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IIpeo6pasoBanne Pyphe B TeOpun yJabTpapacrpeaeJenuii
Abanun A.B. (FOxHbif penepanbHblit yauBepcHTeT)

Hoxnan nocesmen 0606meHnio u paspuTuio noaxoxa A. Bepiunra x pa3paboTke Teopun
yasTpaucd bepernnpyemMbIx QYHKIWI U yIbTpapacnpeeseHiil, B KOTOPOM Ipeobpa3oBaHue
@ypbe BBHICTYIAeT CIEPXHEM BCEX METONOB M pe3ynbTaroB. IocTpoeHHas B paMKax
NpeaaraeMoro oGobIeHNs IIKada [POCTPAHCTB COAEDXKHUT B cebe H3BECTHHIE IIKAJBI
Pymbe-Komarcy, Bepanura-Bropka, Iuopanecky-2Kumo u Bpayna-Maiize-Teiinopa.
TMonywensl aHaNOrH OCHOBONOJIArAlOIIMX PE3YJBTATOB Kjaccwdeckoit Teopun IIlsapua,
4acTh M3 KOTODHIX YCTaHOBJIeHa B HOBO# bopme. Ilocnenmee oTHOCHTCS B HaCTHOCTH
K CTPYKTYPHBIM TeOpeMaM O IpPeJCTABJEHHM yNbIpapacHpPeJeTeHUN H TeopeMaM THIIA
ITsnu-Bunepa-Illpapua. B xadecTBe UpUNOXeHHIt pacCMOTpeHa 3alaua O IPONOIIKEHHH
yapTpagucddepeHunpyeMorx GyHKIME no Bopemo-Yuran.

Kpaesbie 3anauu A1 HEKOTOPBIX KJIACCOB YPABHEHHUH HEUETHOrO NMOPSIKA
A6npaxmanoB A. M. (Ygumckuit rocy1apcTBeHHEIY aBHALHOHHbIH TEXHAYECKHI
YVHHBEPCHTET)

Jlok1a)1 MOCBSIIEH M3JI0’KEHHMIO BONPOCOB PA3PEIMMOCTH HEKOTOPHIX HO-BBIX KPAEBBIX
3384 Ui yPaBHEHUH HEYETHOrO MOPAJKa IO BHIPOXKIEHHOH (BPeMEHHOH) mepeMeHHON M
YETHOrO TI0 NPOCTPAHCTBEHHLIM IIEPEMEHHBIM.

B wacTHOCTH, paccMaTpHBAIOTCH JBAXKAB BRIPOXIAIOIMECS yPaBHEHMT

K(t)D}Au+ Bu = f(z,t) (1)

¢ dbynxupe#t K(t), monoxurensuolt npu t > 0 u obpamaiowettca B Hostb npu t = 0, u ¢
SJUIHIITHKO-NIapaboIHYeCKIMHU onepaTopaMu A 1 B BTOPOTro Mopsiixa Mo MPOCTPAHCTBEHHBIM
[IePeMEeHHBIM; /Il 3THX ypaBHEeHMI JOKa3bI-BAETCsl CyIECTBOBAHME DeryJIAPHBIX DerleHuit
aHaJIora NepBoit KPAeBoOH 3a1a-4u.
Hanee, aas ypasHenuit
D}u+ Bu = f(z,t) (@)

PacCMaTpPUBAIOTCH 33Ja4M C 3afaHueM Ha OOKOBON rpaHHIE UMIMHIpa YCJIO-BUA,
CBSI3BIBAIOIErO 3HAYEHNS PELIEHH T WK YK€ er0 KOHOPMAJILHOM POU3-BOJHON CO 3HAYEHUSMU
HEKOTOPOI'0 MHTErPAJIbHOrO ONepaTopa.

O GasucHocTn Pucca noacucrem coGCTBEHHBIX M IIPUCOSMHEHHBIX byHKIMK
opgHoll ciexTpanbHolt 3anaun
A6apamnro K. X. (MI'Y,r. Mocksa)

PaCCMa.TpPIBaeTCﬁ CHeKTpaJIbHaH 3aga49a
—y"(z) + q(z)y(z) = My(z), =z € (0,1), ' 1)

y(0) =0, (ar+b)y(l) = (cA+d)y/ (1), 2)



rae g(z) - BewecTBeHHasi cymmupyemas byHKuusa, A € C - chmekTpajbHBI NapaMerp,
a,b,c,d € R, §:=ad—bc#0.

Ucnone3ys Meronsl Teopuu ONEPATOPOB B NPOCTPAHCTBE ¢ HHAECHMHHTHON METPHKOI,
MOXKHO IIOKa3aTh, YTO BO3MOXKHBI TOJIBKO 2 CIy4Yas:

1) cDeKTp COCTOMT M3 CYETHOIO YHC/Ia NPOCTHIX COBCTBEHHBIX 3HAYEHMIL;

2) CrneKTp COCTOMT M3 CUETHOTO 4HCAA IPOCTHIX COOGCTBEHHEIX 3HAYeHHR M OZHOTO
COGCTBEHHOTO  3HA4YEHHsi, KOTOPOMY COOTBETCIBYeT OfHa COOCTBEHHass W OJHa
npucoeguHeHHas QyHKUHus.

Ilycrs Ap - coberBeHHble 3HaveHus, a Yx(r) - cobcrBennbie GYHKIME 3TOR 3834l
(k € N). B cayuae g(z) > 0 u ad — bc > 0 Moucees E.M. u Kanycrun H.IO. B pabore
[3] nokazanu, uto cucrema {yi(z)}32, obpasyer 6asuc Pucca B L2(0,1) mocne ynanenus
H3 Hee NPOM3BOJIbHON (yHKuun. Jpyrum merozom ¢ nomomplo pabor A.A. Ilkamukosa
[1] 1 E.M.Pyccakobckoro [2] Ml goKa3sbiBaeM, 4TO 9TO CBOHCTBO COXDAHSETCS IS 110608
BelleCTBEHHOM cymmupyemoit dyHkuuu ¢(z) u ad — be # 0 B ciyyae nPOCTOro CHEKTpa.

Teopema 1. ITycts cuexTp 3amaun (1),(2) cocrour u3 npocrsix C3. Toraa npu mobom
m € N cncrema {yx (€)}32) rzm OOpaayer Gasuc Pucca B L2(0,1).

st oTCyTCTBUSA UPHCOEAMHEHHBIX (GYHKIMA NOCTATOYHBIM SIBJSIETCS BBINOJHEHHE
ozHoro u3 ycaosuit: 1) ad—be > 0; 2) Halinercst KoMIeKcHoe (HeBellecTBeHHOoe) cOOCTBEHHOe
3HAYEHHE,

Teopema 2. Ilycrs 3apaya (1),(2) umeer cobeTBeHHOE 3HAYEHHE, KOTOPOMY OTBEYAET
coberBeHHas GyHKUMS yo(z) u npucoesnnennas dynkuus h(z). Toraa cucreMa KOpHEBHIX
dyHxuuit obpasyer 6a3uc Pucca B Ly(0, 1) nocie yaanenns u3 Hee Npou3BoibHOH GyHKIMM,
3a HCKIIOYeHneM mprcoennHenHoll dynkuun h(z) + ayo(z) npu HEKOTOPOM eXMHCTBEHHOM
3Hayennu o € C.

JIureparypa

[1} A.A OIxannxos //Tp.cem.um.M.T.Ierposckoro.M.,1983.Beimn.9,c.190-229.

[2] E.M.Pyccakosckuit. Onepamopras mpaxmosxa 2panunHoti 3a0aut co CReXmpaidHblm
TAPAMEMPOM, TIOAUHOMUGALHO BTOOAUUM 6 zpaHutHde Yycaosun. - DYyHKLI.aHAIM3 U ero
npuaox., 1975,9,Ne4 ¢.91-94.

[3] Kanyctun H.YO., Moncees E.W1. //[luddepenn. ypasuenns.1997.T.33,Ne1,

c.16-21.

AcuMmnToTHYecKue NpnOIMrKeHNs pelIeHU’ KpaesbIxX 3aa4 /s CUCTeM
AMHEeAHBIX CUHTYISPHO BO3MYIIEHHBIX OGbIKHOBeHHEBIX AnddepeHuManbHbIX
ypasHeHn#i BTOpOro nops,aka
A6nysamnes A.O. (r.Ow, Kniprescran)

PaccmorpuM xpaeyio 3anauy:
ey’ = P(t)y' + Q(t)y + g(t),a <t <b, (1)

y(a,€) = A,y(b,e) = B, 2

rae € > 0 - mane#t napamerp, P(t), Q(t)— n x n - Marpunm, 9,9, A, B € R™.

ITycTs BBIMOJIHEHDI ClIEAYIOLINE IPETIOIOKEHHU.

I. Matpuna P(t) uMeeT IPOCTYIO CTPYKTYPY, T.€. CYLIECTBYET HEBLIPOXK/ICHHAS MATPHLIA
S(t) Takas, uro S(t) - P(t)S™(t) = A(t), rae A(t) = diag(Mi(t),2(t), ..., \n(t)) -
JANarOHAJIbHAS KBAAPATHAS MATPHIA.

IL P(t),Q(t), S(t), g(t) € C>|a, b].



Yepes m" ) wm 1" ®),i=1,2,. =1,2,...,n, 0603HAYUM 3]I€MEHTHI MATPHIL,

M) = S(t)Q( )S=1(t) ¥ S( P)&(S7Ht) m R(@) = -S@t)%(S™'),
COOTBETCTBEHHO.

IIL. IlycTh BBHINO/HAETCS OQHO U3 YCJIOBHIA:

1) Mi(#) >0mpua<t<bi=1,2, ..n;

2)A1(te) = 0,20 € (a,b), M1(t) # 0 mpu t € [a,b]\ {to}, mi(te) >0 mnai e {2,...,n}:
Ai(t) #0mpua <t <b;

3) Ai(to) = A2(to) = 0,t0 € (a,b),A\1(t) # 0 u A2(t) # 0 npu ¢ € [a,b] \ {to}, mnn
Beex ¢ € {3,...,n} : A\i(t) # 0 npu a <t < b u cymecrsytor nocrosituusie Ly > 0, Ly > 0,
YOBETBOPSIOIYE HEPABEHCTBAM

mi(to) - B [2Ir3(t0)] + [mi(to)l] > O,

m3(to) — £2[2[r (to)] + Imi(to)l] > 0.

Ilpn ycnosusax I-III pemenue y = y(t,e) 3agaum (1), (2) uMeer acuMNTOTHYECKOE
[peACTaBIeHHe

y-—Ze"[y +Hk( )+Qk( ]+O (VN*t),a<t<h,
i=0

rme N > 0- HekoTopele Lence 4ucio, F(t) - peryaspHeie, 8 Hk(“T“),Qk(%) -
norpaHcnofisusie Gynkuuy {1).
Jlureparypa
[1] Bacumeesa A.B., Byrysos B.Q. Acumnmomuveckue pa3nodceHus pewenut
CUH2YAAPHO 803MmYyuennr ypasnenutl. - M.: Hayka, 1973r. - 272 c.

D’Alembertian Series Solutions of LODE with Polynomial Coefficients
Abramov S.A. (Dorodnicyn Computing Centre of RAS, Moscow, Russia), Barkatou M.A.
(XLIM UMR CNRS 6172, University of Limoges, France)

Let E be the shift operator acting on sequences of complex numbers as Ea, = an41 for
any sequence (a,). The sequence a is d’Alembertian if for large enough values of the index
n the elements a, of the sequence satisfy a linear recurrence equation R(a,) = 0, where

R=(E+ filn))o- 0o (E+ fi(n)), fi(n)€C(n).

Elements of a d’Alembertian sequence can be explicitly represented as a function of the
index n using only rational functions, the gamma function and finite sums, e. g. the sequence

=2y é(ﬁ% is d’Alembertian with R = (E+ ;25)o(E —2). A d’Alembertian series
is a formal power series Y n., @n(z — 20)™ whose coefficients sequence is d’ Alembertian (this
notion generalizes the notion of hypergemetric series, where the order & of the operator R
is 1). Let L be a linear differential operator with polynomial coefficients, zq a fixed point in
C and A,, the space of d’Alembertian series solutions of the equation L{y) = 0 at 20. We
prove that the dimension of 4,, is the same for all ordinary (i.e., non-singular) points 2o of
L. In addition, we prove that if zy is an ordinary point of L then all d’Alembertian series
solutions represent some analytic solutions which have a simple representation of the form

gl(z)jgg(z)/.../gm(z)dz...dzdz

7



where g;(2) is such that %:E—g € C(z). However the situation can be different if z; is a singular
point.

JlokannaoBanHbIe M TPOCTPAHCTBEHHO XaOTHYECKUe T€YEHHS BA3KOM
Hec)KMMaeMoit dKUIKOCTH B HEOrpaHUYEHHbIX 06JacTax
Acpenguxos A. JI. (r. Mocksa)

B teopuu ypasuenust HaBbe-Crokca XOpoIllIo H3BECTHO, YTO B MOCTAHOBKAX HAHMAJbLHO-
KpaeBbIX 3aJad B HEOTPAHWYEHHBIX oOnacTdaX HeolXOAMMO 3a7aBaTb YCJIOBHS Ha
GEeCKOHEYHOCTH. B  IuMIMHApHYecKHX 06JacTAX B KadecTBE TaKUX ycJaoBui o6braHO
[IPEANIONATalOT BLIIOTHEHHEIMU YCIIOBHS IEPHOAMHOCTH € IEPHOIOM 27/ r BAOMb OCH X € R!
muuaapa. Oanako yxe knaccukaM (Cxsaitp, Cunait, FOgosma n ap.) 65LI0 U3BECTHO, 4TO
CyIIeCTByeT psifl IPUMEPOB, e MUHHMAIIbHOE 10 ¢ KpuTHdeckoe uncio Pedtnonbaca Ro(a)
[OTEPH YCTOMYMBOCTH OCHOBHOTO CTAUMOHADHOrO TeueHHs (i.,p.) (Tewenus Ilyaseitns,
Koamoroposa, etc.) orsedaer o = 0 ¥, TeM CaMbIM, ECTECTBEHHO PaCCMATPHMBATH DElIeHNs
M3 IPOCTPAHCTS, THIA NPOCTPAHCTBA PABHOMEPHO OIPAHMYEHHBIX MO T (hyHKUMH.

Ha stoM mnyTu c¢ wucnosb3oBaHueM peaykiuu KupxrsccHepa yaercs Ha#fTH
o6bIKHOBeHHble AU depeHIalibible  yPABHEHNs,, OTPAHHYEHHBIM DELIEHHSIM KOTODBIX
oTBevaloT pelenns ypapHenuit Hasbe-CroKca, KOTOpBIE B OKPECTHOCTH O1]ypPKALHOHHOTO
anagenusi napamerpa Ro(0) paBHomepHo no z 6nusku K pemenuio (u.,p.). B sanatax
Iyaseiis 1 KonMoroposa M HEKOTOPBIX [PYTHX, TaKUMH YPaBHEHHSMH OKa3aHCh
cTanMoHapHble ypabHenns I'unabypra-Jlanpay, Kana-Xumiapma u ux obobuienus (1]-13}.
OrpaniyeHHble DEUCHHs STUX YPABHEHMHl MOTYT MMETh BeChbMa CIOXHYIO CTPYKTYpy. B
YACTHOCTM MMEIOTCS PeIleHHs BCIOAY IUIOTHO 3alOJHSIONME aTTPAKTOP € XaOTH4YeCKoH
anHaMuKOM Ha HeM. [1og0GHOTO pozia Pe3ysbTaTHI MOMYYAIOTCS C UCNIOJIB30BAHHEM TEXHHUKH
OCHOBaHHOM Ha aHamm3e paciiervienns cenapatpuc [4]. CooTsercTBylouwiMe pelIeHHs
ypaprenuit Hapbe-CTOKCA MMEIOT XAOTHYECKYIO IPOCTPAHCTBEHHYIO CTPYKTYPY (CP- ().

Pabota nognepkana rpantom POPU 05-01-00947.

JInreparypa

{1] Adenankos A. JI. u ap. Crosuue BOMHBI BOIU3M TEUEHMS Koamoroposa. JAH, 2007,
m. 418, Xe 5, c.1-4
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JAH, 1999, m. 369, N 2, c. 153-157.

[4] Afendikov A., Mielke A. Bifurcation of homoclinic orbits to a saddle—focus in re-
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[5] Afendikov A., Mielke A. Multi-pulse solutions to the Navier-Stokes problem between
parallel plates. Zeits. angew. Math. Physik (ZAMP) 2001, v. 52, p.79-100

MeTo[ YHCIEHHOTO pellleHusl 334a4i O PPAHNYHBIX DPYHKUMAX B npodiaeme
AUMHAMHUKHM NPUJIMBHBIX TeYeHMH
Aromxos B. ., derspes JI. A., Kavenmurkos JI. I1., Kapenosa E. /1., Ilaiixypos B. B.
(r. Mocksa)



The inverse problem of the mathematical theory of tides models is considered: the prob-
lem of specifying the function of boundary condition on the liquid boundary. This problem
in present-day numerical calculations is solved approximately and, as a rule, with inadequate
accuracy.

