularity formation from above (see, f.e. [1] and references therein). Nevertheless
it is interesting to find some nentrivial classes of globally in time smooth solutions.
The class is not empty. In [3] (a generalization of [2]) for £ = 0 it was proved the
following. Let V(¢,%) be a globally smooth solution to 8;:V + (V, V)V = 0 such
that initially the specrum of the solution Jacobian is uniformly bounded away from
the real negative numbers. If for the initial data (Mg, Vg, Sp) the Sobolev norm

WMV, Vo ~ ¥(0,%), Sollzmmny, m > 1+ /2

is sufficiently small then the solution to the corresponding Cauchy problem will
be globally smooth as well. We announce a supplement of the result.

Theorem. Suppose (M(t,x), V(t,x), 5(t,x)), is a globally in time smooth solu-
tion to system (E) and V(t,x) = A(t)r with a matrix A(t), detA(t) # 0 (r is the
raduis-vector of point). If the rorm

N/ — i O=112(0, %), Vo — ¥(0, %), So ~ 5(0, %)l ()

is sufficiently small then the Cauchy problem with initial data (Mg, Vo, Sp) for
system (E) has a unique solution (M, V, S) such that (MO~D/2 — jg(=1)/2,
S =38, v —#,i=1,.n) € NyCH([0,c0); H*~i(R")), m > 1+ n/2. In some
physically important cases one can construct explicitly the exact smooth solutions
(M, V, S) with the convenient properties. Partially supported by the grant of
RFBR no. 00-02-16337.
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REFERENCES:
[1] O.8.Rozanova Differenzial’nye uravnenia, N 8 (1998), 114-118.
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Rutkas A.G., Viasenko L.A.:
(Kharkov National Universz‘ty)

The solvablhty of a nonlmear degenerate,
differential equation

The Cauchy problem A(t)x’'(t) + B(t)u(t) = f(2,u), 2{0) = ug is considered.
Here A(t), B(t) are closed linear operators from a Banach space X into another Ba~
nach space Y and f :[0,7] x § — Y is a continuously differentiable mapping (S is
an open ball in X). Generally, K erA(t) # {0} for all £ € [0, 7] The domain D of the
sheaf L{A,#) = AA(%) + B(2) is ‘independent, of ¢. For all d € D, the operator fanc-
tions A(t)d, B(t)d are continuously differentiable on {0, 7). The main assumption
reads: the point p = 0 isa simple pole of the resolvent (A(2)+B(t))~? for all ¢ Un-
der compatibility conditions on the initial vector ug € DNS, the vector {0, up) and
the Fréchet derivative 5&(0 ug) there exists a solution of the Cauchy problem on a
non-trivial segment. To prove the result, the original equation is transformed into a
non-degenerate differential equation and an operator one. The transform is realized
with the help of two families of spectral projectorsi P(t) = 3% § L71(A£)dAA(R)

.
and Q(t) = 2," f AL, t)dA in the spa.ces X and Y respectwely The pro-

jectors and the correspondmg spectral decomposxtlons of the sheaf L(/\) were mtro-'
duced in [1] for time-independent operators A, B: The t.ime-dependent projectors
P(t), Q(t) were considered in [2]. The degenerate equation’ with time-dependent
operators A, B was investigated in [3]. In the linear case (f is independent of u})
conditions for the existence and uniqueness of the solution on the whole segment
[0, 7] are indicated. The results are applied to the problem of the liguid filiration in
fractured porous rocks. The equation for the liquid pressure u(t, z) is the following:

(¢-4) (att,2) —"g‘,—’l) ~(c{t)A—b(t))u(t;2) = f(t, z,u).. Weshall restrict ourselves
to the case of the filtration in layered tocks. Then we have'a one-dimensional equa-
tion (0 < z < ) with Dirichlet boundary conditions. If { = —1, the equa,tlon isde-

generate’ For an initial function ug (z) € C?[0, ] such that up(0) = ug(x) = 0 and
the compatibility conditions hold f [ 550, 2, ug(z)) — '_r] a~1(0,z)sin? zdz # 0,
o
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J1£(0, z, uo(2)) — yuo(z)] sin zdz = 0 there exists a solution of the filtration equa-
o
tion. Here v = b(0) + ¢(0).

REFERENCES

[1] A.G.Rutkas, Cauchy problem for the equation Az'(t) + Bz(t) = f(¢),
Differents. Uravneniya, 11, No 11 (1975), 1996-2010.
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Ryabenkij V.
(IPM RAN, Moscow)
Method of difference potentials

The basic construction of the method — the difference potential — comprises some
features of the classical Cauchy-type integral with the universality and effectivity
of finite difference schemes. This allows to use the methods for the numerical mod-
elling and solution of a number of problems of mathematical physics. In the report
on the model example one is acquainted with method main concepts. Current state
of the method is reflected in [1,2].

REFERENCES
[1). V.S.Ryaben’kii. Method of difference potentials and its applications.
Moscow, Fizmatlit, appear 2001 (in Russian).
[2]. V.S.Ryaben’kii. Method of difference potentials and its applications.
Springer-Verlag, appear 2001 (in English).

Rylov AL
{Sobolev Institute of Mathematics SD RAS, Novosibirsk)

Homogeneous and divergent equations
of plane potential flows and related topics

Consider the homogeneous equations of potential cbmpressibale plane flows

gy~ =0, qL(M?—1)—qby =0, (1)



353

where q is the absolute value of velocity vector, & is the angle of velocity vector,
M is Mach number, g1,,01,,9n and @)y are derivatives taken along the streamlines
and them normals. We esteblish that for the angle ¢, between the line ¢ = const
and the velocity vector and for the angle @p between the line 8 = const and the
velocity vector the following equation holds

tan @, tanpp = (M2 - 1)"1 (2)

If M > 1, then Mach angle W = arcsin M ™! exists and the following formula
holds
tan @q tan pp = tan® W

Hence the geometric mean of tany, and tanypy equals tangent of Mach angle.
Relation (2) is useful for study topological properties of mixed (subsonic and su-
personic) flows. The line ¢, = pp = W is called a branch line.

Definition. We say that equations of the plane or axially symmetric flows with
the dependent variables f and g are similar to equations (1) if

tan @y tan @, = (M? — 1)~

The examples of the similar equations of the plane vortex and potential and ax-
ially symmetric potential flows are given in this work. In the second part, we

demonstrate an algorithm for transformation of system (1) to infinitely number of
independent divergent forms

(Ag‘(q,e))x +(B§(q,9))y =0', 3= 1,2,....
This algorithm uses the exact solutions of Chaplygin equation
kipga-+ 2z = 0,

where 1 is stream function, p is density, z = [(p/q)dq, k = k(z) = (1— M?)p~2.
The work was suppoerted by RFBR, grant 01-01-00851.



354

Sabitov K.B., Karamova A.A.
(Sterlitamak State Pedagogzcal University) .
The Tmcorm type problem for the mixed type equation with
nonsmoth line of degeneratmn

‘We consider the equation
Lu =sgnyly|™ tzz + 2 uyy =0, m>0, (1}

in bounded domain D with boundary consisting for z,y > 0 of simple curve
T with endpoints A(1,0), B(0,1), of segment OB of axis Oy and for y < 0 of
characterictics OC and CA of equation (1). We consider the next problem for
equation (1) in D which was posed in [1].

Problem TN. Find a function u(z, y) satisfying the conditions:

u(z,y) € C(D)NCH{DUOB)NCHD,yUD), 2)
Lu(z,y) =0, (z,y) € D+ UD_, u(z,y) = f(=z,y), (z,y) €T, (3)
u(0+0,y) =0, y€(0,0), u(z,y)=0, (z,3) € OC, (4)

where Dy = DN{y > 0}, D_ = Dn{y < 0}, f is given sufficiently smooth
function. The uniqgueness of solution of problem (2) — (4) was proved in [2]. The
existense of solution of problem (2) ~ (4) was reduced to nonlocal elliptic problem.
Incase n=m> 0 and ' is [} : 2% + y?* = 1, the solution of elliptic problem
was built as the sum of series on eigenfunctions of corresponding spectral problem
as in [3, 4]. Then the solution of problem TN was buiit in hyperbolic domain.
Theorem. Let.f(p) € C0,7/2], flp) is a twice continuous-differentiable
function in neighbourhoods of the points ¢ = 0 and ¢ = a/2 and
F(0) = F(0) = f(nf2) = f'(w/2) = 0, ' = Iy. Then there is unique solution
of problem TN in D and it is defined by formulas

Yo far 2 sin' /2702 Pl/z—f}z(~ cos2¢), (r,9) € Dy,
1/2 fal(1=
azm =4 ﬁ(’““’(—y) ) oo Tirs Ty ¥
2pn . A2
x(z“—("y)a) F(pn+q,q,1+pn;(ﬁ§§%) ),(z,y)eD_,

where g = m/(2(m +2)), pn = n+4/2+1/4, @ = (m+2)/2,

_ D(g)sin(rq) [ _ 2 (2cos(8/2) 2N
=l 0/ b Oha(8)8, ho(6) = 2 55— D Seini0) B,
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]
B 2 .
w(f) =sinb / ( F (E—;—-—t) sin?9-1 t) (cost — cosf)%dt,

-y @-ntl)
n!

= Y me e, , o =
m=0
F(p) = F(cost/ 2 o, sin'/= qp), F(-) ~ hypergeometric function, P? - modified Leg-
endre function.
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Sakbaev V.Zh.
{Moscow Institute of Physics and Technolagy)

On the Caushy problem Schrodinger equation with
degeneration on subdomain

‘We consider the following Caushy problem for degenerating operator:

Su_ . _ 8, Bu id N N
zTﬂ——Leu=—55(5(5)55)'%5(55(“(2)“)4‘“(“7)3;); i>0,z€R, (1)

u(z,+0) = ug(z), zE€R, 2)

where e(z) = ef{z) +1— theta.(z) e €[0,1], m a(z) = ab(z), a € R, B(z) is the
characteristic function of semiaxis By = (0, 4+c0). The difficulties of the boundary
problems for the equations of different type similar to (1), (2) have been described
in the article [1]. We find the maximal domain D(L.) of operator L. and obtain
that if € = 0 then the operator L = Ly is degenerate on Ry, is symmetric in the
space Eo(R}, its spectrum is axe R and it has different defect indexes. But if ¢ > 0
then the regularizing operator L. is self-adjoint in Lz(R). Definition: The solution
of problem (1), (2) is the function u(t, z) € C(Ry, L3(R)) such that for any > 0
the following equation is correct for any ¢ € D(L*):

(u(t, z), ¢(z)) = (uo(z), d(z)) — ¢ / (u(s, z), L* ¢(z))ds.
: 0
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The following results on the well-posedness of Caushy problem are obtained.
Theorem 1 Let a < 0 and ug(x) € Lo{R). Then there is a unique solution of
problem (1}, (2). In the case a > 0 there is a condition on the function ug(z) which
is necessary arnd sufficient to existence and uniqueness of solution of problem (1),
(2) (see [1]). We obtain the following statement on the convergence of the sequence
of solutions of regularizing problems to the solutions of degenerate problem.
Theorem 2 Let the conditions of theorem 1 are satisfied. Then for any ¢ > 0
there is a function u1(z) € C§°(R) such that for any T > 0 there is €5 > 0 such
that for any € € (0, €g)

sup |lu(t, z) — u1,e(t, 2’)"1.9(3)
¢€[0,7]

where u(t, z) is the solution of problem (1), (2) with degenerate operator L and
u; ¢ is the solution of equation (1) with operator L and initial data u,(z).
REFERENCES .
[1) G. Fichera// Mathematika, M.: Mir, 1963, v. 164, p. 99-121.

Malyutin K.G., Sadik N.
(Istanbul University)

Delta-Subharmonic Functions of Completely Regular
Growth in the Half-Plane

A positive increasing function y(r), r € [0, c0), is called a function of growth.
Kondratyuk A. [1] studied the behavior at infinity of Fourier coefficients

2%
1 . .
en(rf) = o / nlf(re®)le 0 dg, ke,

of meromorphic fanction i of completely regular growth with respect 'r(r) We
prove analogous proposition for d-subharmonic functions v of finite y-type on the
upper half-plane (v € J§). We now define the Fourier coefficients of function v € Jd

28
T

ca(r,0) = %/ o(re'®)sinkddp, keN.
(1}

The function v € J4 is called the function of finite v-type if there exist constants
A and B such that

T(r,0) < 2o(Br)
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for all » > rg > 0, where T'(r, v) is the characteristic of Nevarlinna of the function
v. The function v € Jé is called the function of completely regular growth with
respect (r) if there exists ,

®

Jim sy [ teersingds @
7

for all 4 and ¢ from [0, 7). We denote by J&((r))° the class of functions which

satisfy (1). By Jé(y(r)), we denote the class of d-s.h. functions of finite y-type.

Theorem. Let v be d-subharmonic function. The following are equivalent: a)

v € Jé(y(r))°; b) v E Ja(¥(r)), and there exists

e ck(r)f) Ny L
rlim ) for aii keN;

¢) the measure A_(v) has the finite 7~densz'ty, and there exists

Jim 5 f ¢(¢)v(re’¢>sm¢d¢

for al functions ¥ from C[0, 7). The details will be given at the talk.

- REFERENCES
[1] A.AKondratyuk, The Method of Fouriér Series for. Entire and Mero-
morphic Functions of Completely Regular Growth, Ma.tem Sb.; 106, No 3(1978),
386-408.
[2] K.G.Malyutin, Fourier Series and Delta-Subkarmonic Functmns Proceed-
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Cazgonmudas U.B.
(Mocnoacnm} Focydapcmeennviii .}’uusepcumem}

Hogas onenka NpuGAMXKEHMA DELIeHU YDaBHEHUA
itypma—JInyBuiia ¢ aHANKTHYECKIM OTEHIHATIOM
JACTUYHBIMA CYMMaMH acnmn'ro'rntzecxnx pa,z;os

Ha otpezke —a £ = £ a, a > 0 paccMorpmm guddepenimanbioe ypasHeHue
—' —glz)y=>",  A>0, ' (0.1)

¢ DOTEHNHANOM ¢, ABRAATHIECKAM B HEKOTOOH OKDECTHOCTH OTDE3Ka [~a,a}.
Xopome mepectro (em. [1,2]), uro pemiedna ypapmenna (1) wo(z,A) # wfz, }),
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¥ AOBAETBOPAIOLIHE HAYAIbHLM YCIOBHAM
w0, =1, %(0,A)=0, #(0,2)=0, #(0,A)=x, (0.2)

pasaaraiorcs B GopMabHEIE PAAH, KOTOPHE ABAAIOTCA ACHMITOTHEIECCKAME LD
A = 4co:

e N~ ( ’*’Z(B ";;SZH 1ye ““”ng;’,f)?) i=01  (03)

Koagpdunuentt pajor (3) prHcagioTcs mo PeKyPPeBTHHM Qopmyaam. Paar
(3) apasioTca acMOTOTHIECKEME AAA yHKOEE y;(z, M) B ToM cMeicie, 9TO IpH
mobeix n € IN cnparegauBa pabHoMepHad 10 £ € [—a, a] acAMATOTAKA

Y; (9,2,4) = 5n,i(9,2, A} + Ogn (’\—n—l): A= +0o0} (0°4)

¢ mocroganoi B cameoie (), 3aRECAHICH TOALKO OT HOTEHNHEAAA q B HOMEpa n.
Yepes Sp ;{g,2,A) 3fech o6o3EadeHa n-2 JACTHYHAA CYMMa acHMOITOTHHECKOIO
paga (3). BosaEKaeT BONPOC O BO3MOXKHOCTH NPHOAMXEHHOTC BHAUCACHASA 3Ha-
senuit ¥;(g,%,A) upn A 2 1, z € [~a, a] ¢ noMompio acaMaTOTHIECKAX PAAOB (3).
B pa6ote [3] B. A. Cagopamanm u A. 10. TlonossiM Ana NOTEHNAAIOB, AHAINTH-
secknx B kpyre |z| < R, R > a u yjoBaeTeopatomax yciormio g(0) = 0, a Takxe
AfA DOTEHUAAIOB, aHAIATHIECKAX B HEKOTOPOH p-OKPECTHOCTH OTPe3Ka [—a, af,
HOJMy<deHH! ONeHKH AAfA MOTDPEMHOCTHE HAMAYHero RpAGIMKenna QyHAaMeHTalb
HOll cCTeMBl pemienni ypaeRenra (1), yAoBheTBOpAOHeH Ha9aNbHEIM YCAOBAAM
(2), cymmamu (6), sKCHOBEBURANLHO YEHIBAIOHME C POCTOM A,

Tlenrs macToAmiel paloTH — YAYYLATL OUEHKY, NPUBEJCHAYIO B CTATHE
(3] ana morenmmanos, anaanTHaeckax B O(p, [—a,a]) — p-okpecTROCTE OTpe3Ka
[—a, a], samMeikanme xoTOpOil DpefcTapAseT coboit 06ke AEERAE ABYX HOAYKPY-
roe {|lz—a| < p, Rez > a}, {|z+a| < p, Rez £ —a} = TPAMOYTOMBHIKA
{IRezl < o, [Tmz| < p}.

0 .
Iiyers Mo = ma.x{ / lg(8)| dt, f »Iq(t)ldt}; Hepe3 ¢n ;(q,%,A) oboamaunm
o

-
BeBA3KY HpA NPUGAXCHARA pEeHnd y; cyMmoi S, it ¢n (g, 2, ) = yi(g, 2, A) —
Sn,i{g, %, A). OcHOBHOB peay/bTAT CTATHE 3aKAIDTETCA B CACAYIOMEM.
Teopema 1. Hycre dyaxuna ¢(z) asasurmyna e O(p, |—a, a)) 7 cregyromas
HOpMa KOHe3Ha

= I@n,alpnﬂ

-y n+1

x€[—-a,a]

= M; < +eo, (0.5)
n=0 )
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e)

Tfe gp o = ,Z[Jm A > 0 poroxum N N (A) [2pA] 1. Tor,qa mpa N >1

AMeeM

sup max max z,
7))3\1_012&[ a ]I¢N,J(91 ’7)'
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' ' Sakhnovich AL,
(anch of Hydmacaustacs, Academy of Sczences, Ukmme)
" Generalized Backlund—Darboux ’I‘ransformatlons

The Backlund-Darboux transformat.lons (BDTs) are na.med after the pio-
neering discoveries by A. V. Backlund and G. Darboux. The generahzed Bicklund-
Darboux transformation” (GBDT) develops this approach We consider’ the first
order systems w'(z,) = G(z, J\)w(m A (@ = £w). The solutlons i of the
transformed systems @'(z, A= G(z, Nyi(z, Ny aze connected mth the solutions
w by the relation % = wsw. The matrix function w4 (so called gauge tra,nsfor-
mation) is written down for each z in the form of the transfer matrix function
walz, A) = I+ C(z)(AI = A)~1B(z) that goes back to Kallman. In various exam-~
ples w4 proves to be archaracteristic matrix function by Livsic. The particular form
of the transfer matrix function and at the same time a generalization of the char-
acteristic matrix function that is used in GBDT was introduced by L. Sakhnovich.
Parameter matrices and the corresponding ”generalized” elgenfunctmns are used
in constructing w, instead of the eigenvalues and eigenfuctions in the standard
BDTs. The transfer matrix function type representation of w, allows, in partic-
ular, to separate the dependence on the variable  and spectral parameter A. In
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this way the solutions of the spectral problems and matrix nonlinear equations are
expressed in a general and analytically and computationally optimal form. Such a
representation proves to be important in the study of the explicit solutions of the
spectral and scattering problems and bispecirality also. The GBDT approach was
developed, in particular, in the papers [1] and [2] (see also references in [3}]).

REFERENCES
[1] A.L. Sakhnovich, Dressing procedure for solutions of nonlinear equations
and the method of operator identities, Inverse Problems 10 (1994), 699-710.
[2] A.L. Sakhnovich, Iterated Bdcklund-Darbouz transform for canonical sys-
tems, J. Functional Anal. 144 (1997), 359-370.
[3] A.L. Sakhnovich, Generalized Bicklund-Darbouz transformation: spectral
properties and nonlinear equations, J. Math, Anal. Appl. (2001) to appear.

Samborski S.N.
Dept. of Mathematics, University of Caen

On Closed Extensions of Nonlinear Partial
Differential Operators

In this report we present a complete metric space consisting of genuine func-
tions (more precisely of classes of equivalent functions} such that very wide class of
nonlinear p.d. expressions allow closed extension there. For one of such extension
solutions of the corresponding p.d.e. coincide with so-called viscosity (discontinu-
ous) solutions. Let X be a closed domain in R?, ¥ be a locally compact metric
space with a-metric d, f : X — Y be a map. We say that f belongs to the class
S if ¥z € X Ve > 0 3U - an open subset of X such that 2 € ¢lU (closure of U
) and y € U = d(f(z), f(¥)) < €. On the set of the maps of the class S from
X to Y there is the following equivalence relation: f ~ g iff 3X’ ~ a dense sub-
set of X, such that f = g on X’ . Let note by S(X,Y) the set of equivalence
classes . HY =Y; x...x Y, is a product of metric spaces than the natural map
S(X,Y)3 fe (fi,...fa) € S(X, Y1) x ... x §(X,Y,) is bijective. Therefore we
will deal with S(X,R), it is a vector space.

Proposition In every equivalence class f € S(X,R) there is a unique lower semi-
continouos (s.c.) representative f, and a unique upper s.c. representative f* and
in addition (f,}* = f*, (f*)« = fu (* notes lower or upper s.c. envelope). S(X,R)
is completely characterized by this property.

Convergence. f; — f iff

fule) =lim_inf £i(0).f"@)=lim _sup f7(s)

e I o)
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Theorem There ezists a metric in S(X,R) which generates the introduced con-
vergence and makes S'(X,R) a complete metric space

We study a differential expression D in S(X,R). If f is differentiable on some
dense subset X! of X then the map z — Df(z) is well defined on X'. If also there
exists F from the class 5’ such that on X’ F(z) = Df(z) than F determines the
unique element from S(X,R) depending only on f. Let us note this element by Df.
We construct this way an extension of differential expressions defined by Hamilto-
nians. This extension dermines a pre-closed operator in S(X,R) that generates
a semigroup of continuous transformations. We obtain a compactness criterion in
S-spaces and hence, some results on the closure of image and on compactness of
the set of solutions of some boundary-values problems.

Sapronov Yu.l.
(Voronezh State University)
“Exact and approached finite-dimensional reductions
in analysis of functionals of variational calculation”

Investigation of extremals of smooth functional in smooth Banach manifold
often can be reduced to similar problem of analysis of exiremals of key function (in
a finite-dimensional manifold of key parameters) [1]. Through this function it is
conveniently to introduce all topological and analytic notions that characterize in
some way the type of extremals (the multiplicity, the local ring of the singularity,
the versal deformation, the bifurcation diagram etc.) and also it is possible to
realize application of elements of a Morse theory. For example, it is conveniently
to reprezent bif—decompositions (allowable sets of Morse extremals, bifurcated
from complicated critical points) by characteristic CW —complexes, in which the
dimension of cells are equal to Morse indexes of appropriate critical points of key
function and adjoining cells correspond to adjoining critical points (as stationary
points of gradient dynamic system). For spreaded in theory of crystals singularity
of n—dimensional pleat type (defined by a quartic part of Taylor decomposition of
key function) the rather complete lists of bi f —decompositions had been received at
n £ 3 [2] - [3]. The characteristic complexes can be received on the basis of diverse
exact and approached reduction schems. Exact reductions result to uniform class of
equivalent complexes, and approached reductions "catch” a type of a characteristic
complex only at fulfilment of some auxiliary conditions [4].

REFERENCES
[1] Sapronov Yu.l. Finite-dimensional reductions in smooth extreme prob-
lems// Uspehi Matem. Nauk. — 1996. B.51, Ne 1. -~ P.101-132.
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Fort — Dialog. B.2. — P.35-46.

[3] Darinskii B.M., Sapronov Yu.l. The topological approach to classifications
of ferroelectric phases in crystals// In : Topological’ methods of the nonlinear
analysis. — Voronezh, VSU. 2000. - P. 41-57.

‘[4] Sapronov Yu.l., Tsarev S.L. Global comparison of finite — dimensional
reduction schemes in smooth vanatlonal problems/ / Math Notes. - 2000. Vol. 67,
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Savchuk A.M., Shkalikov A.A.
(Moscow State University)

Sturm-~Liouville operators with potentials—distributions.
.Generalized Gelfand—-Levitan‘ trace formula. _

It was shown in [1] that the Sturm-Liouville o;Jerator Ay = y" + ¢(z)y with
certain boundary conditions on a ﬁmte or infinite interval can be well defined if
. g(z) belongs to the Sobolev space H; %, i.e. g(z) coincides with the derivative in the
distributional sense of a function u(z) € L,. In the case when u(z) is a function of
bounded variation the correspondmg operator was; deﬁned by M.Krein and M.Kaz
and independently by F. Atkinson. In this partlcular case we are able to establish a.
modification of Gelfand-Levitan trace formula [2] which is well known for smooth
potentials. .

.Denote by )«,, the ezgenvalues of the operator Ay ¥+ q(a:)y with Dmch—.,
let boundary conditions on the interval [0, #]. We, ;prove the following interesting
identities (see [3]) e S :

. 4 tex
Theorem 1 Let u(a:) be a functzon of bounded varzatmn, continuous at the end
points 0 and 7, and u(‘k)—u(ﬂ) 0. Let the potentml g{z) be defined by the identity
q(z) = u'(z), which, is understood in tize dzstrzbutzonal sense. .Denote

A 'bkv'.—_-"%/co‘skxdu('x),' :1.;:%1’,_2‘.;‘;...'
o ] ‘
Then

(=]

Z(An - n2’+ b2n) = ""';‘ Ehf,
‘ i

=]

where :h,- are the j'ﬁmps of u(z).
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Theorem 2 Let in the addition to the conditions of the previous theorem there
ezist the left and the right derivatives of u(z) at the points 0 and m correspondingly,
ie.

u(z) = zu' (0) +o(z), u{w- m) = —zu'(7) + o(z) npuz — +0.