Let ¢, A\, be spherical coordinates, Q -- a part of the sphere of the radius R3, I' = 9 -
the boundary of Q, 'y — “solid” part of I' , 'y = I'\ I'y — “liquid” part of the boundary, my
- the characteristic function of Ty, k = 1,2, t is the time variable, ¢ € [0,T]. We study the
inverse problem for the following mathematical tide model:

Ut —lv+ Ru= mg{z +f1,
vy + lu + Rv = ng€y + fa,
& — m[(Hu)s + (2 Hv)y] = fs,

Hup + Bma/gHE = mo/gHd on T x(0,7),
u = u)(7,y),v = v)(z,9),§ = §oyl,y), ast=0, inQ,

where
z=A€[0,2n],y=¢ € [0,7],m =1/(Rssiny),n = 1/Rs,l = ~2wcosy,
dQ) = R2 cos dfd) = R2 sin pdipd),
R = voRo(z, y,t) + mru(ed + [u[?)Y2/(H + (€2 + €2|ul>)*/?), r, = const > 0

and it’s “semidiscrete” analogous.

The solution of the problem considered can be approached by using the procedure of
the variational assimilation of observation data. There is a lot of available information, in
particular, on the free surface elevation in the considered basin, which is based on satellite or
coastal measurements and frequently obtained in the on-line regime. To close the nonlinear
system of equations of the tide theory and “additional unknown” (“control”) d we introduce
the problem of minimization of a cost functional based on available observation data. This
problem can be regarded as generalized statements of the corresponding identification prob-
lems in which, besides the usual solutions of the tide equations, it is also necessary to find the
functions of the boundary values. After the closed system of equations describing this prob-
lem is formulated, the solvability of the problems is investigated and the conditions under
which the solution is unique are specified. We propose iterative algorithms for constructing
the solutions and finite element methods for numerical realizations of the these algorithms.
Numerical experiments and results are presented. On the whole all the investigations follow
[1-3].

The work was supported by the Russian Foundation for Basic Research ( 07-01-00714).
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On regularity of solutions to Dirichlet and Neumann problems for strongly
elliptic systems in Lipschitz domains
Agranovich M. S. (Moscow)

In the talk, we consider the Dirichlet and Neumann boundary value problems for a
general strongly elliptic system in a bounded Lipschitz domain in R™, n > 2. We formulate
theorems on unique solvability or Fredholm property of these problems and on regularity of
solutions in Lebesgue-Liouville spaces Hy. We also indicate corollaries for eigenfunctions of
spectral Dirichlet and Neumann problems.

Dynamical Diophantine approximations
Ai-Hua Fan, Jorg Schmeling, Serge Troubetzkoy

Let (X,d) be a complete metric space. Given a sequence {Zn}n>1 C X of points in X
and a sequence {r, },> C R} of positive numbers. We define

I({zn}y {rn}) = Iifllls;l;p B(xm Tn)s F({z"}7 {T‘n}) =X \ I({.’En}, {’rn})

where X (z,,7,) denotes the ball of center z,, with radius r,,. By diophantine approximation
we mean the study of the sets I({z,},{rn}) and F({zn},{rn}). The classic diophantine
approximation is a special case.

We consider a Gibbs measure and a generic point z of the doubling map T on the circle.
We consider a sequence {£,} C R and the intervals (T"z—¥¢, (mod 1),T"z+¢, (mod 1)).
In analogy to the classical Dvoretzky cover of the circle we study the covering properties of
this sequence of intervals.

AcuMnroTHKM pelueHuit 3ajau KoHBeKTUBHOU auddy3un ¢ obbeMmuol
XMMHYECKOIi peaknuell OKOJIO YaCTHIbI
Axmeros P. I. (r. Ypa)

P aCCMaTpPHBAaETCsHA KpaeBad 3ajaqa

__ 1 (Oyou you, '
U= el ogar orog LW )

=1,r=1 u—0, r— oo (2

A

rae Masbit napaMerp € > 0, A - onepatop Jlansaca, ¥(r,8), F(u) - 3aganHble QYHKIMHK.
Bagaga (1), (2) BO3HMKaeT NP MCCIEJOBAHMM YCTAHOBUBIIEHCS KOHBEKTHUBHON
auddysnn okono chepuyeckoil yacTuLp, obrekaeMoll IOCTYNaTeNbHBIM NOTOKOM BSBKON
HECXKMMAEMO# >KUAKOCTH, B Cliyuae, KOTAa BewecTBo AuddyHIupyomiee OT HaCTHIbI
HCOBITHIBAET XMMH4ECKoe npespamenue ( cum. Hanp., [1], rr. 5, (6.1) - (6.3)). Ipu Takoi
uHTepuperamuu €2 = Pe - uucno Ilexne, 1¥(r,0)- dbynkuus Toka, r,6— cdepuueckue
xoopaunaThl. Ypashenne (1) nonyuaercsa w3 ypasHenusi (6.1) cuTupyemolt Beime paGoTs! (
{1], rn. 5) npeanonaras, yro uncao Pe — oc¢, a TaKXXe NOCTOSHHAS CKOPOCTH OOBLEMHOI
XUMUYeckol peakuuu k, — 00, a BeJHYHHA k,,/Pe";/3 - mocrosnHas. 3amaua (1), (2)
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HCeTeAoBaNach B paboTe [2] METOJOM COracoBaHMs aCUMITOTHHECKHX pasioxernii [3]. B
JIOKJIaJ1e IIPEATIOoNaraeTcs JaTh 0630p OCHOBHEIX PE3YyJLTATOB aBTODA IO JaHHOM TeMe.
Pa6ora BbinoaHeHa npH dbuHancorolt nosaepsxke POOU (rpaur Ne06-01-00138).
JInteparypa

[1] Tynano FO.IL., Monsiuun AL, Pasanues 10.C. Maccomenaoobmen peazupyrousuc
wacmuy, ¢ nomoxom. M.: Hayxa, 1985, 336 c.

[2] Axmeros P. T. Acumnmomuxa pewenus 3adaMu Konsexmueholl Judpdysuu ¢
obsemnoti Tumuneckot peaxyueti 6 caede 3a wacmuyet // XK. 8bwMUCA. MaTEM. U MATNEM.
dus. 2006. T. 46. N 5. C. 834-847.

[3] Wmpum A.M. Coeracosanue GCUMNMOMUMECKUT PASAOMCEHUT PeweHUl KpaeoviT
sadan. M.: Hayxa, 1989.

HupapnaHTHOe CBOMCTBO M MerTof, nocrpoenust Gynknuu Pumana
Axkceros A. B. (r. Mocksa)

B pabore [l], IpUMEHUTENBHO K YaCTHOMY THIEPOGOIHIECKOMY YPABHEHUIO BTOPOrO
NOpsAKa ¢ JByMs HE3aBMCHMBLIMU IepeMmerHbIMHM, B. Puman npeinoxmn “MeTon
uHTerpupoBanus Pumana”. Ins NpuMeHeHHs MeToja HeobXOZMMO MOCTPOWTDH bYHKIHIO
PuMana, SBISIOLYIOCS DeLIEHHEM CreuuaibHOll XapakrepucTiyeckolt sazaunm Komm.
O6mero Meroga mocTpoeHust yHKUEM Pumana ne cymecrsyer. B pabore [2] Hu
HOApOGHBIfi aHAJM3 MIECTH HM3BECTHBIX CIocoGoB mocTpoenus ¢ynxuuu Phmana mms
gacTHbIX TuoB ypasnenn#. H.X. M6parumoBsiM [3], Ha ocHOBe HCNOAB30BaHMS PE3Y/IbTATOB
JLB OsbcsiHHEKOBa 1O TpYNNOBON KJaccupMKaMH OZHOPOAHBIX THMEPGOTHIECKHX
ypaBHeHuit BTOpOro nopsiaxa [4], 651710 IpeAoKeHo HAXOAUTE GYHKIHMIO PUMana ¢ OMOIIEIO
CUMMeTDHUl ypaBHEHHUS.

B pabore [5] 6bin MNpesioKeH METOA HAXOXKIEHHS CHMMETDHH JIHHEHHBIX
mudbdepeHIHaNbHLIX ypaBHeHi ¢ §-byHKuuel B NpaBofl JacTu.

B Hacrosime#t paboTe moKazaHa MHBAPHAHTHOCTh GYHKUMH Pumana OTHOCHTENLHO
cuMMeTpuit GYHAAMEHTAILHBIX PellleHit I NPEATIOKEH METOZ ee IIOCTPOeHHs.

Pa6ora  BhmOAHeHa ~npum  <buHaHCOBOW  nommepkke  Poccuiickoro dbonna
dbynaaMenTanbHEIX  MccaesoBanmlt (mpoextn 05-01-00375 u 06-01-00707) u rpanTa
Tpeauaenta PO nogaepkky BeAyIUX HAYYHBIX WKOJ (POEKT HIII-4474.2006.1).

JInreparypa

[1] Puman B. O pacnpocmparenuu naockus 6041 KOHeWHO amnaumydv // B ku.: Puman B.
Counnennsa. M.~J1.: OI'I3. 1948. C. 376-395.

[2] Copson E.T. On the Riemann-Green Function // Archive for Ratioanal Mechanics and
Analysis. 1957/58. V. 1. P. 324-348.

[3] 6parumos H.X. Onwm zpynnosozo anaausa. M. “Iuanne”’. Cep. "MaremaTnka u
kubeprernka”. N 7. 1991. 48 c.

[4] OBcsinnnkos JLB. Ipynnoswe céoticmea ypashenus C.A. Yanaweuna // Kypuan
HpHMKIJHON MEXAHWKHK H TexHMYeckol dusnku. 1960. Ne 3. C. 126-145.

[5] Axcenop A.B. Cummempuu aumelibT YpasHenud C HaCmHMU NPOUIBOOHBLMY U
Pyndamenmarvroie pewenus /[ Hoxnampsr AH. 1995. T. 342. Ne 2. C. 151-153.
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06 0606uieHHbIX noka3arensx JIsnynosa
Anmubexos T.M. (KasHY num. Anp-Qapabu, Kasaxcran, r. Aamarer)

VeTaHOBIEHO, UTO UMEET MECTO CJIeLyIOIee YTBEPK ACHHE
Teopema. I[IycTs ans cucTeMbl

d n
= Zm(t Ui k=1, (1)

rje Ko3(pbUIHEeHTH! HelpepLIBHbIe JefiCTBUTENbHble QYHKIMH ONpeIeIeHHble Ha MOJXyOCH
J = [0,400), nas HEKOTOPOH HENpEpBIBHON mNoMOKHTENbHOA GyHKIMKH P(t) HaJ,
BBIIOJIHSIIOTCS YCTOBUS

Dok—-1,5-1(8) — pri(t) = av(t),t € J k€ {2,...,n},a > 0,9(t) >8>0,

Jim 1/)() =0,ie{l,...,n},ke{1,...,n},i#k,

9T [ ualrdr = (o) k=T

rae q(t) = fo 7)dr Torga cucrema (1) nMeeT HyHIAMEHTAIBHYIO CHCTEMY PeLIeHHH

-QT’Ev""yn

TaKyI, 49TO
xTr ql = Aela), k =1,m,

rre X[Tk,q]- obobmenunit BepxHmii noxasatems Jlanynosa pemenus Ui,k = 1,7,
oTHOcHTENbHO ¢(t).

3ameuanue. Teopema sBiseTcs AaHAJOrOM TeopeMbl I[leppoHa JUIS  CHCTEMBI
nnddepeHInanbHBIX YPABHEHAHN ¢ HEOTPAHMYEHHHIMHA K03 dHIMeHTaMY.

JInreparypa

{1] Msnynos A.M. Co6panue coyunennit. M-JI.,1956. T.2.

2] Hembiuxufi B.B., Crenanos B.B. KauecrtBennast teopus AuddepeHnuaibHbIx
ypasuenuit. M.-J1., 1949.

The equations A1-A14 are a (2+1)-dimensional generalization of the
Korteweg-De Vries equation
Alexeeva A. V. (The Institute of Mathematics of MON RK)

Multi-dimensional nonlinear soliton equations are an object of the intensive researches
in last years. Several (2+1)-dimensional generalizations of the Korteweg-de Vries equation
were found. They are universal mathematical models because they describe different physical
situations. We present the method of the deduction of new solidly two-dimensional soliton
equations:

Al: e + wzyy + 2[ ] [ley =0, Vo= 'd}y, Uy =, VY= 2(ln (p)zya

A2 Py + Pugy + U]y, =0, Uy=1bz, ¢ =2(In)zy,

A3: P+ wyyy + 3[1/1 ]y =0, V= ww = 2(ln (p)a:y»
Adi oy + Vi +3[V2, =0, Vo=4y, ¥=2(ng)sy,
Ab5: Yy + 'l,bzyy + 2[ 2}: + {T/’W]z =0, Wi = %y, Ve = "/)y, Y= 2(1" so)a:zv
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A6: Y + %zy + SW)V]I =0, V= %, Y= 2(ln 90):1,
AT: Yy + ¢yuy + 3[VW]:: =0, Wg= %w Vo= %, ¢ = 2(1"' ‘P):Iy
A8: Y + WZWII + 3[W2]_-,; =0, Wez = 'l,byy, Y= 2(l'n ‘p)x:»
A9: 9, +'¢zw + ny =0, Qz =202 +¥P, Pyy = 1/)", Uy = w:t’ w = 2(““13)1/1/’
A10: ¢t+w:xy+3Fyy=0» Fz:PUy Pyy='¢'zz" Uu = Yy, ¢=2(l7ﬂp)yy,
All: ¢ + wuyy + 3Myy =0, M;=9U, Uy =Yg Y= 2(2'” ‘P)yy;
Al2: Y + Vyyy + 3Kyy =0, K,= wz, V= %, Y= 2(ln‘p)yw
Al3: P + 1/)::::1 + 3[U2]y =0, Uy = 1Pz, "/’ = 2([71 ‘P):rya
Al4: ¢: + w:cx:t + 3Byy =0, B, = sz Pyy =Yg, Y= 2(5"4 ‘P)yy
by the given bilinear forms:
HL: (D.Ds + D2D2)(¢ 0 %) =0,
H2: (D, D; + D3D,)(po ) =0,
H3: (DD + D:D3)(po 9) =0,
H4: (DD, + D;)(cp o) =0,
H5: (D.D, + DY (g o) = 0.
Here ¢ = 9(z,y,t), ¢ = ¢(z,y,t) are adequately smooth complex-valued functions,
Inp=|yp|+iarge, —-w<argp<m,

D, Di(p o ¢) = 2(pzep — zipt),

DD (wop) = (8 — 0a)™(8y — Oy )"0(2, 4, )(z’, ¥/, ) o=y =y =t -

The equations A1-Al4 are a (2+1)-dimensional generalization of the Korteweg-de Vries
equation. The forms H1-H5 are a (2+1)-dimensional generalization of the bilinear form of
Hirota:

(D:D; + D3)(p o p) =0,

where f = f(z,t) is an adequately smooth real function.

I'nobansHas paspemimMocTdb 3aga4ym Ko anst KBasuiauHeRHbIX
ncepaorunepboMuecKux ypaBHennit
Asnes A.B. (Asepbatpxancku#t Texundeckut YHUBepCHTET)

B ofnacru [0,00) X R, paccMorpum 3aaady Komm jgns mcesaoranepGosmieckoro
YpaBHeHus

Lu = uy + (1) 0% + (1) A% + (1) BA uy +yus = f(u), t >0, z€ Ry (1)
€ HAYAJILHBLIMH YCJIOBHSIMH
u(0,z) = uo(z),us(0, ) = u(z), = € R,. (2)
3mec $2>0,v20,8+7>0,0<r<k<],
F()eCHR), If(w)l < cuf, |f'(u) < clufP™,

mey;—kz+1§p<oonpnn<2(l—k) 12<p< sty mpu n > 2(1 — k).
Moxasano, 4To syia focTatouno Mayibx § = [fuo(2)llwi-+(r,) +lua () | Lo (r.) 380242 (1)-
(2) nmeer enuncTBenHoe ciaboe pemenye u € C ([0,00); Wi (R,.)) N C* ([0, 00); L2(Ra)).
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HJoka3aHbl TakyKe TeopeMbl O mIobayibHON paspemiuMocTH 3aga4d  Komm  mas
KBa3SHJIHHEMHBIX NCeBAOrUNepOOINYECKUX YPABHEHUN ¢ HHTErpaJbHOK HEJNHEHHOCTH:

Lu=aqag t,/|Vlu|2dz Ay mpn 8>0 u
Q

lo
Lu:Za;c t,/[V’u["’dz Ay npn >0,
Q

k=1

rae a;(t,€) € C' ([0,00) x Ry), ai(t,§) = O (|§]P) ,§ = 0,i=0,..,l0,p> 1, lp <1, 2 C Ry.

O HenpepBIBHOCTH B ToYke peieHuil p(r)-rapMonnyeckux byHxumit
Auxyros FO. A. (Bragumup)

B obaacta D eskauaosa npocrpanctsa IR™, n > 2, paccMaTpuBaeTcst ypaBHeHHE
Lu = div(|Vu"™® "% Yu) =0
€ H3MEPHMBIM TTOKa3aTesieM P(Z), YAOBJIETBOPAIOMNM YCJIOBHIO
1<a<p(z) <P <o

IMToka3aHo, 4TO €CJIM B OKPECTHOCTH (PUKCHPOBAHHON TOUKM Lo € [ BBINOJIHEHO yC/IOBHE

klnlnln Erlm
In 2

T~To

a 1
— < - - _
[p(z) - p(zo)| < , 0<k< P z€D, |z —z0| <

27’

TO Bee peuteHus p(&)-rapMOHMYIECKOTI'0 YPABHEHHUS HEIIPEPLIBHEL B TOUKE To U HalileHa OlleHKa
MOZyJisi HENIPEPHIBHOCTH peleHu.

Diagram formulae for integer valued Vassiliev knot invariant
Allyonov S.V. (Kolomna State Pedagogical Institute)

‘We present two arrow diagram formulae for knot invariant of fourth order.
Theorem. Let G(K) be the Gauss diagram of knot K, then two basic Vassiliev knot invariant
of fourth order has been given by formulae
H) = (BLG(K)  i=1,2
where arrow polinomial P} has the following forms:

=13+ 10310+ 1810+ 1P 1 B+ 1B
-1 +H0+10-0-@+ 1 B- 1B 1B
P =3+ + 1D+ + 2+ 26D+ 28p+ oD+ 3P 2B B,

VE(K) takes values 1 on knot 41, 0 on knots 31, 51 and 52; V! (K) takes values 3 on knot 3;,
4 on knot 4y, 25 on knot 51, 13 on knot 5,.

I
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This formulae is obtained by analysis of linear equation system, evaluating of this in-
variant by definition. Let us notice, that the square of second order invariant is invariant
of fourth order. As a corollary, we obtain full basis invariants up to fourth order. Formulae
give us effective algorithm of calculation of these invariants of the complexity ~ n*, where
n is the number of crossings of plane diagram of knot K.

This work was supported by grant RFBR Ne 07-01-00085.

References

[1]. Allyonov S.V. Arrow-diagram formulas for fourth order invariants of knot// Funda-
mentalnaya i prikladnaya matematika. 2005. V.11. Ne 5. P.3-17. [2]. Polyak M., Viro O. Gauss
diagram formulas for Vassiliev invariants// Int. Math. Res. Notices. 1994. V.11. P.445-453.
[3]. Vassiliev V.A. Invariants and cohomology of the first order for spaces of embeding of
self-intersection curves in R™// Izvestiya Mathematics. 2005. V.69. Ne 5. P.865-912.

Semiclassical analysis for highly degenerate potentials
Alvarez-Caudevilla Pablo, Lépez-Gémez Julian ! (Departamento de Matematicas
Universidad Catélica de Avila, Spain; Departamento de Matemadtica Aplicada Universidad
Complutense de Madrid, Spain)

This paper characterizes the semi-classical limit of the fundamental energy,
E(h) := a1[-h*A + a(z); 9],

and ground state 95, of the Schrodinger operator —h2A + a in a bounded domain €, in the
highly degenerate case when a > 0 and ¢~!(0) consists of two components, say 2,1 and
Qp,2. The main result establishes that

E(h)
h?[} h?

= min {01[—-A;Qo_,‘], = 1,2}

and that 15 approximates in H} () the ground state of —A in Qg ; if

o1[—A; Qi) < o1[—A; 5], je{1,2}\ {i}.

PaBHoMepHOe TIpeAcTaB/IeHHe pelueHyl Kak GUCHHTYISIPHO BO3MYIIEHHOTO
YpaBHEHHMS ¢ MaJIbIM [lapaMeTpoM IIPH cTapiieif Ipou3BoAHOMi, Tak 1
BO3MYIIEHHOTO yPABHEHMS C OCOGBLIMU TOYKAMM

Auasivkysios K.

3aech obobmaercss merox norpandynknmit (Bumuka—JliocTepruka—MmananneBa—
Bacunbesolt) JJist IOCTPOEHUs! ACUMITOTHKY DellleHu# JUIS BRIUEYTIOMSIHYTHIX ypaBHEHuUM,
T. €. PellleHUsi 3THX yPaBHEeHHil NpeACTABAAOTCA Buje pafde JlopaHa no CTemeHsM MaJjoro
napaMerpa (Hy/eBOe 3Ha4€HHe MAJIOr0 NApaMeTpa HABJIAETCS [OJIOCOM), KOI(PDUIMEHTDE
KOTOPOTO COCTOAT M3 CYMMbI DeryjspHO#t (YyHKIMM Ha PacCMATpPHBACMOM OTpDE3Ke

Supported by the Ministry of Education and Science of Spain under grant REN2003-00707 and
CGL2006-00524/BOS.
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M CTeneHHO-jorapugMuueckn pacryuwieii win y6GeiBatomeit norpandysnkmun. Taxoe
npeiCTaBlIE€HME BLITEKAT U3 ACHMITOTHKHM pPEUIeHUN BBIEYNOMSHYTRIX ypaBHEHwHH,
HOJIyYeHHBIX METOAOM CTPYKTYpHoro cpammsanus (cM.{1-3]).

JInteparypa

[1} Aasmkynoe K., 3yanyxkapor A. 3. Pa6HOMEDHAR GCUMNMOMUKG PEUWEHUR
Kpaesoti 3a0aNU CUNHRYARAPHO BOSMYWENHOZ0 YPAGHEHUR 6TMOpP020 nopadka co caabot
ocobennocmuiro // JAH, 2004, T. 398, N5, C. 1-4.

[2] Aneivkynos K, 2Kssuraesa 2K. K. Memod cmpyxmyprozo cpawjusanus peuwienus
Modenvhozo ypashenua Jlatimzuasa ¢ peeyraproti ocoboti mowxoti // JAH, 2004, T. 398,
N6, C. 1-5.

|3] Ansvysos K., 2Kssuraesa 2K. K. Memod cmpyxmypnozo cpawusanus pewenus
Moleavrozo ypasnenus Jatimzuana ¢ peeyagproti ocoboti mouxot / /Matem. 3amerxH, 20086,
T. 79, Bein. 5, C. 643-652.

KpaeBas 3ajja4ya AJisi ypaBHEHHs CMeLUAHHOro TMna ¢ Apo6Ho# npoussoaHoOM’,
pacnpeJesieHHbIM U COCPEOTOYEHHBIM 3ana3/ibiBaHKeM
Anemnn I1.C. (1. Open)

YpaBuenue

.
0 — uzz(z» y) - gyu(l', t) + !R(é.)u(ny - €)d€1 y> 01 (1)

uzz(my y) - uyy(xv y) - H(l‘ - 'r)u(x =7 y)v y< 07
rae 0 < a < 1; R(€) - orpanuyennas byukuus; H(€) - bynkuus Xesucatna; 0 < 7, h =const;

Dg, - oneparop apoBuoro (B cMbiciie Pumasa-Jluysuiis) uaterposuddepenuupopanus,
gmeficreylonmit Ha ¢yskumio u(z,y) DO IepeMeHHOW Y, paccMaTpuBaeTca B 06GnacTH

+00
D= D*\JD~UJ, korza D* = |J Df,
i=0

+oo
Dt ={(z,y):x>0, lh<y<(+1h};D" =\ Dy,
k=0

Dy = {(z,yy:kr—y<z<(k+)r+y, -1/2<y<0};
J={(z,y):z>0,y=0}.

3anaya Q. Ha#tu pewenue u(z,y) ypaseenuss (1) B obmactu D u3 kaacca
D¢ tu(z,t) € (DY), yeDgulzt) € C(D*UJ), uwzy) € CD)
Uzz(2,y) € C(DTUD™), uyy(z,y) € C(D™), yAoBAETBOPAIOLICE TPAHMYHBIM H HAYATBHOMY
YCTIOBHSIM

w0,9) =0, y>O0u(zkr—2z)=yi(z), kr<z<(k+1)7/2;

01 (xry)ED?:-l)\D_’

ue,y) = { u(z,y), (z,9)€ D,

YCIOBHAM CONPAXKEHUA

. a—1 . 5
yl_lf(t)1+ D¢, u(z, t) ul_xgl_ u(z,Y)w(z), z€J,

H l-ana, 3
vl_{‘r(x’hy Dgu(z,t) vl_l.r(r)x_ uy(z,y)v(z), T€J,

16



koraa sanannsie gynkuun ¥ (z) € Clhr; (2k + 1)7/2] C?(kT; (2k + 1)7/2) u ¥o(0) =

lim bi(z)| = 0.
k—+o00 z€(kT, (2k+1)1’/2] l ( )[
EAHHCTBeHHOCTB pemieHus 3a0a4M Q JOKa3bIBaeTCsl € IIOMOINBIO 3HEPreTHYEeCKHX
HEPaBEeHCTB, & BONPOC CYyLIEeCTBOBAHUSA PEIICHUSA CBEIEH K Pa3pPEIIUMOCTH KpaeBOﬁ 33 0a49H

w'(2) - F(a)w'(z) = D(a)dk(z)~

—I'(a) Z Ym H(z — m7) f (z — mr — )2 Vy(n)dn, kr <z < (k+ 1)1,
w(kT) —wk(k:T) (k=0,1, 2 D,

B kiacce dynximu w(z) € C|0;+00) ) C2(0; +o0).

WssecTnas dbysxums §x(z) Bripaskaercst yepes Yi(z); Ym = (mil(m)22m-1) -1

Kpaegnle 3agaun 4019 HeJloKaabHBIX OuddepeHIMaNbHBIX ypaBHeHU B
YaCTHLIX NPOU3BOAHBIX ¢ MHBOJIOTUBHBIMH OTKJIOHEHUSIMU
Anppees A. A., Caymxun U. H. (r. Camapa)

Tox auddbepenunaIbHBIME yPABHEHHAMH C HHBOMTIOTHBHBIMU OTKJIOHEHHUSIMH IIOHIMAIOT
TAKHe YPABHEHHH, B KOTOPbIX NOMUMO HCKOMOM (YHKUMH ¥ e€ IPOM3BOAHBIX BXOIAT
e craraembie, cofiepKammue OTKJIOHeHMst «ft) cmeumanbeoro Bupma: ofa(t)) = ¢
Juddepenuuanpable ypaBHEHHMST B 9aCTHBIX NDPOM3BOAHBIX BTOPOrO IOPAAKa C
HHBOJIIOTUBHBIME OTKJIOHEHHSIMM B CTapUIMX NPOU3BOAHEIX He MOLJAIOTCH H3BECTHOI
Ki1accuuKaluy, MO3TOMY BO3HHMKaeT npobjieMa yXe ¢ MOCTaHOBKaMM 3aJad Ul TaKHX
ypasreHu#t. VX MOXXHO OTHeCTH K KJjaccy, Ito TepMuHosoruu Jesuna A.A., HeJloKaJbHBIX
nuddepeHIMaIbHBIX YPaBHEHUMN.

JLJ1st BOJTHOBOI'O YPaBHEHHs! C HHBOJIIOTHBHBIM OTKJIOHEHHEM PaccMoTpeHs! 3ada4a Komm
U 33Ja4, KOTOpble SBJIAIOTCA aHajoramu 3agad [ypca, Komun-I'ypca, Jdapby u 3agaqd co
cmemenneM. [Tokazano BInsAHME HHBOIIOTUBHOIO OTKJIOHEHHS HA KOPPEKTHOCTD O Afamapy
MOCTaBJEHHbIX 3agad. Jas rtenmerpagHOro ypaBHEHHs, COLEPXAIEro UHBOJIOTHBHOE
OTKJIOHEHHe paccMoTpeHsl 3anada Komn B 6eckoHeusolt obmactu u aHanor 3anadn [ypca
B XapaKTEPUCTHYECKOM KBajpaTe. IloKa3aHO B/IMSAHHE HHBOJIIOTHBHOIO OTKJIOHEHHSI Ha
acUMNTOTHKY peuenust 3ataun Komm. JlokasaHo, 4TO Takue 3aJa9M KOPPEKTHBL IO
Apamapy. [Ins ypaBHeHUsI, NOJYyYEeHHOrO B Pe3yJbTaTe BO3MYLIeHUs AupdepeHHHaibHOT0
onepaTopa ApPYTMM ONEPATOPOM, BBIYHC/ICHHBIM B HHBOJIOTHMBHON TOYKE PaCCMOTPEHbI
aHaJIorn Kiaaccuyeckux 3ana4 Komu, Koun-I'ypea, Jap6y. Jokazana KOpPEeKTHOCTD 3a1a4.

Jnst ypaBaenus Jlamnaca ¢ HHBOJIIOTUBHBIM OTKJIOHEHHMEM paccMOTpeHs! 3aaauu Koy,
Jupuxie u cMellaHHbIe 33134y, Takke MOKa3aHO BIMAHNE MHBOJIIOTMBHOIO OTKJIOHEHHS Ha
KOPPEKTHOCTH 3aJa4.

Jlns ypaBHEHHS TeEIUIONPOBOJHOCTH C WHBOJNIOTHBHBIM OTKJIOHEHHEM PACCMOTPEHBI
cMelaHHBIe 3a7a4M. [l0KasaHo, KaK ¢ IOMOIIBIO JONOJIHUTEBHBIX YCJIOBUM MOXHO
H36aBHTBHCS OT HEKOPPEKTHOCTH 3THX 3aJa4 HIPH DPa3jMYHBIX 3HAYEHHSX BEIeCTBeHHbIX
[1apaMeTpoB.

Tak>ke pacCMATPUBAIOTCH Bujou3MeHéHHble 3aja4n Japby u Komm ans ypaBHeHHs
Ditnepa-Ilyaccona-Japby ¢ MHBOMIOTHBHBIM OTKJIOHEHHEM. PemieHHs MOJyYeHbl METONOM
Pumana U 1I0KA32HO BJIMSAHHE OTKJIOHEHHS Ha KOPPEKTHYIO NOCTAHOBKY TAKHMX 3aJad.

Jlns ypaBHeHuii, NOJIydeHHbIX B pe3y/bTaTe BO3MYIIEHMs OINepaTopoB JlaBpenTbeBa-
Bruaaze paccMoTpenbl axasory sanadu Tpukomu B GeckoneIHbIX 06macTsX.
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On the Representation of Schur function for case of unitary realization
Andreishcheva E.N. (Voronezh)

By Si we denote the set of all complex functions s which a meromorphic on I and the
kernel S,(z,¢) = (1 — 8(2)s(¢)*)(1 — 2¢*)~! has k negative squares.
If s € S, then exist a Pontryagin space (Il, [-,]), a contraction T on IIx, elements u, v € Tl
and a complex number 7 such that the operator representation
sy = v+ z[(I — 2T)~'u,v] associated with the operator matrix

V= ([il;] :) : (%k) — (%k> coincides with s(z).

In the representation V can be chosen unitary in the IT; & C and closely connected, which
means that Il = span{T™u,T*"v: m,n = 0,1,...}. For this case was proved the following
result.

Theorem 1. Let s(z) = 2's;(z) with 5;(0) 7 0 .The assertions 1. — 3. holds for some set
1-|s(z)?
1—_|;F—
are if and only if there exist a Pontryagin space II, a contractive operator T in Il and a
generating element u € dom(I — T)~! for operator T such that:

by —
s(z) =2 — ze-1 I—2T)" Y -T)"'T" ', T, z€D, H op(T).
s1(0) 27 F
References
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hermitescher Operatoren im Raume Tl zusemmenhingen. I. Einige FPunktionenklassen und
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Qg: 1. s € Si; 2. lim s(z) = 1; 3. Tim
z—1 z—1

O cobcTBeHHBIX 3HAYEHMAX ONHOM HeMHENHON CneKTpaJibLHONi 3a1a4un
Angpiommu I, B. (mex-mar MT'Y um. M. B. Jlomorocosa. r. Mocksa)

B npocrpancrse Ly(R) paccMaTpuBaercs CHeKTpallbHast 3813498
—y"(z) + (ma™" = N)?y(x) = 0 €Y

rae m > 3 Hesioe YUCIO0, a A - CHEKTPaJIbHBIN Iapamerp.
Onpeaenenne 1. )\ € C - cobcmeennoe sHaNeNUE CREKMPRALHOL 3adawu (1), ecau
cywecmeyem nempusuaavhoe pewenue y(z) ypaenenua (1) ua npocmpancmea Ly (R).
U3BecTHO, YTO IPH HeYeTHHIX M = 3,5,... ¥ (PUKCHPOBAHHOM ) CYIIECTBYIOT DElIeHHS
fX¥, £y ypaBrenns (1), mmelommue ciiefyioliee aCHMITOTHYECKOE NPe/ICTaBIICHHe:

= "2 (14 0(] ™), 7 +oo,

f; —_ e—A:+zme]_(m—l)/2 (1 + 0(|xl—l)) , T — —00

Oynkmus  fif (fy) sxcnomenmmmanbHo yGbiBaeT Ha +00(—00) COOTBETCTBEHHO.
PaccmoTpuM onpepenutens BpoHckoro

W) = £ - (R fX ()
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Onpegeanrens Bponckoro W()A) He 3aBucur OT T M siBisieTcs uenoit byHKnueit mo
A. Ecim Ap - HOMb onpenenuTenst BpoHckoro, To f;’o u fy, JMHEHHO 38BUCHMEL MoxHo
[OKa3aTh, cM. Harmpumep [1], aro Hysu onpegenurens Bponckoro (2) i ToABKO OHM sABAAIOTCH
COBCTBEHHBIMU 3HAMEHMAMH CeKTpabHol 3anaun (1).