Then the series 3 Ap — n? is summable by the Cesaro method bf order 1 and

(C’l)f:,\n_nz:_w_%zhg.

a=1 4

In particular, if u(z) is absolutely continious in neighbourhoods of the points 0
and m, and the function q(z) = u'(z) is continuous in these points, then 3 Aq -n?
is summable by the Cesaro method of order 1 and its sum is equal to —(g(0) +

g(m))/4-

This result goes along with the Gelfand-Levitan formula.
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: Saz’henkov S.A. .
(Lavrentzev Institute Of Hydrodynamics, Novosibirsk)

Tartar Equation In Homogenization Of Problem On Motion
Of Small Asymptotic Mixture .

Fulfilling a homogenization procedure for a differential equation, say
P.us = 0, where P. is a differential operator which contains some small parameter
€, researchers often face the problem on how to find effective coefficients in ho-
mogenized equation which appears as ¢ — 0. This problem in many cases is very
complicated due to the circumstance that one should deal with a product of two
weakly convergent sequences of functions. To this end, the powerful methods of
formal asymptotic representations and two-scale convergence were created. How-
ever, they work only in cases when coefficients in P, have some ordered structure,
such as periodic or quasi—periodic So, what can be done if these properties are
absent? In the present work, the new approach for treating homogemzatlon prob-
lemns is introduced. We consider
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Problem A (on nonstationary Stokes-type flow of small asymptotic mixture pro-
vided with oscillatory initial data). The mixture fills a bounded container Q C R2.
In Qr = Q2 x (0,T) (T = const > 0) it is necessary to find 7 € Ly(0, T, J5(9)),
¥ € Lo(0,T; Jg+*(9)), and v € Loo(Qr) satisfying in distribution sense the
following system.

87 — divg (7)) = f, O+ Vo =0, 8,70 - gpA, 70 = f,

Fls=0 = 6,(,") + AES?, V|t=o = ag + Abo,, 17(0)!::0 = 17}()0)-

Here, f € LOTRY9), ¢ € (0,1/2), &2 e it
z';‘,()? € J(Q), —c- < boe < ey in £, z'i((,i) = # in J(€2). Constants ap, c_, ¢,
admit the condition ag — ¢~ > 0. Small parameter £ > 0 characterize oscillation
effects in initial data, and small parameter A > 0 indicates that these oscillations
have small amplitudes in neighbourhood of some smooth state of a fluid which is
described by the velocity field 17}(,0) and viscosity distributions :z((,o) = ag. Due to
standard bounds on solutions #,(}) and v.()\) of Problem A, after extraction of
proper subsequences one has 7, = ¥, weakly in L2(0, T'; J3(2)), vc i weak-

star in Leo(Q7), and, in view of H-convergence theory, v D7) = M, : V0,
e—3

weakly in Lo(Qr). Here, (M, : V%2 )ix = z;,.__l M:J“’ajv,. M, =M., (%,1, A} can-
not, be derived explicitly directly from the limiting transition because neither Ue
nor v do not possess any ordered structure in the sense mentioned above. Thus,
the system of homogenized equations (let us call it SysTEM H) does not compose
the closed model because it contains too many unknown functions. In order to
complete the system, we utilize the notions of H-measure [1] and Tartar equation.
Namely, we introduce H-measure p; associated with the sequence {v.}, and de-
rive the explicit representation for M, in the form M, : V@ = AD(g) + D(F)A,
A =1wa+ Mag  W{p:) + O(X3), where § is a smooth test function, W = W(Z, t)
is 2x2-matrix which is defined by u; solely. Next, we establish the evolutionary
Tartar equation

Bepte + T - Vopte + 8y (1Y : V.59) = 0.

Here, Y = Y (y) is 2x2-matrix with smooth given components. H-measure p; is
the unique solution of Cauchy problem for Tartar equation provided with Cauchy
data pli=0 = po, where H-measure pg is associated with {woc}. Thus, System
H together with representation for M, and Tartar equation compose the desired
model. The work was supported by Russian Fund for Basic Researches. Grant code
0001-00911.
REFERENCES
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Schlomiuk D.
Some algebro-geometric aspects of
planar polynomial vector fields.

In this lecture we focus our attention on some global problems about low
degree polynomial systems and show how the use of some algebro-geometric con-
cepts provide us with a good framework for some chart independent studies of
families of these differential systems. We also discuss some integrability criteria.
Connections of these concepts with the algebraic invariant theory of differential
systems will be made.

Schweizer B.W.
(Inst. f. Angew. Mathematik, Heidelberg)
A stable time discretization of the
Stefan problem with surface tension

We present a time discretization for the singie phase Stefan problem with
Gibbs-Thomson law. The aim is o obtain a discretization in physical variables
that is stable, that is, it satisfies a priori bounds independent of the time-step
size. The method resembles an operator splitting scheme with an evolution step
for the temperature distribution and a transport step for the dynamics of the free
boundary. The evolution step only involves the solution of a linear equation that
is posed on the old domain. The linearity of this step makes the scheme useful
for a numerical implementation. We prove that the proposed scheme is stable in
function spaces of high regularity. In the limit A? — 0 we find strong solutions of
the continuous problem. This proves consistency of the scheme and it additionally
yields a new shori-time existence result for the contmuous problem.

Bl. Sendov
(Central Laboratory for Parallel Processings, Bulgarian Academy of Sciences)
Hausdorff Geometry of Polynomials
Problems from the Geometry of polynomials concerning

Conjecture 1 If all the zeros of the polynomial p(z) := [[oei(z — 2), (n > 2)
lie in the unit disk D(0,1) = {z : |z| < 1}, then for every 2z the disk D(z;,,l)
contains at least one zero of p'(2);

are discussed. Conjecture 1 is formulated as an estimate of the Hausdorff deviation
of the set of the zeros from the set of the critical points of a polynomial. Some
new conjectures in Hausdorfl geometry of polynomials are formulated.
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Serdyukova S.I.
On numerical solution of
U = ug — pé(z)sin(u).
An asymptotic expression for numerical solution is constructed. This implies
* that for the numerical solution to approximate the solution of the original problem
we have to perfori the computation with a fictitious y*.

Cepebpaxor B.I1.
(Mocxoscxuii zoeydapcmeennniti ynusepcumem)

YcaoBuA KBasUPEryJApHOCTH K ;iéxsaanperynapﬁocmn
. OIIEPATOPOB, HOPOX/ACHHEIX CHCTEMaMH
CHHTYJAAPHBIX KBaanﬁn@(pepeHnnanbﬂbm BEIDAXKECHEM.

Ha nonyocn I= [0 o0} DACCMOTDAM CHCTEMY KBasHARGbEDERIAATLENX BHpaKe-
mmit £ [y] = ~(q0(=)25) + a1 (2)y1 +a(z)2, L2ly] = —(g0(2)2}) +9(z)1n +g2(2)2, B
xoTopoii ¥ = (y(z), v2(2)) — AByxxOMUIOHEHTHAA aex'mp-tpyxma, a byHKUAR
4@, m, g2 B ¢ AoKamsHO cyManyeMH na [ MEEAMaAbHEBIR 3aMKHYTHIA cCAMME-
TPHHeCKHi OnepaTop, IOPOXK JEHALI 3TOH CHcTeMok B npocTpancTee L2 (1) aByx-
KOMIOBEBTHBIX BEeKTOP-GyHKOBI. Honox(zm g-(z) = - min(¢(z),9), #(z1,22) =
f {q0(z)} ! dz. CrefcTeueM Teopem Ana Gonee o6mEX OmMEPaTOPOB, KOTOpHIe
6Y/YT HINOKEHET B oxnajie, ABIACTCA, B, JACTHOCTH, CleAyoman
Teopema. IIycTh CYMECTBYET HOCAEOBATENPHOCTS HONAPHO ﬁenepecexatonmxm
KOHeIBAIX HETepBaaoB I, = (an,b,) C I (n = 1,2,...), Taxasa, 970 g0 HOMOXKH-
TensEa O.B. B2 Uy, In, g5 ° cymmupyeMa Ha KaxioMm I,, # BeHOTHAETCA OfHO M3
AByx ycmopmii: 1) m.B. 5a U, I, ¢q(z) meorpumaTtessHa, q:(z) # q2(z) /mbo obe
HEOTPHNATEIBHH, IA60 06e RENONOXUTEILHB, ¥ PACXOJBTCA XOTA Gbl OANE H3
HeTHIPEX PAJOB
@ CUr ) s o lan b)Y,

Yos Jy. {90} "2dz} "1, {o(an,2)(z, ba)P0(z) dz , e plz)= q(z),lax(z)| mom
la2(=)| ; 2) BaUnln @ (a:) ga2(z) cymecTBenno orpanuiens: anbo obe caHIY, THEO
o6e ceepxy, paj (A) PacXofuTcs i HMEET MECTO HEPaBEHCTBO

/ o{an, 2)0(z, bajq- (<) dz < 7{an, bn)
i

(n=1,2,...). Torga L mexBasuperyaapen.
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Seregin G.A.
(Steklou Institute of Mathematics at St. Petersburg)

Recent Regularity Results for Weak Solutions
to the Three-Dimensional Navier-Stokes Equations

We are going to discuss recent results on regularity of the so-called suitable
weak solutions to the non-stationary Navier-Stokes equations in dimension three.
In particular, we show that the Caffarelli-Kohn-Nirenberg condition is valid near
the boundary.

Sergeev A.G.
(Steklov Mathematical Institute)

Seiberg-Witten Equations and Complex Abrikosov
Strings

‘We discuss a relation between the Seiberg-Witten equations (SW-equations,
for short) and their 2-dimensional analogue — the vortex equations. There exists
a correspondence, proposed by Taubes, between solutions of SW-equations on a
4-dimensional compact symplectic manifold and pseudoholomorphic curves, lying
on it. This correspondence is established in the following way. We plug into the
equations a scale parameter A (note that SW-equations are not scale invariant).
Then for A = oo one of the components of the SW-solution tends to become
pseudoholomorphic (w.r. to a fixed almost complex structure, compatible with the
symplectic form}, while the other component tends to zero. The zeros of the first
component converge to a psendoholomorphic curve. Moreover, the SW-eqguations
themselves for A — co reduce to a family of vortex equations, defined in the normal
planes to the psendoholomorphic curve. Conversely, given a pseudoholomorphic
curve on a 4-dimensional compact symplectic manifold and a family of solutions
of vortex equations in the normal planes to this curve, one can construct data for
the SW-equations on the manifold. These data provide an approximate solution
of SW-equations for A — co iff the family of vortex solutions satisfies a non-linear
equation, which is a complex analogue of the equation for Abrikesov strings from
the superconductivity theory.
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Sevryuk M.B.
(Institute of Energy Problems of Chemical Physics, Moscow)

Old problems and recent progress in the KAM theory

The KAM theory named after its founders A.N.Kolmogorov, V.1.Arnol'd,
and J.K.Moser studies quasi-periodic motions in non-integrable dynamical sys-
tems. During the last decade and a half, a considerable and versatile progress in
this theory has been achieved. The talk will be devoted to some particular de-
velopments closely connected with the context of the original 1954 Kolmogorov
theorem. The following topics will be discussed. A) Weak nondegeneracy con-
ditions. A completely integrable Hamiltonian system with n degrees of freedom
is said to be KAM-stable if any small Hamiltonian perturbation of this system
admits many invariant n-tori carrying quasi-periodic motions and close to the
unperturbed n-tori. H.Riissmann discovered in the eighties that in the analytic
category, the following geometric condition is sufficient for the KAM-stability: the
image of the frequency map 7 ~» w(I) does not lie in any hyperplane of R” pass-
ing through the origin (provided that the action variables I range in a connected
domain). This condition is much weaker than the original Kolmogerov nondegen-
eracy condition. Later on, the Riissmann theorem was proven by various authors
(M.R.Herman, Ch.-Q.Cheng and Y .-S.Sun, M.B.Sevryuk, and others) via different
methods. Riissmann’s nondegeneracy condition is also necessary for the KAM-
stability (Sevryuk, 1995}. B} Exponential “condensation” of invariant tori. In the
p-neighborhood of a perturbed invariant n-torus in the Kolmogorov theorem, the
measure of the complement to the union of the perturbed invariant n-tori is ezpo-
nentially small in p > 0 (for a fixed and sufficiently small analytic perturbation).
This was first proven by A.Morbidelli and A.Giorgilli in 1995. C) Destruction of res-
onant tori. An unperturbed invariant n-torus {I = I'* = const} in the Kolmogorov
theorem is said to be resonant if among its frequencies wy(I*),... ,wp(*), there
are only d < n rationally independent numbers. Resonant tori are destroyed by
an arbitrarily small generic Hamiltonian perturbation. Nevertheless, such tori give
rise (under some further conditicns) to finite collections of invariant d-tori carrying
quasi-periodic motions. This mechanism of the break-up of resonant unperturbed
tori was first studied by D.V.Treshchév in 1989. However, Treshchév described the
so-called hyperbolic d-tori only. The elliptic d-tori and d-tori of mixed type were
constructed no earlier than in 1999 by Ch.-Q.Cheng and Sh.Wang and in 2000
by F.Cong, T .Kiipper, Y.Li, and J.You. D} Excitation of elliptic normal modes of
lower-dimensional tori. This phenomenon whose precise content will be explained
in the talk pertains to Cantor families of invariant m-tori around families of in-
variant tori of dimensions ! < m in Hamiltonian systems with n > m degrees of
freedom. The first results in this direction were obtained by V.I.Arnol'd in 1962~
63 (for m = n) and by A.D.Bryuno in 1974 (for arbitrary I, m, and n). General



369

theorems were proven by M.B.Sevryuk in 1996 and by A.Jorba and J.Villanueva
in 1997.

Seyranian A.P.
(Moscow State University)

Theory of parametrlc resonance for periodic
systems with small damping

A hnear multl-degree-of freedom osmllatory system with penodlc coefficients
is considered. It is assumed that the system depends on three independent pa-
rameters: a frequency and amplitude of the periodic excitation and a damping
parameter. The last two parameters ate assumed to be small. The instability (res-
onance) of a trivial equilibrium of the system is studied. For an arbitrary matrix of
the periodic excitation and positive definite matrix of dissipative forces stability
conditions are derived for the cases of parametric and’ combination resonances.
Then, two cases of the parametric excitation matrix that typically occur in appli-
cations are considered: symmetnc matrix and a stationary matrix mounltiplied by

a scalar periodic function. It is shown that in both cases the resonance domains
are cones in the three-parameter space (in the first approximation). The derived
formulae allow analyzing dependence of the form of the instability domains on the
eigenfrequencies, corresponding to the unexcited system, and on the number of
the resonance zone. The method of analys:a of the parametric resonance domains,
used in the paper, is based on the analysis of perturbations of multipliers and uses
formulae for derivatives of a monodromy, ma.tnx with respect to parameters. As
an example, the problem of dynamic stability of a plane form of a beam, loaded
by periodic momenta; is considered. This work was done together with Alexei A.
Mailybaev and was supported by Russian Foundation for Basic Research grant
RFFI 99-01-39129. : .

Shafarevich A.L
(Moscow State University)
Asymptotieal solutions
for equations of hydrodynamies
and topological invariants of divergence -~ free
vector fields and liouville foliations

Asymptotic theory of equations of hydrodynamics and magnetohydrodynam-
ics is old ‘and highly developed branch of mathematical physics and theory of non-
linear PDE’s. Among first and most famous results in this area is the classical
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Prandt] description of boundary layers; one of the most recent ones is general
asymptotical theory of coherent microstructures, developed by V.P. Maslov and
G.A. Omel’yanov. Topological hydrodynamics is a modern and rapidly developing
area of mathematics; the most famous results of this theory describe geometrical
properties of Euler equations of ideal fluids (which are Euler equations on Lie al-
gebra of divergence-free vector fields) and topological properties of steady flows
(these properties are analogous to those of completely integrable Hamiltonian sys-
tems with one or two degrees of freedom). The main aim of the talk is to describe
certain connections between these two parts of mathematical hydrodynamics as
well as between each of them and topological theory of integrable Hamiltonian
systems. As an example consider solitary vortex in external flow, localized in a
small vicinity of a moving point z = R{f) € R® Such vortex can be described
by asymptotic as € — 0 solution v(z,,c) of 3D Navier — Stokes equations with
small viscosity e2v, where

z— R(t)

v=V(z,1) + o p

i) teus ... (1)

Here z € R3, v € B3, V(z,1) is a smooth vector field (external flow); the vortex
itself is described by the smooth vector field u(7,%}, where 7 = (2 — B)/e are
“rapid” coordinates and u(r,¢) — 0 as |[r] - co. Below we obtain and study
equations governing the behavior of u; we look at this function as a 3-D vector
field in the 7-space, depending smoothly on the parameter £.

Assertion 1 Let vector field (1) satisfies Navier — Stokes equations mod O(1)
as € — 0. Then three-dimensional vector-field u satisfies steady Euler equations.

Evolution of the vortex (i.e. dependence of u on the “slow” coordinate £) can be

described in terms of topological invariants of the three-dimensional divergence-

free vector field . Namely, remind, that “in general position ” solution of steady

Euler equations define Liouville-like foliation of BR? by 2D tori; we will restrict

ourselves to the fields of this type. Consider the quotient space of the 7 - space

by the tori. This topological space is a graph T' — the Fomenko invariant of
the Liounville foliation. Consider parameterization of this graph by the “action

variable” ; namely, to each point of the arbitrary edge of " (i.e. 2D torus, invariant

with respect to the vector field u) we associate a number I, equal to the volume
inside the torus. Note that this parameter (as well as the graph iiself) is the

invariant of the field » with respect to the volume-preserving diffeomorphisms of .
the 7- space. The motion along the trajectories of u on the tori is conditionally
periodic; denote by w = (w,wsz) the frequency vector of the motion associated

with some smooth basis of cycles on the tori (w can be treated as a smooth vector-

funetion on the edges of T, depending on a parameter ).
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Theorem 1 Let vector field (1) satisfy Navier-Stokes eguations mod of1) as
€ — 0. Then the function w satisfy the following system of equations

u( (;I‘:+Ma +Zw) 2)

O Ow

r + ng + Rw = |
Here the scalar function D? and the entries of the 2x2 matrices Q, R, M and Z can
be ezpressed via the coefficients of the Euclidean metric in the three-dimensional
space of the fast variables T and their derivatives at points of Liouville tori.

Remark 1 The role of eguations (2} in the description of solitary vortices is
analogous to the role of Prandil equations in the boundary-layer theory and of
Maslov equations describing periodic coherent structures.

Remark 2 Equations (2) with respect to the variable I are defined on the edges of
the graph T'. At the vertices of this graph w satisfies certain additional conditions,
which are analogous to Kirghoff conditions for eleciric chains. These conditions
can be expressed in terms of topological characteristics of singular fibers of the
Liouville foliation, defined by u.

Remark 3 Connections between asymptotical and topological parts of mathemat-
ical hydrodynamics appear alse in the theory of magnetic fields in conducting fluid.

Shaldanbaev A.Sh., Kal’menov T.Sh.
(South Kazakh State University named by M. Auezoy)
The spectrum structure of Shturm-Liouville
boundary problem on the bounded segment

Next result was proved in the work. Theorem. The spectrum of Shturm-
Liouville operator can be either an empty multitude, either all complex flatness,
or an accoun multitude; this spectrum can not be a finite multitude. The main

idea of the truth of this theorem is the using of integer functions theory and the
properties of integer functions zeros.
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[1] A.Sh.Shaldanbaev, The traces formulas of of unselfconjugate undegener-
ative regular Shturm-Liouville operator, and spectral theory of irregular Shturm-
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Shamin B.V.
(The Moscow State Aviation Institute}

Spaces of Initial Data for Parabolic Functional
Differential Equations

Let V and H be separable Hilbert spaces. Let ¥V be dense in H, and let the embed-
ding V ¢ H is continuous. Denote by V’ the adjoint space. Clearly, V C H C V"
We consider bounded linear operator A: V — V',

Definition. An operator A is called V -coercive if for each v € ¥V

Re < Av,v >> |pliZ, (1)

where ¢; > 0 does not depend, on v. By Theorem 9.1 {1, Chapter 2] the opera-
tor A has a bounded inverse. We difine unbounded operator A : H — H with
domain P(A) = {u € V : Au € H} by the formula Au = Au. We consider the
Hilbert space D(A) with the norm (u,v)pa) = (Au, Av)x + (u,v)z. We denote
by L2((0,1), H) the Hilbert space of all measurable H-valued functions u(t) on

/2
(0,1), for which the norm "u"L,((O 1),H) = ( S () Hdt) is finite. The inner

product in L2((0, 1) H) is definied as following: (4, %) L,((0,),7) = f (u(t), v(£))mrdt.
Consider the Cauchy problem in the space H

d(f)+Au)=0, (t€(0,1)), u(0)=4. 2

A function u(t) is said to be a strong solution of problem (2) if it is absolutely
continuous, u'(¢) € L2((0, 1), H), the equation in (2) is satisfied for a.e. t € (0,1),
and u(0) = . Let F1(A) be a space of initial data for the problem (2) as . It
consists of functloxis go'e H such that problem (2) has a strong solution.
Theorem. Let the operator A be V-coercive. Suppose V C F, 3 (A) and this
embedding is continuous. Then .7-';(.4) V. Now we consider some examples of
parabolic functional differential equatlons Let Q C R® be a bounded domain
with Lipschitz boundary. Let H = ﬁg(Q), W3(Q) and V' = W; Q).
We consider a bounded operator Ag : WHQ) — W, '(Q) define by the for-
mula Apu = —div(Bgrad u), where an operator B : {£2(Q)}r=, = {<==>)0,
is - bounded. Assume that the following conditions hold: 1. The operator

B : {W}(Q)} - {WHQ)},_, is a bounded operator. 2. The operator Ap

is W} (Q)—coercwe Denote by Az an unbounded restriction of the operator Ag on

D(As) = {u € WH(Q) : Asu € L2(Q)}. .
Corollary. Suppose that conditions 1, 2 hold. Then Fi(As) = W3(Q).
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Example 1. We define difference operators Ry; : La(R?) — La(R™)
by the formula Rju(z) = Y aya(z)ulz + h), where a;;5- € C®(R") are
heM

complex-valued functions; M EC R”? is a finite set of vectors with integer co-
ordinates. We introduce operators Rijq = PoRijlg @ L2(@) — L2(Q), where
IQ £(Q) — Ly(R™) is an operator of extension of functions from £2(Q) by zero
in R?\ @; Pg : Lo(R?) - £(Q) is the operator of restriction of functions from
La(R®) to Q. Let B R, where R : {L2(Q)}p=; = {&=};_, is defined by the

formula (Ru); = 2 Rijou;; i=1,2,...,n, where u = {u;} id a vector-valued

function. We conSIder differential- dlﬁ'erence operator Ag. Necessary and sufficient
conditions of strong ellipticity of operator Ap in algebraic form are obtained in {2}
The conditions of strong ellipticity correspond to W2 (Q) -coerciveness. The first
mixed problem for parabolic differential-difference equations was studied in (3.
If operator Ag is strongly elliptic, then by virtue of Corollary problem (2) has a
strong solution iff € W1(Q).

Example 2. We define operators with contracted and expanded arguments
T;j : L2(R®) — L2(R™) by the formula T};u(z) = Z aijru(g™ !z), where az; € C,

N C R is a finite set of vectors with integer coordma,tes, g > 1. We introduce the
operators Tyjq = PoTi;lg : £2(Q) — £2(Q), where operators Iq, Pg are defined
in Example 1. Let B T, where T : {£2(Q)}e=y = {£2(Q)}5=, defined by the

formula (T'u); = E Tiiquj, §=1,2,...,n, where u = {u;} id a vector-valued
a=1

function. We consider a functional differential operator Az with contracted and
expanded argument. Necessary and sufficient conditions of W3 (Q)-coerciveness for
operator Ap are obtained [4]. If operator Ay is Wi (Q)—coerclve then by virtue of
Corollary problem (2) has a strong solution iff ¢ € W Q).
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Shapiro M.
Hurwitz Numbers and Hodge Integrals.

We shall discuss a relation between classical problem of counting ramified
covers of a 2D sphere and mtersectlon theory on moduli space of complex curves
with marked points.

Hanommnkoea T.A., AGiokoe B.B.
(Mocxoscxuii I‘ocy&apcmseuubm J’uueepcumem}

06 ycpeguenun pemennn sagain Heitvana gaa
c'rannonapﬁon CHCTEMBL JIHHEHHOH TEOPpHN Z’l’lpyPOCTH B
obaacTax ¢ nephopAPOBAHHOH BHYTPEHHEH CpaHuiled

B pafoTe paccMOTPHBaeTCA 3aJa9a YCPEAHCHAR PEIeHAR U, CTANEOHADHON
CHCTEME JTEHEHHOH TeOpWH YUPYNOCTH B o6AacTaX, COCTOAUIEX M3 HECKOABKHX
yacTeR, pasjclcHEMX £— HepdopupoBaHHEMYE rpasnmami (€ > 0— Mammi na-
paMeTp) mpu palimdHOM pasMepe modoctedi. Ha BHenmied rpanmime 3ajaHO Hy-
Aeroe yciopme [Epuxie, Ha BHYTpeHHeH mephOpADOBAaHHOH TDaBHILE - YCAOBAE
Heiimana. MeToaamu, paspaboTanssiMi B [1], B paboTe mcciegoBaro moBejenne
u. OpE € — 0, BHIHACAEA TpejeibHad 3ajaia B joKasaHa caiban B H1 cxogn-
MOCTH %, K peilieEmio ycpejsenHoil 2afaqm. IlycTe 2 - orpammyenrag o6aacTdb
B R%,n > 3, ¢ raagkoii rpasmuei 02 = T, 2 = (22,...,25),2 = (23,%). Hlo-
aoxmM QF = Qn{z; > 0}, 0" =0Nn{z <0}, v = QN {z; = 0}. Hycrs
romxm PI € v,j = 1,...,N(e), N(e) < Kie!™", Ky = const > 0. Obosnaqmm
qepea GI obaacts Ha 'y, Pi e Gi, G’J C {z : |z ~ P3| £ di}, diamGi (—) al,

Nie
i < Koe, Ko = const > 0. Ilycts 6, = max; al. Toroxam G, = 'U1 Gi,
J:
=9\ Ge, Qe = QT UQ~ UG, T =N {z; >0}, T~ _I‘n{zl < 0}. Iyers
(z) = (fi(z), .., fa(2))- rasgKan BeKTop—cbynmma a A% (z) — peficremrennabe
CHMMETPHIECKAE MATPHIBI, JIEMEHTE KOTOPHIX a,,, (m) — raajxue B {} yEKOHE,
YAOBIETBOPAIOIIAE YCAOBHIO aji(z) = ali(z) = at¥(z) u yeaommo snmamTHIHO-
et Ci £ki bk < ay(=)eribly < C2 ki &ki, THE 01,02 = eonst > 0. B obnactu 02,
H3Y9aeTCA KpacBad 323343

M) =5 (4™ @G ) = ) = o
Bu;

=0 Ha Tes

0.1

ue =0 ga I, olug) = u,,,A’"“(a:)

rae v = (1, ..., ¥p)— BHEOIHAA HOPMaib K .. llog pemesmeM 3afaqn (1) momm-
MaeTca BexTop-bynkmaa u, € (H1(Q,T))". Mycte dysxkumn v n v— raajkue
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pemieHnd 3aja4d

Ad) = flz) B szi, =0 ma T, c(v¥)=0 ma 4. (0.2

A(v)=f(z) 2 @, wv=0 ma T. (0.3)

Theorem 1 IIycmv u.— pewenue 3adovu (1), a v u vE— zuadxue pewerus
aadax (2) u (8). Tozda, ecau a?=%'~" — 0, mo  |jue — v ||y, (o, ryn +
e — v~ W, (a- P_)),, < Kaa?~2%6'" — 0. Eeau a® %1% — 00, mo  |ju ~

”"(H;(ﬂ,t‘))n £ KsVai "en~1 46 0.