CdopmynnpyeMm OCHOBHOH pe3yJsibraT .

Teopema 1. ITycm» m = 3. Obosnovum p = [4—‘9@] u 3auxcupyem npou3BOLLHOE

wucao 0 < e < . Tozda & cexmope |arg A < T — € onpedeaumenv Bponckozo (2) umeem
npu |A| — 00 acumnmomuneckoe npedcmasaerue:

W) = exp(—2uM32) — 2exp(2ur3/?) + exp(—2u)*/2)O(]A|~H/2)+
+exp(2ur3/2)O(N~1/?).

Bce cobcmeenmvie 3navenud 3adavu (1) npu m = 3 umewm aCUMRMOMUNECKOE
npedcmasaenue:
.z [27k + 02}
AP =€ [_77_"'@_] (1+0(k™)),
2u
< [2nk +1n2]%/3
AP =eid [___” z‘zln ] (t+0(k™))

npu k — 400, k - yeaoe.
Pa6ora BrImosiHeHa oA pykosoacrsoM npod. A.A.[lIkannkosa u mogaep:XaHa IPAaHTOM
POOU Ne 07-01-00283.
JInteparypa
[1] M. Christ. Certain sums of squares of vector fields fail to be analytic hypoelliptic. //
Commun. in partial differential equation, 16(10), 1695-1707 (1991).

Anamns guddepeHIUaIbHBIX OEePaTOPOB OTBEYANOINMX KPaeBbIM 3ajadaM
Anroney MLA. (. ’HPI)KHHH Hosropox)

PaccMmaTpuBalOTCs Kpaesble 3aJ84u A1 JuddepeHnUaIbHbIX ONEPATOPOB ¢ KPaeBhIMH
YC/IOBUSIMM TPARHCMUCCHH ¥ MMIEJaHCHBIMU KPaeBbIMU ycousiMu B obnactu D esxnuzosa
npocrpaHcTa R™, monywatowelicst ynanenueMm u3 R™ rpanunel & Tak, uro D = Dy UD:
u G sBAsercsa rpaHuUel KajKIOro U3 MHOXeCTB Dl, Dy (cm.[1]). IIpu sToM mcnoab3yercst
pe30JIbBEHTa R(/\) nuddepennmantbHOro oneparopa A, orBevatomiero 3a1a4e 6e3 rPaHAIHBIX
yCJIOBH#, TO €CTh 38MKHYTOTO ONepaTopa A B npocrpancree Bektop - bysxuuit LE(R™) ¢
obnacTbio onpeaenenns D(A), comepxammed MPOCTPAHCTBO BEKTOp - byHKIMM S*(R™) ¢
KOMIIOHeHTaMu u3 npocTparcTsa HIsapua S(R™).

JIuHeftHble ONEPaTOphbl, OTBEYAIOLME KPAEeBBIM 3aJadaM, CTDOSITCA KaK 3aMHYThIE
PACIIHDEHNS OrPaHUYeHUs Ag onepatopa A Ha /HMHeliHOe MHOrOOGpa3HE OCHOBHHIX BEKTOD
- ¢ynxkmmit w3 npocrpancrsa lllsapua, ofpamaomuxcst B HOIb BOJIM3M rPaHUIb 6. C
NOMOIIBIO OIEpaTOpa A YOAeTCsl ONpEIeIHTL ONEPATOPHl BBIMUCICHHsS CIIEJIOB ¢ na
obeux CcTopoHax rpanunpl G 6e3 HCNOJIb30BAHUS NPEJETHHBIX MEPEX00B, & TaKXKe OMUCATh
[IPOCTPAHCTBO CJIEIOB B(A 6), KOTOpOe OKa3BIBAETCH M/IBGEPTOBBLIM HPOCTPAHCTBOM CO
cxanapHbiM nipom3senennem (g, h)y = (R(\)g, R(\)h).

B uacrHOCTH Ju1st m0GOro A M3 PE30BBEHTHOIO MHOXKECTBa OINlepaTopa A n moBok
06061meHHoN PYHKUMY ¢ U3 POCTPAHCTBA, CJIEJIOB B(A, 6) cymecrsytor creast Tr R(A)

npudeM orTobpaxkemust fi()), OMpENeNEHHEIE COOTHOMEHUSMH i+(Ng = R(/\)g,
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ABJSAIOTCA OPTOTOHAJIBHBIMU IPOEKTOPAMH B TPOCTPAHCTBE B(A, ©) n ygosierBopsior
cootromennwo i, (A) +1_(\) = I.

OpTOroHajbHEE TPOEKTOPh! f4()), MBJIMIOTCH aHANOraMM TIPOEKTOpoB Kaumzaepona
(em. [2} [3]): mas moBoit o6oGmenHoN (yHKuMM g, TpHHAATEXame# o6pasy npoekTopa
£:(0) (E-(\), dynxmmsa R(\)g sBasierca pelleHneM ypaBHEHHs

Au—du=0

B KaskJo#t u3 obnacret Dy, Dy, npudem u =08 D2 (D1) u Trfu =g (TrSu=yg).

Kpome Toro, npoeKTops! i+ () IPHCYTCTBYIOT B SBHBIX BHIPAXEHUSX IS Pe30JIbBEHT
KpaeBBIX 3aja4. TaK HapHUMep, JIst KPaeBoll 3aJa4uu ¢ KPaeBBIM yCJIOBHEM TPaHCMUCCHH
Tréu = 4TrSu, rae 4 HenpepuIBHBI ONEPATOP B NPOCTPAHCTBE B(A, S), pesonspenta
33]18€TCS BHIPAXKEHUEM

RO + RO E+ () = - ()T + H)TrS ROV,

ec/ TOMBKO oneparop 4 (A) — 4f_()\) HenpeprBHO 06PATHM B IPOCTPAHCTBE B(A, ).
PaGora noggep:kana rpantom POPU 05-01-00-290.
JIureparypa
[1] Auronen M.A. IIpenpurm HHP®H, M510, 2007 2. c.1-71.
[2] Calderon A.P. Outlines Sov.- Amer.Symp. on PDO. Novosibirsk. 1963, pp 303-304.
[3] Seely R.T. Amer. J. of Math., 88,(1966), 781 - 809.

Mathematical analysis of the discharge of a hot gas in a colder atmosphere
Antontsev 8. , Diaz J. I. (Covilha (Portugal), Madrid (Spain))

We study the boundary layer approximation of the already classical mathematical model
which describes the discharge of a laminar hot gas into the stagnant colder atmosphere of
the same gas [2,3]. This approximation leads to the nonlinear system of partial differential
equations

(pu)z + (pv)r =0, (1)
puug + puue = (pur), + G (1 —€/T), puTy + T = = Prl (uTy),,
where Pr > 0 is the Prandtl number, G > 0 is the Froude number. The system is completed
with the constitutive conditions p = 1/T, yu = T° with some 0 < ¢ < 0o. The unknowns
are the velocity vector (v,u) and the temperature T. System (1) is considered in the strip
Q= {(z,r) € RZ:0 < z < 00,0 <r < < oo} and the solutions must satisfy some
complementary conditions which in our case are given by the boundary conditions

ur=v=T,=0forr=0and forz >0, )
u=204,T =¢forr=1[and for z >0,
u(0,7) = ug(r) > 8, T(0,7) = To(r) = € for z = 0 and for r € [0,]. 3)

Notice that in spite of the fact that the system arises in the stationary regime it is of parabolic
type and that condition (3) looks like the initial condition if the variable z is understood as
the “fictitious"time.
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We prove existence and uniqueness of solutions of the nondegenerate problem (corre-
sponding to the assumption § > 0 and € > 0). We also study the limit case (§ = 0 and
e = 0) leading to the degeneracy of the system for which we prove the generation of some
interfaces given as the boundaries of the support of (u,T'). Using the method of local energy
estimates [1] we show that the solution possesses the localization properties such as finite
speed of propagation, the waiting time property, extinction (with respect to z). To prove the
existence and uniqueness of solutions we use the so—called von Mises variables (z, ), where
1) is the associated stream function that transforms (1) into the purely diffusive system

we = (T"Yuuy), + (TG/w) (1= 2), T = (Pr)7H (T7MTy)

References
[1] S.N. Antontsev, J.I. Diaz, S.I. Shmarev, Energy methods for free boundary problems.
Applications to nonlinear PDEs and Fluid Mechanics, Series Progress in Nonlinear Differ-
ential Equations and Their Applications (48), Birkhduser Boston, 2002.
[2] S.N. Antontsev, J.I. Diaz, Mathematical analysis of the discharge of a laminar hot
gas in a colder atmosphere, to appear in RACSAM.
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BapuauvoHHBIA OIPUHILMI A1 HEKOTOPBIX HeJMHelHBIX runepGoamiecknx
ypaBHeHuit u cucrem
Antexapes A. H. (r.Mocksa)

B curyauuu korga runepGoiuueckoe ypaBHEHHMe TepsieT eANHCTBEHHOCTb M Tpefyercs
BBIGUPATL pA3pHIBHOE pellleHHe, OOLIYHO KOHKYPUPYIOT [ABA OCHOBHBIX MOAXOa: JIHGO
(ucxona u3 usmeckux coobpakeHuit) ypaBHerine perynspusyercs (106aBleHHeM BBICOKHX
NPOM3BOJHBIX C MAJIbIM ITAPaMeTpoM), b0 paboTa NPOJOIKAETCA C HePETyIAPH30BAHHBIM
ypaBHeHHeM U (OTIATH 3Ke UCXOAs U3 BU3NIEeCKIX CO0BparkeHU ) 3a,JaI0TCSA COOTHOILEHNS HA
pa3pbiBe, NO3BOJIIOLIHNE BHIGHPATE PA3PLIBHOE PelleHHe.

B poknaze pedb HOMAET O HEKOTOPHIX TUNEPOOIMYECKMX YPABHEHMSX M CHCTEMax
JOMYCKAIOLIKX “BNOJIHE-NHTerpupyeMble” peryasipusauuy. CrieKTpasbHble 3308491, JeXalune
B OCHOBe MeToza “0BpaTHON 3anayn” MHTErPHPOBAHHA PErYIAPH3UPOBAHHOIO yPABHEHHS
NpY CTPeMJIEHHH MAJoro (peryispu3aljdOHHOrO) NapaMeTpa K HyY/O, YyAECHBIM 06pasoM
[peBpAaIaioTCs B BADHAINOHHbIE TPHHIMIIEL I8 PeleHNH HePeryIPU30BAHHbIX yPABHEHHIL.
IIpy moTepe €IMHCTBEHHOCTH COOTBETCTBYIOMMY (YHKIHMOHAT OOpETaeT HeCKOJbKO
3KCTPEMYMOB, IPH 3TOM PEellIeHHIO COOTBETCTBYeT IVI06aIbHbIN MUHIUMYM, & Pa3PbiB PeLIeHHs
NPUXOAUTCA HA COBIAJEHNE 3HAYEHHI B JOKAIbLHBIX MUHUMYyMax. OKa3bIBaeTcs, YTO TaKof
BRIGOD paspeiBa IS JUBEPreHTHOrO NpuMepa 0BeCmedYHUBAET BBHINOJHEHHE COOTHOHICHMIY
ToroHno, B ClIyYae »Xe HeIMBEPreHTHOR CHCTEMBI Ha DPaspblBe BBLIMONHSAIOTCS HEKOTOpbIE
o606menns cooTHomenuit [orouno. PeayisTaTel 3TOr0 AOKIaAa MOJTyYEHHl COBMECTHO C
1O.I'PrixoseM (eM. {1}, [2]). ‘

JIureparypa
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Peanmuzauma meropa muororpanunkos Herorona-Bpiono
Apancon A. B. (Hucruryr npnkasaHoti maTeMatuku um. M.B. Kennsima PAH,
r. Mockaa)

TIpennaraercs peanmsanms Merona Muororpasnukos Hbiotona-Bprono (MHB) [1] ana
AHAJN3a CTENEeHHBIX aCUMITOTHK peruennii cucremst O1Y Buaa

Indz; &
i a1, Gni;
= E a;z, oozt =1, 0. (1)
dt .

Ji=1

CreneHndnie aCUMITOTHKH HIYyTCA B BHIOE

zizb,-rp",b,-géo,i=l,...,n. (2)

B wMmerone MHB BBOZMTCS NPOCTPAHCTBO BEKTODHBIX MOKa3aTeselt CTemeHed
Q = (q1,-..,9n) ¥ CONPSIKEHHOE INPOCTPAHCTBO BEKTOPHBIX IOKa3aTesell cTemenelt
acumnrotik P = (py,...,p,). KaxzaoMmy cnaraeMoMy B npaBbIx 4acTsix cucTeMml (1)
COOTBETCTBYeT BEKTOPHBI! NokasaTemb cremend Q; = (qij,...,qn;). MHoXecTBO Bcex
BEKTOPHBIX TOKasaTesell creneHe#t S = {Q,;} cnaraembix B npaBBIX yYacTax cucrTeMs! (1)
HA3HIBAETCH Hocumenem. Beiykias obonouka M HocHTeNns S HA3LIBAETCS MHO202PAHHUKOM
Huviomona-Bprono cucremnl (1). MHororpannuk M cocrout u3 rpauedt I, Kaxaolt rpaun
T', coorBercrByeT yKopouenwmas cucmema cucTembl (1). B npaso#i yacTu ykopodeHHOH
CHCTEMBI, OCTAIOTCSH. TOJIbKO Te cJaraeMsle, y Xoropeix Q; € I', N'S. Takxke Kaxaol rpasn
I'; coorBercTByer Hopmasvhwui xonwyc U, sexkTopoB P, HOpMaibHBIX X rpand ['.. s
HCC/IEJOBAHMS CTEIIeHHBIX ACUMTOTHK € IOKasaTelaMu M3 KoHyca U, HaJo npexje BCero
[POAHAIN3UPOBATh YKOPOYEHHYIO CHCTEMY, COOTBETCTBYIOIIYIO Tpanu I'f.

Jnst peaymmzanuu meroga MHB aBropoM cosmana koMmnbloTepHasi mporpamma |2,
TIO3BOJIAIONIAs [0 HOCHTEMIO CHCTeMBI (1) BHIMHCIATH BCE €€ YKOPOYECHHBIE CHCTEMBI H HX
HOPMaJIbHbie KOHYCHI.

PaccmarpuBaercst npuMenenne merona MHB k ananusy unrerpupyemocru cucremst (1).
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A priori estimates for nondiagonal systéms with quadratic nonlinearities in the
gradient
Arkhipova A.A. (Saint-Petersburg State University, Russia)

We consider the Dirichlet problem for nondiagonal quasilinear elliptic systems of equa-
tions with strong nonlinearities in the gradient. We relax an assumption on behavior of a
solution near a fixed point to provide an estimate of the Holder norm of the solution in
a neighborhood of this point. More exactly, we assume local smallness of the Campanato
seminorm of a solution but not the smallness of its oscillation. For one class of such type
systems, we derive an optimal condition ensuring local estimate of the Holder norm ( and
the stronger norms) of a solution.
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In the parabolic case, the same type result we proved for a solution of the Cauchy-
Dirichlet problem. New description of the conditions guaranteeing local smoothness of solu-
tions was obtained with the help of the so-called quasireverse Holder inequalities derived by
the author.

HakpeoiBaroimue oTo6paXkeHUs] B METPHYECKMX [IPOCTPAHCTBAX U HEMOJBHIKHEIE
TOYKU
ApytioHoB A. B. (r. Mocksa)

PaccMOTpeHBl 3aMKHYThie HakKphIBaowWpe OTOOpa)keHHs, IAeHCTBYOIIME U3 OXHOIO
TIOJTHOrO METPHYECKOr0 NPOCTPAHCTBA B APYTroe METPUIECKOE IIPOCTPAHCTBO (BoobIIe roBops
HemosHoe). JJoka3aHo, 4To 115t T1060ro oTobpaskeHus!, JefiCTBYIOIIErO B TEX Ke METPHYECKHX
[IPOCTPAHCTBAX H yAOBJIETBOPSAIOLIETO yCI0BHIO JIunmuia ¢ koHcTaHTo# JIunmunnia MeHbluel,
YeM KOHCTaHTa HaKpbiBaHUs, CYMIECTBYET TOYKa, B KOTOPOIl 3HAYEHUS 3THX oTobpakeHmit
paBHBL. [[15 MHOTO3HAYHBEIX OTOOGpaXKeHHH PH AHATOTUYHBIX IPEANOIOKEHUIX JOKA3AHO
CYIIeCTBOBAHHE TOYKHM COBNaJeHNsi orToOparkeHult, T.e. TOYKH, B KOTOpoH 0Opaspi 3THX
MHOTO3HAYHBIX OTOOpakeHHN NepeceKaloTCsi. YKa3aHHblE De3yabTaTsl 0606LIAIOT Kak
TIPUHIUI CXXMMAIOMHMX OToOpaXKeHuit, TaK U TEOPEMY O HAKPBLIBAHUMU.

O kpaepoit 3aza4e ¢ HEJIOKAJIBHBIM YC/IOBHEM JJisi CUCTEMBI IHNepGOIMYeCKUX
ypaBHeHu %
Acanosa A.T. (Hucruryr marematuxku MOH PK)

B coobiennn Ha mpsimoyrosbauke §2 = [0, T] x [0, w] paccmaTpuBaercst kpaesas 3a1a84a
C HEJIOKAJIbHBIM YCJIOBHEM JUISl CHCTEMBI TUIIePGONNYECKHX YPABHEHH BTOPOro NOPsiaKa

2
5%% = A(t,w)% + B(t,x)% +Ct,x)u+ ft,z), teQ=[0,T)x[0,0], (1)
u(t,0) =¥(t), telo,T), (2)
Py 2D | ) 22 | Rt o) o +520) BT gt
+Sl(1)).au(at—t’x) ]tz:"rk_zk +So(.’£)u(t,.’l)) |t=fk—x": LP((E), T €E [O’QJI, (3)

rae k > 0, (n xn) - marpunm A(t,x), B(t,z), C(t,z), Pa(z), Pi(z), Po(z), S2(z), Si(z),
So(z), n - BexkTop - dynxuuu f(t,z), p(r) HenpepsIBHBL cooTBETCTBEHHO Ha §2, [0,w], n -
BeKTOp - bynkuus 1(t) nenpepsisno guddepennnpyema na [0, 7).

Kpaesbie 3amaunm tina (1)-(3) BOSHMKAIOT NpH MATEMATHYECKOM MOZEIUPOBAHMM
peadbHBIX TPONECCOB, € Y4eTOM JMHAMHUKH HX IpOTeKaHusl, .Korga Tpebyercs BecTH
Habi0IeHye, Je/IaTh BCEBO3MOXKHBIE H3MEPEHHs U NIePeJaBaTh HHGOPMALMIO, C IIOMOIIBIO
yCTpoHCTBa OOPATHON CBA3M YNPABIAILEMY YCTPOMCTBY O COCTOSIHMM IIPOLECCa, B Kax(,uon
TOUYKE HEKOTOPOIO HENPEPLIBHONO MHOXKECTBA.

Insi uccnenosanust 3anasu (1)-(3) ucnosbsyercss meron BBemeHMs (byHKUUMOHAILHBIX
[apaMerpoB, Pa3pabOTaHHBI ABTOPOM /IS pelleHHs HeJIOKAIbHBIX KPaeBbIX 3a1ad JJIs
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cucTeM runepboNMUeCcKHX ypaBHeHmit BTOporo mopsaka. Ha ocHoBe aroro Meroga Gbimu
YCTAHOBJIEHbL HEOGXOAUMBIE M JOCTATOYHBIE YCIOBHA KOPPEKTHO! pa3pemnMOCTH KPaeBbIX
33734 C JAHHEIMU Ha XapaKTePHCTHKAX, JOCTATOYHbIE YCJIOBHS OHO3HAYHON Pa3peInMoCTH
CHHTY/ISPHOil KpaeBol 3aJaudl Ha II0JI0Ce M HEKOTOPHIX KPaeBblX 3aJa4 C HEeJIOKAJIbHBIMA
YCIIOBHSAMMU AJISl CHCTEM TUNepboIHIecKnX ypaBHe Uit B TEPMUHAX HCXOAHBIX JAHHBIX.

B coobmennu mosydeHsl KoagdunueHTHbIE NOCTATOYHBIE YCIOBUS CYyHMIECTBOBAHUA
eMHCTBEHHOI'O KJIACCHYECKOro pelrenusi Kpaepolt 3aaun (1)-(3) u noCTpoeHs! aJIrOpPHTMBI
HAXOXIeHHs NPUOIHIKEHHOrO PElleHHs PACCMATPUBAeMON 3a/1a4uu.

IIpunuun makcumyMma IToHTpsruHa ¥ yCJIOBUS TPaHCBEPCAILHOCTH [JIs 3a/a4
Ha 6ecKOHe4YHBIM NOJIyHHTEpBasie BpeMeHU
Acees C. M. , Kpsxnmckuit A. B. (MHPAH, r. Mocksa, Poccust u ITASA, Laxenburg,
Austria)

JlokJia MOCBAIIEH TEOPAM IPUHIKIA MaKcuMyMa JlonTpsruna Jyis OHOTO K/1acca 337189
ONTHMAJLHOrO YTIPABIEHHs, BOSHUKAIOIUMX B SKOHOMUKE NIPH PACCMOTPEHHH JHHAMUYECKHX
Mojenell ONTHMAJILHOTO pachpelefieHusi pecypcos. Hambosee 4HacTo Takue 3ajav
BO3HHKAIOT [PH HMCCJIEIOBAHNH [IPOLECCOB SKOHOMUYIECKOro pocTa. PaccMaTpuBaeMblit Ki1ace
3a7a4 nMeeT psaj ocobeHHOCTed, 3ATPYAHSIOWMX NpPUMEHEHHWe CTaHIaPTHOIO Aalapara
MATEMATHYECKOl TEeOpHH ONTHMANLHOrO ynpasienus. IIpexae Bcero, 1o GecKOHEUHbIN
[O/IyHHTEpBa/ BPEMEHH, Ha KOTOPOM P&CCMATDHBAETCH ITPOLecC yNpPaBJIEHHs CHCTeMOH.
MakcumusupyeMbiit GyHKIHOHAI IOIESHOCTH B 9THX 3a1a9aX UMeeT crenuanbhsit sua. On
38/1aeTCs HECOBCTBEHHEIM HHTEIPajoM, COAEPIKAILUM SKCIOHEHIHAIbHbIH JHCKOHTHDY IOIMA
MHOXHTEb. B JOKJIaJe H3JAraeTcs HOBHH ANNPOKCHMAIMOHHEIR MOAXOM K MCCIENOBAHMIO
[JAHHOTO KJacca 3aJad ONTHMAILHOIO YTIPABIeHMd, BeAymmit K monHoMy Habopy
HEOBXOIMMbIX yC/IOBHll onTuMaibHocT B (opme mpunnmna makcumyma [lonrparuna. B
ILeHTpe BHUMAHUS JOKJIaNa — XaPaKTEepPU3aiist ACHMITOTHYECKOro NOBe/IeHNs CONPSXEeHHOM
TepeMeHHO} ¥ raMHUJIbTOHUAaHA 38,Ja4u Ha DeCKOHEUHOCTH.

JIuTeparypa

[1] C. M. Acees, A. B. Kpsxumckuti [punyun maxcumyma ITowmpreuna dan 3a0avu
OTMTMUMEABHOZO YNPABAEHUR C PYHRUUONAAOM, 300BHNUM HECOBCTREEHHMM UNMEZPAAOM,
Joxaadw Axademuu Hayx, 204, cmp. 583-585, 2004. :

[2] S. M. Ascev, A. V. Kryazhimskiy The Pontryagin mazimum principle and transver-
sality conditions for a class of optimal cintrol problems with infinite time horizons, SIAM
J. on Control and Optimization, 43, pp. 1094-1119, 2004.

PaboTa BLINOMHEHA NpH YacTHuHON noxaepxkke Poccuitckoro @onna @ynaaMeHTANLHBIX
nccnenosannft (mpoexr 06-01-00034-a). :

Generalized Khintchine inequality in symmetric spaces
Astashkin S.V. (Department of Mathematics and Mechanics, Samara State University,
RUSSIA)

Let ry,72,... be a sequence of independent random variables with symmetric two-point
distribution P(r; = 1) = P(r; = —1) = } (for example, 7; could be the classical Rademacher
functions defined on [0, 1]). By the famous Khintchine inequality, for every p > 0 there exists
a constant C, > 0 such that for arbitrary real ax we have

“g:l akrk“l.,,[o,l] G (i a'z‘) 1/2'

k=1
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Necessary and sufficient conditions are found under which the following generalized

Khintchine inequality - o
%l <el()

holds for arbitrary sequence {fx}$2., of independent mean zero random variables from a
symmetric space X on [0,1]. Moreover, a description of the subspace of X generated by
Rademacher functions with independent vector coefficients is presented.

Oscillation Criterion for Quasi-linear Differential Equations
Astashova I. V.2 (Moscow State University of Economics, Statistics, and Informatics)

Consider the differential equation

n-1
¥ (@) + Y ai(@) y9(z) + p() ly(@)|* sgny(z) =0 (1
=0

with n > 1, k > 1, and continuous functions p(z) and a;(z).
A solution to (1) is called oscillatory if it has arbitrary large zeros.
Theorem 1. Suppose the functions p(z) and a;(z) satisfy the conditions

/oo 2" p(z) dz < o, 2

o0
/z"‘j'llaj(x)ldz<oo, §=0,..,n-1 ®)

Then for any h # 0 there exists a non-oscillatory solution y(z) to (1) tending to h as
z — oo and having derivatives satisfying the conditions

e 3 :
/ 271 |y @) dz <00,  j=1,....n.
x

Theorem 2. Let p(z) be positive and ag(z), ..., an—;1(z) satisfy (3). Then the following
conditions are equivalent:

(i) p(z) satisfies (2),

(i} there exists, in a neighborhood of +0o, a non-oscillatory solution to (1) that does
not tend to 0 as z — oo.

Corollary. Let n be even, p(z) positive, and ao(z),...,a,-1(x) satisfy (2).

Then the following conditions are equivalent:

(i) All solutions to (1) defined in a neighborhood of +oo are oscillatory,

(ii) -

/ 2" p(z)ldr = cc.
T

2This work was partially supported by RFBR (Grant 06-01-00715) and by Grant NSh-
2538.2006.1.
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Remark. In the case ap(z) = - -+ = ap~1(z) = 0, the oscillation criterion was proved by
F. Atkinson {1] for n = 2 and generalized by 1. T. Kiguradze for higher orders [2] and the
case an—2(z) # 0 [3].
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O MHOroOMepHBIX MHTErPAJIbHBIX ONEPATOpPax C OJAHOPOIHBLIMHU SIAPAMM M
paguaJbHbIMU c1a60 ocUUWIIMPYOLUMU Kosd duumenTaMu
Ascanxuy O. I. (1. Pocros-na-ony)

B npocrpancrse L,(R™), 1 < p < 00, pacCMOTPHM OLEPATOP

(Kp)(z) = / Ma.w)e(y)dy, o €R™, 1)

Rn

rae &byuxuust k(z,y) omHOpomHa cTemeHd (—n), MHBADMAHTHA OTHOCUTENBHO TPYIIILI
Bpautesnit SO(n) ¥ yooBiIeTBOPSAET yCIOBHIO

k(el,y)lyl—n/p € Ll(Rn)) rae €; = (1»07 s 70)7

KoTopoe ofecrneduBaeT orpaHuYeHHOCTb onepatopa K B L,(R™).

Hanee, nycts paq(R™) — MHOXKeCTBO paauanbHbIX GyHKUHR, C1a60 OCHMILIMPYIONHUX B
Hysie ¥ Ha GEeCKOHEYHOCTH.

Of6osnauuM 4epes B 3aMKkHYTylo mnonanrebpy Ganaxoso#t amrebpet L(Lp(R™)),
NOPOXXJEHHYIO BceMHU onepatopamu A Buja

£
A=A+ MoK +T,

J=1

rne A € C, K; — oneparop Buga (1), M,; — oneparop yMHOXeHHS Ha (YHKIHIO
a;(|z]) € Qraa(R™), T — KoMuaxTHbIA onepatop. Jis anreSpsi B CTPOMTCS CHMBOIUYECKOE
HCYMC/IEHHE, B TEPMWHAX KOTOPOLO YCTAHABJIMBAETCS KpPHUTepHi dpearomsmoBocT U
<opMyna st BHIMHCEHHs] HHIEKCa OTIEPATOpoB u3 8.

PesynpraTsl JaHHOTO MCCIIENOBAHHS TOJIydYeHb! coBMecTHO ¢ B. M. HeyHnaskom.

IIpubamxenne MHAMBUAYANHHBIX QYHKUHHE B MHTErpajibHOR MeTpHUKe
Babenko A. I., Kpskun IO. B. (r. Exarepun6ypr, Wroclaw, POLAND)

PaccMmaTpuBaercd 3aJa4a HaUy4IIero HHTErPAIbHOTO NPUOIMKEHNST HHANBUYAJIbHBIX
GysKIMA Ha EpHOAE IPOCTPAHCTBOM TPHIOHOMETPUYECKUX NIOJMHOMOB 3a8aHHON CTENeHH.
B kauecrse mpubisimkaeMbix GyHKIUMN HCCAEAYIOTCS, B YACTHOCTH, PA3DPBIBHbIE (DYHKIUH,
NPUHHMAIOUME JIMIIb KOHEYHOE YMCIO 3HAYEHMH, B TOM UHCJIe — XapaKTePHCTHYeCKas
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dynkuus nnTepsana n bynxuus Xaapa. Jaxke s Takux mpocredmux byHKuult 3amaua
TOYHOIO HAXOXAEHWS BEJIMYMHBL! HAWIYYILNEO HHTErPAIbHOrO NPUOJIMKEHHS OKA3AJAChH
HeTPUBHANLHOH!.

YeTanoB/IEHa B3AMMOCBSA3b PACCMATPHBAEMOI! 38,1841 ¢ M3BECTHBIM HepaBeHCTBOM Bopa—
Dapapa, yKa3bIBaeTCA TAKXKE CBA3b C 3aJa4elt 0 TouHOM HepaBencTse [xexcoHa-CTedxuHa
B npoctpancTse C.

HccnenoBanusi nepBoro W3 aBTOpOB mHomgepxansl POOU (npoext 05-01-00233),
VnTerpannonHeiM NpoeKToM byHIAMEHTATBHBIX HAYYHBIX MCCIEI0BAHMI, BBIIOTHAEMbIX B
¥YpO PAH cosmecrro ¢ yuennimn CO PAH, u [TporpaMMoti rocynapCTBEHHOMN NOMLKEPIKKH
Belymux HayaHeX mxox P® (mpoexr HIII-5120.2006.1). Vccnenopanust Broporo asTopa
noaaep>kansl npasuTenscrsoM Ionbim (rpant 201 016 31/1206).

K3Ba3ndoToHs! ¥ NPOCTPaHCTBEHHO-BPeMeHHON| TydeBoff MeTox
Ba6us B. M (IIOMH PAH, r. Canxr-Ilerep6ypr)

Jns umpokoro xnacca JiMHeMHbIX yPABHEHHH B 4aCTHBIX NPOW3BOIHEIX CYIIECTBYIOT
BBICOKOYACTOTHEIE ACHMITOTUYECKHE DEIIeHHs, MMEIOIHe XapaKTep BOJHBI, AMIIHTYHA
KOTOPOH CyLIECTBEHHO OTJIMYHA OT HyJs JIMIIb B OKPECTHOCTH H30JMPOBAHHON TOYKH.
Touka 3Ta JBMXKETCs BOOIb Jiyya (B KBaHTOMEXAHHYECKOM CIydae BIOIb KIACCHYECKOH
TPaeKTOPHH) C IPYMNOBO# CKOPOCTHIO. PemreHust Takoro Tuma (MBI X GYeM Ha3BIBATH
"xBasucoTonamn") crpositcss HauMHAs ¢ TMOHepcko# paGoTht D.IlIpemuurepa. B Gosee
No3AHUX paboTax MCNOAb30BAJACH JIHGO TEXHAKA NOTPAHCIONHLIX paJoKeHuH, 6o
METOABI, BOCXOAsiME XK paccMoTpeHnsiM wmoHorpadum B.Il.Macaosa "KommnekcHsrit
meron BKB B memumefithix ypaBremusix"(1977). DrTo HenpocThie mocTpoeHusi. B
HACTOSILIEM JOKJIa/ie AHAJTUTHYECKHE BEIPAXKeHUs JJ1s KBa3U(DOTOHOB BBIBOAATCA IPUMEPHO
TaKXKe, K&K WIEHbl KJIACCHYECKHX NPOCTPAHCTBEHHO-BPEMEHHbIX Pa3ioKeHui. JOCTHrHY Th
TaKoOro eAnMHoobpasms NO3BONAET TEOPHsl (DOPMAJIBHBIX CTENEHHBIX PaAoB. OKa3bIBATCH
NPaKTUYECKMX BO BCEX CJIyYasdX, KOIZla YAaeTcsl IOCTPOMTH IPOCTPAHCTBEHHO-BPEMEHHOe
pa3sioxeHue, BHIBOA GOPMY] I KBa3H(OTOHOB OKA3BIBAETCS IeI0HM NOYTH DYTHHHBIM,
XOTSI HEKOTOPbLIE TEXHUYECKHE TPYIHOCTH OCTAlTCA. [Ipumenenne bOPMasIbHBIX CTENeHHBIX
PAI0B TI03BOJISET, HANPHMEp, JIETKO NOCTPOMTHh KBa3ugoTOHH BOMH Peses. B noknane
MPEJTIOIaraeTcss NPOMIIIOCTPYPOBATL COTBETCTBYIOUIYIO TEXHMKY H& MPOCTOM MOIETbHOM
npuMepe BOIHOBOTO YPaBHEHHS C MEPEMEHHOM CKOPOCTBIO.