PaboTa primonseHa npu Gunancosoh nogaepxke POPHU (rpasr N 00-15-96045).
JUTEPATYPA

1. Oaneiinax O.A, lapomsnkora T.A "06 ycpeaHeHE#@ KpaeBHX 3ajad B
nephOpPHPOBABEHEIX 06AACTAX ¢ HEMEPEOAEHECKOA CTPYKTYPod” ,Z{ncb yp. 1998.
.34, N5. C.647-661.

Shapoval A.B.

(International Institute of Earthguake Prediction Theory and Mathematical
Geophysics, Moscow}

Growth of the solutions of a non-linear degenerating elliptic
inequality posed in the half-space.

An inequality

n

8%u : .
> aij(”)m 2 flu), ul, _,<0 (0.1)

3,7=1

is considered in a half-space I = {z € R" : 2z, > 0}. Here a;;(z) = a;i(z) are
i

measurable functions. Suppose that a lattice 4 = (a;_,,-(:::))z.'j=1 is positive definite:

n

D aij(z)ei; >0 VEER™, |E]>0, z €10
i,5=1
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Let the lattice A not degenerate in the direction z,, such that SUP,eq @na{2) is
bounded. Let |2ln-1 = 4 [234 ...+ 22_,. Then define a(r} as

e(r)= sup sup sup a,_,(:c)f,&,
Za€B4|al, -, K [¢l=2 z;z—l

Let 4 2 .
j;’-ﬁ(—é-, i ;4((—).=6(1) as_(; 00

o h(")z{ f1 7;.5(? otherwise.

Assume that the coefficients a:;(z) are such th‘at‘h(r) — c0 a8 7 — co. Suppose
that the function f(»). € C(R} introduced in (0.1) is such a monotone nondecreas-
ing function that f(v) >0 if v > 0 and

- dnp .
®(r) d—i-f/ ———— 300 a8 0. -
Y N S
A function u is a solution of (0.1) if » has the continious partial derivatives up
to the second order and satisfies o the mequahtes (0.1). Denote sup tet=r u(z) by

M (T) RN
Theorem. Let the cited above condltmns be fulfilled. Then either u < 0 in
Mor . " . .
M(r)
poy) -
| [@(r)] el
where byiH] it 1s denoted the map mversed to H.
Example. Let f(v) =9, a(l) = O(C"‘) 0<a<. Then
M (f')
e"r:—a

Remark. The condition (0 2) is sharp. If the function ®(r) is bounded then
0 in I

©.2)

>0,

fim >0
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Sharipov R.A.
(Bash State University)

Newtonian Dynamical Systems Admitting
Normal Blow-Up of Points

Sharkovsky A.N.
(Institute of Mathematics, National Academy of Sciences of Ukraine)

Spartial-temporal chaos in boundary value problems

When studying evolutionary problems, the occurrence of fractal sets is usually
linked to the very complicated structure of attractors. At the same time in our in-
vestigation into boundary value problems (BVP), fractal sets appear in describing
just the interior structure of attractor elements but not attractors (see, for exam-
ple, [1-4]). It is a cascade process of birth of coherent structures of decreasing scales
and forming in the limit (at £ = co) fractal structures or even random structures
(when limiting for a solution are random functions) that can really be observed
in (deterministic) dynamical systems generated by "simple” BVP involving linear
partial differential equations (PDE) and nonlinear boundary conditions. Among
such BVP, there is a wide class of problems reducible o difference, differential-
difference and other relevant equations, which allows one to employ profitably the
achievements in the field of low-dimensional dynamical systems (DS), especially,
one-dimensional DS. Modern theory of DS enables one in many cases to preform
a deep analysis of properties of BVP. A.A.Witt was the first to apply this ap-
proach for the study of BVP (1936, Zhurn. Tekn. Fiz., 6). At that time, however,
the theory of one-dimensional DS (the iteration theory of real functions) was yet
nonexistent, and on 1.G.Petrovsky’s offer, his student S.P.Pulkin launched inves-
tigations into iterations of functions. Several S.Pulkin’s works on this subject was
published over the forties. These works were likely pioncering in iteration theory
of real functions. The wave equation

Wit — Wop = 0, 0gzg],
with the local boundary conditions
Ho{w,w;,wz) =0 = 0,  Hi(w,w,wz) =1 = 0,
or with similar nonlocal boundary conditions, is a classic example of BYP reducible

to difference or differential-difference equations (depending on the particular form
of boundary conditions). Varied possibilities for initiation of deterministic chaos



378

in "reducible” BVP of this kind and different characteristics of such chaos are
discussed in the talk.
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Sheipak I. A. %

(Moscow State University)
On modification of Rayleigh Criterion of
.Stability in One Hydrodynamic Problem

‘A circular flow of an inviscid, incomressible fluid between two coaxial cylin-
ders is considered. Investigation of perturbations depending on time exponentially
reduces the stability question to localization of spectrum of corresponding problem

;-
' (mA + k2B)u = ACu. (0.1)

where A, B and C are the matrix-operators with commom domain
D = {u= (v, u2), 1 € Wi(a; b), ua(a) = ua(b) = 0;u3 € Wi(a; b}}
in Hilbert space H = La((a; b);4/7) % La((a; b); /7). The Hilbert space
La((a; 8);+/7) is the space with inner product (f,9) = f: f(r)_'crr)-r dr.
The spectral properties of operator pencil (1) were considered in [3], {4].
The equation (1) is equivalent to the eigenvalue non-linear problem (see f4))

d ( T ’U'(T)) _@+MM_MM=O (02')

dr \ m? + k272 ? Ay v pln ) 7

24The work is supported by grants RFRF No. 01-01-00681 and No. 00-15-96100
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with boundary conditions for »(r): v(a) = v(b) = 0, here w(r) is angle velocity.
The stability of nonaxisymmetric perturbation of circular flow of an inviscid,
incomressible fluid between two coaxial cylinders is defined as absence of eigenval-
ues of problem (1) or {2) in upper haif-plane.
We define the notion of neutral stability in case that all eigenfunctions are
real.

In case m = 0 the Rayleigh criterion of stability is %('rzm(r))2 > 0.

For equation (1) or (2) the next statement is the generalization of Rayleigh
criterion in case m # 0.

Theorem 1. The nonaxisymmetric perturbation of circular flow of an invis-
cid, incomressible fluid between two coaxial cylinders is neutral stable for sufficient
large values of parameter m if condition

(20(r) +r'(r)) >0

holds.
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Shilkin T.N.
(V.A. Steklov Mathematical Institute, St.-Petersburg)

Full Internal Regularity for Solutions
of the Two-Dimensional Modified Navier-Stokes System

We study regularity for solutions of the Modified Navier-Stokes system
(MNS) describing the flow of a generalized Newtonian liquid in the two-
dimensional case. We obtain a local criterion of Holder continuity of the spatial
gradient of a solution at the neighbourhood of a given point. This result is applied
to investigation of solutions to the first initial-boundary value problem for MNS.
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Holder continuity of the spatial gradient of a solution on internal subdomains of a
parabolic cylinder is proved under natural assumptions on the data of the problem.

Shilnikov L.P.
(Institute of Applied Mathematics and Cyberbetics, Nizhny Nouvgorod)

On analytic symplectic maps with infinitely many
elliptie periodic points

The existence of homoclinic and heteroclinic tangenmes at symplectic mapsis
a sources of many complicated dynamical phepomena. This fact is well-understood
up to the present for the case of dissipative diffeornorphisms. Here, we will dis-
cuss the problem on the existence of infinitely many elliptic periodic points in
the case of two- and four-dimensional symplectic maps having non-transversal (a
quadratic tangency} homoclinic orbits to fixed points of saddle and saddie-focus
type , respectively. We will discuss also the case of the simplest two-dimensional
structurally unstable heteroclinic cycle.

Two-dimensional case. Let a map T has a fixed saddle point O with multipli-
ers A, A~ where 0 < A < 1. In a small neighbourhood U of the point O the map
T can be written in the following normal form & = Az(1 + f(zy)) , 7= A"1y(1 +
F(zy))~ where f(0) =0. Let M~(0,y~) € U and M*+(z*,0) € U be points of a
non-transversal homoclinic orbit I' where 2+ > 0,y > 0. Let T9(M~) = M+ for
an integer ¢. The map TY near the point M~ can be written in the form

=gt taz—cYy—-y)+... ) j=cztex®+hz(y—y ) +dly—v )+
where d # 0, ¢ # 0. Consider the following invariants of T

1 . ezt
ﬁ e dz*(ac +ext) + hzt (1 - —h:c"‘)

Theorem 1 (Gonchenko,Shilnikov). In the case e >0 atv =0, -3 <s< 1
and s # 0,—5/4 the map T has infinitely ‘many single-round generic eli:ptzc peri-
odie orbits (of all periods beginning with some k). Maps T from theorem 1 form a
codimension two bifurcation set. In the case of codimension one we have proved
that,in general, either the map T have no periodic orbifs in a small neighbour-
hood V(O UT) or a countable set of periodic orbit exists and all of them are
saddle. Another situation take place in the case of symplectic maps with non-
transversal heteroclinic eycles of the third class. Let ¢ be such a map. Ia the
simplest case it has two saddle fixed points O; and Oz and two heteroclinic orbits
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T2 C W*(O1) NW?*(02) and T'y1 C W*(Oq) N W*(0,) where one of them, I'y;,
is non-transversal. Let 8 = In A2/ In Ay where JA; is the stable multiplier of O;.

Theorem 2 (Gonchenko,Shilnikov). Let f, be a one parameter family of
maps with the non-transversal heteroclinic cycle of the third class where 8p/06 £ 0.
Then in any interval of varying p values of p are dense such that the map g, has
infinitely many generic elliptic periodic orbits. In the homoclinic case we consider
a two-parameter family T, of maps where p is the splitting parameter. Then
on the parameter plane (g, ») a countable set of curves I, : u = @ (v) exists
such that 1} ||ga]lcr = 0 as n — oo; 2) the map T, at (g,v) € I, has a non-
transversal heteroclinic cycle of the third class; 3) the corresponding value 8,
changes monotonically under moving along the curve I,.

Theorem 3 (Gonchenko,Shilnikov) In any neighbourhood of a point (0, vo) of
the parameter plane (u, v) there exist values (p*,»*) such that Tye,» has infinitely
many generic elliptic periodic orbits. Four-dimensional case. Among codimension
one four-dimensional symplectic maps with homoclinic tangencies, only bifurca-
tions of 2 homoclinic tangency to a saddle-focus fixed (periodic) point can lead
to elliptic points. It is connected with the fact that in other cases a global center
invariant manifolds of saddle type exists. Let F' be a four-dimensional symplectic
map with a saddle-focus fixed point O with multipliers Ae**#o and A~le*i¥o, Let
F have a homoclinic orbit 'y in whose points the manifolds W?*(0O) and W*(0)
have a gquadratic tangency. Denote by H a codimension one bifurcation surface of
such maps. .

Theorem 4. (Gonchenko,Shilnikov,Turaev) Maps with infinitely many
KAM-genetic elliptic periodic points are dense in H.

These results are true also in a smooth case.

This work is supported in part by INTAS-grant No.97-804 and by RFFI-grant
No.99-01-00231.

Shishkov A.E.
(Institute of Appl.Math. and Mech.of NAS of Ukraine , Donetsk)

Motion of interfaces in thin film theory

There is considered the following Cauchy problem for fourth order degenerate
parabelic equation:

Lu= u; +div (Ju]*V Au— [2["Vu) =0 in RY xR}, (1)
u(z,u)=u-(2) 20in R, N<3,n>0,m>0. (2)

Equation (1) was introduced to describe the evolution of the height « of a liquid
film spreading on a solid surface. The fourth order term accounts for the effect
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of surface tension. The second-order term describes effect of gravity or may be
considered as " porous-media cut-off” of Van der Waals forces. Thecaren=m =1
describes the extent u of the region occupied by a liquid in the half-space Hele-
Shaw cell in the lubrication regime. We study solvability of problem (1), (2).
There is proved existence of nonnegative generalized strong solution u{z,t) in the
case n € (1/8,2) and uq - arbitrary nonnegative Radon measure with finite mass
and such that suppuo is compact. It is established that this solution has finite
speed propagation property. There are obtained precise estimates of the speed of
solution’s support propagation for small and large ¢. There is investigated the
dependence of initial evolution of interface on local properties of initial function.
We study effect of waiting time in propagation of support of solution too. Some of
these results obtained jointy with B.Dal Passo and L.Giacomelli.

Shishmarev I.
(Moscow State University)

Large time asymptotics of solutions for periodic
problem to wide class of nonlinear evolution equations

Large time asymptotics of solutions for periodic problem to wide class of non-
linear evolution equations I. A. Shishmarev (Moscow State University, Russia) We
study the periodic problem for wide class of nonlinear (local and nonlocal} evolu-
tions equations, including among others such well-known equations, as the gener-
alized Kolmogorov-Petrovsky-Piskunov equation, the Korteweg-de Vries-Burgers
equation, the Kuramoto-Sivashinsky equation, the Ott-Saden-Ostrovsky equation,
the Landau-Ginzburg equation, the derivative nonlinear Schredinger equation. The
main goal is investigation of large time asymptotic behavior of solution the peri-
odic problem for this class of equations. We find out the principal term in explicit
form and give the estimate of remind term for different kind of asymptotic behav-
jor, that is decaying, growing or oscillating in the course of time. We consider both
interesting cases of small and arbitrary initial data. These results were obtained
in collaboration with E. Kaikina and P. Naumbkin.
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Shlosman S.B.
(Institut of the Information Transmission Problems, Moscow,
and Centre de Physique Theorique, Marseille)

~Perseverance of continuous symmetry in 2D:
the case of singular interactions.

It was known for a long time that the discrete symmetry of the interaction can
be broken starting from dimension 2, while the continuous symmetry can be broken
only starting from dimension 3. The statement about the absence of breakdown
of continuous symmetry in 2D for the first correlation function is the content of
the Mermin-Wagner Theorem. Physically this fact is expressed by saying that
there are no Goldstone bosons in 2D. The following generalization of the Mermin-
Wagner Theorem was proven in [1]. Let G be a compact connected Lie group,
which acts on a single spin state space S of a 2D system. Suppose that the nearest
neighbour translation-invariant interaction I/ between the spins is G-invariant: for
every g € G

U(sz, 54) = U(gsz, gsy)-

Then every Gibbs state corresponding to I/ is G-invariant as well, provided the
interaction U is C€. For a long time the common belief was that the smoothness
assumption is necessary in the above statement. In a recent paper coauthred by
D. Ioffe (Haifa) and Y. Velenik (Marseille) we were able to show that in fact this
is not the case, and the same G-invariance of the Gibbs states holds even for the
singular G-invariant interactions.

REFERENCES
[1] R.L.Dobrushin and S.B.Shicsman, Absence of breakdown of continuous
symmetry in two-dimensional models of statistical physics, Comm. Math. Phys.,
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Shnirehnan A.
(Tel Aviv University)
Braids, Flows, and Magnetic Equilibria

The talk is devoted to a general method of construction of flows of an ideal
incompressible fluid. Consider the motion of an ideal incompressible fluid in a
bounded domain M. Configuration space of the fluid is the group D of volume-
preserving diffeomorphisms of M, and the fluid moves along geodesics on D. If we
want to construct interesting geodesics, the obvious idea is to look for the shortest
path connecting two given fluid configurations. But this method generally fails
if the dimension of M is greater than 2. In the 2-dimensional case we have an
additional structure: every flow may be regarded as a braid with continunm of
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threads. Many features of these continual braids have no analogies with the well-
known finite braids. After a careful analysis of the structure of braids we prove that
the above variational problem has a generalized solution, so that the velocity field
of the fluid is a weak solution of the Euler equations. This means that velocity
field may have singularities. Examples show that singularities can really occur.
Formally, the problem described above may be regarded as a particular case of
equilibrium problem of a perfectly conducting plasma with frozen-in magnetic
field, which is important, for astrophysics. Singularities, arising in weak solutions
of this problem, are materialized as solar flares and magnetic storms.

Dijksma Aad
(University of Groningen)

Shondin Yu.G.
(Nizhny Novgorod Pedagogical University)

Singular (and regular) point-like perturbations
of the Laguerre operator
in a Pontryagin space

T I'(—2)
sinwa I'(~z — a)
to the class Ny, of generalized Nevanlinna functions with m = ['5’;'—1] nega-
tive squares. We describe an operator representation of Q, as a Q-function for
some symmetric operator S, in a Ponfryagin space II,, and a canonical selfad-
joint extension A of S, and discuss related topics. The case 0 < |of < 1 is
known: Then Q. € No and we can take for Ilp the space Ho = L%(R*,wa),
we(z) = 2%e~7, for S, the minimal realization in Hg of the Laguerre expression
£y = —zd‘i—;— (1 +a—-z)%, for A the selfadjoint operator L, in Hg associated with
orthogonal system of the generalized Laguerre polynomials LE(z). For a < -1,
a ¢ Z~, R.D. Morton and A.M. Krall (1978) observed that the LZ(z)’s are or-
thogonal relative to some indefinite inner product. V.A. Derkach (1998) obtained
an operator representation in a Poniryagin space II%, for a related function. For
the case |a| > 1, a ¢ Z we follow the line of [1] and start with the formal per-
turbation (FP): A% = Ao+ 17", Xa)Xa, t € RU {00}, where Ap & L, and
Xa € Yoneg L2{(z). If @ > 1 the series converges in the scale space H_n-1(La)
and determines Xo € H-m-1(La) \ H-m(Le). In this case (FP) is an example of
the singular perturbations in [1] and can be realized accordingly by a canonical
selfadjoint extension Af, of some symmetric operator S, in a Pontryagin space I12,.
If & < —1 the series for x, converges in the space 11, of Morton-Krall and (FP)
is a regular rank one perturbation, if we identify Ag = A with the selfadjoint

The function Q.(z) = — ,& € R\Z, z € C\Z" belongs
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operator in IIf, associated with orthogonal polynomials L3 (z). With A and A2

we associate the decomposition (D): 11, = Hg @ (L= 4+ M),

Theorem 1.Assume & > 1, a #2,3,..., and m = [2£1].

(i) Qa(z) is the Q-function for S, and AY in 1Y, where IIg, = L2(R*, w,)®C™®

@®C™ is a Pontryagin space with negative index m and a G-space with Gram
0 ] —j - .

operator G = Ip @ ( i, (g;’;) ), g = DlecdtUlekilp; b o qy,

AY is a “lifiing” of L, to IS, in particular, 0(AF) = o(La) U {co}, and

Sa ={{£.'} € A% [ {(f + af),(0,0,e1)T) = 0}.

(i) In the decomposition (D) #§ = L*(R*,wq), £ = {0} ® C™ & {0} is the root

subspace of A7 at co and M* = {0} & C™ & {0} coincides with the span of the

first m eigenvectors of A?.

Theorem 2.Assume a < ~1, a # —2,-3,..., and m = [lﬁl;'—l]

(i) In (FP) x € dom (47'"") and x ¢ dom (4F). Qalz) = {(AD — 2)~2x, x) and

is the Q-function for A7 and S, = AT |{sedom A|(fixa)=0}; 20d Q_o(z + a) is

the Q-function for S, and A%.

(ii) The space I}, admits the decomposition (D), where H§ is isomorphic to

LYH(R*, wg), L% = ker (A% —z)~™, and M is spanned by the first m eigenvectors

of A7. The research of Yu.Shondin was supported by NWO (047-008-008) and

RFBR (0001-00544).
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Shubin M.
(Northeastern University, Boston)
Spectra of magnetic Schrodinger operators

1 will review some recent results connecting classical and guantum dynamics
of a particle in an electromagnetic field. The first type of a result says that classi-

cal completeness implies quantum completeness for magnetic Schrédinger opera-
tors. Here the classical completeness means that the solution of the corresponding
Hamiltonian system does not go fo infinity in a finite time, whereas the quantum
completeness means that the Schridinger operator is essentially self-adjoint. The
most advanced recent results in this direction are due to I. Oleinik and the speaker.

The second type of a result gives conditions for the spectrum of the magnetic
Schrédinger operator to be discrete. It is well known that the condition V(z) = oo
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as & — co implies that the Schrodinger operator # = —~A + V(z) in R® has a
discrete spectrum (K. Friedrichs, 1934). In physical langnage this means that if a
classical particle can not escape to infinity (being forced to remain in a potential
well), then the corresponding quantum particle is also localized. Similar results
about magnetic Schrodinger operators (in R™ or on manifolds) were obtained in
recent papers by V. Kondratiev and the speaker and will be explained in the
talk. They are formulated in terms of effective potentials which are constructed
from both electric and magnetic fields. The most advanced of these resnlts use the
Wiener capacity and in case of vanishing magnetic field coincide with the necessary
and sufficient conditions given by A.M.Molchanov in 1953.

,

Skubachevskii A.L.
(Moscow State Aviation Institute}

On smoothness of generalized solutions for nonlocal elliptic
problems

A classical result concerning smoothness of solutions for elliptic problems can be
formulated as follows. If u € W2(Q) is a generalized solution of a second order
elliptic equation with smooth coefficients and the homogeneous Dirichlet boundary
condition on smooth boundary 8Q, then u € WZ(Q). In the case of nonlocal
elliptic boundary value problem, the situation is quite different. For the simplicity,
in this lecture we consider a model problem. However, the results were obtained
for general nonlocal elliptic boundary value problems in arbitrary bounded plane
domains. We consider the nonlocal elliptic boundary value problem

~Au(z) = fo(z) (s€Q), (1)
u(z)lp; — iz + Rsjlr; =0 el i=1,2),
u&ﬁ? =%( e EZ € T3). ) } @

Here @ C R? is a domain with boundary 8Q € C®*°, which ouiside the
disks By;s((i4/3,74/3)) (i,7 = 0,1) coincides with the boundary of the square
(0 4/3) X (0 4/3), Mm,12ER 2= (21,3:2), ;= {ﬂ? (S BQ z; < 1/3 2o < 1/3},

=z € 8Q : 1 < 23,1 < z9}, T's = @Q\(I‘; UI‘g), hy = (1,1),
hz = (~1,-1); fo € L2(Q). Let WE(Q) be the complex Sobolev space of or-
der k. Denote by W}, (Q} a subspace of W2(Q) consisting of functions with
nonlocal boundary conditions (2). We introduce an unbounded linear operator
Ay : D(Ay) C £:(Q) = ﬂg(Q) acting in the space of distributions D'(@Q) by the

formula

Ap=-Au  (u€D(4y) = {u€ W,(Q): —Aue LQ)})-
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A function u is called a generalized solution of problem (1) and (2) if u € D(4,)
and

Ay = fo. (3) .

If 11 = 72 = 0, we obtain the Dirichlet problem, which is a "local” one. It is well
know, that if u is a generalized solution of problem (1) and (2), then u € WZ(Q).
However, arbitrary small coefficients 4; in nonlocal terms can lead to disturbance
for smoothness of generalized solutions. On the other hand, for sufficiently large
coefficients ; smoothness of solutions preserves.

Theorem 1. Let 7172 < 4 and ¥2 + 44 # 0. Then there exist fo €<= and
a generalized solution u of problem (1) and (2) such that u ¢ W3(Q). -

Theorem 2. Let 1172 > 4, and let u be a generalized solution of problem
(1) and (2). Then u € WF(Q). ’ '

" Smolyanoy 0.G.
(Moscow State University}
Feynman and Wiener type integrals over trajectories
in Riemannian manifolds.