Nonlinear dynamics of a system of particle-like wavepackets
Babin A. V. (University of California, Irvine)

This talk describes our continuing study of nonlinear evolution of a system of wavepack-
ets. We study a wave propagation governed by a nonlinear system of hyperbolic PDE’s with
constant coefficients with the initial data being a multi-wavepacket. By definition a general
wavepacket has a well defined principal wave vector, and, as we proved in previous works
[1], [2] the nonlinear dynamics preserves systems of wavepackets and their principal wave
vectors. Here we study the nonlinear evolution of a special class of wavepackets, namely
particle-like wavepackets. A particle-like wavepacket is of a dual nature: on one hand, it is
a wave with a well defined principal wave vector, on the other hand, it a particle in the
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sense that it can be assigned a well defined position in the space. We prove that under
the nonlinear evolution a generic multi-particle wavepacket remains to be a multi-particle
wavepacket with a high accuracy, and every constituting single particle-like wavepacket not
only preserves its principal wave number but also it has a well-defined space position evolv-
ing with a constant velocity which is its group velocity. Remarkably the described properties
hold though the involved single particle-like wavepackets undergo nonlinear interactions and
multiple collisions in the space (the number of collisions may be high, it is proportional
to N2 where N is the number of particle-like wavepackets in the multi-wavepacket). We
also prove that if principal wavevectors of multi-particle wavepacket are generic, the result
of nonlinear interactions between different wavepackets is small and the approximate lin-
ear superposition principle holds uniformly with respect to the initial spatial positions of
wavepackets. See for details [3].

Crncok JuTeparyphbl

[1] Babin A. and Figotin A., Wavepacket preservation under nonlinear evolution, submitted;
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[3] Babin A. and Figotin A., Nonlinear dynamics of a system of particle-like wavepackets

Stable eigenvibrations in elastic media with mass and stiffness perturbations
Babych N. (Bath, United Kingdom)

We study the spectral properties of inhomogeneous media that consist of two parts with
strongly contrasting stiffness and mass density. The small parameter describes the quotient of
stiffness coefficients. The m-th power of the parameter is comparable to the ratio of densities.
We show that the asymptotic behaviour of eigenvalues and eigenfunctions depends on the
rate m.

Let € be a bounded domain of R®, n > 2, with Lipschitz boundary 3Q divided into two
nonempty connected parts @~ and Q% by noncompact smooth surface T'. We assume that
Q- and Q% have Lipschitz boundaries. Let v be the unit normal to I'. We assume that the
medium is filling up the volume © and resonance vibrations of the medium are described by
the eigenvalue problem

div (a(z)Vue) + X~ "r(z)u =0, z€Q7, (1)
ediv(a(z)Vu) + Xp(z)u® =0, z €O, (2)

Bu. But
“‘E|69:0’ us—\r:uilr’ a-;_VIFZEO[%ll" (3)

where a, r and «, p are positive smooth functions in Q= and Q¥ respectively and m € R. The
inferior indices — and + denote the restrictions of a function defined in €2 to the subdomains
Q™ and QF.

We investigate the question how the resonance vibrations of the media, namely eigen-
values A and eigenfunctions uf, change if the parameter ¢ tends to 0. The case m = 1 with
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the mass density perturbation being strictly inverse to the rigidity one, was studied in [1].
The case of the stiff problem (m = 0) was considered in [2], [3].

For each m # 1 the system supports stable low and high frequency eigenvibrations, which
qualitatively differs for certain values of m. We classify the cases of qualitatively different
behaviour for the eigenvalues and eigenfunctions. Then complete asymptotic expansions for
each type of the vibrations are constructed for a certain geometry of Q.

Low frequency vibrations have one branching point separating highly contrast limit
behaviour, namely m = 1. Asymptotics of the low frequency eigenelements are constructed
by power series expansions. High frequency vibrations have two branching points of contrast
limit behaviour, m = 1. Asymptotic expansions of high frequency eigenvibrations (for
representative cases of limit behaviour with respect to m) are constructed by combination
of the WKB-method with power series.
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Positive processes
Bakhtin V. (Belarus State University, Minsk)

The notions of positive flow and positive process generalize the ordinary dynamical sys-
tems and stochastic processes. Their main distinctive feature is the presence of not a unique
probability measure on the phase space but a family of measures which are defined as fol-
lows. For each positive flow or process with phase space X we fix a certain convex functional
on the algebra C(X). This functional is called the spectral potential and is nothing else
but the logarithm of the spectral radius of the corresponding weighted shift operator. Any
subgradient of the spectral potential automatically turns out to be an invariant probability
measure on X. As in thermodynamics, we call these measures equilibrium ones. All of them
have equal rights because there is no reason to prefer one of them rather than another.

To define a positive flow or a process one should specify some semiordered operator
algebra with one distinguished element (which is called evolution operator, or shift operator)
and fix in this algebra some Abelian subalgebra isomorphic to the algebra of continuous
functions on a Hausdorff compact set. The latter set is called the phase space of the positive
flow (process).

In this setting the concept of motion is treated mostly from the algebraic point of
view. An abstract semigroup of positive operators (for instance, the family of weighted shift
operators) is declared a source of motion; and we investigate evolution of operators rather
than individual trajectories in the phase space. This approach is borrowed from quantum
mechanics. Within it the very concept of a phase space becomes secondary. This can be
seen, in particular, from fact that for one and the same law of motion (evolution) one can
consider different phase spaces. They are determined by the set of those functions whose
values an observer wishes to measure.

Despite the great generality of the described approach, we succeed to prove within it some
quite concrete probabilistic results. For instance, if the spectral potential is differentiable
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(in the sense of Gateaux) at some point then for the corresponding equilibrium measure the
large numbers law is valid. Moreover, we obtain exponential asymptotics for the probabilities
of observation of various empirical measures in terms of the action functional.

[1] Bakhtin V. Positive processes. http://arxiv.org/abs/math.DS/0505446.

MHoromepHbIe Kj1acchl Barepmana u cxoguMocTb psajgos @ypre
Baxsanos A. H. (1. Mocksa)

Oycrs T = [-m,7}, m > 2, a (A},...,A")BV(T™) — xnacc Barepmana na T™
(mompoGHbte onpenesenus cM. B {1]).
Hawm noanobutca ceaymommee yorosue Ha A = {Ak}:

i(,\ﬁ oAM= o0, (1)
n=1

Clleaymommas TeopeMa YTOYHSET Pe3yIbTaTsl aBTopa u3 [1].

Teopema. Ilycrs npu KaxKIoM p = 1,...,m cyliecTByer
limpy oo (211:;1 ;11—) / (22;1 )\—ln—), 1 oH (a) paBen nymo; (b) moMOKHATeNEH B KOHEHeH; (c)
paseH +00.

Torna MOXHO YTBEDXKIATb, TlapaHTHpPyeT JHM MPHHAJIEKHOCTb H3MEPUMOH
27-epuoAudecKoil  GYHKOMM  Kjaccy (Al,...,A™)BV(T™) CXOJHUMOCTh €€
TpUroHoMeTpuecKoro psiga Dypee MO NPSIMOYTONLHAKAM B KaX[IOl PerynsipHoit Touxe. A
HMEHHO:

e Ecnu xoTa 65l mpu OoNHOM p BhnoaHeHo yciobme (c), To paa Pypee Moxer
PaCXOOUThCSE.

o Eciu npu Beex p BHIOJNHEHO ycaoBue (2), To pag @ypbe CXOUTCs.

o Ecau npu HEKOTOPOM p = po BbiroaHEHO yciosue (b), n s 9TOro pg HAPYIIEHO
yenosue (1) (s uwacrmoer, ecnk Ay = Ay = Az = {n}), To psax Qypbe Moxer
PaCXOJUTBCA.

o Ecin sl HEKOTOPOTO P = Po BHINOJIHEHO ycoBHe (b), a JUisi OCTAJIbHBIX P BBIIIOIHEHO
yciosue (a), ¥ 4718 p = py BbINOHEHO yciosue (1), To pax Cypbe CXOUTCS.

o Eciu npy AByX 3HAYEHHAX P = Py M P = Py BHINOJIHEHO ycnosue (b), a A1 OCTaNBHEIX
p BBHIIOJHEHO ycjosue (a), M Anst p = p; BemoaHeHo yciosue (1), To psx Pypbe
CXORHMTCSL.

Pa6oTa BbINOJHeHa Tpu ¢dbuHaHCOBOH noazepxkke P@PU (mpoekr 06-01-00268) u
[POrPaMM TOCYAAPCTBEHHON TIOIEPYKKI MOJIOABIX POCCHICKHIX YIEHBIX i BE/IyIIUX HAYTHBIX
wkos1 (npoexts: MK-6085.2006.1, HILI-4681.2006.1).

JInreparypa
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Tonosorudeckue cBoHcTBA cab0 BBITYKJBIX MHOXKECTB B 6aHaXOBBLIX
NPOCTPaHCTBax
Banamos M. B., (r. Mocksa)
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Iloka3aHo, 4TO B pABHOMEDHO BHIIYKJIOM H DABHOMEPHO TJIaJKOM OaHAXOBOM
HpocTpaHcTBe u3 cnaboft Bommykioctd (mo Buamo) 3aMKHYTOro MHOXECTBA Clejiyer
OPOKCHMAJbHAS TJIAAKOCTh ITOrO MHOXKecTBa. OOpaTHOe BEPDHO TOLJd ¥ TOJbLKO TOrAa,
KOrJja Iap HOPMbl NPOCTPAHCTBA SIBJSETCS TNOPOXAAIOIMM MHOXeCTBOM. B gacTHOCTH,
JL715l 3AMKHYTOTO MHOKECTBAa B TH/bGEPTOBOM IPOCTPAHCTBE YCI0BUS c1abol BHIIYKIOCTH K
[POKCUMAJILHON ITIaAKOCTH SKBUBAJIEHTHBI.

Iloka3aHO, YTO B paBHOMEPHO BBINYKJIOM M pABHOMEDHO IyaJkoM 6anaxoBoM
NPOCTPAHCTBE M3 NPOKCHMAJbHOA TMIAAKOCTH MHOXKeCTBa (8 3Ha4uT, u u3 ciaaboli
BRIYKJIOCTH 110 Brayio) creayer cnabas Bhinykiaocts 1o E¢umosy-Creuxuny, a obpaTsoe
mesepHo. TakxKe MOKA3aHO, 9YTO Ui NPOKCHMAJIBHO IVIAJKHX MHOMKECTB MeTpHYecKas
NIPOEKIHsl HENPEPLIBHO 3aBUCHT He TOJBKO OT IPOCHMpyeMo#t TOYKH, HO H OT MHOXXeCTBa
B CMbICJIe MeTpHKH Xaycaopda.

Tlosnyuena TeopemMa 06 OTAENMMOCTH, YTBEPXKARIOllasi, YTO €CIH B PABHOMEPHO
BBLINYKJIOM H PaBHOMEDHO IIAAKOM 0aHaXOBOM IIPOCTPAHCTBE € MOPOXKARIOMIAM IapoM
3a7aHB! /IBA HENEPECEKAIOWUXCsl MHOYXKECTBA, OJHO U3 KOTOPHIX CHIBHO BBIIYKJIO, & ApYToe
— ¢ga60 BBHINYKJIO, TO IPH ONPEAEIEHHOM COOTHOUIEHHMH YIapaMeTPOB BBIIYKJIOCTH 3TH
MHOXKECTBa MOXKHO pa3fenuth cdepoit. ITokaszaHo, 910 NOPOXKIZAEMOCTE INapa HOPMbI
HeoBxomuMa, 4715 TOro, 9To0bl B pACCMATPHBAEMOM MPOCTPAHCTBE BBINOJIHAIOCH yKa3aHHOE
YCJIOBHE OTAEIHMOCTH.

Pabora Brimosnnena cosMecTHO ¢ MBanoseiM I E.

Pemenve JuHeHO-KBAAPATUYHON UrPhl A HECTAIMOHAPHBIX ONEePATOPHBIX
o6beKTOB
Bapabanos A.E. (Cauxt-IlerepByprckuii rocyapCTBEHHBIH yHHBEPCHTET)

CranyapTHad 3aga4a H™ cyGonTUMAaJbHOIO yIpPaBIeHHs COCTOUT B IOMCKE CTPaTerv
OZIHOTO M3 WIPOKOB B JIMHEWHON CTaIMOHAPHOM AMHAMHMYECKOM Mrpe Ha mosyOecKOHeUHOM
NpOMeXXyTKEe BpPEMEHH, IPH KOTOpON 3aJaHHBIf HA TPAaEKTOpMAX KBaJpaTHYHBIA
(DyHKUMOHAT NPUHMMAET HeNOJIOKHTE/IbHbE 3HAMEHWs HE3ABHCHMO OT MPOrpaMMHON
CTpaTerus BTOPOrO Mrpoka. B mocnemume romwi 6bl1 paspaboran $-moaxox K peumieHuo
9TOl 3aJaul, B KOTOPOM ypaBHeHHsi PHKKaTH wiu omepaunyuu (GakTOpH3AIMHM 3aMEHEHBI
Ha pellleHHe OAHOTO JHHeHHOro (yHKUMOHAIbHOrO ypapHeHus. IIpsmoe obobuienue sToro
Noaxofa MO3BOJMJIO BHepBhle HalTu 3¢¢eKTHBHbIE aJrOPUTMBI pacuéra cTpaTernit s
CHCTEM C TIPOM3BOJLHBIMM TOCTOSHHBIMHM 3anas3ipiBaHusMu. B panno#t pabore Mmeron
060BIIEH Ha HECTAIMOHAPHBIE CHCTEMbI C ONEPATOPHBIMHM YPaBHEHHWAMH oObeKTa obuiero
BHIa, KOTOpbie BOBHHMKAIOT NPH HCCIEAOBAHMM CHCTEM C HENOJIHBIMH H3MEPEHHAMH IOCje
NpUMEHEHNs TPYHIUIS Pa3fe/ieHAs YNPaBJIEHUst M OlleHMBaHMSA. Pellenue CymecTBEHHO
onupaercs Ha aBCTPaKTHLIN MPHHIUI MAKCHMyMa B PHIbOEPTOBOM NPOCTPAHCTBE, a TaKXKe
Ha TeopeMy O MajioM Ko3(dguIlMeHTe YCHJIEeHMs, TeOpeMy MABOACTBEHHOCTM M TEOpEMY
pa3zienenusi. JloKa3aHh! CBOMCTBS IMaJKOCTH SIEPHBIX (YHKUMA [UIsS NOPOXKAAIOMIMX
onepaTopos.

O nepasencrsax tuna JIu6a-Tuppunra
Bapceran JI. C. (r. Epepan)

Hamu noxnydens! nepaserctsa Tuna Jlnb6a-Tuppunra (cM. [1]), KoTopble AOKA3LIBAIOTCS
MeTozoM, npegioxentnM B, C. Kaumubiv B paGore {2].
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Teopema 1. Ilycts {gaj}jvﬂ c L*(S?) - opronopmupoBaHHas cucTeMa yHKUui,

N
3aJlaHHBIX Ha d-MEPHOM TOpe 84, pjill, 5 =1,...,Nup, = Egof HWmeer MecTo
i=

HEPAaBEHCTBO:
N
/SA pi du < Cdz ”priﬂ)
i=1

Teopema 2. Jlns opToHopMupoBanmo#t cuctembt dyuxuutt {;}.; C L*(R') nmeer Mecto

HEpaBEHCTBO
N
/Rl pk dz < Cy Z ”|f|(k_l)/2‘/3j
J=1

rae ¢; - npeobpasopanne Pypbe GyHKIHME .
Teopema 3. Jlast OpTOHOPMHPOBAHHON cHCTeMbl (YHKIHH @ = {cpj}_,f;l c L*(R?)
HMEET MECTO HEPaBEHCTBO

‘in(sd) ’

2

. k=12,
L2(RY)

N
/m pLdzdy < C Z 1Ve;ili32 Ry

=1

Jluteparypa
[1] E. Lieb, W. Thirring. 'Inequalities for the moments of the eigenvalues of the
Schrodinger hamiltonian and their relation to Sobolev inequalities’, Studies in mathemat-
ical physics. Essays in honor of Valentine Bargmann, Prinecton Univ. Press, Prinecton,
1979, pp. 269 - 303.
[2] B. C. Kaumn, *06 odnom xaacce HepABEHCTE 0AA OPMOHOPMUPOSAHHBLE cucmem’,
Maremarndeckue 3aMerky, Tom 80, Bbim. 2(2006), cTp. 204-208.

06 obpaTHOM oneparope reneparopa Co-noJyrpynnbl
Bapcykos A. H. (r. Boponex)

Uccnenosanue nopaepxano rpaurom POOU-05-01-00203-a.

Hoayrpynna orpanuyuenusx onepaTopoB {U(t)}>0, JeficTBylomux Ha rwibn6epToBOM
npocrpascrse H npunamnexur Kaaccy Co, ecn BbINoIHeHO paBenctso limg o U(t)z = =
nnst Beex T € H. Oneparop A, onpeleseHHbIH paBeHCTBOM

Az = lim —[-]—@——I z,
t—0 t
s Beex T € H, A8 KOTOPBIX 3STOT NpeJeN CyHIeCTBYET, HA3bIBAETCS IEHEPATOPOM
nonyrpyunst {U(t)}i>o.