One presents an approach, based on an idea of surface pseudomeasures [1],
generated by Feynman pseudomeasures, both to obtaining some representations of
solutions for Schroedinger equations on (compact) Riemannian manifolds by inte-
grals with respect to Feynman pseudomeasures (= Feynman integrals) over (sets
of) trajectories in the manifolds and also to obtaining some Cameron-Martin-
Girsanov-Maruyama-Ramer (CMGMR) typé formulas for Feynman integrals gen-
erated by these psendomeasures. Actually there exist two types of surface (pseudo)
measures respectively adapted to these two problems: The discussed constructions
use and develop somé ideas of papers [1]-[3], [6] (see [7]). Some results of the present
paper related to Feynman-Kac formulas for Schroedinger equations on Rieman-
nian manifolds can be considered as answers to questions posed in [5]. On the other.
hand some results related to CMGMR formulas generalize, to the case of trajec-
tories on compact Riemannian manifolds, corresponding resulis of papers [4],[6].
The developed approach is completely different from a traditional one {which was
used however only for nsual measures generated by diffusion processes ) where an
essential role is played by the notion of stochastic parallel transport described by
corresponding stochastic differential equations. Some of the presented results are
obtained in collaboration with A.Truman and H.v.Weizsaecker. .
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Smyshlyaev V.P., Cherednichenko K.D.
(Department of Mathematical Sciences, University of Bath, Claverton Down)

Zhikov V.V,
(Vladimir State Pedagogical University and Moscow State University, Russia}

Spatially non-local homogenization for double
porosity type media and applications

In a number of important applications “non-local” effects are observed in the
overall behaviour of heterogeneous solid media. Those cannot be modelled within
the classical homogenization theory which predicts that for PDE with uniformly
elliptic rapidly oscillating coefficients the homogenized constitutive relations pre-
serve the (local) structure of the original constitutive relations. On the other hand,
if the assumption of uniform ellipticity is relaxed (for example, in the case of “high
contrast” media of double porosity type), the homogenized behaviour may display
a non-classical “two-scale” structure described by the theory of two scale conver-
gence (e.g. [1-3]}. The two scale limit (ug(z), w(z,¥)), ¥ := z /¢ is described by a
" coupled system of (still local} equations. In this talk we give first a simple example
of a variant of double porosity models where the two scale limit is described by a
spatially non-local equations [4]. It is as follows. Consider an elliptic equation with
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vanishing ellipticity constant for a periodic array of “highly anisotropic fibres” as
follows -

| —5‘:-: (Afj(m/é?)ég;u‘) = (=), ‘m € RS, | (‘0.‘1.)_

where f(z) € C* is T-periodic, T = [—T, TP, T > 0, and has zero mean over
T; the matrix (4§;(y)) is defined by A*(y) = diag{e®,c?,1} if y € Fo (in the
“fibres”), and A°(y) = I if y € Fy (in the “matrix”). Here Fp = Fy x [0,1] and
Fy = Fy x[0,1); B and F; are [0, 1)%-periodic sets; FonF, = @ and FpUF, = R2.
The set F, is connected and has Lipschitz boundary; T is fixed and T/e is a large
integer number. The solution #*(=) is assumed T-periodic with zero mean (such
solution exists and is unique). We establish first (developing certain ideas of [5]) a
Poincaré type inequality for high contrast media, as.follows:

ffullzam € € (IlV“||L=(TnF;) + EIIVul‘izz(Tan)), u€ HY(T), [r u(z)dz =0,
3 - (0.9)

whete'the}cbﬁstanl; C does not depend on ¢. Then the use of two-scale compactness
arguments allows us to conclude that u* has a two scale limit: u*(z) N ug(z)+
+w(z,y1,y2), where 2 denotes two-scale convergence. The functions u; and w
satisfy a coupled system of differential equations. In particular, eliminating from
it w results in, the following nonlocal homogenised equation for the averaged field
up, in the matrix:; Lo : : '

) - QPG L8 = 4 0Pl ¥ 2
iv(AP™ Vug) — [ Fo N QI Yos * 72 =f+1FNQIG)y 5 * 53
8z3 0x3

' (0.3)

where G = G(#,7,za—z5), .9 € Fy, #3, z4 € R, is the Green’s function for the
“rescaled” fibres; A*°™.is the standard homogenised matrix for the “void” fibres.
It is interesting that this rigorous result can.also.be re-derived formally, from the
“higher-gradient” asymptotics of the solution to the problem

-2 (#terergn?) = 1t@),

where the matrix of coefficients is initially determined by A%(y) = diag{é, 4,1} if
y € Fo, A%(y) = I'if y € F: Fixing first § and treating ¢ as a parameter we arrive
at a full asymptotic expansion for ‘u® (z): (see [6]; section 4.2 and [7]) whose terms
depend on 4. Further, letting § be small we observe that when 4 is of order €2 the
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asymptotic series “breaks up”: all the terms become of equal “strength”. It turns
out that the main order terms constitute a certain expansion to the two-scale limit
uo(x) + w(®, 21/¢, z2/€) and is closely related to the “gradient” approximation of
the above non-local operator. From the latter point of view, even the “local”
classical two-dimensional double porosity model [1-3] (when treated in the above
T-periodic setting) leads to non-local equations for U (2) which is the weak L2-limit
of u(z) (U=uo+ (w)y), and the full asymptotic expansion of [6] corresponds to
the gradient expansion for this non-local operator. This will be further illustrated
and certain implications will be discussed in the talk. We will also discuss further
implica.tions, applications and prospects.

REFERENCES

[ Nguetseng, G. 1989. A general convergence result for a functional related
to t.he theory of homogenization. SIAM J. Math. Anal. 20, 608-623. -

[2] Allaire, G. 1992. Homogenization and two-scale convergence. SIAM J.
Math. Anal. 23,.1482-1518.

 |3] Zhikov, V.V. 2000. On 2n extension of the method of two-scale convergence
and its applications, Sbornik Mathematics, 191 (7-8), 973-1014.
_ [4] Cherednichenko, K.D., Smyshlyaev, V.P., Zhikov, V.V., 2000. Non-local
homogenised limits for highly anisotropic periodic composite media, preprint.

[5] Allaire, G., Murat, F. 1993 Homogenization of the Neumann problem mth
nomso!a,ted holes. Asymptotcc Analysis T, 81-95.

[6] Bakhvalov, N.S., Panasenko, G.P. 1984. Homogenization: Avemgzng Pro-
cesses in Periodic Medza Nauka, Moscow. (in Russian). English translation in:
Mathematics and Its Applications (Soviet Series) 36, Kluwer Academic Publish-
ers, Dordrecht-Boston-London, 1989.

{7] Smyshlyaev, V.P., Cherednichenko, K.D. 2000. On rigorous derivation of
strain gradient effects in the overall behaviour of periodic heterogeneous media. J.
Mech. Phys. Solids 48, 1325-1357.

ot i v Soboley V. A., Shehepakina E. AL
el temes oo (Samara State University)
Bifurcations of slow integral manifolds

In this paper we report on the comstruction on slow integral manifolds of
singularly perturbed differential systems in the events that the usnal condition of
structurally hyperbolic fast subsystem is violated. The situation along these lines
have appeared in many problems of chemical kinetics and combustion, mechanics of
gyroscopes, satellites and manipulators, automatic control and economic dynamics.
Certain of these problems are discussed in our paper.
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The statement of problems. Consider the differential system
& = flz,v,€), ey = 9(z,y,€) with vector variables z and y and small positive
parameter €. Let ¥ = (z) be the solution of equation g(z,y,0) = 0. The fast
subsystem sy = g(=z,y,2) is structurally hyperbohc if the eigenvalues of the ma-
trix A(z) = sy £2(z, ¢(z),0) are separated from the imaginary axis. In this case the
system under consideration possesses an integral manifold of slow motions (slow
integral mamfold) in the e-neighborhood of slow manifold y = é(z). It is common
knowledge that the slow integral manifolds are used as a building block to study
" of singularly perturbed systems. Consider now the situations when the condition
of structural hyperbolicity is violated but differential systems under consideration
possess slow integral mamfolds -

Nonsmgu]ar matrix A(z) (a: #(z),0) with eigenvalues situated
on thei unagmary axis and problems of mechanies. Let the part of eigenval-
ues are pure 1magmary but under taking into account the perturbatlons of order
O{e) they move to the left complex half—plane In this case the considered system
has the stable slow integral manifolds. Some important problems of mechanics of
gyroscopes, satellites and mampulators mth hlgh—frequency and weakly damped
transient regimes are studied. : .

Singular matrix A(z) = —E(z ¢(z),0) and problems of chemical ki-
netics and automatic control. In the case of identity degeneration of the matrix
A(z) (singular singularly perturbed systems) it is possible to show that the original
differential system has the slow integral manifold of higher dimension. The problem
of chemical reactor dynamies and the high-gain control problem are investigated.

The branching of slow integral manifolds and control problems. If
y = ¢(z) is the multiple root of g(z,y,0) = 0 then the branchjng of slow integral
manifolds is possible. In this case we use the asymptotic expansions with respect
to fractional powers of € to construct the slow integral manifolds. The ?cheap
control” problem is considered as apphcatlon .

Degenerating of A(z) on submamfold of y= dz(a:), ca.nards and black
swans and problems of chemical kinetics, combustion and economic dy-
"namies. The trajectory ‘of differential equa.tlons w1th smgular perturbatmns is
called the canard if it at first moves ‘over stable mtegra.l manifolds and then over
"the unstablé one. Thé black swan (slow integral manifold of changmg stabllzt.y) is
the patural many-dimensional generalization of canard. Black swans and canards
occur in models of catalytic reactors, laser and economic dynamics, in models of
combustion in an inert porous mediumn. We found the control function correspond—
‘ing to the black swan to obtain the critical condmons of therma,l explosmn
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Sokolowski Jan
(Institut Elie Cartan)
Tangent sets in Banach spaces and applications to
variational inequalities

In the talk the general resulis on the polyhedricity of convex sets in Banach
spaces are applied to the shape sensitivity analysis of the following model problem.

Let D C R? be a bounded domain with smooth boundary T, and Zi45 be the
set {(z1,22)] 0 < z; < 1+4, =2 = 0}. For any value of the parametr é € [—ée, be],
do > 0, the function u® is the solution of the variational inequality

wWeK;: /(Vu Vo — Vub) > [fa—ué) Yo e K5, (26)
ﬂc

where

={we H'(Q)] [w]>0 on Zi4s; w=0 on T}
The energy functional for the problem is equal to

J(Qs) = % / [7uf)? — f ful. (28)
s s

The form of the derivative of the energy functional J(Qs) with respect to the
variations of the crack’s length

dJ(2s5) i J(Qs) — J(2
( | o0 = 1 im __)___Q (29)
is obtained in [1].
Theorem 1 The derivative of J(Q4) with respect to | is given by
dJ (2
( ‘) = 2 / 9;/1("‘3;. - yz)+2092uyluyz) —f(ef)!l: (39)

The first derivative is independent of the choice of 8 with the required properties
[1]). We can obtain the second order shape derivative of the energy functional in
the directions # and ¥ using the following result which seems to be new and follows
by the arguments given in [4].

Theorem 2 The set Ky is polyhedric.

The directional derivative € of u; in direction 4 is given by the unique solution to
the following variational inequality

Qes: [0 (VQ, V(v Q))gs >
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- / (A'($)Vu, V(v — Q))m> + / F@)v-Q) Wwes,
Q 1

where .
S={ve HMQI >0 on{z € Sfu(z)] =0}, / (Vu, Vo) = [ o} .

Therefore, taking ¥ with the support included in the set § = 1 we obtain the
second order shape derivative of the energy functional J(£2) in the directions 8, 9.

Theorem 3 The second order directional demmtwe of the energy functional J()
with respect to the crack length is given by

219 . L i
d§2 ) - / by, ¢¥1 [uyz + u ]— ‘/n {0y, Py uy, 1y, + ayz#’y:“gll

- /(eyz I"‘m Qu, - “yzQy:] - / 6:::,[’“3:1 Qy, + ".g;_Qy;]
Q

| - [0t - / QAN

where Q@ = Q() solves the variational inequality for A'(y) = A’(¢)(y) énd
F(y) = @ y)-

The same tesult can be obtained in the case of elasticity system [2] with the
- frictionless contact conditions on the crack faces, i.e. the convex set is polyhedric
and the second order directional differentiabilty of the emergy functional follows
by the same argument as above for the scalar equation. :
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Soldatov A.P.
(Novgogod State University)

To well posed problems for equations of mixed type

Let us consider Lavrent’ev-Bitsadze system
sgnus =y, Uy =g (1}

in the mixed domain D such that elliptic part D‘*‘ = DN {y > 0} is bounded
by the smooth arc & and the segment J = [0,1] of real axis but hyperbolic part
D~ = Dn{y < 0} lies within characteristic triangle A with the base J. A smooth
curve is called non characteristic, if it has no characteristic directions in each of
its points. Let domain D~ -be bounded by J, smooth noh characteristic ¥ with
endpoints on the lateral sides of the triangle A, and two segments I of these sides
where It (I~) has as its ends the points 7} and z+ = 0 ("and z- =1). It is
convinent to assumé that I* = @ if 2* = r%. So the contour 8D is composed of
o,vand I, 1 = I* UI~. Let as consider two types of Riemann-Hilbert problems R*
for system (1). Namely the problem R* is definined by the following boundary
value conditions:

o k), =f Ew)|a =g @

Here the c01ﬁc1ents a, b are contmuous on the arcs a', ¥ and satxsfy the condltlons

(a-i-zb)(t):;éo te::r, (aizb)(t)#ﬂ tEY. - (3)
If the bonndary 3D has no charactenst.lc dlrectlons ie. l"‘ =" =@, then R* is
the usual Riemann - Hilbert problem for system (1). In the case I* = @, llp) # &
this problem is analogous to the generalized Tricomi problem. In the case I* # @,
I{p) = @ we have the new probilem. At last the case It # @, I~ # @ corresponds
to Ovsaynnicov problem. Note that in the first and third cases the conditions (2)

‘ ocupy all boundary 8D. In the report the Fredholm solvability of the problem
" R in-appropriate weighted Hardy or Holder spaces is received and the index
formula is founded. The solvability of the problem R* is described with the help
_ of the homogeneuous conjugate problem Rip) {with that combination of 31gn) It
, follows from (3) that boundary conditions (2) are uniquly definded by the functions
" G=a-iboncandp=(b— a)/(b-+a) on 7. In these notations the problem Rip)
corresponds to the functions G and § from the equa,hf.xs ‘GG =ny—in, on o and
pp = (n2 —n1)/(nz +n1) on v, where ny, ny are components of the exterior unite
normal to the boundary 8D. ’ '
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Specovius-Neugebauer M.
(University of Magdeburg)
Artificial boundary conditions for Petrovsky systems of
' o second order problems

Let © C R?, # > 2 be a smoothly surrounded unbounded domain, which coincides
with a cone K outside a fixed ball of radius Ro, Q\B(0, Rg) = K\B(0, Ry). On
Q we consider a boundary value problem for the following Petrovsky system of
second order for u = (uy,...,%5):

Lu(z) =D(V2) A@)D(Vz)ulz) = f(z), zeQ, (0.0
Blz,Vz)ulz) =0, . zedn - (0.2)

Suppose we have found a frame where a unique solution to this problem exists,
then to apply numerical schemes this problem has to be reduced to a bounded
problem, or at least to a sequence of bounded problems. A fairly used method to
do this is to consider a family of boundary value problems on bounded domains
g, where Qg is a séquence of domains exhausting 2 as R tends to infinity. If
the approximating solition (v%, ") solves the original problem restricted to 9z,
an additional boundary condition has to be prescribed on the artificial boundary
0Qp\0Q. This boundary condition has to be designed in such a way, that on one
hand the approximation problem is uniquely solvable and on the other hand the
difference (v, p) — (v, p%) decays as quick as possible as R tends to infinity

Starovoitov V.N .
(Lavrentyev Institute of Hydrodynamics, Novosibirsk) .
On a motion of a solid bedy in a viscous
non-homogeneous fluid

.- This work is devoted to investigation of the problem on a motion of an abso-
lutely sohd body in a viscous incompressible ﬂuld filling a bounded container.
There are few papers by N.A.Yudakov (1974), B. Desjardins and M.J.Esteban
(1999), C.Conca, J. San Martin and M.Tucsnak (1999), M.D.Gunzburger, H-
:C.Lee and G.A.Seregin (2000), where existence of a local-in—-time solution (up
to collisions of the body with the boundary) is proved. As it was recently shown
by K.-H.Hoffmann and V.N. Starovoitov (1996), this problem has a global weak
solution under the assumption that the boundaries of the body and of the con-
tainer are curves of the class C? in 2-D case and spheres in 3-D case. The fluid
was assumed o be homogeneous. In that work a method, which can be called
“method of solidification”, was applied. Namely, the body is considered as a part
of the fluid, where the viscosity tends to infinity. If the boundary of the body and
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of the container satisfy the smoothness conditions mentioned above, then the body
hits the wall with zero speed.This property enables to prove the global solvability
of the problem. In the present work the same result for a non-homogeneous fluid is
obtained. Let @ C R? be a bounded domain and S(t). be its subdomain occupied
by the body. We denote by ¢ the charactenstlc function of S Let us mtroduce the
following function space

K(S)={¥ € HXQ) | P@)F) =0 for EL S, div = o},

where D(¥) is the tensor with the components D;;($) = (04; /0z; + B; /3:::,) /2.
Denote by L,(0,T; K(8(£)), p 2 1, the set of functions from LP(O T; HY{Q))
belonging to K(S (t)) for almost all ¢ € [D T]. »

Definition. The triple of functions ¥ € Lm(O T; L2(2)) N L2(0 T; K(S(t),
p € Loo(Sr) and ¢ € CY?(0,T;L,(Q)), 1 < p < oo, where Q7 = [0,T] x Q,
T < 00, i5 said to bea generafzzed solutzon of the pmbiem if the fo[lowzng mtegml
zdentztzes

/ (pu(z,bg-{-(v vw?) -D(F) : 9(@) dFdt = / pos - o dF,

g

/P(fk-!-v Vq)dzdt /pgﬂgdx, /cp(m-i—v Vn)dxdt——fgpgnodi
fr n O TR o

hold for any functions n € CY(Qr), 7(T) = 0, ¥ € H(Qr) 0 L2(0,T; K(S(2)),
¢(T) 0. In this definition the solid body is specified by the condition that the
deformation rate tensor D(7) is equal to zero in S(¢).

Theorem. Let 5 € L2(R), 0 < m < 'po < M < co and the boundaries 85(0))
and 9Q are eurves of the class c? Then tkere ez':sts a genemhzea‘ solution of the
problem. Moreover, TrEene i -

1. there exists a family of isomelries A, : 32 - R2, s5,t € [0,T], such
that S(t) = A, +(S(s)) (in particilar S(t) = .Ao E(S(O)) ) and .A, ¢ is Lipschitz-
contmuoua ‘with respect to s and £;°

SR ARTS h(t) = dist (asz S(t)) and h(to) 0 for some- to € [0 T] then
]lﬂk—no h(t) It — to|"2=0; ¢
CSfE={telo, T] | A(t) = 0} then ﬂ(z,t) =0asfe€ S(t) for almost all
t € E. The same tesults can bé obtain for the case of a few bodies in the fluid. -
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Stepanov A.A.
(Moscow State University)

Infinite-dimensional elliptic coordinates
We study the generalization of the elliptic coordinates {e.c.} to the infinite-
dimensional case, assuming that the corresponding self-adjoint operator A has a
purely discrete spectrum.
The e.c. of a vector z are given by the set {);} of roots of the equation:

1/2((A - AE) 'z,2) = 1.

Let {a;} be the ordered sequence of the eigenvalues of A.

Theorem 1. Suppose that A is a self-adjoint lower bounded operator with
compact inverse. A sequence {A, }7=5° such that ay < Apg1 < Ga4a 22d M <@
is the sequence of e.c. of some vector z in-and only if

’ o0

z(“k — A} <005 -
k=i
moreover, ||z]|% = 2 ¥ pea(ax — A8). .

Theorem 2. Let A > 0 be a compact operator.

1. A sequence {\,}2=5° such that axya < M < ax is the sequence of e.c. of
some vector if and only if [Jn—y An/@n > 0. :

" 2. A sequence {), }?=5° such that Ag < 0 and ar41 < Ax < ax is the sequence
of e.c. of some vector if and only if [];—; An/an = 0.

Stepin S.A.
(Moscow State University)
On point spectrum of a class -of transport operators

... In the Hilbert space _Lz(ﬁ x R3) we consider éperator
- . . i dvf
L) = ~vVe(e,) = At ) + [ SO VDSE VI 0)

where  C R3is a bounded convex domain and on the boundary of 2 the following
condition is filfilled: ¥(r,v) =0 if r € Q2 and (v,n) < 0, n being exterior normal
to the boundary at the point r. It is assumed that k(z) > 0 = }:}_I,I(l’ h(z), kernel
S(z,y) > 0 is symmetric and the following conditions hold:

’ - " TIA : o s s .

sup fS(z:’, y)dy < oo, K(z,y):= / Mz—(z’—y)dz € LY(R%).
z€ER. + 3 h i 4 V4
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Operator of the type (0.1} appears in the particle transport theory [1] and is related
to linearized Boltzmann equation.

Theorem 1. Essential spectrum of operator L occupies the closed lefi half-plane,
While discrete spectrum of L belongs to R;. '

By the use of a nonselfadjoint version of Buman—Schmnger principle (cf.[2])
an upper bound on the number of eigenvalues of L is obtained.
Theorem 2. The total multiplicity N(L) of eigenvalues of L admits tbe estimate

N(L) < / / | ( e o) Pdrds’ / {K(x,yﬂdzdy, (0.2)

oxn R.,.xB.,.

where J(r, r’) € LZ(Q X Q) is the first iterate of the kernel o - |“2 r,r’' Q.

Estimate (0.2) confirms and qulitatively supplements Nelkin’s hypothesis
from the theory of neutron transport [3], which asserts that the discrete spectrum
of L is empty if the size of { is small enough.

REFERENCES
[1] C.Cercignani, Theory and Appl:catmn of the Boltzmann equation, Scottlsh
Academic Press, 1975. '
" [2] B.Simon, Functional Integmtzan and Quantum Physzcs, New York Aca-
demxc Press, 1979.
- [3] 5.B.Shikhov, Problems in Mathematzcal Theorg of Reactors, Moscow At—
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Stolovich L.P.H.
(Universite Paul Sabatier)
A non-symplectic KAM phenomena for smgular
holomorphlc vector fields b

Let X be a germ of holomorphlc vector field at 0 eC \;a:ﬁishmg at this
point. We assume that X is a ”perturbation” of singular completely integrable
system and whose linear part admits non-trivial polynomial first integrals. We
show that it admits a lot of invariant analyt:c subsets in a neighbourhood of 0.
They are biholomorphic to the intersection of a polydlsc and an analytic set of the
form ”resonnant monomials= constants”. Moreover, despite the fact that X is not
holomorphically normalizable, we show that it has a holomorphlc normal form in 2
neighbourhood of 0. This normal form is tangent to the set ”resonnant monomials=
constants”, its restriction is a linear diagonal vector field and is conjugated to the
restriction of X on its invariant set. If X is non-degenerated, we show that the set
of ”frequencies” defining the invariant sets is of positive measure
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Subbotin Ju.N., Chernykh N.I.
(Institute of Mathematics and Mechanics, Ekaterinburg)

Primenenie vspleskov pri reshenii kraevykh zadach

V doklade rech’ pojdet o primenenii garmonicheskikh vspleskov (Ju.N.Sub-
botin, N.I.CHernykh, Izvestija RAN, ser.matem., t.64(1), 2000, s.145-174) pri
reshenii zadachi Dirikhle i Puassona dlja koncetricheskogo i ne kouncetricheskogo
kol’ca. 8 ispol’zovaniem garmonicheskikh vspleskov vypisyvajutsia novye resh-
enija taikh zadach i privedjatsja asimptoticheskie razlozhenija v skhodjachshiesja
rjady takikh reshenij v predpolozhenii, chto diameir vnutrennego kruga javljaet-
sja malym parametrom. V etom chastnom sluchae rezul’taty usilivajut izvestnye
rezul’taty A.M.Il'ina ob asimptoticheskikh razlozhenijakh reshenij eilipticheskikh
kraevykh zadach dlja oblastej s malym otverstiem.

Rabota vypolnena pri podderzhke proektov RFFI N 01-99-00140 i N 00-01-
00368 i po programme ” Veduchshie nauchnye shkoly” proekt N 00-15-96035.

Sukhocheva L.1.
(Voronezh State University)

On a p-basicity of eigenvalues of
differentiable operator-functions

This talk is based on a joint work with T.Ya. Azizov and A. Dijksma. Let H
be a separable Hilbert space and let L{-) be a continuous operator function on [a, b]
which values are bounded selfadjoint operators. We give sufficient conditions under
that there is in the closed linear span of eigenvectors of L{:) a p-basis consisting
of eigenvectors of L{-).
Definition. The system {e;}32, C # is called a p-basis if there are both an
orthonormal basis {f;}32, and an operator T € &, such that ¢; = (I + T)f;,

i
j=1,c0. In an article of V.A. Grinstein {1991) there is considered a holomorphic

operator function L(-) in a neighborhood of [a, b]:

L) = A+ i M Ay, (0.1)
k=0

A = A;, k= 0,00, and A € &p,, 0 < px < oo for k < m, m > 0 and Ay are
bounded for k > m, and the following result is proved.

Theorem 1. Let a < 0 < b, let the function (0.1) be holomorphic in a neighbor-
hood U D [a,b] and let L'(X) > 0 for all A € [a,b]. Then the eigenvectors system
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of (0.1) related to eigenvalues lied on [, b] forms in a finite codimentional subspace
of # a p-basis with

.11 1 2 1 m-1_ 1 -1
P}[mm("‘",—“-l"'—;—’i‘—",“', +—,ﬂ)] . (0-2)
P21 Po P2 Po Pz Pa Pm Do

If in addition

L(e) <0, L(b)>0,
then the eigenvectors system of (0.1) related to eigenvalues lied on [a,b] forms a
p-basis in # with the same p as in (0.2). Let L(-) be a holomorphic on U opera-

tor function which satisfies the assumptions of the Virozub-Matsaev factorization
theorem (1974). Then

L) = MO)(A - 2), (0.3)

and the following properties hold:(a) M{}) is a holomorphic operator function,
M), M(X)~* € L(#) for all A € U;

(b) there is a bounded and boundedly invertible positive operator G such that ZG
is selfadjoint;

(c) G satisfies the identities

M(z) = (I - L(z)f‘(z))G‘l,‘ ‘M“(m);-_: G+ (z—2Z)F(z), z €[a,b], (0.4)
where F(-) is a regular part of the represeﬁta.tion of L():
L™ z)=(z - 2)"'G + F(=z). (0.5)

Below in the case when in general L(- ) is nonholomorphic but m + 1 > 1 times
continuously differentiable we assume instead (a) that L(-) has a representatmn
(0 3) with a compact operator Z, and also assume (b) and (0.4) with F(-) which
is the extension by continuity on [a b of F(z) = L™ Y(A)— (A~ 2)2G (see (0. 5)).
The main result is the followmg

Theorem 2. Let m times continuously differentiable on [a,b] selfadjoint opera-
tor function L(-) besides the factorization conditions mentioned above satisfy the
folowing assumptions:

Ag:=L(0) € 6p,, Ar:=L(0)- 1€ 6y,
A = LE)N0) € &p,, k=2 m.

Then there is in the closed linear span of eigenvectors of L(-) a p-basis consisting
of eigenvectors of L(-) with

, . L1201 s—1 1 s -t
‘pZ min mm —_— e, +o—,—,1 .
s=1,m P1 Po Pz Po P3 Po BPs Po
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Sultanaev Y.T., Silova A.V.
(Bashkir State University)

Eigenvalues distribution of one pencil of differential
operators in nonkeldysh situation

Let A is the self-adjoint differential operaior, generated in H = Lg(—oo; 4c0)
by the differential expression y(¥ + g(z)y with a positive function ¢(z). B is
a self-adjoint operator generated in the space H by the differential expression
L(p(=)y") + (p(=)¥)"], where p(z) is twice continously differentiated positive
function. Cosider an operator pencil L(A) = A+AB — )2[. In the present work we
have received asymptotic formulae for distribution functionN (}) of eigenvalues of
the operator pensil L(}). We consider the case when L(}) is not Keldysh pencil,
that is both function p(z) and function ¢(z) influence on behaviour of the function
N(}). ;
T](leorem. Let functions p(z) and q(z) satisfy the following demands

¢(z) — +co on condition that |z] — oo, (0.1)
Ip(=)—p(Kep(z)lo—al, -
la(z) — a(@) € eg™/ 42 (z)l= — g, (0.2)
when |z—y|r{y) <1, where () =¢*(y), 0<x<1/4, £ >0

p(z) <'¢/*4(z), £>0, (0.3)
and is fulfilled:
3(m—-1)! r PP (z)
oy =1l / ms / E s ¥N=—9), A>0,
[} o

satisfies the conditions of Tauberian theorem [1]. Q is the set in the space of

variables z, s, defined by the inequality 27s%p*(z) > 256(g(z) — s%).

: 1/3
(=) )[R - @@ =P
“(”’s)“( . 16 '\/ 162 -7 ) +
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{ =5?P*(z)(a(=z) — 5°) s*p*(z)(¢(z) — 5%)* @M-ﬁﬁlm s*p*(z)
+’( 16 +\/ 167 B 27 ) T8

Then N(A) ~ ¥(A), as A — co.

The functions p(z) and ¢(z) satisfy the usual conditions of growth’s regularity
of the type Levitan-Titchmarsh. It is important to note, that in the case of Keldysh
only the function ¢(z) influences on behaviour of N()).

- REFERENCES
[1] A.G. Kostuchenko, 1.S. Sargsyan, PFigenvalues distribution, M. Nauka,
1979.

Suslina L.A.
' (St. Petersburg State University)
Absoclute continuity of the spectrum of a periodic
Schrodinger operator with singular potential

In Ly(R?) we study a periodic magnetic Schrédinger operator

H = (D - A(x)*g(x)(D — A(x)) + V(x) + o(x)dx{x)
with variable metric ¢(x), magnetic potential A(x) and electric potential
V(x) + o(x)dz(x). The coefficients g, A, V are periodic with respect to a lat-
tice of periods T C R?Z. The elecitic potential is a sum of regular term V and
singular term odg. Here X is a I'-periodic system of piecewise smooth curves and
o(x) is a periodic real-valued function on %. Under rather wide assumptions on g,
A, V, X and ¢ we prove that the spectrum of H is absolutely continuous. This is
joint result with M. Birman and R. Shterenberg,

Taimanoy 1.A.
(Novosibirsk)
On lower bounds for the Willmore functional.

We shall discuss lower bounds for the value of the Willmore functional (the
integral of the squared mean curvature) for compact surfaces in the three-space.
Some time ago we had discovered such a bound which is quadratic in the dimension
of the kernel of the Dirac operator associated with the surface. We proved this
inequality for a wide class of spheres including spheres of revolutior by using the
inverse scatering theory of the one-dimensional Dirac operator and conjectured
this inequality for all spheres. Recently Pinkall and his collaborators proved our
conjecture together with its generalization for all topological types of surfaces.
This implies interesting new inequalities in the theory of harmonic tori.
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" Tanabé S.
Moscow Independent University
On a criterion of presence of lacuna
around singular loci of wave propagation.

We give an algebraic descrlptmns of (wa.ve) fronts that appear in strictly
hyperbolic Cauchy problem. Concrete form of defining function of wave front i is-
sued from initial algebraic variety is obtained by the aid of Gauss-Manin systems
safisfied by Leray’s residues associated to certain isolated complete intersection
singularities. Further, we shall discuss asymptotic' behaviour ‘of solutions to the
Cauchy problem around ‘the wave front and thus establish' a criterion of presence
of lacuna by studymg certain cohomology group in cont,rasf. with the method usmg
‘homology groups established by 1.G.Petrovsky in 1945,

 Tazaparaosa B.A.
(Mocmscxu& eocy&apcmaexuazﬁ ynuaepcumem}
HHTerpnpyeMHK cayai Konanescxon-l’opmieaa

Kaaccmieckan 3agada o ABAXEHAY TBEPAOTO Teia BOKPYT neuogammon'
TOUKA JaET MHOTO IPEMEPOB METEIDHDYEMBIX FAMEALTOHOBHIX CHCTeM, B3yde-
HUIO TONOJIOTAA KOTOPHIX Hocamen Gombmof muka pabot [1)-[7]. Ogamam #3 Han-
Oonee 3HAMEAMTHLIX METErPUPYEMEIX C/YIaeB ABIACTCA TAK HA3HIBAEMEIR BOTIOK
Kosanencxoii [1], B xoTopom AOTIONEETE/LHEI HHTErPall HMEET, JETBEPTYIO CTe-
nedb. Ero Tomonorna B HACTOAEA MOMERT HOMHOCTHIO myena (em. [4], [5]). B
pa6ore [2] A.H.Topases nacTmino o0606mEa 5T70T c.nyqan, Halifd TAMBALTOHAAR
c: Gosee. o6 mAM  HOTEHIAAIOM, KOTODEIA TpH HYJEeBOi. KORCTaHTe MICMAZCH HH-
TETPAPYETCA TaKXe HPH HOMONIE HHTEIPaia 1eTBEPTOH cTenenn. B Geapasmep-
HEIX mepeMeBHEIX S1, Sy, S3, R, Ra, R3, CBABAHAKX ¢ OCLISHEIMHE MePEMEHERIMHA
Sitnepa-Tiyaccona HpE HOMOIE AEEEHBOTO Mpeo6pa3oBanns (3], c.28) monywen-
aste I.H.I'opauessm ravmasTormas H # gonossmrensatti aaterpat K sanuck-
BaloTCA cAefyompM o6pa3om:

; ; b
=.3(S14,5% +25) + 5 (B} — B + cRy + dRyy
2 _ Q2 2
K= (_5—1_9'52"" gRg - CRl + dR2) + (58~ CR]Z—TdRz)zv."*

.B Bacwoamen paéo're npozse;;ea Tonoaormecm aHaA®3 And ciyad, Korga
d : 0. ,ZIJm Hero xccne,qoaanm zsoanepre'm'iecxne imnepxﬁoc'm noc'rpoena 65
cpypxa.zmonna.a gnarpamma oTobpaxenns Momea'ra., a TaKXe B COOTBETCTBEM c:'_
Ka9EeCTBEHHOR TeopHeH,’ paapaﬁoframmn AT. Cbomeﬂxo, A.B.Boncunorsim ,z;py—
rEMa asTopaMu B 80-¢ rogki, BEACAHE MOAEKY/Ib JORONHATEILHOTO BETErPAIa
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K ma moosHepreTHIECKHAX HOBepxHOCTAX. TeopeTnieckuit anmapa® paﬁo'rm ong-
cax & [6], [7]-
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Temlyakov V.N.
{University of South Carolina)

Greedy Algorithms in Banach Spaces

We study efficiency of approximation and convergence of two greedy type
algorithms in uniformly smooth Banach spaces. The Weak Chebyshev Greedy
Algorisim {WCGA) is defined for an arbitrary dictionary 2 and provides nonlinear
m-term approximation with regard to D. This algorithm is defined inductively with
the m-th step consisting of two basic substeps: 1) selection of an m-th element ¢,

- from D and 2) constructing an m-term approximant Gy,. We include the name of
Chebyshev in the name of this algorithm because at the substep 2) the approximant
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G¢, is chosen as the best approximant from sp(ef, . . ., ¢%). The term Weak Greedy
Algorithm indicates that at each substep 1) we choose ¢2, as an element of D that
satisfies some condition which is "#,,~times weaker” than the condition for £, to
be optimal {t,, = 1). We got error estimates for Banach spaces with modulus of
smoothness p(u) € yu9, 1 < ¢ £ 2. We proved that for any f from the closure
of the convex hull of P the error of m-term approximation by WCGA is of order
(14884 +22,)"Y? 1/p+1/q = 1. Similar results are obtained for Weak Relaxed
Greedy Algorithm (WRGA) and its modification. In this case an approximant G7,
is a convex linear combination of 0, ¢7, ..., ¢},. We also proved some convergence
results for WCGA and WRGA.
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Teshukov V.M.
Lavrentyev Institute of Hydrodynamics, Novosibirsk

The Cauchy problem for integrodifferential systems
arising in Fluid Mechanics

Integrodifferential systems of equations of special form appear in many prob-
lems related to fluid mechanics and physics. For example, the propagation of the
long waves on a rotational flow of a perfect incompressible or compressible liquid
is governed by the integrodifferential system of equations, which generalizes clas-
sical shallow water model. Analogous sytems arise in kinetic modeling of bubbly
flows and plasma flows when the approximation of ”quasineutrality” is applied.
All above mentioned systems have common mathematical structure and can be
considered as generalizations of conventional hyperbolic conservation laws. In the
paper generalizing the theory of characteristics and hyperbolicity concept, we for-
mulate the conditions for the Cauchy data that guarantee the hyperbolicity of
integrodifferential systems. Then we prove local correctness in Sobolev spaces of
the Canchy problem with initial data satisfying the hyperbolicity conditions. It is
shown that a smooth solution of quasilinear integrodifferential system exists only
on bounded interval of time and examples of the solutions demonstrating ”breaking
of the waves” are presented. The theory of simple waves and discontinuous solu-
tions is developed for some special models of fluid mechanics. The statement of
the Riemann problem is proposed and the solution in specific classes of initial data
is given. We discuss possible applications of the methods developed for dissipative
models which deseribe viscous effects in a ”boundary layer” approximation.
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Thomée V. :
{Chalmers University of Techpology, Gotebofg)
Max:mum norm estimates for parabolic finite
- element. equations

‘We consider the imtlal-boundary value problem

up—Au=0 inL, fori>0, (0.1)
u=0 ondQ, fort>0, withu(,0)=v nQ.

where Q is a bounded domain in R? with sufficiently smooth boundary We first
consider. the 'spatially semidiscrete finite element approximation based on contin-
nous, piecewise linear approximating functions on a quasiuniform family 7, of
triangulations of Q2. Denoting the finite element space corresponding to 75 by Sp
this semidiscrete problem is to find up (t) € Sp for ¢ > 0 such that, with (-, -} the
standard inner product in L2(Q),.

(uk,,,x) —{-E(:‘?uh,:Vx) =0, VYx€S, t>0, withuy(0)= g € Sh. - (02)

In semigroup notation u(f) = E(t)v = eA*v-and up(t) = En(t)v = eArtvy, where
Ap : Sp —» S is a discrete analogue of the Laplacian A. For (0.1) the maximum-
principle shows || E(#)v]les <€ lvlleo = 1ollzo.(0)- However, the analogous inequality
does not hold for (2). (With respéct to the norm in L2(S2) ‘the corresponding
results hold trivially for both (0.1) and (0. 2) ) Schatz, Thomee, and Wahlbin (1980)
showed the weaker result’

IEs@onlloo < Clog(U/B)llomlleo- (0.3)

The derivation uses estimates in weighted norms of a discrete Green’s func-
tion. The solution operator E(t) of (0.1) also has the smoothing property

IE" @ollee < Gt oo,
and a correspondmg result for (0.2) was also shown in Schatz et a.} (1980)
L E)omlleo < €t log(1/B)llomlloo- - - (09
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Estimates of the type (0.3) and (0.4) without a logarithmic factor, have been shown ;
recently, first by Schatz, Thomée, and Wahlbin (1998) for a problem of type (0.1):
with Neumann boundary conditions and then in Thomée and Wahlbin (1999) for
Dmcblet boundary condlt.lons Together they are equlvalent toa resolvent estzmate

(=T + Bn) vnllos < Ml [onlloo, fOW largzl A 406(0 7/2). (05)

In’ recent work: by Bakaev.and Thomee (2001) (0 5) has been sbown for any
¢ € (0,7/2). Such estimiates may be used. in the, analysis of time stepping schemes
of the form U” = #(kAp)?vy; where k is the time'step and U™ » u(nk), and r(z) is-
a rational function with certain stability and approximation properties; using an
integral representation of 7{kA;)” in terms of (z7 4+ Ap)~Lin the complex plane.-
Some of the reference quoted also contain resulis.for hlgher order finite elements
than linear and in higher space dimension than two.;. w: L@ . 58] -~ poon

.Tikhonov-A.S. ;T
e {Taurida National. University}.: v oot
Spectral theory for operators with: spectrum on:a curve
ddgroainotsy e crariantiiioan covnes-ean e
A t.ra.ce class perturba.tlon S of normal operator, w:th spectrum on a closed
smooth curve C are considered. Let €3 ( f,0,w)= llm ((S —z)"1f,g) be interior

and exterior angular boundaty values, where. f, g e H -We define weak spectral
components--; ... SR e e Ao Dot g
N y() = clos N (S); Ns:(S) {f €H: es(f,g, W) € E"’ \fg € H},
M(S) {feH eg(f,g,w)—es(f,g,w)’ﬂ'geﬁ} s
Dy(S)={f € H:€5(f,9,w) € Dy Vg€ H},
where E% are Smirnov spaces, Dy, are Nevanlinna N* (Smirnov) classes for inte-
rior and exterior domains. These components:and its combinations play important
role for scattering theory [1]; [2] and for extremal factorizations of J-contractive-
valued functions (J-inner-outer and A—smgular—regular) i2); [4. “We establish the

following orthogonal decomposmons

CIRATPEE VR E TEY 2 RN F UG BRI ort

RS O

“ H'= N(S)® M(S) = Di(S) @ cdlos (N (S) D M(S)) = =+
= N:k(S)G?(D(p)(S*)nM(S‘))
T
Correspomdmg theory is developed for two cases: 1) curve C' is ana.lytlcal 2)
operator S is the special trace class perturbation of ¢(T'); where T is a contraction .
and ¢ _is a conformal map of the unit .disk onto a- domain with* C‘“‘E smooth
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boundary. We extend function model technique [1] and obtain explicit formulas
for spectral components in the last case.
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[1] 5.N.Naboko, Function model for the perturbation theory and its applica-
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Tolstonogov A.A.
(Institute of Dynamics System and Control Theory,, Irkutsk)
Continuous selectors of fixed point sets
of non-convex multifunctions with decomposable
values and their applications

Existence and relaxation (density) theorems of continuous selectors whose
values are fixed points of non-convex multivalued contractions are proved. Using
these results the topological properties of fixed point sets are obtained. Applica-
tions to the parabolic and hyperbolic inclusions are presented

Tomantschger K.W.
(Technical University of Graz)

Indicial equations of two coupled second-order
differential equations

Let us consider the two homogeneous coupled differential equations

22! + zpi(2) ¥y + qilz) i + eMa(z) o + No(z)ye = 0, (0.1)

g¥f + zpa(z)th + @2A2) 2 + Mi(2)9r + Mifz)m = 0. (0.2)

z = 0 is a regular singular point of (1) and (2). (z = 0 is called a regular singular
point of (1), if all the functions py(z}, g:{z), M2(z) and Na(z) are analytic at
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z = 0.) Using the method of Frobenius we assume a power series solution of the
form '

yi(e) =2 a;27, a#0 and ple) =22 biz?, bo#0. (0.3)

%0 iz0

We immediately see, that the Frobenius’ theory is unsufficient, because we can-
not find the two indicial equations. The Frobenius’ Method is only evaluated for
one nth order differential equation of one unknown function, but not for coupled
equations. These indicial equations we want to derive now. In the classical case of
Frobenius (here M, = N, = 0, n = 1,2) the indicial equation of (1} is the factor
of the smallest power agz™*. This we get after inserting all series into equation (1).
But in our case, the smallest power z** of y; resp.z*? of y; can appear in both
equations (1) and (2). To get all terms with the smallest power we add (1) and
(2) and separate the ¥ and y» derivatives. This implies

24 + zlplz) + Mi(@)]4 + [0(2) + Ml=)ln = (0.4)

= —zyy — z[pa(e) + Ma(2)]9s — la2(z) + Na(z)]mn .

A very important point is that the factors of 3y and 3 are the same. We differ-
entiate (3) term by term and insert all these series and the power series

Pa=Y Pnga?, =Y @nga’, Ma=) Mngel, No=3 Npga'. (0.5)
i20 i20 i20 i20

for the coefficients in (4). For the multiplication of power series we use the Canchy
product. Purthermore, we split off the first term of all series in equation (4),
because the first term is this with the smallest z power. Then (4) becomes

M(h —agz™ + Z(J' + M) + M — Da;ait 4 Ay (10 + Majo)ao o+
izl

30T (m+ M) Pri-m + Mug-m)am]e’ ™ + (a0 + Nip)ao 2+
i21 0€mgj

+z[ Z (g15-m + Nl;j_m)amlxj+'\‘ =

331 0§m<i
~Aa(Ae — Dhoz*® = Y (j + Aa)(J + A2 — 1y=T A1~

Y

—Az{p20 + Ma,0)bo 2?2 — Z[ Z (m + Az)(p2;j-m + MZ;i—m)bm]l’jH’—
21 0€mgj
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~(a20+ N2o)bo =™ = 3 [ 3" (a2g-m + Nagj—m)bm]ci+3.
31 0&mgi

We now equate the coefficient of the smallest power z*» to zero. The corresponding
equation is

[/\n(;\n - 1) + (Pn;o + Mﬂ.;ﬂ) An + Gn;0 + Nu;ﬂ]an’ n=1=

bo, n=2 —

Since by assumption aq # 0 and & # 0, we obtain the indicial equation
M® 4 (Pap + Map — 1) An + Gnjp + Nao = 0. (0.6)
In answer to our question we state the following theorem.

Theorem 1 We assume, that z =0 is a regular singz?larv point of the differential
equations (1) and (2). pa(z), g.(z), Mp(z) and N,(z) are analytic functions at
z = 0. Let us assume series solutions in the form (3)

n(z) =M [ao +ayz + asz? + - - ] andyz(z) =z [bo +b1z + bz 4 - ] .

The ap and by are chosen so that ag # 0 and by # 0. Then holds: I} The two
values for A, are the roots of the indicial equation given by (6). II} The coefficients
of the indicial equations are obtained by

pﬂ;o = Pn(o) ’ Qn;o = qﬂ(o): Mn;n - Mn(o), Nn;ﬂ = N,,(O) - (0.7)

Relation (7) easily can be seen because the series (5) are Maclaurin series and
the pnij, gny, etc.are the corresponding Maclaurin coefficients. From this point
onward vorwaerts, forischreitend) the classical Method of Frobenius can be used
again:

Corollary 1 Any differential equations of the form (1) and (2) with the same
assumptions as in Theorem 1, have at least one solution which can be represented
in the form (3). The ezponents Ay, A; may be any (real or complez) numbers. Let
the roots of the indicial equation differ by an integer. Taking in both cases the larger
ezponents (or exponents with the larger real paris) A; 5 (> A1,2) and Aoy (2 Ag2),
such a solution not involving the logarithmic term always exists.
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Tomin N.G.
{Magmtagorsfc ‘State University)
’ - Dubovski ' ¥. V. o
(Ivanov State Tetile Academy)

K oﬁpa'rﬂon 3afiade CHEeKTPalbHOrO
aHanM3a JAid CTelleHH onepaTopa jJamiaca
c no'renuna.nom Ha TPAMOYTONbHAKE

. \Hac'romnaa paﬁo'ra. 0 CBOEH TEMaTHKe # METOAaM npnmr:zxa;e'r K. [1] Mycrs
a:> 0,5.> 0, I = [0,a] x [0,6] — npamoyromsank 8 R? co:croponamn
11_{(at)|0<t<b} 12—-{(tb)|0<t<a},la-_{(0t)|0<t<b},
ly = {(¢,0) | 0 < ¢ < a}. [lna omepatopa Jlaunaca A = 8*/0z% + §2/8y® na 1
paccmMoTpaM Bceaoamoxnbre cMemaREbe rpanmnue aa,gaqn CReAYIOMEro BAAR:
Ha HEKOTODHIX cropoaax npmoyronbma o 3afaeTca yciome Jupaxne, a Ha
ocTapmuaxes — yciopte Heimana. Ana onncanus 3TAX 32439 Mi Ikl 6y /€M HCHONE-
30BaTh YA06HHE 0603mavenns m3 [2]. Jho6oe nenoe wmeno s = 0,15 ogmosmauHo
HpeACTaBAfeTCA B BHAe § = 84y + 4ip + 2i3 + 14, vae 41, i, 73, i4 panmm 0 man
1. Tlonaraem r; = i — z'3|, T2 = |iz — ia}, r3 = 43, 74 = 44. HlycTe npm 8 = 0,15
Ts ectp camoconpa;xenm neo'rpunaTenbmn onepaTop B Lz(l'[) TOPOX JeBHBIN
.cnempa.nbaon rpaBEmIHON aagaqen . : . I T Y

Y Au+Au=0 ma I, r_,u-l—-(l-—r,)@u/@u 0 Ha. I (_1-1 . (l)

rjie ¥ — BHYTpeHHAA HOpMaib k rpauune JII npamoyrompruka II. Onepa'rop T3
coo'me'rc'rsye'r, sagave [Ampuxie, Tp:— 3agage Heitmana. Ilycts 5.= 0,15,

i N e P IR I B
um“(s) = tmn(2, y,s) TS - L ARettoLn

2‘,/7,,,.,.,, Yn+i,/{ab) cos[fr(m +14 ,’2)a:/a - 7:33/2] éos[w(n + 12/2)3;/17 m.; /2],

rae Yo = 1/2 8 7o = 1 mpn n # 0. iz 1106070 o > 0 {umn(s) | (m,n) € J,} ecs
opwonopmnponasxaa noxmas cactema B L2(1I), cocrosmman da co6CTREARRIX DYHK-
mad Uny (s) oneparopa T2, cOOTBETCTRYIONEX COGCTREHERM dHeaaM A%, (s), rae
Ama{s) = 1r2(M2/a2+N2/62)/4 SAecb a ga.nee J, = {(m n) € Z* | m > zs(l—z;)
ﬂﬂ>14(1—z2)} B op g

M 2m+14,, N 2n+zz B 4]

Tlyets P — onepatop ymuOxerua Ha dynxmuio p € LZ(Il) Takyto, 370
/[p(z,y)ms%hdy://p(z,y)cos“—:qdzdy=0 (n=0,1,2,...). (3)
i 1]

O6czmatuM Fepel fimn (s, o, p) cobcTRerRRe 3@caa onepaTopa To + P, 2aHyme-
DOBAHHBIE TaK, 9TO |fimn (8, @, p) — A%, (s)| < const npm awbrx (m,n) € J; ;270
BCET'Aa MOXHO CHEAaTh ODH a > 2.
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Teopema. [Tycmb Gus a068mz namypaabubiz vucea M u N umeen
SMN € Qk = {4k+.7 ‘.2:0117213}

npu k = 2i; + iz, 2de yeawie uucaa iy € {0,1}, i3 € {0,1}, m, n odnoanauno
onpedeaswmes ne M, N coeaacuo (2). Tozda, ecau a*/b? — uppayuonasvroe
aazebpausecroe uucao, a > 5/2 u 3y y_ My — A5, (sun)® < €, 2de € — do-
CTRATMONHO HAA0E NOSOHCUMENLHOE YUCAD, MO 6 Hexomopon wape |[u)| < & = (e)
npocmpancmea L2(I1) cywecmeyem odun u moavxo odun nomenyuaa p co ceotl-
cmeox (3) maxot, 4¥ma fmn(Syy, a,p) = N npu scez namypaavrviz M u N.

JloKa3aTelbCTRO GPOBOANTCA aHAJOTEHHO JOKA3aTEABCTBY TeopeMst B3 [1] 1
COCTOMT B TIOCTpOerHH onepaTopa cxaTua A(p) B L%(1I), a amenno, p = g+ A(p),
rae g = E;; n=100mn)un — A% (smMn)] cos(wM z/a) cos(x Ny /b),

A(p) = Lps n=1 0smn)Aun(p) cos(zMz/a) cos(z N y/b),

Auantp) = 5z [ XS0 (BT + PYPRATS V1A,

Tyn

O(spn) = (—1)2+42vab, Ra(V) = (V — AE)~! — pesonssenTa omepaTopa
V,Tun = {A e C | |r~- A2 (smun)| = rMN}, TMN = min{|A%, (syn) —
Aint (3N | Jopew 2 (m', 1) # (m, n)}/2.

3amesanue 1. Uz TeopeMbi ciiegyeT, 9TO MOXHO BOCCTaHOBHTE HOTEHIHAN
p u3 L3(Il) opa ycnopmu (3) Mo HacTAM CHEKTPOB AIO6HIX HETHIPEX OHEPATOPOB
T& (k=0,3), rge sy € Qy npu Beex k =0,3.

Sameqanme 2. Ycaosme (3) MoxeT GHITH CHATO, OfHAKO ODPMYIHPOBKA
TEOpEeMEl NPHA 3TOM YCAOKHACTCA.

REFERENCES
(1] Aybposcxuii B.B. BoccTapoienne NOTERNAaIA N0 COGCTREHARIM 3HATE-
BMAM pasHEHx 32424 // YMH, 1996, 7. 51, Brum. 4, c. 155-156.
[2] Tomuna HM.B. PeryaspmaoBaHmEie Ciefrl cTemenn onepaTopa Jlamiaca ¢
noTeHn@aioM Ha Tpeyroasumkax [/ Hmece. ... kamg. dms.-MaT. Hayk: 01.01.02,
Baagavap, BITIY, 1995, 98 c.
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Piceirillo A.M.
(Second Univ. of Naples, Aversa)

Toscano L., Toscano S.
(Doctorate of Research in Appl. Math. and Inf., Federico II, Naples)

On the solvability of some nonlinear Neumann problems

Toscano Rafaelle
(Second University of Naples)

Blow-Up Results For Some Classes Of Nonlinear Systems

Tsarev Serguei Petrovich
: (Krasnoyarsk State Pedagogical University)
Algorithmic solution of linear and nonlinear differential
equations: 100 years of research

Tumanov S.N.
(Moscow State University)

Model spectrum problem for Poizeile profile.
Critical spectrum curve.