Teopema. Ilycrth orpanmuenubiit onmeparop A sBNAETCS [EHEPATOPOM DaBHOMEPHO
orpanpuennoll nonyrpymist xiacca Co, 0 ¢ 0,(A) u Tan(A) = H. Torza A~ lasasercs
[CHEPATOPOM HEKOTOPOH PABHOMEPHO OTpaHideHHol noayrpymist knacca Co.

Teopema Aaer uacTHumblii orser Ha mnpoGieny, cdopmysnmpopannyio B (cM. 11h:
st remepaTopa A paBHOMEDHO orpaHwdenHot nomyrpymmel kiacca Cp (0 ¢ 0p(A)

u Tan(A) = H) seasercs aum onepatop AT! reHepaTOpoM HeEKOTOPOIt DABHOMEDHO
orpasuTeHHol noyrpynns kiacca Co?
JInreparypa
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[1] deLaubenfels R. Inverse of generators Proc. Amer. Math. Soc. 1988. V.104. No.2. p.
443-448.

O6 MMNyAbCHBIX PeLIeHHMAX (PYHKUHOHAIbHO-AU(depeHINANBHBIX YpaBHEHHWA
TOYEe4HOro THUIA
Bexaspsn JI. A. (r. MockBa)

B joknale paccMaTpUBAETCST KPaeBas 3aJade Js HeJIMHEHHOro BbyHKIHOHAILHO-
AubbepeHIHaNTbHOr0 ypaBHEHUS TOYEYHOTO THNA

() = g(z{t+my),...,z(t +n,)), t € Bp, (1)
i{t) = p(t), t€R\Br, ¢()€ Lo(R,R"), (2
z(f) = 7, teR, zeR™ (3)
(i +0)—z(t;—0)=¢;, LER, t;<tiy;, G ER i€Z 4)

3aec z € R*, n; € Z, j=1,...,s. Otobpaxenre g : R*** — R ynosierBopser
yeaoBmio Jlumuuna ¢ koHcranTodt M. MuoxectBo Br: u60 KOHEYHBIN UHTEPBAJ [Eo,fl],
to, t1 € R; mmbo nonynpsimas [fo, +00], to € R; smbo npsimast R. Muoxectso {t; : i € Z}
siBIsteTCst 00beAUHeHHeM KOHEYHOrO YHC/a Op6UT rpymmbl capuroB @ =. (Op6uroft Touku
t € R nasbiBaercs MHOxecTBO Q(t) = {¢(t): ¢ € Q} ).

Hna moboro p € R, onpesenum GaHaXOBO MPOCTPAHCTBO (IPOCTPAHCTBO YHKUHMH C
BECAMH)

L,COR) = {m(.): 2() e CORRY),  sup e < +oo},

Teopema. Ilycts st sekoroporo g € (0, 1) BHIOJHSAETCH HEPABEHCTBO

8
M, Zu""‘"' <lnp L

i=1

Torga ans mobsix durcuposannbix ¢(.) € Lo(R,R?), f € R, € R, p; € R", i € Z,
sup;ez lloill re ! < +00 cymectayer pemenue z(.) € E;"Cm)(]R) xpaesott sanauu (1)-(4).
Taxoe pelieHHe SBIAETCS eAWHCTBEHHBIM.

Reachable and unreachable sets in the scattering problem for the acoustical
equation in R?
Belishev M.1., , Vakulenko A.F. (Saint-Petersburg Department of the Steklov
Mathematical Institute)

The scattering problem is to find u = uf(z,t) satisfying

uy — Au+qu=20, (z,t) € R® x (—00,00)
u’hz\(—t: 0, t<o0
im0 su((s + 7w, —8) = f(T,w), (1,w) € [0,00) x §?
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for a real smooth compactly supported potential ¢ = ¢(z) and a control
f € F = Ly([0,00); L2(S?)). The corresponding control problem is: given y € H = Ly(R3)
find f € F providing u/(:,0) = y; the reachable set is 2/ = {u/(-,0) | f € F}; the subspace
of unreachable states is D = H © U. The main subject of the paper is the structure of
and D. We present an example of the finite energy solution u/ satisfying u/ liol<le) = 0, ie.,
vanishing simultaneously in the past and future cones (reversing wave) and introduce the
set of points at which such a "revers effect"occurs. The existence of the reversing waves
turns out to be equivalent to the lack of controllability D # {0}. Cauchy data of such
waves belong to the classes Dz of the incoming and outgoing data simultaneously, providing
D_n D, # {0}. We also describe the simple conditions on f ensuring ||uf(-,¢){|x < ¢l fll#
for all t € (—o0, 00).

Yucnensble anropurMel Ge3 HacbilleHus Mas 3aaayu Helimana B cayyae
TpexMmepHoro ypapHeHus Jlansaca
Bessix B. H. (r. HoBocu6upck)

ITocTpoeH NPUHIMNUAILHO HOBHH — nenactuwaemnts (em. [1],[2]) ~ meroa uncaennoro
pellleHysl BHeIIHel ocecMMMeTpuuHO#i 3ajadn Hefimana ausi ypasmesust Jlamiaca B
caygae C°°-IaJKoro Tejla BpalleHWs JOCTATOYHO NpousBonbHol ¢hopmer. [omyyennbiit
pe3yJbTaT MMeeT NPHHIUIMAIbHEI HHTEPEC, MOCKOAbKY B ciydae C™-rnaJKoro pemeHns
IOCTPOEHHDI THCIEHHBIN METO/I ¢ TOYHOCTHIO 0 MEJIEHHO pacTyero muoxkutesis O(In’n)
peau3yeT aGCONIIOTHO HEy/lyqIIaeMylo 3KCIOHEHLMAJIbHYIO OLeHKY norpemsocti Oe™€),
¢ = const, n — 4UCIO CBOGOIHBIX NMApaMeTPOB ¥ YHKIMH, N3 KOTOPBIX KOHCTPYHPYETCS
npubmikenne. HeynnydmaeMocTs oueHKH 06ycn0B/IeHa aCHMIITOTHKON aJIeKCAaHAPOBCKAX Ti-
TIOTIEPEYHUKOB KoMnakTa C°-raaxux (aHaJIUTHIeCKNX) PYHKUUHA, COREPIKALIErO PEIIeHHe
3a8aun. JTa acCHMNTOTHKA Takxe uMeeT Bux O(e™"¢).

B kadecTBe TecTOoBOro mpHMepa C BbICOKOH TOYHOCTHIO YMCJEHHO pelleHa 3a7a4a
BHELIHEro 6e30TPHIBHOrO O6TEKAHMSI NMOTEHUMABHLIM IIOTOKOM HIEAJLHON HeCKUMaeMOR
JKHJKOCTH SJUTHIICOHJA BpALeHust ¢ yAnuHeHueM, paBHbiM 1000 (cM. [3]). OTmernm, wro
3JIMIICOMJ BPAILEHMs, C YIJIMHEHHEM, DPABHBIM 25, CTAHOBUTCA YXe HeIpeoOMMbIM
NpensaTCTBHEM Uil JIFOOBIX HACHINAEMBIX, T.6. C [VIABHBIM YJIEHOM HOrPELIHOCTH,
BBIYHC/TUTENILHBIX METOJOB TAKHX, KAK METO/BI KOHEUHBIX Pa3sHOCTel, KOHEYHBIX 3JIEMEHTOB
M T.OL

Pab6ora Brinossena npu nogaepxkke POOU, rpanr 05-01-00250-a.

JInTepatypa

[1] Ba6enko K. H. Ocnosw wucaennozo anaausa. M.; Vxesck: PXI. 2002. 847c.

[2] Beanix B. H. CM2K. 2005. T. 46. Ne 3. C. 483-499.

[3] Besix B. H. TIMT®. 2006. T. 47. Ne 5. C. 56-67.

®peiimbl Ilapcepaniss u AuckpeTrHoe npeobpasoBanue Youiua
Becnanos M.C. (BiaguMHpCKuit TrocyaapCTBEHHDIH yHABEPCHTET)

@peiivom  IlapceBanst (kectkuM ¢pefivoM ¢ rpamnuamMu 1) B m-MepHOM
JeMCTBHTENILHOM TNIPOCTPAHCTBE COIIACHO onpefeneHmio [1, ¢. 74] cayxur mnonssbilt
Habop 3/1eMeHTOB {(pk}ﬁﬁl, NO3BOJIAIOMIMA  BOCCTAHOBHTh NPOM3BOJIBHBIN  9JieMEHT

f= Z;ﬁ;(f, Pk )Pk-
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[Ipumep bpetima [Tapcesans B R? (monyuaercs “nopmuposkoit”’ cucrems! “mepcenec” {2,
c. 100]) u B R? ecTh HaboOp BEKTOPOB K3 LEHTpPa NPABUILHOTO TPEYrONLHAKA (B Clydae R2
nim Terpasapa B ciayuae R?) co croposoit v/2 B ero sepunnbr. B {3] mano onucanne dbpesivos
IMapcesanst npu M =m + 1.

O6osnaunm W, H, U — MaTpuupl nopsixa 2" IUCKPeTHOro Npeobpa3oBaHMd YoJIlua
(O0Y) B Hymepauusx ITsnu, Apamapa u Yomma coorBercrBenHo; A — mobyo us
OPTOTOHAJILHBIX MATPHIY %W, %H , %U ,Tae A = /27,

IIpennoxxenue. Jaz mampuy JIIY anzebpauveckan xpamnocms coBCTNEEHNLT HUCEL
A = —A u ) = A\ cosnadaem ¢ ux zeomempuneckoti kpamuocmuvio u pasna: 2" dan H u
U ( ~A)/2 daa wucaa A1 u (2% + A)/2 dan wucaa Az 6 cayuae wemnozo N OAL MATPUYDL

Hpocmpancmeo R?" pacnadaemca na npamyro cymmy Ey © By nodnpocmparcme
YKA3aHHOU PASMEPHOCTIIY manux, wmo Az = —x das ecex x € Ey, Az = x das ecex x € Ey.
Onepamop ¢ mampuyamuy (I A) uau (I + A) ecmv opmozonasvhul npoexmop na Ey
uan Ey coomeemcmeenno

Cron6up: matpuu 5 (I—A) n 1(I+A) eCTb dpeim Mapcesans B E1 1 E cOOTBETCTBEHHO.
Hast n = 2 u mymepanuu IIsnn CTon6ubI (I + A) ecTb onucanubifi Beune (IIPH CMEHe 3HAKA
nepsoro croabua) dpetim apeepans B Tpexmeprom npocrparcTse Ey. Jlokasatenscrso ais
n=4uW B [4]. B [5] ananormunas KOHCTPYKLHsl OCTPOEHa JUisi TPpeobpa3oBaKus YouIua.

JInteparypa
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Shadowing for discrete approximations of abstract parabolic equations
Beyn W.-J. (University of Bielefeld), Pastor V.J. (University of Valencia), Piskarev S.
(Lomonosov Moscow State University)

This paper is devoted to the numerical analysis of abstract semilinear parabolic problem
uw'(t) = Au(t) + f(u(t)),u(0) = u°, in some general Banach space E. We prove shadowing
Theorems that compare solutions of the continuous problem with those of discrete approxi-
mation in time. It is well-known fact (see [1,2,3]) that the phase space in the neighborhood
of a hyperbolic equilibrium can be split in a such way that the original initial value problem
is reduced to initial value problems with exponential decaying solutions in opposite time
direction. We use a compactness principle to show that the decomposition of the flow in-
to growing and decaying solutions persists for this general type of spatial approximation
including time discretization by some implicit Euler method.

The main assumption of our results are naturally satisfied for operators with compact
resolvents and can be verified for finite element as well as finite difference methods.

References

[1] W.-J. Beyn, S. Piskarev. Shadowing for discrete approximations of abstract parabolic
equations. Submitted to Discrete and Continuous Dynamical Systems Series B.

[2] W.-J. Beyn. On the numerical approximation of phase portralts near stationary
points. SIAM J. Numer. Anal. 24 (1987), no. 5, 1095-1113. .
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CunryaspHas 3anada Pumana — Iunnbepra u ee npunoxxkenne K ¢puanxe
MJIa3MEl
Bespogneix C. . , Bnacos B. U. (r. Mocksa)

Myers {1} == {Z0,Z1,..-, Tk} — KOHEUHOE MHOKECTBO TOWeK Ha rpanuue R pepxueit
nosmynnockoern HY := {Imz > 0}, npudem zg := 0o, & Mg, N1, .., Nk — 33J2HHBIE YHCIA
u3 Z*+. PaccmoTpum 3amady (Pumana — Cuibbepra) o6 oTbickanun ananmTudeckolt B H*
u nenpepuisaofi 8B HT \ {z;} dynxuun P+(z), yaosnersopsomeit Ha R\ {zx} ycnosmio
Re [h(:c)’P"”(x)] = ¢(x) ¢ KycouHo-TrénbAepoBbIMA h i ¢ (BO3MOXKHO, HMEIOIHMH Pa3phiBLl B
Ty), B TOUKAX T1,Z2,. .., TK YAOBIETBOPSIOMEN C/ieyIONMM aCHMITOTHHECKUM IIPH Z — Tk
yeaopuam: Pt = O[(z - a:k)"‘*""*], etk ng # 0, u PT = O(1), ecrn ny, = 0, a B
zg = oo — yeaosmio PH(z) = O(2%0+™), z — 00. 3pech ax — ApoGHAA JaCTh BEIMIHHBI
7~ [argh(zy + 0) — argh(zi — 0)] npu k # 0 u Bemwanue: 7~ [argh(+00) — argh(—oo)] npu
k = 0; cooTBeTCTBYIOMME LIebIe YacTH 0G03HaYaeM s 1 . IlycTs Bee ax > 0.

Teopema. (i) Ecau undexc x = ng — »#p + Zf___l(zk + ng) neompuyamenen, mo

pewenue P nocmaeaennoti sadavu umeem eud Pt(z) = XT(z)| Pu(2) + (mi)~!S(2)x
x fg () [S@E) R(t) X () (¢ - z)]'ldt], 20e P,(z) — npou3eoavhmuili NOAUHOM CMENENU X

¢ sewecmeennvmu xospduyuenmamy, Xt (z) = K= 2z — &)™ exp[ MH(2)] —
k=1

KGHOHUNECKOE PeweHue 3a0a\y,
¢

z~8 [ [r/2- argh(t)] dt L S(2) = (2= N (22 £ 1) 102,

T Jr (t=8)(-Q)

3decv 6, A € R\ {&}-

(ii) Ecau » = —1, mo eduncmeennvinm peweniem P+ € H* pacemampueaemot sadanu
seanemes Pywyua PF(z2) = (mi) "1 X+(2) [y c(t) [h(t) X+ () (¢ - 2)] dt.

Ecau x < —1 u ewnoansromes ycaosus paspewsumocmu fp tée(t) [a(t) X+ (t)] "1 dt = 0
npuk=0,1,..., s — 2, mo eduncmeennoe pewenue aadawu daemca moti sice Hopmyaots.
Ecau orce » < —1 U4 YCAOBUA DASPEUUMOCTIIU HE GHTOAHENN, MO IMa 3aJaNa He umeem
pewenul.

TTpuBeeHHbIe Pe3YILTATH! GBIIN NPHMEHEHE! NPH PEAIM3aLMHM MOJIETH NlepecoeMHEeH s
MarHMTHOrO noas, ceofsAmedica X 3axade Pumana — 'nipbepra ¢ KyCOYHO-TENbAEPO-BHIMU
K03 hUIIEHTAMH M YCTIOBUAMU POCTa B HEKOTOPBIX TOYKAX IPaHHUb 06IacTH.

PaSora BhinonHeHa npy uHancoBo# noanepxke POOU (mpoexr 07-01-00503),
nporpammsl  dbyHaaMentanbHuX uccaemosanuii OMH PAH N3 n nporpammm PAH
"CoBpeMeHHble TpobneMbl  TeopeTHyeckolt Maremaruku®, npoexT "OnTuMu3auus
BBIYHCIHTENBHLIX aJFOPHTMOB PELIeHHUs 38,184 MATeMATHYeCKOl bu3nKu'.

ME(z) =

VcpeHenne MHOTOYAacTOTHBIX cncreM AuddepenmanbauIx ypabrenuii
JudeltHo npeo6pa3zoBaHHLIM apryMeHTOM
Buryn SI.H. (YepHoBHUKXH/ HAIMOHATLHLIY YHHBEPCHTET, YKpauua)
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PaccmaTpupaercs cucrema guddepeHunanbHbEIX ypasHeHuit BHIa

Z_f =X(T1x319v807‘p9)7 Z_f = ﬁ?ﬂ_"_y(rrz»xoy(paWB)) (1)
rhe € — Manbiit mapamerp, 7 = &t, £ € D C R*, ¢ € T™, m > 1, z¢(1) = z(01),
(\00(7-) = V’(gT% RS (07 1)

Ipuanun  ycpenHennst mo GHICTPbIM NEDEMEHHBLIM JJIS IBYYACTOTHON CHCTEMBI C
aHAJMTHYECKUMH TPaBbIMU 4YacTAMH Ge3 3amasnpiBanust obGocHosan B.W.Apmoabiom. B
JaHHO# pabore, ucnonb3ys ugen A.M.Camoitnenko u P .Ilerpuuna, MeTos ycpeaneHus
060CHOBaH Ha KOHEYHOM IIPOMEXYTKE U MOJYOCH AJIsl M~YaCTOTHON CUCTEMBI C NepeMeHHBIM
3ana3/{bIBAHUEM.