We study the behavior of the specirum of one model problem

ey + 2%y =Xy, w(-1)=y()=0, (0.1)

where € is a small positive parameter.

It’s easy to show, that the spectrum consisis of infinite number of eigenvalues.
Also it’s known, that real paris of eigenvalues tend to 1/3 for every fixed £, when
the absolut values of the eigenvalues tend io infinity [1].

Let us assume

1
Ti-g:-31= {A € M| Ree f VE-Rd(=0, argr € (-3~ 1k
-1

Tos =0, ],
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where Ao € 7(- 5,z and arg Ag = —7/4;
1
Teso = {reN|Ree? [ VTRdc=0, aghe[-T;0)),
vA

T=T5-1YT-5 YT 505

everywhere
H={xeClimA<0,0<Rer<1}.

Theorem 1 All eigenvalues of (0.1) are kept in 1I. For every neighbourhood
O CII\T exists g0 > 0 and for each £ < &y the neighbourhood O doesn’t contain
any eigenvalue. For every open set T for wich TNT # & exzists €0 > 0 and for
each € < g the neighbourhood T contains eigenvalues.

We call curves with properties of 7 as a eritical spectrum curves, because
they determine the uitimate behavior of spectrum when a parameter is close to a
critical one.

The behaviour of the eigenvalues depends on topology of Stocks’ graphs (look
[2]) of the equation (0.1).

REFERENCES

[1] Haiimapx M.A. Juneiinvie dufdepenyuampnvie onepamoprr, Mocksa, Ha-
¥ka, 1969.

[2] Degopiox M.B. Acusnmomuuecsue memodvi Gas AuHetiHbz 06BKHOSEH-
ubiz duffepenyuavunz ypaeuenut, Mocksa, Hayka, 1983.

Tuzhilin A.A.
(Moscow State University)

Steiner ratio for Riemannian manifolds

New estimates for Steiner ratio for Riemannian manifolds are obtained. In
particular, the Steiner ratio of flat tori, flat Klein bottles, and projective plane
are calculated (modulo the Du and Hwang theorem on the Steiner ratio of the
Euclidean plane).

REFERENCES

{1] A.O.Ivanov, A A Tuzhilin Branching Solutions to One-Dimensional Vari-
ational Probiems, World Publishers, 2001.
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Urbane J.M.
(Universidade de Coimbra, Portugal)
Regularity through intrinsic scaling for
degenerate parabelic PDEs

Several physical phénomena, like phase transitions or the flow of immiscible
fluids in a porous matrix, are described by partial differential equations having
either a singular or a degenerate character. We address the question of the reg-
ularity of local weak solutions for equations of this type, interpreting them in a
geometry dictated by their own structure.

REFERENCES

{1] J.M. Urbano, Hélder continuity of local weak solutions for parabolic equa-
tions ezhibiting two degeneracies, Adv. Differential Equations, 6, No 3(2001), 327-
358.

.Vainberg B.R.
(Univ. of North Carolina at Charlotte}
Spectral L-2 conjecture and first KdV integrals
for 1-D Schrodinger operator

We consider 1-D Schrodinger operators on the semiaxis with slow decaying
potentials. A sequence of conditions on the potential is found such that under
each of them the a.c. spectrum of the operator coincides with the positive semiaxis
and the singular spectrum is unstable. The conditions are related to the first KdV
integrals, and the first condition gives a justification of the spectral L-2 conjecture.
Examples show that for a special class of sparse potentials these results can not
be improved.

Valeev N.F.
Bashkir State University)
Singular differential operators with regularly
oscillating coefficients.

We consider the differential expression

Iy= zn:qk(z)pg(go(z))y(")(x),o <z < ™, (0.1)
k=0

where gp(z) satisfy to so-called conditions of regular increasing at infinity,
pi(t + 27) = pe(t), ¢"(z) # 0, 2 > 1. Let Lo -minimal operator,generated in



416

L?[0; +-co) by differential expression (0.1). It is known, that the spectral prop-
erties of the operator Ly and iis self-adjoint exiensions are closely related to
the asymptotic behavior of the fundamental system of solution of the equation
ly = Ay, A € C for z — oo The properties of the operator Lo are sufficiently
well studied in the case, when pelt) = 1,k = 1...n. As for operators with os-
cilating coefficients the most part of their properties is uknown. We propose the
new method for asymptotic formulas constructing of the equation ly = Ay. Let H
-the separable Hilbert space of n-dimensional vector-functions defined on [0, 27]
with scalar product (@, P)a = fo (X po uk(t)vs(t))dt. Consider the operator
A : H — H defined by the next formula

.

AR = (% +Alt, 2, 0) 7 ' (0.2)

with domain Dy = {7, ;Z € H|%(0) = @(2n)} and the operator F(z, A) redus-
ing A to canonical form. The elements of matrix A(¢, z, \) depend on the coefficient
of differential expression (0.1). We established that it is possible to find the asymp-
totic formulas for solutions of the equation (0.1), if the asymtotic behavior of the
operator F(z,)) and eigenvalues of the of the operator A are known. Then we
use our asymptotic formulas for the spectral properties of the singular differential
operators investigating,.

Vasilievr V. B.
(Novgorod State University) Classes of elliptic symbols admitting a
wave factorization

Vasilieva A.B.
(Moskow State Universty)

Periodic Solutions of Syngularly Perturbed
Parabolic Problems

We consider the equation:
e2tpy — Py = F(u,z,t), 0<z<1, (1)

where € > 0 is a small parameter, p = 1,2, the function F(u,z,t) is T- periodic
with respect to ¢. The boundary conditions are:

u(0,2,6) =u®, u(l,t,e)=ul. (2)
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The existence of T periodic solution of the problem (1) - (2) is proved. Its asymp-
totic expansion with respect fo £ by means of boundary function method is con-
structed. The solution may have the pure boundary layer form or it may have the
form of contrast structure (the form with interior layer). The solution can change
its form by increasing of ¢ from pure boundary layer type to the contrast struc-
ture and backwards. In this case the solution is called the alternating comtrast
stimcture. The T periodic solution of the equation:

(s — u;) = A(n, 2, t)uy + Blu,z,t) - (3)

with boundary conditions (2) is also investigated. The detaﬂs will be given at the
talk.
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Vaskevich V.L.
(Sobolev Institute of Mathematics, Novosibirsk)

Hierarchical Bases generated by Extremal
Functions of Cubature Formulas

Let @ be a bounded domam in B” and let A = {Ak},,_o be a sequence of
finite subsets of Q; A :
o= 1i=12,...,0(0)}, Ar = Agy u{z® |; =1,2,...,0(k)},
B ¢ Ay, k=12, "
We assume that the union of all Ag is dense in . Let X (Q) be a separable Hllbert

space; the members of X(Q) are real functions with domain Q; the space X(2) is
embedded in C(Q); and the embedding of X(Q) to C(Q) is compact. Henee, the
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error functional of the form

k—1 a(m) i-1
3 ~{m -~
@, 0) = / pla)dz - 3 Y dMe@™) -3 o) ()
a m=1 =1 i=1

is 2 member of the dual space X* (Q) For given j and k there exists a unique X (2)-
optimal error functional l}ﬁ,)p:(z) (see, e.g., [1]). The extremal function ug-ﬁ,)w(z) of
l;f,,)pt(z) belongs to X (£2); and the value of u_g-ﬁ,)pt(:n) at each node Efm) of (1) equals

0.1f j = 1 and k = 1 then we assume that ug‘o)pt(a:) =1.Let uj(fzp‘,(z) and ug-':"gpt(x)

be the distinct functions for j # ji or k& # k1. Then ag = ug.‘,",}?,'(ig.")) # 0 for all
j and k. Hence, we can define the following functions hg-k)(z) = u;-fgpt(z) /ak. The

set Hg = {hgk)(z) | £ =0,1,2,...,7 = 1,2,...,0(k)} is called a A-hierarchical
system (see, e.g., [2]).
Theorem. There exists a Hilbert space X1({2) such that the A-hierarchical system
Ho is an orthogonal basis of X; (). The space X () is dense in X, (£2) with respect
to the norm of X, (9).

REFERENCES
[1] 8.L.Soboley and V.L.Vaskevich, The Theory of Cubature Formulas, Kluwer
Academic Publishers, Dordrecht, 1997.
{2} V.L.Vaskevich, Hierarchical cubature formulas, Selguk Journal of Applied
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Vershik A.M.
(Steklov Mathematical Institute, St. Pertersburg)
Poisson-Furstenberg boundary of the braid group

The problem of the description of Poisson boundary of the groups has a long
history, but almost nothing is known about explicit form of the boundary. A sat-
isfactory answer exists for few numbers of the groups. The point is that we need
for special (stable) normal form of the elements of groups with respect to given set
of generators. The braid group looks till now as a hopeless example in this sense
because among many of the known normal forms we can’t find a stable one. In
the papers by Mazur-Kaimanovich was proved that Poisson boundary coincides
with Thurston boundary for mapping class groups but it does not mean that the
question about explicit form was solved. In our paper with A.MALUTIN we sug-

gested a new approach to the problem which leads in the end of ends to complete
solution. Namely in order to find a stable normal form we use the geometric ideas
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together with well-known Artin’s representation of the braid group. More details.
Let braid group B, acts as group of automorphisms of the fundamental group
of punched disk (=free group F,4,). This action:on the system of free genera-
tors {uy, U2, ... %n41} of the group Fphyq could be express as follow: if g € B, n
@ : By — AutF,y; - Artin representation, then

(g)(ux) = by} - u; - by,

where hg; € B, , i = s4(k), and 5, is an element of symmetric group, which
corresponds to the element g € B, under canonical map from the group B, onto
symmetric group S,. The siudying of the random walk on the orbits of this action
allows us fo assert the following main fact about stability of the elements kg ;.
Theorem Let {¢1,...0,} be the standard generators of the braid group B, and p
is a uniform measure on its and inverse elements. For almost all trajectories

{gﬂ = esglv--gm’---}

of the random walk on the group B, with respect to the measurep the lef action
on the gronp Fuy; of that sequence of g, m = 1,... generates n. sequences of
the elements {k,,, :},m=1...;i=1,2...n of the group F,4,, which are stable
e.g for arbitrary natural k there is some N (k) such that for all m > N(E) and all
i =1,...n the first k¥ symbols of elements hy_, ; does not change. This theorem
allows to define stable normal form of the elements of the group B,. A geometric
interpretation of the stabilization is very tramsparent and very closed.to some
kind of the approximation of Thurston’s laminations by the cycles of fundamental

group.

Veselov A.P.
(Loughborough University, UK; Landau Institute, Russia)

Lacunae and quantum integrable systems

Consider a hyperbolic equation of the form
(63 — & ~ .. — 8} + u(z))é(z) = 0,

where the potential u is some function of z = (2,21, ...,2n). J. Hadamard {1]
raised the question when such an equation has fundamental solution located on the
characteristic cone, i.e. the whole interior of this cone is the lacuna of the equation.
The last property is known as the Huygens principle (in the narrow Hadamard’s
sense). In the talk the latest progress in this direction due to O.Chalykh, M.Feigin
and the speaker will be.discussed. The approach is based on the modern theory of
the gnantum integrable systems of Calogero-Moser type.
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[1] 3. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential
Equations, Yale Univ. Press, 1923.
2] O.A.Chalykh, M.V.Feigin and A.P.Veselov, Multidimensional Baker--
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Videman J.H.
(Instituto Superior Técnico, Departamento de Matemdtica, Lisboa)

Steady Flows of Jeffrey-Hamel Type from the Half-Plane
into an Infinite Channel

Let © C R? denote an unbounded plane domain, symmetric with respect to z;-axis
in Cartesian coordinates, i.e.

Q={z : (z1,—2z3) € Q}.

Assume that outside the circle B = {z : |z| < R}, Q coincides with the
union of the semi-strip

Ho={z:2, <0,]z3| < 1}
and the right half-plane

K :=R2 ={z:z, >0}

and suppose, for simplicity, that the boundary 99 consists of two smooth curves.
In , let us consider the Navier-Stokes problem

—vA(z) + (v(z) - Vo)olz) + Veple) = fz)  zeQ,
=¥z -v(z) = g(z), z €90, (0.1)
v(z) = h(z), z €09,

where the dot ” -” denotes the scalar product in R?, V, = grad, V- = div and
Ay =V -V, is the Laplacian. Moreover, » = (v, %), f = (f1, fa}, b = (hy, h2),
and v stands for the fluid velocity, p is the pressure field and » the comstant
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viscosity of the fluid. Let us also introduce the (linear) Stokes problem

—vAzu(z) + Vop(z) = flz), z€Q,
-Yz - v(z) = g(=), z€Q, (0.2)
v(z) = h(z), z €N

and, to simplify the notation, denote by u its solution (v,p) and write it in a

one-line form
S(Vz)u=(f,9) in 9, v=h on 9.

The analogous form of the Navier-Stokes problem (0.1) reads as follows
S(Vz)u+N(z,v) =(f,9) in Q, v=~h on 6Q.

where N(v,7) = ((v(z) - Vz)v(z),0). Let Q) stand for a small perturbation of the
symmetric domain Q, i.e. 2 = 5(Q) and & : R? = R? is a diffeomorphism such
that k£ = I outside the circle Bg and the norm of &£ — I is small (in other words, «
is almost equal to the identity I everywhere in §2). The change of variables

Q3F—rz=x"4F) e, (0.3)

turns the Navier-Stokes problem in Q into a perturbed problem in Q

S(Vz)u+ N(v,v) + P(u) = (f,9) in , v=~h on 6Q, (0.4)

where P is a non-linear operator resulting from the change of variables (0.3),
with P(0) = 0. We decompose the right-hand side (f, g, b) in (0.4) into symmetric
and anti-symmetric parts

(f,g,h) = (fa,g"hs) + (fn,ga’hn)

and, by imposing different smallness restrictions on (f*, ¢*,R*) and (f%, 9%, h%),
look for 2 solution to problem (0.4) with prescribed flux ® € R in the outlet to
infinity K. We consider problem (0.4) as a perturbation of the following linear
problem

S(Vz)u! + N(v*,9') + N(o!,2°) = (f1,¢") in Q, v =h! on 82, (0.5)

where u? = (v*,p*) denotes the symmetric solution to the Navier-Stokes problem
in Q, i.e. a small perturbation of the sum

v + &/
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with u®* = (v°*,p°*) being a solution to problem (0.2) with the symmetric right-
hand side (f*,¢°, h*) and where / = (v/,pf) stands for the solution to the ho-
mogeneous Stokes problem driving the unit flux. The distinguishing feature of the
nonlinear problem (0.4) is that the convective term N{w,v) has the same asymp-
totic behaviour as the linear ones, which makes it impossible to consider the prob-
lem (0.4) as a perturbation of the linear problem (0.2) in usual weighted Soboley
spaces. Hence, we employ the technique of weighted spaces with detached asymp-
totics developed in [1], see also [2]). Assuming that the the parameters p, and p,
which characterize the symmetric and anti-symmetric parts of the problem data
are small and satisfy p, = o(p,), we prove that provided the flow is directed info
the strip-like outlet (® < 0}, there exists a unique small solution taking the Jeffrey-
Hamel asymptotic form 7~V () in K ((r, ¢) denote the polar coordinates in R?).

Ptevmusly such solutions have been found only under symmetry assumptions. This
isa Jomﬁ work with S Nazarovr (St Petersburg) and A. Sequeira (Lisbon).

' REFERENCES
[1] NAZAROV, S.A., On the two-dimensional aperture problem for Navier—Stokes
equations, CR Acad Scs Paris, Ser.1, 3283, 699-703 {1998).

2] NAZAROV, 8.A. Weighted spaces 'mth detached asymptotics in application to
the Navier-Stokes equations, in:‘Advances in Mathematical Fluid Mechanics, Malek et al.
(eds.), Springer-Verlag, pp. 159-191 (2000).

Vinogradov A.M.
(Salerno University and The Diffiety Inststute)

New cohomological methods in pde‘s and
secondary calculus

The talk is designed to be an introduction to basic ideas and results of a new
theory which plays the same role with respect to partial differential equations as
affine algebraic geometry does with respect to algeraic ones. On the corresponding
geometric objects called diffieties, a kind of differential calculus (SECONDARY
CALCULUS) can be developped. It deals with homotopy classes of specific dif-
ferential complexes over them. The usual ”differential mathematics” appears to
be the zero-dimensional case of secondary ealculus and any natural concept of
?classical mathematics” has a "secondary” analogue. The SECONDAR.IZATION
PROBLEM is, therefore, to define and to COMPUTE these analogues, i.e. co-
homologies of suitable (Spencer-like) complexes over diffieties. This problem may
be viewed as a mathematical paraphrase of the general quantisation problem and
an analogue of the Bohr correspondence principle guides its solution by starting
from PRIMARY CALCULUS, which is a "logical skeleton” of the standard naive
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CALCULUS. The objects like ghosts, antifields, etc, emerged last decades in QFT,
turn out to be specific secondary tensors. In this perspective the theory of (non-
linear) partial differential equations is seen as a kind of ”quantum mathematics”
with new insights and unexpected perspectives.

Vinokurov V.A.
(Moscow State University of Design and Technolagy,
Moscow State University)

The formula of trace for potential containing é-functions

First boundary problem on segment [0, £] for differential equation ' + (A +
q(z))y =
= () is considered. It reduces to the boundary problem, consisting of integral equa-
tion

¢
z{z) =z - /u(z ~t)z(t)d(o(t) + Xt), z€[0,4 (0.1)
0
and boundary condition
2(6)=0. (0.2)
H _7 s . . _J 0, £<0, .
ere o(z) = [ q(z) dz - is a given function, function v(£) = £ £30 and it
1] ! =

is reqnired to find such A € C and such function z € C[0, £, that the relations (0.1,
0.2) take place. If function () is equal to zero, then An g = (”—;’)2 are eigenvalues

of an confluent problem, ¥ 0{z) = \/% sin (222) are normalized eigenfunctions of
an confluent problem, » € N. Let us introduce linear subspace BV,[0, 4] C BV[0, 4],
consisting of all functions with bounded variation o(z), continuous from right in
any point = € [0,£] and continuous in points £ = 0 and z = £. Bach limited
variation function ¢ € BV,[0, £] can have on [0, £] no more than countable number
of points of discontinuity z; €0, [, i € I, inside the interval 0, £[, in which exist
the limit from right o(z; + 0) and the limit from left o(z; — 0) and is defined the
value of saltus ¢; = o(z; +0) — ¢(2; — 0). Due to the boundedness of full variation
of function & the series Y |e;| converges. Takes place the following formula for

i€l
regularized trace.

Theorem 1 Let the function ¢ € BV,[0,£] and {z;}icr CJ0,4 is a set of its dis-
continuity points, and ¢; is a corresponding value of ils saltus in the discontinuity
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point z;, i € I, then the following series converge and takes place the equality

£
5 0nl0) = (o = / 2 ol@)do(e))) = ~3 T ef

n=1 ief

Note that in case of continuous function o(z) the set I = @ is empty and it is
assumed by definition that 3, ¢} =

4

Corollary 1 The function o(z) of a class BV,[0, £] is continuous on segment [0, £]
then and only then, when

o : ¢
Z(&z(d) ~(An0— ./y,":,o(a:) do(z))) =0.
D

n=1

The full text and proof of presented resulis can be found at
”hitp://vinokur.narod.ru/spectrum”.

Vishik M.I1.
(Institute for Information Transmission Problems RAS)

Trajectory and global attractors for the
: 3D Navier—Stokes system

To study the behaviour of solutions to the main boundary value problem
for the 3D Navier-Stokes system the trajectory attractor 9 is constructed. It is
not known yet whether any weak solution of this problem is unique. The trajec-
tory attractor consists of a class of bounded in H weak solutions (trajectories) of
the Navier—Stokes system defined on a positive time semiaxis R4, which admit
prolongations on the entire time axis R as bounded in H weak solutions of this
system. Any bonded in Lo (Ry; H) family of solutions of the Navier-Stokes sys-
tem tends to the trajectory atiractor 2 as A — +co in the metric of the space
C([h,h + T); H™%) for every T > 0. Here § > 0 and § is arbitrary small. The
solutions u#(z, ),z € Q,% 2> 0, of the Navier—Stokes system belonging to % are con-
tinuous functions of time ¢ with values in H~? (u(-,z) € C(Ry4; H~%)). Therefore
there exists the restriction Ujs=q = A(0) of the trajectory atiractor % for ¢ = 0.
The set

A = U= = U(0)

is said to be the global attractor of the 3D Navier-Stokes system. The set A is
bounded in K and compact in H~¢ for any § > 0. Moreover A has properties
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analogues to the properties of global attractors of evolution equations for which the’
upiqueness theorem of the corresponding Cauchy problem holds. The trajectory-
and global attractors hiave been constructed for the 3D Navier-Stokes system with
external force of the form g(z) or g(z,%), = € @ € R?, ¢ > 0. We have proved
that the trajectory attractor 2 ‘and the global attractor .Am of the Galerkin
approximation system of order m tends as m — co to the trajectory attractor U
and to the global attractor A of the 3D Navier-Stokes system, respectively.. We
have studied some questions of averaging of these attractors for the 3D Navier-
Stokes systems having rapidly oscillating external forces of the form g(z, z/¢) or
g(z,1,t/€) as € — 0+ . The similar theorems have been proved for seme other
dissipative equations and systems of mathematical physms All these results were'
obtained in the eollaboration with V.V. Chepyzhov ‘ -

o « BaagamMuapos A.A. . :
(Mocmecxuu Focy&apemseunuﬁ }’uusepcumem us:: M_B. lomonocosa) .

O HakonAeHMH cOGCTBEHHEIX 3HAYCHUNA An:qupepenuna.nbnm
onepa'rop—cbynxnnn g !

Tiycrs Ha KOHe‘iHOM nHTepBa.ne (o', 1') CR oupeqe:xeﬁa. onepaTop-GOYHKIUHAA
L()), ubn snagenna nopo;x,qenm B npoc'rpaac'rae Lz[O 1} aaddepernuanbALM
Bmpa)xennem Chlel i C .

. RARY , n (ﬂ) v n:._ . v‘ )

h@)E) = (-1° (M) F 3 D PE)

Pa (A’ :B) k=1 . o
A JOCTATO9HC OGmAMA CaMOCONPAKERALIMU KPACBHIMY YCIOBAAMHE, TaKKe 3aBH-
CcAmAMA OT CHEKTPaJbHOro napameTpa A. KoagdnnmenT po(A, 2) mpegnoaaraeTced
HOAOKATEALHLIM, B BCe Koafl@mmeﬁ'rm pk'(/\ z), k = 0,...,n OpejnonaraoTcd
CYMMBPYEMBIMA HO T HA orpeske [0, 1] npr moGom rxcApoBaEHOM A E (o, 1'), TO
ecTh 3Hadenna oneparop-dyaxmua L()) peryaapmst (cm. [1]).

[laa omepaTop-GyHKIEY YKal3aHHOTO BAAA MOTYT OBITH YCTAHOBNEHB HEKO-
Topeie BeckMa ofmue JOCTaTOIHEIE YCIOBHA HAKOWICHAA (1, 5a060pOT, HEHAKOD-
Aennd) & CAEKTPa K UPaBOMY KOBMY €& mETepBana onpeAecacsnd. fiag onepaTop-
q;yammx, nopo;xgemmn Ancpcpepemaﬂwmm BRIDAXCHEAEM

T h@E) = G0 @) + e @)

7 CAMOCOTIDAXEHHAIMEA KPacBLIMH YCIOBHAMH, B xo'ropuic xoscpczmnmenm npH
kBaszmpomeeofarix (cm. [1]) He 3aBmcAT oT A, 3TH ycaosus MOTYT GHITB KOH-
KPETH3BPOBAHHL, HAPEMED, B Takoi dopme:
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Teopewma. Ilycrs pyrrmun p(A,z) > 0 7 g(A, T) ompesesersl # BEOPEPLIBHE TPH
Beex A € (o,7], 2 € [0 1], 2a mcxarovenueM caydas A = 1, £ = 29 € (0, 1). Ilycrs
AA2 BEKOTOPOro JEHCTBATEALHONC Y CYINECTBYIOT KOHEIHEIE HPEAesl

plr,z) . _ . g(r, z)

= lim ———— = lim —————.
b= ::-)I:lnlo |z — zo]¥’ g xig:lo |z — zolT—

Torga, eciy cOpaBefiUBO HEpaBEHCTBO

q<~—-(?—1) (v—3)%

TO coBCTBEBHEEE 3HAYCHAA OUEPATOD-DYHKIHA HaKalAUBalOTCA K Todke 7. Eean
XKe CHPaBERINBO HEPABEHCTEO

~ 1 2 . 2

apuaém ape swbom z € [0, 1] pysxmaua g(A, z) ybeiaeT oo A, a dyaxand p(A,z)
HEBO3DAcTaeT, TO COGCTBERELIE 3HATCHUS onepaTop-PyYEKOUE He HaKallTHBAIOTCA
K TOTKE T.

B gacTHOCTH, paccMOTPUM 3afady
(—(1 + Aa(=))y"(2))" — (AB(z) + M p(z)) y(=z) = 0,
¥(0) = (0) =4"(1) =¢"(1) =0

rae ¢yuknma a(z) > 0, B(z) 7 p(z) npeANoIaraoTCa HENPEPHBRELIMA Ha OTPEIKe
[0, 1], opuuém a(z) AMeeT Ha >TOM OTpE3KE eAMHECTBEHHYIO TOYKY CBOSTO MHHH-
myma zg € (0,1), Aaa koTopoit a(z) € C*(zo) 7 a'(z) = a”(z0) = a™(ze) = 0.
Ilpu BrinoOAHEREAA YCAOBRA

p(zo) 3 _av)
B(zo) — < === Nzg
( ) 0!(20) 128 ( )
cofcTReARRE 3HANCHHAA 2ToM 3aja9A OYAYT HaKalIMBaTLCA CHHE3Y X TOUKe
—(e(zq)) .. Ilpu BETONHEHUA AHAIOTAIHOTO YCAOBAA € HPOTHEBONOAOKHLIM 3Ha-
KOM HEPABEHCTRA B IDH BEKOTOPHIX JONOARATENLERIX YCI0BAAX Ba bynkmyn a(z),
B(z) u p(z) Taxoe Hakonaenue He GYAET HMETH MeCTa.

JATEPATYPA
[1] M. A. Haéimapx, Junetinvie dufdepenyuapnsie onepamopnr, M., Hayxa,
1969.
[2] R. Mennicken, H. Schmid, A. A. Schkalikov. On the Eigenvalue Accumu-
lation of Sturm-Liouville Problems Depending Nonlinearly on the Spectral Param-
eter, Math. Nachr. 189(1998), 157-170.
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Baagumupor B.C.
(Mamesamuuecruil uncmumym us. B A. Cmexaoea, Mocxsa)
BeTa-byHKIUN JOKAIbHLIX NOJEN XapaKTEPUCTHKY HY.Ib;
IIpDUMEHECHHA K CTPYHHEM aMiIlIATYAdaM

M2 ananmsa m3ecTHA GopMyaa

- a;—~1 H:'—l l‘(a,)
[0,1)“6 5 Zz,) Hz dei = DT, e)

i=1 i=1
B(“)(al,az,... yon), Bea; >0,i=1,2,...,n=1,2,..., (1)

TaK ITO Bgl) = 1,B® = B. 3zece T m B — ramma- n 6eTa-pysKuan Ditaepa.
Popmyia (1) o6obmaeTca Ha JokaabHbe moaa K xapakTepucTuku Hyib. (Bce
Takme moas xopomo masecTHH: 370 — R,C,Q), u ux xomeunpie aare6Gpamieckue
pacmnpenus ,(¢c). Hapagy c 6eTa-dpynxmueii oz K

Bk(o,0;8,8'7,6") = Cz/ 8(z)|z|*"16'(1 - z)|1 — 2|f~dz =
K

Ix(o; )Tk (B; 0Tk (1;68"), a+B+v=1,000"=1

A8 MYJALTAOARKATABHEIX XxapakTepos § u & moaa K (3,qecb Tk{o;8) — ramma-
dyoxnug noas K gag xapakTepa 0}, BBOgUTCA HOBad NOCAEACBATEALHOCTD 6eTa-
Gbyrxnmi :
BE(a1,61;2,02;... ;an,0a) =

/ 5(1-2:.-,)1’19 (zi)|z3}% Mz, n=1,2,. (2)

i=1 i=]1

rae dz — (sopMupoBagHad) Mepa Xaapa moad K u |z| - mopmuporanme na K.
Hopmuporoasas nocrosasas Cp B (2) BHaAciAeTCA B ABEOM BHEJE A4 YKA32HABIX
moaeit K 1 BRI6HpaeTed ¢ TaKAM PAcIeToM, 3T06H Obiid CpaBeAARBE! CleAYIOITHe
dopmyari: npn 9eTHOM n = 2,4,...

Bfr?)(aheﬁaz,az; oo 30ng1,0n41) =
I’K(al; 91)1‘[((0!1;92) . .FK(an+1;6n+1),
ay +a2+--~+an+1=1,9192...ﬁn+1=1; (3)

npu HegeTHOM n=13, ...

B (e, 015 02,02; ... 3 &n, 6a) = Tic{ar; 61)Tk (13 62) ... T (n; 6)
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a;tagt-tay=1,0,02...6, =1. (4)

B =acrrocra,
Bk = Ci =Tx(0;6:), Bk =Bx.

OTH GopMy/IH NO3BOASET IPUMEHUTD afjeabHEie HOPMYJH B Ciy4ae, eCild COOT-
BeTCTBYIOWHE XapakTep Ha rpyine ufeaeii Ay rpusnaies na K* [1,2]. usnze-
CKHhe TUPEMEHEHHA: JeTHPEX-TO4CUBHE APEBeCHEHe CTPYHHLIE aMIAETYAR! BHIPa~
XKalorca depe? Gera-QysKOEA Bg) = By, a cymepcTpYHHBIE aMILIATY AL — d€pe3
6eTa-QyBKOUA Bg ) na cooTReTCTByIOMMX mHoroo6pasuax (3) naa (4) u upa HEag-
aexameM srbope moas K # xapaktepos 6; [2). Haro rosoe gokazarenscTso dop-
MYJbL, CBAZLIBRIONIYIO JE€THPEX-TOYESHYIO APEBECHYI0 aMIARTYAY Al 2aMKHYTOM
cTpyas (amuaaTy gy Bupacopo) Jepes npousBegeHue ABYX aMIAATYA AR OTKPEHI-
THIX CTPYH (KAaccHIecKre aMIAUTY ikl Benenpano). Pa6oTa BhNoAHeHa JaCTHIHO
npu ¢unaucoBoil noagepxke PODH (mpoext 00-15-96073).
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Viasov V.V.%
(Moscow State University)
Spectral problems, arising in the theory of differential
equations with delay

We study the spectral problems naturally arising in the theory of functional-
differential equations (FDE) including Riesz basisness of exponential solutions.

25This work has been supported by the RFBR grant 99-01-01079.



429

We also research the asymptotic behaviour of the solutions of FDE (see [1]-[5]).
We consider an initial-value problem

n h
Z (Bju(t -h;)+ D; %(t - hj)) + / K{sjult —s)ds=0, t>0, (1)
=0 0

u(t) =y(t), t€[-h,0), u(+0)=po=y(-0). (2)

Here B;, D; are constant complex (m x m)-matrices, h; are real numbers such
that 0 = hg < by < --- < hy, = h; the elements of the matrix-valued function K(s)
belong to the space L3(0, h). Denote by £(A} a matrix-valued function

n

h
L) = Z(Bj + ADj) exp{—Ah;) + /; K(s)exp(—As)ds, (3)

i=0

by I(A) = det £(}), by v, the multiplicities for the roots A, of the function I()),
by yq,;,s(2) the exponential solutions (see [1}-[5]) of the equation (1). Denote by
W%, ((—h,0),C") the subspace of the Sobolev space W} ((—£,0),C™), p € NN,
satisfying the following conditions

n
> (Bl 4 Djul D (—hy))+
i=0
h
+/ K(s)u®)(—s)ds =0, k=0,1,....p-2; p2 2
[
Theorem.

Letdet Do #0,det Do 0, inf [A—dq| >0, and y(t) € W, ((~h,0),C™).
2 q

(a) Every solution u(t) € WE((—h,T),C™), T > 0, of the problem (1), (2) satis-
fies the inequality

Hullwei—ns) € dexp(a)(t + I)N_luynwg(—h,o), 120 4
where » = sup Re Ay, N = maxw, and constant d is independent of all y(t).
(b) The system of subspaces {V»,}, where {V) } is the span of all ezponential

solutions yg ;.+(t), corresponding to Ay, forms a Riesz basis of subspaces of the
space Wi ,((—h,0),C™).
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Vlasov V.I., Skorokhodov S.L.
(Computing Center RAS, Moscow)

An Analytic-Numerical Method for Solving BVPs for the
Laplace equation in Dozréains with Cones or Polyhedral
orners

We present a new analytic-numerical method for solving boundary value
problems (BVPs) for the Laplace equation in 3D complex-shaped domains
with cones of arbitrary base, in pariicular, with trihedral corners. This method
is a generalization (in some sence) of the multipole method, which is an analytic-
numerical method designed in previous works of the authors for solving BVPs for
some elliptic equations in 2D and 3D domains of complex shape.

The specific feature of the method proposed here is the use of a fundamen-
tally new system of basic functions, which reflect adequatelly the structure of
the solution near a cone (polyhedral corner). More precisely; our basic functions
identically satisfy the Laplace equation in the initial domain, meet the appropriate
boundary conditions on the surface of the cone (polyhedral corner), and possess
good approximation properties. An important point is that our basic functions
are expressed in explicit analytic form in terms of special functions. In this work
there have been constructed the basic functions for the trihedral corner, whose all
three dihedral angles are 3 w/2. In particular, we obtained all the exponents of the
singularities at corner point with more high accuracy then known results.

Due to those features the method possesses high efficiency. It provides
precise computation of the solution and its derivatives up to the surface of the
cone (polyhedral corner), in other words, up to such singularifies as edges and
vertex of the polyhedral corner. An important advantage of our method is that it
yields the value of intensity factors in the vertex and on the edges simultanecusly
with the solution itself. .

It is worth to be stressed that, in contrast to FEM, our basic functions are
not local, but global. They are defined in the whole domain, and their linear
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combinations approximate the BVP solution in the whole domain also. That is
why our method does not need any mesh at all.

" By means of this method it has been found a numerical solution to the
specific mixed BVP for the Laplace equation in the Fichera corner; the latter
is a typical domain of complex shape with tribedral corner, considered in many
works. There have been obtained numerical values of the solution and its gradient
near the singularities with relative error less then 10~° by the use of only 30 basic
functions. The values of intensity factors near the vertex and near the edges have
been obtained also with the same accuracy. By means of this solution it has been
also obtained the precise value of capacity of the 3D domain, which is a cube with
cuted out concentered cube of a less size.

This work was supported by the Russian Foundation for Basic Research
(project 01-01-00341).

Volevich L.R.
(Keldysh Institute of Applied Mathematics RAS)

Newton’s polygon in the theory of boundary
value problems

On a smooth manifold 2 with boundary we consider a boundary value prob-
lem

(A(z, D) — Alju(z) = f(z), z€R, B, Dju(')=g(z"), ' €.

Here A(z, D) is a N x N matrix PDO, elliptic in the sense of Douglis-Nirenberg
with orders of elements  s; +1;. We suppose that 2r; := s; + 1; is a strictly de-
creasing sequence and ry > 0. As it follows from conditions below, r; are integers.
We pose R; := r+- - -+r;. Boundary conditions are given by a rectangular Ry x N
matrix of PDO. The orders of elements < m; + 1, and the sequence my,my,. ..
is increasing. Moreover we suppose that mp; < my4p; for j=1,...,N—-1. K
k1,2 = 1,..., N are integers, then by A(k;, k2)(£) we denote the rectangular ma-
trix containing the elements of the matrix A belonging to lines 1,...,x; and the
colomns 1,. .., k3. The same notation in the case of matrix B. By A%, BY, ... we
denote principal parts of corresponding operators. Pose E, = diag(0,...,0,1). We
suppose that following conditions are satisfied. (i). A is N-elliptic with parameter.
I+ means that on the complex plane there exisis a sector L with the vertex at
origin such that foreachk=1,...,Nand 2 €Q

det(A%(x, 5)(2,6) — AEs) £0 forf#0and A€ L.

Now we formulate the analog of Shapiro-Lopatinskii condition for the above prob-
lem. For simplicity of notation we suppose that  is the half-space z, > 0,
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z' € R*~! and operators A and B coincide with their principal parts. We freeze
the coefficients at some point of the plane z, = 0. For £ = 1,..., N we pose
u® = (wy,...,u¢). (). Foreach s = 1,...,N for [{| # 0 and X € L the ODE
problem ’

.(A(!G,»li)(ﬁf, Dn) - /\IE)V"(:(:“) =90, xr; >0, B(Rm ﬁ)kl: Dn)VS(O) =G € CE=

has a unique stable (exponentiaily decreasing) solution. (m) Foreachk=1,...,N
and A € L, |[A] =1 the system

(A(0, Do) — AEG)VE{2,) =0, 2> 0, .

with boundary conditions

5
> B0, Du)Ve(0)=g;, j=re-1+1,...,7
k=1

has 2 unique stable solution. Condition (ii) can be rewritten as a problem with
small parameter 1/A at highest derivatives in the last equation of the system.
Condition (iii) permits to apply to this problem the Vishik-Lyusternik method
of boundary layer and construct the formal asymptotic solution of the problem.
Condition (i) is deaply connected with the Newton polygon of det(A(z,£)—AT) con-
sidered as the polynomial in £, A. It is possible to construet functional spaces with
A-dependent norms and realize the above boundary value problem as a bounded
operator in these space. Then (i), (ii), (iii) are necessary and. sufficient conditions
for the existence of the bounded inverse operator for sufficiently large |A]. For the
proof of this result the methods of the Newton polygon and the boundary layer
are constantly used. All the results were obtained jointly with Robert Denk.

Volkov Ye.A.
(Stekiov Mathematical Institute)

'Exponentiall'y convérgent numerical-analitic block method
for solvmg boundary value problems for the Laplace
_equation en poligonals

Under analitic mixed boundary conditions on poligonal sides, the method
proposed has the following properties. For a given accuracy ¢ > 0, the obtained
system of linear algebralc equations is of order O(|1Inel), is stable, can be solved
with the cost O(|1n’¢|, and takes O(|Inel) comput,er memory. A value of approx-
imate solution at a point is computed for O(ln? £) arlphmetlc operations, and the
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number of operations may be reduced up to O(|In¢]) when boundary conditions
are chosen in the form of polinomials. In the case of nonanalitic boundary condi- .
tions, a value of solution of the Dirichlet boundary value problem at each point
with an accuracy & > 0 may be found for a number of operations that coincides by
order with the necessary one (due to N.Bakhvalov) for computation of a definite in-.
tegral on a segment with the same accuracy and the same smoothness of integrand
and boundary conditions. Generalizations and examples of solution of boundary
value problems and- conformmg maps with smgulantles with the accuracy 10~19
and lesser are considered. . « -

Volosov K.A.°
- (Moscow Institute of Electronics and Mathematics}) - -

Invarlant properties of the ansatz of the Hirota method
S for Quasﬂmear Parabohc equatmns SRR
N AT i SR SoE 0

In the ﬁrst part of the report propose the new invariant properties of the
ansatz. of the Hirota method which have been ‘discovered recently. This invariant
properties allows one to construct the made classes of soluticns for a certain class
the dissipative equations classified by degrees of homogeneity. This algorithm is
similar to the method of “dressing” the solutions of integrable equations. The made
classes of solutions for some equations are constructed. The program of calculation
of solutions by methods of computer algebra is created. For a construction of more
composite solutions the original circuit(scheme) is offered which we call ” with a
property of zero denominators ”. It is grounded on detected in [1] the fact bound
_with a set of equations obtained after a substitution ansatz in an input equation.
At sequential calculation (in any order) flexons of functions included in ansatz
it is necessary to find such which has nontrivial denominator. The process of
calculation of derivatives stops. An obtained denominator we call it ”, almost with
invariant ”. Let’s equate it to zero. We express one of functions and is.corrected .
ansatz. Further process is iterated..In the second part of the report the example of
modification is reduced ({logarifmic ratio) li-conversions.: Such conversion for the’
first time is entered in {2], [3] p-229 for solutlons of some selected class quasilinear.
the dlssxpatwe equatlons ciAree sk I A RN R Tol A R TEE

Peupe Za-—(K((SZZf))Zg)g—- A (0.1}
where Z Z (E, ) the reqmred function, 5 5 (nonhnear} coordmate and time. Is
proved, that the solutions are enumerated (are put in correspondence) in solutions.
" Binear the equations and back,where u = u{z,t) the function, ,¢ (linear) coordi-
nate and time ,and £ = £(2,1),0 = 8(z, ¢} . For a construction of precise solution,

I 4
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it is necessary sequentially to solve some equations. Then to find solution of the
auxiliary nonlinear equation. It is possible to consider concrete solution and to
clarify what solution the linear eguation fo it corresponds. Then to construct in
" neighbourhood” it precise solution in the parametric form. And selecting various
sort of Ir-conversion one solution of the quasilinear equation is mapped in solutions
various the linear equations. Being returned back is possible to build various sorts
of precise solutions in parametric form (anyway locally). The details will be given
at the talk. The author is grateful to V. G. Danilov and S. Yu. Dobrohotov for
constant attention to his work and useful discussions and to V. P. Maslov, and
A. D. Polynin for constructive advice.

.
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Volovich 1.V,
(Steklov Mathematical Institute)

Nonlinear Quantum Computations
and NP-complete Problems

Standard linear models of quantum computing probably do not allow the
effective solution of NP-complete problems. One has to use new nonlinear models
of computation to solve such problems. Schrodinger equation is the linear equation
but the dynamics of an entangled state is described by a nonlinear equation. In
the talk a general framework will be presented which includes classical and quan-
tum computing schemes with linear as well as with nonlinear gates. An approach
to solution of NP-complete problems by using nonlinear models of quantum com-
putation is proposed in a joint work with M. Ohya. The approach is based on a
new model of computation which combines the ordinary quantum computer and
chaotic dynamics amplifier. We consider the satisfiability problem and argue that
the problem can be solved in polynomial time if one uses the new model of com-
putation. Related approach is given by atomic guantum computer where one can
build nonlinear quantum gates.
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Horuzhy S.S., Voronin A.V.
(Stekiov Mathematical Institute)

Realizations of the Virasoro moduli
in the Fock—Krein spaces of the rigorous
Coulomb gas formalism

in the framework of spaces with indefinite metrics, a rigorous formulation for
2D minimal conformal theories and systems described by the Coulomb gas formal-
ism is presented [1], which is free of cut-offs and technical restrictions of any kind.
The starting base is a rigorous formulation [2,3] of the model of 2D free massless
scalar field in the Fock-Krein space over the one-particle space of the Pontryagin
type TI,. This formulation is complemented with central physical objects of our for-
malism, the normally ordered squate of the current and the corresponding stress
tensor. Problems of correct definitions of these objects as well as the complete
field algebra of the theory are solved. In the next stage, which is the main one,
we construct the representations of the Virasoro algebra in the Fock-Krein space
of the theory, by means of giving correct definitions to the Laurent expansions
of the stress tensor. It is found that there are specific obstacles preventing from
the correct definition of the generator of special conformal transformations. Simi-
lar obstacles were found earlier in various kinds of conformally invariant systems.
Due to these obstacles, the structure of the Virasoro moduli can only be defined in
terms of quadratic forms. It is proved, however, that the obstacles can be removed
by means of a special regularization, so that finally we are able to construct the
Virasoro moduli in the full operator sense.
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Vozmischeva T.G.
(Izheusk State Technical Unwerszty)
Oshemkov A.A.
(Moscow State University)

The topological analysis of the two
centre problem on the 2-sphere

For the first time the problem of investigation of dynamical systems in spaces
of constant curvature was formulated by N.I. Lobachevsky He generalized New-
ton’s attraction, law for. spaces of negatlve cunrature The generahzed problem of
two centers (the ‘motion ofa matenal point in the, ﬁeld generated by two fixed
centers) on the 3-sphere was studied in the paper [1]. The bifurcation set in the
plane of integrals of motion was constructed and the classification of the domains
of possible motion. was gwen The topological analysis of dynamical systems is of
great interest because, as a result, we obtain obvious and comipact description: of
the motion of systems studied. In the present work the two-centre problem on the
2-sphere is studled from the, topological point of view. The Fomenko—Zieschang
invariants, which_ completely describe the: topology of Liouville foliations of isoen-
ergy. S-mamfolds Q3, are; constructed All kinds of motion (regular- motions and
limit motions correspondmg to, bifurcations of Liouville- -tori), on- the configura-
tional space are described. ‘The connection between Fomenko-Zieschang invariants
(marked molecules) and different types of motion are investigated. The two-centre
problem is completely integrable in the sense of Liouville. The reduction to quadra-
tures can-be made by the standard method of separatlon of variables. But it turns
out that this problem has very nontrivial topological properties. For example, there
are some new, “molecules”. (Fomenko—Zieschang invariants) in this case, which did
not appear in mtegrable cases investigated -by many authors earlier. The connec-
tion between integrable systems'describing some- -problems of celestial mechanics
on spaces of constant curvature is investigated as well. It is shown that those prob-
lems are transformed one to another as the curvature varies. In. particular, it. is
proved that Kepler problem and the two centers problem on spaces of nonzero
constant curvature X furn to the corresponding classical problems on the plane.
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Vvedenskaya N.D.
(Institute for Information Transmission Problems of RAS, Moscow)

Differential equations in queueing systems theory

We consider models of large queueing systems with dynamic routing based -
on the principal of balanced load. The asymptotical approach to large queueing
systems (when the size of the model is growing) brings in the boundary-value
problems for differential-difference or integro-differential equation. Here some of
these problems are presented. In the simplest case a differential-difference equation
of the form

i‘(t’n) = u(t:n'*' 1) - u(t’n) + A(uz(t’n - 1) - uz(t,n)), n=1,2,...

is considered. Its generalization is a system for u;(t,n), 1 <i< J:

#i(t,n) = wlt,n+1)— w(t, n)+ 1)
J J
+ Z (A,-_,- +4 Zp,.,-ju, (¢, 1)) [ug(t, n— 1} — u;(t, n)] [uj(t, n— 1) +u;(t, n)],
i=1 s=1
u(2,0) =1, lim ui(t, ) =0, (2)
w(0,) = gi(n), 12 9(n) 29(n+1)2 ®)

20, psgi 2 20, ZPOM

An other generalization:
".‘i(ts n) = L[’d.‘(t, n+ 1) - ui(ts n)]+

J L
#3053 [t n =0 - witt,n =1+ D] [ustt.n =D +usltn— 1+ ], @

=1 =1
u;(t,n)=1,2<0, nli’r?o ui(t,n) = 0. (5)

An integro-differential equations:

ult) _duler) 3, [* 2y ga,

i=1

w(t,2) = 1L,e<0, lim wilt,2) =0, w(t,2)=gi(z), 130() 30 (7)
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The existence and uniqueness of the stationary solution te (1),(2) and to (4),(5)
and the convergence of solutions (1)-(3) and (4),(5),(3) to the corresponding sta-
tionary solutions is investigated. Similar problems for (6),(7) are considered. Suffi-
cient {(in some cases necessary and sufficient) conditions for the existence of *proper’
stationary solutions are presented.

‘Walther H.-O.
{Universitaet Giessen, Mathematisches Imstitut)
Stable and hyperbolic permdlc orbits of delay differential
equations

The lecture begins with a brief survey of known results on existence, uniqueness,
and stability of pericdic orbits of autonomous delay differential equations (DDEs),
and on their role in global attractors. Then present work with A.L. Skubachevsky
on Floquet multipliers of pericdic solutions to DDEs is discussed. In case of single
delay equations of the form

&(t) = —p2(f) + F(=(t - 1)

and periodic solutions with rational period we obtain a characteristic equation
for their Floquet multipliers. This generalizes older work for special periodic so-
lutions with period 4. We derive hyperbolicity criteria and apply them to obtain
stable and unstable hyperbolic periodic solutions. Here one problem involved is
to guarantee existence of periodic solutions with prescribed rational period. The
nonlinearities f : R — R considered in the applications of the hyperbolicity criteria
are constant outside a (non-small) neighbourhood of 0, model positive and nega-
tive feedback, and occur, e.g., in neural network theory. Finally another method is
explained which yields contracting Poincaré return maps, and thereby attractive
periodic orbits. It applies to a class of equations as above, with f smooth but in a
certain sense close o the step function z — —asign (z), not necessarily constant
on any nontrivial interval. The approach also leads to stable and attractive peri-
odic solutions of differential equations with state-dependent delay, where lack of
smoothness precludes Floguet multipliers.

‘Wanner G.
(University of Geneva}

ROCK Methods for Large Stiff Systems

Numerical methods for ordinary differential equations, and — via the method
of lines — also for cerain initial problems for partial differential equations, can
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be classified mainly into two categories: ezplicit methods and implicit methods.
For both classes of methods an impressive literature with great results has been
accurnulated during the 20th Century and excellent computer codes are now avail-
able. But much less attention has been drawn to a class of methods between
these two great blocks; such methods are called stabilized or Chebyshev meth-
ods. Inside the class of Chebyshev methods we can roughly distinguish between
two approaches: Chebyshev methods by composition (Lebedev-Finogenov 1976,
Lebedev-Medovikov 1995) and Chebyshev methods based on three-term recur-
rence relations (Van der Houwen-Sommeijer 1980, Sommeijer-Shampine-Verwer
1998). The subject of this talk is to give an overwiev of recent work of A. AB-
DULLE and A. MEDOVIKGYV which combines both types of methods in a new
class, called ROCK methods (Runge-Kutta-Orthogonal-Chebyshev methods), and
which preserve the advantages of both of the above described types. The construc-
tion proceeds in three steps:

e construct polynomials which produce as much stability as possible by respect-
ing the desired order conditions for linear problems;

o embed slight variations of these polynomials into a sequence of orthogonal
polynomials with respect to a certain weight function; the corresponding three-
term recursion allows the stable implemnentation of a Runge-Kutta scheme for
arbitrary nonlinear systems;

o compose this scheme with a “finishing” Runge-Kutta scheme and assure 4th
order, as well as an embedded 3rd order method for step-size control, for
arbitrary nonlinear systems by applying the operations of the Butcher Group.

We conclude the talk by some numerical experiments. The corresponding codes
are available since some time on the Web pages of the Numerical Analysis Group
in Geneva, and have already encountered much interest from many researchers.
Abstract: Chebyshev methods for the integration of large stiff systems have a long
tradition in Russia (Lebedev, Medovikov). Combining these ideas with the Butcher
Group from Runge-Kutta theory and with orthogonality relations and three term
recurrence relations {A. Medovikov, Van der Houwen and Sommeijer), A. Abdulle
has recently developped ‘Orthogonal Runge-Kutta Chebyshev (ROCK) methods’
of order 4 with excellent numerical properties. The talk wants to decribe these
resuls.
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Freudenberg W., Ohya M. :
(Brandenburgische Technische Universitit Cottbus)

‘Watanabe N.
(Science University of Tokyo)
On Quantum Logical Gate on Fock space

In usual computer, there exists an upper bound of computational speed be-
cause of irreversibility of logical gate. In order to avoid this demerit, Fredkin and
Toffoli [3] proposed a conservative logical gate. Based on their work, Milburn [4]
constructed a physical model of reversible quantum logical gate with beam split-
tings and a Kerr medium. This model is called FTM (Fredkin - Toffoli - Milburn
gate) in this paper. This FTM gate was described by the quantum channel and the
efficiency of information transmission of the FTM gate was discussed in [10]. FTM
gate is using a photon number state as an input state for control gate. The photon
number state might be difficult to realize physically. In this paper, we introduced a
new device on symmetric Fock space in order to avoid this difficulty. In Section 1,
we briefly review quantum channels and beam splittings. In Section 2, we explain
the quantum channel for FTM gate In Section 3, we intruduced a new device on
symmetric Fock space and discuss the truth table for our gate. The details will be
given at the talk.
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Wendland W.L., Schulz H., Steinbach O.
(Mathematisches Institut A, Universitat Stuttgart)

On high order boundary integral equation methods

The aim of our contribution is an efficient method which is also parallelizable
providing the following features:
1. The computation of boundary displacements and boundary tractions with
high accuracy either on the whole boundary curve (» = 2) or boundary surface
(n = 3) or on an a-priori chosen subregion of the boundary and
2. the computation of displacements, strains and stresses near and up to the
boundary with high accuracy.
Our method is based on the decomposition idea applied to rather different parts
of the boundary integral equation method:
a) the decomposition of the boundary curve or boundary surface into an overlap-
ping geometric partition,
b) the decomposition of the trial space for the desired quantities into a regular
coarse grid space and local spaces on fine grids; and
¢) the additive decomposition of the boundary integral operators involved into
a standard principal part and a smoothing remainder. As an example of our ap-
proach we consider the Lamé equations of linearized isotropic homogeneous elastic-
ity. Near to the boundary we use Hadamard’s natural local coordinates in normal
and tangential directions of the boundary, respectively. To exemplify our method,

we consider the Dirichlet problem where we have to solve a boundary integral
equation for the conormal derivative, e.g. the integral equation of the first kind,

Vi=F:=(I+K)§ onT. (0.1)

In a first step, this equation is solved on the whole boundary where we use coarse
grid trial functions on a regular grid associated with the mesh width H. In order
to obtain high order convergence, we use the method proposed in [1], [2], where we
approximate simultaneously tangential derivatives of % on a subdomain Tp C T,
similar as in the partition of the unity method. In addition, we split the operator
into a simplified principal part V3 and a remainder that has a kernel whlch is less
singular. Then we solve the local boundary integral equation for u € A-3 (I‘g) on
the fine grid where the simplified operator, i.e.

(Vo &,%) = (Vowugy, ) — (w(Vug — F),5) forall 5€ H-3(To)  (0.2)
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defines the corresponding local influence matrix whereas the modified right-hand
side contains all the global information. Now, we use simultaneous approxima-
tion of tangential derivatives and recovery for improving the efficiency of the local
method. For more general boundary conditions, we employ hybrid boundary ele-
ment approximations of the-Steklov-Poincaré operator [3]
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‘Wilmanski W,
(Weierstrass Institute for Applied Analysis and Stochastics, Berlin)

Hyperbolic Field Equations for Porous Bodies

The subject of the talk concerns a multicomponent continuous modeling of poroe-
lastic materials. It is assumed that the set of fields describing the behaviour of such
a system consists of the following functions defined on the reference configuration
of the solid component, and on an interval of time: the motion of the skeleton:
£5, the velocity fields of A fluid components: 2%, = 1...4, the partial mass
densities of the skeleton, and of the fluids p°, p%,a = 1... A4, the porosity n, and
the absolute temperature T common for all componenis. In the case of nonadia-
batic processes an additional field of the bulk heat flux Qjn: is introduced. For
these fields we propose the set of hyperbolic field equations following from partial
balance laws of mass, and momentum, from the bulk energy balance, and from
additional balance equations for the porosity and the heat flux. In the talk we
present. two aspects of such a model. The first one contains the evaluation of the
second law of thermodynamics, and, in particular, a specification of constitutive
laws for systems whose processes do not deviate much from the thermodynamical
equilibrium. This problem of thermodynamical admissibility is solved by means
of Lagrange multxphers Incidentally this method yields the representation of the
set of field equatlons in mean fields, identical with Lagrange multipliers, for which
the system is symmetric. The second aspect is connected with a presence of inter-
faces in porous materials. We distinguish two classes of such surfaces. The first one
describes a propagation of strong discontinuities (e.g. shock waves or combustion
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fronts), and it is not material with respect {o any of the components. The second
one is material with respect to the skeleton, and it models an interface between two
different systems. We present admissible boundary conditions on such interfaces,
and discuss the problem of their consistency with general dynamic compatibility
conditions following from field equations in their weak formulation. We show that
it is neccessary to introduce surface sources on such interfaces. This means that
they cannot be ideal. This yields the problem of a physical interpretation of the
temperature which is in general not measurable. It may suffer a jump on the in-
terface. Solely under the condition of a small deviation from the thermodynamical
equilibrium which, in tura yields the continuity of chemical potentials, the absolute
temperature is a physically meaningful quantity, and we are able to formulate an
effective model of processes with heat conduction. The general model is illustrated
with two simple examples: a fully linear model in which we show the existence of
A + 2 modes of propagation of weak discontinuity waves, and a weakly nonlinear
model in which an equilibrium porosity is not constant but it may rather depend
on partial mass densitics. We demonstrate the existence of two small parameters
in such a model which yield a possibility of construction of asymptotic solutions.
We qoute a first result of such a construction of soliton-like solutlons
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Yakubov V.¥a.
(Moscow State Institute for Electronics and Mathematics)

Estimates for eigenfunctions of elliptic operators
with respect to the spectral parameter

The talk deals with the derivation of uniform estimates for the moduli of the
La-normalized eigenfunctions u,(z) of an elliptic operator

N
=y ai (a,,(z) = )+ oz (32, (©.1)

i,i=1
We assume that the coefficients in (0.1) are measurable and, moreover, satisfy tﬁe
conditions
N

a_ilﬁlz < E a;;(2)6:€; < algl, 0.2)

i,5=1

where a > 0,a:; = aj;, and |a(z)]| € ao (here a and ag are constants}). .
Theorem 1. The Ly-normalized eigenfunctions of the spectral boundary value
problem

N 4 v
, Z 6‘3: (“u(z)—) + a(z)u +Au =0, ulop =0»

ij=1

with measurable coefficients satisfying conditions (02) in a domain D C R¥ (the
boundary of D obeys the exterior cone condition) satisfy the estimates

sup lua(z)] < A‘N" 4 o ‘ (0.3)

where the constant C depends only on the numbers a, ay, and N. The attainability

of estimate (0.3} is expressed by the following theorem.

Theorem 2. There exists an elliptic operator with almost everywhere continuous
coefficients in a closed N-dimensional domain Ky such that countably many La-
normalized eigenfunctions of this operator satisfy the estimates

max fun(z)| > CAJ/*,
zEK N

where the constant C is independent of n.
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Yosifian G.A.
(Institute for Problems in Mechanics of RAS, Moscow)

Some homeogenization problems
for variational inequalities in elasticity

Iosifovich Yu.N.
(Belarus State University)

Neon local boundary value problems
for the parabolic partial equations

Yurko V.A.
(Saratoy State University)

Singular Non-Selfadjoint Differential Operators
with a Discontinuty in an Interior Point

Consider the boundary value problem £ of the form
ty:=—y"+q(z)y=2ry, z>0, (1)
¥(0) ~hy(0) =0, [v,¢}"(a+0)= Ay, 4] (a-0)

with the jump condition in an interior point a > 0, where A = [a;x]; k=13 is a tran-
sition matrix, det A # 0, ¢(z), h and aj are complex, and (1 + z)g(z) € L(0, c0).
Let b1 := (@11 + a22)/2, and let for definiteness {b—| > [b4] > 0, a12 = 0. In
this case, in contrast to the classical Sturm-Liouville operators, the discrete spec-
trum is unbounded, and there are new qualitative effects in the investigation of
direct and inverse problems of spectral analysis. Let A = p?, Imp 2 0. Denote
A(p) := €'(0, p) — he(0, p), where e(z, p) is the solution of (1) satisfying the jump
condition and limy_y €(2, p) exp(—ipz) = 1. For sufficiently large |g|, the function
A(p} has simple zeros of the form

pr = n{k +0)/a+O(k™?), |k| = o0, 8 := (27) " (—iln by fb_| + arg(—b.,./b-)().
2

Denote
N={A=p*:Tmp>0, Alp) =0},
AN ={A=p: Imp=0,p#0, Alp) =0},
A= AIUAH’
M(A) = (0, p)/ A(p),
V() = 2m)" Y (M~ () - MT()), A>0,
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where M%()) 1= lim; 0, Re ;>0 M(Aiz). For brevity, let £ have simple spectrum,
i.e. all zeros of A(p) are simple, have no finite limit points, and pM()) = O(1) as
p— 0. Let S := ({V(A)}aso, {*,ax}acer), A = p be the spectral data of £,
where .

. d -1 _f M for px € A,
M —e(O,Pk)((ZXA(P))P___“) . o —{ Mi/2  for py €A,

Theorem 1. The spectral data S have the following properties:

(21) px # ps for k # s; if p € A", then —py ¢ N; »

(iz) as |k| = o0, (2) is valid; .

(33) ox # 0, and ax = 2/a+ O(k™1) as |k| - co;

(i4) the function V(A) is continuously differentiable for {A > 0} \ A”; for A, € A"

there exist the finite limits Vi, := ’\l_l’nj'\l (A—=2)V(X) #0, and Vi, = in~ ' oysign px;

k

(is) pY(X) = O(1) as A — 0, and V(}) = Vo(A) + O(A~1), as A — 4co, where
-1

Vo(R) == detA('rrpAo(p)Ao(—p)) » >0, Aglp) := by + b_exp(2ipa). The

inverse problem consists in recovering £ from the given spectral data S. Let us

formulate the uniqueness theorem for the solution of this inverse porblem.

Theorem 2. The specification of the spectral data S uniquely determines L.

Using the method of spectral mappings [1], one can also obtain an algorithm for

the solution of the inverse problem considered, along with necessary and sufficient
conditions of its solvability.

Acknowledgment. This research was supported in part by Russian Foundation
for Basic Research (Grant no. 00-01-00741).
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Zadorozhnii V.G.
(Vorenezh State University)

Moment functions of solutions for the carry equation
with stochastic coefficients

We consider the Cauchy problem

(9ugt, z) = ex(t) 6uéta;92) +ea(t)

*ult,z)
0z?

+ f(t, 2), (1)
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ufto, z) = uo(:t). ‘ (2)

Here u the unknown function, f : [to,#] x R — R,uq : R — R stochastic processes,
the prozess u, is independent with stochastic coefficients £,,63, f, and. the last
be given with characteristic functional (v (-), v2(-), w(-)), and v;(-), va(-), w() is
integrable functions. Let x(fo,1,-) is the characieristic function for [tg,%], that is
x{to,%,5) = 1 for s € [to, ] and x(to,%,s) = 0 for s & [to; ]. We found the formulas
for first and second moment functions of the solution u(,z). -

Theorem.

(t z) = Mug(z) *Fé’l[go(——fx(tn,t ), i€ x(to,?,-),0)]—

i / PR ( Sat P, ),52 (r,2,),0)]}dr

is the mean value for the generalized sofutmn of Cauchy problem (1), (2). Here

F;|g] the Fourer transformation on variable z,. F; ! the inverse Fourer iransforma-
tion, * the convolution symbol and 4/dw(r, z) the variational derivative [1, 2].
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Zagrebnov V.A.
( Centre de Physique Théorigue, CNRS - Lum:ny

About convergence of the Trotter product formula for
N, quasz-sectorzal contractlons : .

o We extend: the Chernoﬁ'. theory of ‘a.ppmmmatlon of contraction semigroups
& la Trotter, It is shown that the Trotter-Neveu-Kato convergence theorem holds
in operator . norm for a family of uniformly m-sectorial generators in a- Hilbert
space. Then we obtain a Chernoff-type approximation theorem for quasi-sectorial
contractions on a Hilbert.space in the operator norm. Necessary and sufficient
conditions are gwen for the: operator—norm convergence of Trotter-type product
formulae.: - ; : . ;

The main Theotem [1]
Theorem. Let {®(s)}.30 be 2 family of quasl—sectonai contractions on a Hilbert
space . Let there exist 0 < a < 7/2 such that its numerical range
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O(2(s)) C Do ={z€C: |zl < sina} | H{z € C: |arg(l - 2)| < @ and |z —
1] K cosa}, for all s > 0. Let X(s) = (/ —®(s))/s, and let Xp be a closed operator
with non-empty resolvent set, defined in a closed subspace Ho C . Then the
family {X(s)}s»0 converges in the uniform resolvent sense to Xp as s — 40 if and
only if

Jim [|@(/n)" ~ et ¥Ry =0, 1> 0.

Here Py denotes the orthogonal projection onto #. .
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Zaitsev V. F.
Formal Operators and Modern Group Analysis

Zakalyukin V.M.
(Moscow State Universily)

Singularities in control systems

The classification of simple singularities of the contact of an embedding with
a nested system of submanifolds in the target space obtainedin [1-3] provides
various applications in control systems, for example, when constraints have the
form of inequalities. To find the critical values (in particular, extrema) of a function
h : R™ = R subjected to equality constrainis ¢ = 0 (where g : R® - R*, k < n)
and an ineqguality f > 0, (where f : R® — R) one should distinguish the critical
values of & on the total space R”, eritical values of the restriction of A to the regular
part of g = 0, values of A on the critical locus of the variety g = 0, critical values
of h on the regular part of the variety f = 0, g = 0 and values of & on the eritical
locus of the restriction of f to the regular part of ¢ = 0. If all the entries depend
on parameters A then the critical values described above form, generally speaking,
a reducible hypersurface Z in the product A x R of the parameter space and the
set of values of h. Generically I is an open subset of the bifurcation diagram of
the flag contact singularity of the embedding

R > RExRxRxR”, (2) > (9(2), h(z), F(z), 2))
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and the flag
{0} x {0} x {0} x R™ C {0} x {0} x {R} xR* C
{0} x {R} x {R} x R” C {R*} x {R} x {R} x R®

with three elements. This statement and results of [1-3] imply the classification of
simple singularities of X. Supported by RFBI 99010147 grant.
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A.N. Zarubin
(Orel State University)

To the theory of the equations of the mixed
parabolic-hyperbolic type with the distributed and
concentrated delay

The development of the problems of a supersonic flow of a surface, covered with
a material with thermal memory, results in a solution of initial-boundary value
problems for the equation :

Zu(m,y) = H(z) [a{z) u(z —7,y) + / B(t)u(z ~t,3) dt] , (1)

L = H(-z)8%/0z* — 8*/9y* + H(z)8/8z,0 < T = const, H(§) - Heaviside
function, 0 < a(z), R(z) - limited functions, in area D = D* U D™, where
Dt ={(z,9): 2>0,0<y< 7} and

D™ ={(z,y): ~z<y<wmtz -7f/2<z2<0}
-parabolic and hyperbolic parts of D, and

+eo
Dt = U Df, D} ={(z,y) : kr <z < (k+ )1, 0<y < 7}
k=0
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Problem A. To find in area D solution u(z,y) of equation (1) from a class

C(BFUDINC (BFUD)\ o(DFUD- )) NCX(D* UD"), satistying to con-
ditions : .
u(z,0) = ¢1(z), ul(z,7) = palz), 0< 2 < +o0;
u(~y,9) =¥(@), 0< ¥y < 7/2; ulz,9) = f(z,9), (z,9) € DL,

where go,;(:c) (i=1, 2), ¥(y), f(z,y) — continuous, rather.smooth functions, and

= o0V o o< _J vz, @yeD,
¢(O) - 501(0): 99:(+°°) - 0 (z - 1> 2)’ f(z’ ?,') - { g(m’y), (.‘.L', )e D{—l)\D‘.’
and u™(z,y) = w(y + z) — ¥{(y + 2)/2) + ¥((y — =)/2) - solution of the problem
A in D, in which w(y) = / Gy, t)¥(t/2) dt, and G(y,t) ~ Green function of a

o
boundary value problem w'(y) — «'(y) = —¥'(¥/2), w(0) = w(7) = 0,0 < ¥y < 7,
and ¥(y) € C("")(O, 7/2), 0 < A < 1. The proof of uniqueness of a solution of

the problem A is conducted with the help of method of auxiliary functions. The
solution of the problem A in area D* is found in the form :

. bo | o
u(z,y) = EAné(é:,n) sinny, (z,y) € D,

=1

. k4
where A, = % / w(t) sin nt dt, and §(z, ») ~ solution of the equation
X

8'(z,n) + n%8(z, n) - /R(:c ~t)dt,n)dt = f(z) =
o

S a(z)é(z - 7,n) + / Ri{z —t)d(t,n)dt, z >0,

ZT~T

under condition of §(0,n) = 1.
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Zelik S.
(Institute of Information Transmission Problems of RAS)

Spatial and dynamlcal chaos generated by
reaction-diffusion equations in unbounded domams

We consider the following quasilinear reaction-diffusion system in an umn-
bounded domair 2 C R™: .

Buu = alyu — (L, Vo)u — f(u) + ¢(z), “Ian =0, “It:o = up, 1)

where u = (ul,- . ,u¥) is an unknown vector-valued function, a is a given diffusion
matrix, (L, Vo)u i= 0, Li(2)8z;u L(z) is a given vector-valued function, f(u)
and g(z) are given nonlinear inferaction function and external force respectively.

1t is proved that under certain assumptions on f, a and L, the equation (1)
generates a dynamical system S; : @ — @, £ > 0, in the correspondmg phase
space ug € @y, which possesses a global attractor A in it.

" Recall, that in contrast to the case of bounded domains €2, in unbounded
domains the Hausdorff and fractal dimension of the attractor A is usnally infinite
(see [1], [2]), consequently (following to [2], [3]) in order to obtain quantitative and
qualitative information about the atiractor it is natural to study it’s Kolmogorov’s
e-entropy. In the present paper we give sharp upper and lower bounds for the &-
entropy for the restriction .Al pr of the attractor A to.an arbitrary ball BE of

£

radius R, centered in zg.

Moreover, we give more detailed investigation of the attractor A in the spa-
tially homogeneous case: 2 = R®, L = const, ¢ = const. In this case the spatio-
temporal chaos on the attractor of (1) can be described in terms of embeddings of
multidimensional Bernulli schemes with continual number of symbols w €0, l] to
the spatio-temporal dynamics. :

Particularly, we prove that under the natural assumptions on the eguation
(1) the‘associated dynamical system S; restricted to the atiractor /A has an infinite
topological entropy and that every finite dimensional dynamics can be obtained up
to a homeomorphism restricting the semigronp S; fo the corr@spondmg mvanant
subset of the attractor. :
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Zharinov, V.V,
Cohomology of the Lie algebra -
of vector fields on the line

An appropriate mathematical apparatus is developed! and cohomologies of

- the Lie algebra of all smooth vector fields on the line with coefficients in the most

importani representations are presented.’ A generalized sequence of complexes is
proposed and corresponding cohomologies are calculated.

_— Zhidkov P.E. . ,
( Oﬁ'beauseuubm uucmumym .saepubu' uccaeaoeanuu ,Z[yé'ua)

..CBoitcTBa 6a3UCHOCTH CHCTEM CO6CTBeHHBIX bysxuBn
..+ .. HeJIMHEHBHIX 3ajad THIa IE['rypma-JInmea

By,qe'r paccmoTpeH PAg He.nnaenuux 3aga'1 THI2 IHTypma-JInanmm n npe,q~
CTaBleHEl PE3YALTATEL O CBOMCTBAX 6a3ncHOCTH, B Ly W ApYTHX DPOCTPaHCTB2X,
cacTeM cOGCTREBABIX PYBKHMEA DTHX 32424. Hanpnmep, 6yAeT paccMOTPEHa, Clie-
Ayiomaaaa,qa.'ia P ‘ IR C

) —u” + f(uz)u = /\u,, 'a = u(z) z€ (0 1), u(i)) = u(l) 0 u'(O) > 0

1
/ 2(z)dz—1
. 0

B,qec:, BCE. Bemmmm Bemec'rsemxm, A— cnempam:aun napame'rp u f- 3afjaBgas
dysKOus. Peaynm-aT A 2TOR 3aJa%H COCTOAT B TOM, TT0 ecant f(s)- raagxas
BeybriBatoman GYHEKIEA apryMenTa s > 0, To 6ecKonedHad HOCASAOBATEABHOCTD
Beex cob6CTREHBRIX GYHKOUHA, CYMECTBOBAHAE KOTODOiH JOKadaHo, dBAgeTcd Ga-
ancom Bapn B .Lz(0,1).(Tax 3To B HacTEOCTA OH2, ABAAETCA 6aanc0M) Kpome
Toro, 6yAeT TpejcTaBied Pe3yALTAT O BOBMOXHOCTH Pa3/oXenna ”IpOH3BOIME-
HoO# cbyﬂmmn” B AHTErpad 10 coﬁc'raeaﬂmm cpymﬂmam HEeAAHEHHOTO YpabHeHAd
lﬂpeAnﬂrepa Ha, DOAYNDAMOH, nop,oénoro npejcTaBlernio GYHKHAI ¢ IOMOMBIO
npeoGpazopands Pypze. . .
Email: ghidkov@thsunl.jinr.ru
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Zhura N.A.
(Lebeden Physical Institute RAS)

To the theory of boundary value problems
for the system of principal type on the plane

Let us consider the system of linear partial differential equations -
= —a—=0 (1)

in the bounded domain D C R?2, where u(z) is an unknown I- vector-valued
function and a € R™/ is a constant matrix, I > 3. System (1) is said to be of
principal (composite) type [1] if it’s characteristic equation det(a ~ v) = 0 has
s real simple roots, 1 < s € I — 2. Let the contour 8D = T’ be composed of
the smooth arcs T'; with endpoints 7; and 7541, 7 = 1,...,2s (7590 = 7). We
consider the following boundary value problem:

c.‘i“lf‘,;:fj; j=1,...,2s, (2)

where ¢;(f;) is the l; x | matrix-valued (I; vector-valued) function on T;. It is as-
sumed that (I s)/2 ¢ < U < (14+5)/2, i+ +. . A lps = Is. Let us denote by Tk the
characteristic line 23 + w22 = const containing the point 73,1 < 7 < 25,1 <k < s
The domain D is assumed admissible in the following sense: all arcs T'; are not
tangent characteristics and Tjx NT =T NF, F = {n,...;73,} for each k and ;.
So the'sét Dy, = D\Uj;T'2-1,4 has s components. Any regular solution u(z, 22)
of a system (1) can be representented [2} in the form u = §; ¢ +-2Re ba¢?, where ¢1
is'a regular solution of the canonical hyperbolic system 8¢ /8z, — J;84! /8z; =

and ¢? is the J; ~ analytic function [3]. The block 1 x 3-matrix b = (b3, b3, b2) re-
duce a to the Jordan normal form b~1ab = diag (J1, J2, J2). The solution u(z;, z2)
of system (1) is being considered in the weighted Holder space. Using this represen-
tation the problem (1), (2) is reduced to an equivalent singular integro- functional
equation. The investigation on solvability of this equation is based upon the gen-
eral theory of singilai integro-functional operators [3].' This permits to obtain
the Fredholm property and index formula of problem (1), (2). Note that the corre-
sponding problem for one equation of high order is studied in {4]. As a consequence
of general result we obtain the solvability theorem for some boundary value prob-
lems for magneto hydrodynamic system. This approach can be also applied to the’
system equations of high order. As example we study the problem ""'r = fkj,

£=1,2, j=1,...,4for the system

(92‘&41 _ 32151 ?_‘lﬁ 32132 _ 32712 6_:12 0 3!11 + 2 a‘l.tz =0.
Bz  0z% ' Oz 022 ~ 0z%  Omg ' Bz @ Oma
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Zinoviev Yu. M.
(Stekiov Mathematical Institute)
Gravity as Lorentz force

The idea of the relativistic gravitation theory was proposed by Poincaré [1] :
”In the paper cited Lorentz found it necessary to supplement his hypothesis so that
the relativity postulate could be valid for other forces besides the electromagnetic
ones. According to his idea, owing to Lorentz transformation (and therefore owing
to the translational movement) all forces behave like electromagnetic. It turned
out to be necessary to consider this hypothesis more attentively and to study the
changes it makes in the gravity laws in particular. First of all, it enables us to
suppose that the gravity forces propagate not instantly, but at the light velocity.
One could think that it is enough to reject such a hypothesis, for Laplace has
shown that it can not take place. But in fact the efiect of this propagation is
largely balanced by some other circumstance, so there is no any contradiction
between the law proposed and the astronomical observations. Is it possible to find
a law satisfying the condition stated by Loreniz and at the same time coming to
the Newton law in all the cases when the velocities of the celestial bodies are small
enough to neglect their squares (and also the producis of the accelerations and
the distance) with respect to the square of the velocity of light?” Poincaré found
that the mathematical solution of the problem is not unique. It is easy to solve the
Poincaré problem by making use of the physical reasons. The form of the Newton
gravity law coincides with the form of the Coulomb law describing the interaction
between two oppositely charged bodies. The relativistic form of the Coulomb law
is well — known. It is the Lorentz force. Thus the relativistic form of the gravity
law must be the same. We consider a simple problem of the interaction of two
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bodies when the mass of one body is equal to zero. It is a problem of the light
propagation in the gravity field of one body. The received exact solution of this
problem describes all effects predicted by the general relativity: the distortion of
the light beams in the gravity field, the light motion along the closed trajectory
in the gravity field, etc. If the Mercury mass is considered small, it is possible to
calculate the shift of Mercury perihelion for a hundred years. It turns out to be
45”. The general relativity predicts 43”.
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Zorich A.
(University of Rennes 1)

Geometry and dynamics on flat surfaces

Dealing with Riemann surfaces of genera greater than two one usunally con-
siders the metric of constant negative curvature. However, in numerous problems
of dynamics (like billiards in rational polygons, topological dynamics of measured
foliations on surfaces, interval exchange transformations, etc) it is natural to con-
sider a flat metric on a surface, where all curvature of the surface is collapsed to
several cone-type singularities. We consider a class of such flat metrics having triv-
ial holonomy: parallel transport of a vector along a smooth closed path leaves the
vector invariant. A surface endowed with such special flat metric is called a ¢rans-
lation surface. 1 want to present several recent results of A.Eskin, M.Kontsevich,
H.Masur and myself concerning geometry and dynamics on translation surfaces. In
particular I shall discuss the closed trajectories on translation surfaces, the amazing
behavior of their configurations, and the quantitative aspects of the asymptotics
of the number of closed geodesics of bounded length. 1 shall present an application
of these results to the billiards in “rectangular polygones”. I shall also describe the
behavior of the geodesic flow in a typical flat metric. The answers to these prob-
lems are based on the study of topology, geometry, and dynamics of the moduli
spaces of Abelian differentials.
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