YepenHerHas IO EPEMEHHEBIM 0, g CUCTEMA UMEEeT BHI,

ff_ _ d@_w(T,f,fg)
&= Xo(7,Z, To), o=

+ Yo(7, %, %p).

IIpeanonaraercs, 4To cymiecTByer egMHCTBeHHOe pemuerue T = Z(7) u (1) € D —p
V7 u onpenemurens Bponckoro mo cucreme ynkumit {w(r),w(67)} oTmmumb#i o
Hyns. Ilocnenmee ycnoeme obecneunBaer HesacTpeBaHWE CHCTEMBI B MaJIOH OKPECTHOCTH
pesonancos (k,w(7)) + 6(1,w(87)) = 0.

B ciyyae w = w(T) ans OTKIIOHEHMS MeIUIEHHBIX M OBICTPBIX NEPEMEHHEIX IOMYHeHa
OILIEHKa 0(51/ (2'")), €CJTM BEKTOP YacToT w = w(T, T, Lg), TO UMEET MECTO OIIEHKS, O(e"‘), rie
a € (0,1/2], TONBKO A7lsi MEIJICHHBIX IIePEMeHHBIX.

ITony«ennbie ouenKn MCMONBIYIOTCA AJIs MCCJIEAOBAHHUS PAa3PEIMMOCTH cHCTeMEl (1) ¢
MHOTOTOYEYHBIMU H HHTET PAJIbHBIMH KPaeBbIMU YCJIOBHIMU M OGOCHOBAHUS [ TAKHX 38084
METOL8 yCPEAHEHHUSL.

JInTeparypa
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Hosele ycnoBusi KOMMYTHPOBAaHUS NPOEKTOPOB M MX MPUJIOXKEHUS
Bukyenraes A. M. (r. Kazann)

XopolI10 H3BECTHO, YTO CAMOCOTPSKeHHEle onepaTopsl A U B mepecTanoBovHBI Torna
¥ TOJIBKO TOTJA, KOTJa NEPECTaHOBOYHBI Mexay coboit Bce npoexToper E4(\) u EB(u) us
pa3ioxKeHult eIMHULBI 3THX onepaTopos. IlosToMy 3adava nazoocdenus pasauvnnix ycaosud
NEPECMAHOBOYHOCTU TPOEKINOPOS TIOCTOSHHO MPUBJIEKAIOT BHUMAHUE MccllenoBaTenelt.

B coobmenun GyayT noKa3aHbl HOBbIE YCIOBHSl IEPECTAHOBOYHOCTH TIPOEKTOpos P u @
n3 C*-anrebpsl Pukkapra B TepMmunax HocuTenst onepatopa PQP, a Taxke B TepMUHAX
sepxueft (umkuet) rpanu P\/ Q (coorsercrsenno, P A Q) B pemerke BceX MpOEKTODPOB
asnre6pst [1]. DU yesroBus oxasaauch NOJE3HBIMU B 3a0a4e TAPAXMEPUIGUUY caeda B KIIacce
Bcex BecoB Ha amrebpax ¢on Heiimana [2]. Hobasa xapakrepusamysi OXBaTBIBA€T M CIET
Juxembe 7, Ha B(H); T,, NOJIHOCTBIO OTJIMYEH OT KAHOHMYECKOro ciefa tr U He HOpMaJleH.
Crnen 7, UMeeT TPWIOKEHHS B HEKOMMYTATWBHON I'COMETPHH, B TEOPMM TDABHTAIMH, B
TeopHu Nois ¥ PU3MKE YACTHIL.

Pa6ora nogaepxkana POOU, rpanr 05-01-00799.

JIureparypa
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[1] Bukyenraes A. M. // Mamem. c6opnux, (B nesatu).
[2] Bukuenraes A. M. // @ynxy. anaaus u €20 npua., (B neuarn).

06 y6piBanun pemiennii 3anaun PUKkbe O 3JIMOTHYECKUX ypaBHEHMI
YeTBEPTOro ¥ IECTOro NopsJkKa B HeorpanuienHol obiactn
Myxmunos ©. X., Buxkynos H. M. (r. Yoa)

B neorpannyentoft obnactu Q = {z = (z,,2') € IR",[ |2’} < f(z1), z1 > 0} n-MepHoOTO
npocrpadcTBa R", n > 2, paccMaTpusaerces sumuntudeckuit oneparop Lu = Lou+ Lyu—du,

n

Lou = Z (aij(2)z)a;, Lru= Z bi(@) ;.

ij=1 i=1

Qyukiua f ¢ TOJOXKHTENBHON IPOM3BOAHON HNpeanoJaraercs TPHMKIbLI HelpephIBHO
auddepeHIpyeMolt B YAOBIETBOPSIOlEell HEPABEHCTBY

')+ L@ )2+ @SOS )P < For2D.

Koaddunuents: oneparopa HempepsiBHB B ), d — HEOTPULATENbHAS IOCTOSTHHAS.
KosdduiuenTs: ¢;; CHMMETPHYHEL @;; = Qj; 1 YAOBIETBOPHAIOT NOpH BeeX T € {2 ycnoBHio
PaBHOMEPHOH 3/UTMITHYHOCTH C NOCTOAHHBIMH ¥ # 1.
Ha rpanune obnactn 0§ 3ananbl KpaeBble YCJIOBHS NePBOTO ¥ TPETBETO THIA
ou
=0, N +o(z)u = 0. 3mecs I'1, I's npou3BONLHBIE MHOXKECTBA, TaKHe,
z€el .
qro [y Uy =8Q, Ty # @; N — xonopMmais, o(z) > 0 — usmepumast hynkuus Ha 0.
Ilenbio paboTh ABIAETCH YCTAHOBJIEHHE CKOPOCTH YObIBAHHS PELIEHAN NIPU T — 00 I
ypasHenuft L™y = ® npu 31agenusx m = 2,3 u pysxuun P ¢ orpaHHueHHBIM HOCHTEJIEM.
Onpestenum dyukuuwo g(x) ycaopasmu g(z) = 2y npu m = 2, eemu I'; = 0. B
112
2] f

OCTaBIINXCS CIyYasX nonoxmm g(z) = b~ [ —— + h(z)) |, tae ¥’ = =,
2 !
byHKuus K h.

Tyers Qa,7) = {z € Q| a < g(z) < r}, Qr) = Q(—o0,r). Honoxum A(r) = A(—oo,7),
rae

u,xel‘x

h~! — obparHas

Mat)=inf{ [ (IVeP+dgt)dslo e cREND), [ gPdo =1
Q(a,b) Qa,b)
n
Bynem npeanonarats, 9o divb = 3 (bi)z, = 0, blog = 0. Ha kosdduunents: Gyaem

i=1
HaKJIAABIBATH TpeGoBaHne

S l@s)e, 2 S vAM), 7€ QAr/2,7) |VB] < d/8.

=1

IIpu m = 3 GymeMm npeamonaraTb, 4ro oO6JIACTh UMEET OTPHLATENHHYIO CPENHIOR
KpHUBU3HY rpaHunpl, # Ly = A.
Teopema . Ilycre m = 2 wmn 3, dyuxkuua f u xosdpduuments oneparopa L

YZOBIETBOPAIOT II€PEYUCITIEHHBIM Tpe60BaIIM$lM. Toma Haﬁ}:w’rcx NONIOXKUTEeJbHbIE YHC/IA
u, C Taxue, uto nuis Beex r > D pelenue ypasHennst L™u = ® ygoBieTBopsieT OLEHKe

lellwp @(rooy < C exp(—prAY2(r)|1®llwp o)
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Iocrpoennt npuMepn pemenuit ypapuennt L™u = @, m = 2,3, nokasbiBaioumue, 4To
HEPaBEHCTBO TEOPEMBI ABJISIETCS TOUHLIM B TOM CMBbICJIE, YTO HOCTOSHHASA (4 HE MOXET ObiTh
3aMeHeHa Ha y6biBalollyio K Hymio GyHKuuo u(r).

Hamilton-Jacobi equations in the Heisenberg group
Biroli M. (Politechnic Institute of Milan)

We consider the Cauchy problem for Hamilton-Jacobi equations in the Heisenberg group
with an Hamiltonian, which depends only on the Heisenberg gradient of the unknown func-
tion and we construct a (unique) local solutions by an intrinsic characteristic method,{3],
using exponential coordinates, [4]. We use the above result to prove the existence of a local
solution in the case where the above Hamiltonian is multiplied by a sort of white noise (see
[1], [2] where the Eiclidean case is investigated in a more general framework).
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ANTOPMTM BBIMHCJIEHHSA IHTPOITMMU KOC
Bupioxos O. H. (KostomeHckHi rocyapCTBEHHbII MEAArOrHYECKH HHCTHTYT)

PaccmaTpuBaercs romeoMopdusm f aBymepsoro gucka D?|  HemomBHXHHIN Ha
rpanune D2, ¢ KOHEYHHIM MHBADUAHTHHIM NOAMHOXECTBOM H3 T TOYEK, JIEXKaLluxX
BO BHYTPEHHOCTM JHMCK&. I'pynna H30TOMMYECKHX KJACCOB TAKMX I'OMEOMOPGhU3MOB
usomopdua rpynne Koc Br(n) us n nurteft. [Ins 3/1€MEHTOB 3TOH IpyNiibl CYUIECTBYeT
usBecTHas Kjaccudukauuss Hunbcena-Téperona, cOrmacHo KOTOpOH  H30TONHYECKHE
KJacchl romeoMopdu3MOB  runepOOJNYecKoll  MOBEPXHOCTH pa3buBalOTCA Ha  TPU
THIA: TNEePUOJMYECKHe, [CEBAOAHOCOBCKHE W NpHBoguMble. Kaxkias xoca ecTh Jubo
[CEeBAOAHOCOBCKHIA, NGO NPUBOAMMBIH KJIACC M3OTOIMH.

Urepanun  romeomopdusMa, NPEeICTABJSIOIIETO  HEKOTOPYIO  KOCY,  33Jal0T
JIMHAMUYECKYIO CHCTEMY C AUCKpPETHBIM BpemereM. O JHIM W3 KOJIMYECTBCHHBIX TI0Ka3aTeeft
SKCHOHEHLUAIBLHOrO pasberaHus TPAEKTOPHI NpH HTEpalusx roMeoMopdu3Ma sBjgercs
TOMOJIOTHYECKAS IHTpONUs. B KauecTBe 3HTPOMMH KOCBI MOYKHO PacCMaTpUBATh MHHHMYM
TONOJIOTMYECKOR IHTPOIMM TO COOTBETCTBYIOUIEMY H30TONHYecKoMy Kiaccy. Hecnoxmro
TOrJa TOKa3aTh, YTO SHTPOMHUS KOCHl DABHA HATYDPAJIBLHOMY JOrapHdMy MAKCHMAILHOIO
K03 (pUIMEHTA PACTSIKEHHS CPEM TICEBI0AHOCOBCKHX COCTaB/ISIONIMX KOCHI.

B 1995 romy M. Becrsuna u M. Xenzen [1] npeanoxuin ajropuT, NO3BOJIATOMME
olpeeuTh, K KaKkoMy KJiaccy 1o kaaccuduxanuu Huibcena-Téperona OTHOCHTCA AaHHbBIH
I‘OMCOI\-IOP¢)I[3M I’M[IEP6OJ{!{‘I€(}KOﬁ NOBEPXHOCTH. B cay4dae NICEeBA0AHOCOBCKOI'0 KJjacca
AJIFOPHTM AOMOJHUTENLHO OMTpeest ko3 puIKeHT PACTSIKEHUsT A, UTO /10 BO3MOXKHOCTb
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AJI1 TICEBAOAHOCKHX KOC 3((PEeKTHBHO BHIYMC/AATH TONOJIOCHYECKYIO 3HTponmio. Jmsa
NMPUBOAYMEIX KOC JAHHBIA aJTOPHTM HE AaBaJl HUKAKOrO Pe3yiIbTaTa.
MOXXHO YCOBEpPLIEHCTBOBATL AAHHLIN AJITOPHTM, YTO HO3BOJIAT BLIYMCIATH SHTPOIHIO
mobbIX KOC.
Jinteparypa
[1] M. Bestvina and M. Handel. Train-tracks for surface homeomorphisms. Topology, 34
(1), 109-140, 1995.

FeoMmerpuyeckas nHTEepUpeTanusa IPyNnsl KOC KOKCETTepOBCKoro tuna B
Buprokos C. H. (KosnomeHckuit rocyapCTBEHHbIH T€4arOrHHeCKHH HHCTHTYT)

I'pynna Koc wuMeeT CTaHIUAPTHOE MPEJNCTABJEHHEe Ha MHOXeCTBe 06pasyomux,
onpenenénnnix Aprusom emé B 20-x rojax mpouuioro seka. B 1998 rony Bupman (Birman),
Ko (Ko) n JTu (Lee) ranu HOBOe npeJcTaBleHHe, KOTOPOE BIOCIEACTBHH CTAJIO JOCTATOYHO
4acTO MCnoJb3oBarhea (Hanpumep, B paborax T. Bpetian (T. Brady) u . Kpammepa (D.
Krammer)). B 2006 roay Jlsx Mapranur (Dan Margalit) u lon MaxKsmmonx (Jon Mc-
Cammond) B cBoell crarbe [4] NMpem1oXKUnM HOBYIO TeOMETPHYECKYIO HHTEPIIPETAIMIO IS
IpYIIILI KPaNIEHbIX KOC, HCNoIb3ys uMemoleecs npeacrasienue Bupman-Ko-Jlu. Lens sToi
paboThl - Pa3BUTHE NEPEYUCIICHHBIX Pe3Y/IbTATOB NPHMEHHTENLHO K IPYMNe KPaINeHbIX KOC,
aCCOLMMPOBAHHON ¢ HENPUBOIMMON cHcTeMo# KopHelt Tuna B.

I'pynna koc By, Ha n HUTAX u3oMopdHa dyHAaMEHTAIbHON rpyIne KOHDUIYPAIMOHHOIO
npocrpancrsa C(D?,n), coCTOAMEro 3 HeyNOPAIOYEHHBIX HABOPOB N PA3NMYHBIX MEXIY
coboit Touex B amcke D% B, = m(C(D?,n),P). Ormeuennas touka P = {Py,.., P}
byHIaMeHTAIBLHOM IPYNOE COCTOMT M3 TOYeK Pi, ..., P, mucka D2, xotopnie mb1 Gyaem
Ha3BIBATh NPOKOJIAMH. JIEMEHTaMM TDYNIBI KOC SBJISIOTCS KJAcChl SKBHBAJEHTHOCTH
npuxennti mpoxosios (mytelt 8 C(D?,n)), npn KOTOPhIX He MeHsiercs KOH(Urypauus
npoxoJoB Ha aucke D2, '

Oupenenum BbiyKJble cKpyuusanus Thna B. Jo6aBuM K HMeloleMycss MHOXECTBY
[IDOKOJIOB Ha JHuCKe elé onuH "BoigeneHHbi" npokon. CkpyumBanuem tuma B 6ymer
06bIYHOE CKPY4YMBaHHE NPOKOJIOB, BKIOYas "BriaenenHbit". TIpu sToM OH He MOXeT OLITh
BKJIIOYEH B KaKO#-11ub0 MONANUCK BMeCTe C APYTHMH IPOKOJIAMH.

ITycte Da — Boimykio-npokosorwilt auck. Torma rpymima KpallleHbIX Xoc THna B
MOPOXIEHA BLITYKJIBIMH CKpy9HBaHMsMM THHa B, M Bce €€ COOTHOIIEHHS SBJSIOTCS
CJICACTBHAMHM M3 COOTHOLIEHHH s BHINYKJIHIX CKpyuyuBaHmit Tuma B. B uacthocTh,
rpyfna KpanleHeIX Koc Tuna B usomopdHa rpynne, onpeneséHHON cleNyOmUM KOHEYHBIM
[IPEICTaBIIEHNEM.

B kauecTBe 06pa3sylomx paccMaTphBalorTcs cKpyuuBanvs Tyy Tuna B, Ha KoTophie
HAKJIaIbIBAJOTCS YKa3aHHbIE COOTHOLIEHHSI:

1) TyvIw,z = Tw,zTuv, ecin UV u W Z ne nepecekaiorcs,

2) TuvIw,z = Tw,zTy,v, ecin UV n W Z — BnoxenHble naphl,

3) Ty,vw = TuvTyw, ecu (U, V,W) — nonycrumoe pasbuenme.

JIureparypa
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Mertoz BeliBner-T'ajiepkuHa 4MCI€HHOTO MOJEJIMPOBAHUS TOHKOIIPOBOJIOYHBIX
aHTEHH
Bnaros U.A., By6uosa H.A. (Camapcku#f rocyiapCTBEeHHbIH YHUBEPCHTET)

OTrickanne GyHKIMH PacIpene/eHHst TOKA U AUArPAMMBI HallPABIEHHOCTH ISt CHCTEMbI
TOHKMX KDYIVIOUMJIMHADUYECKHX HPOBOJHUKOB CBOOUTCS K DelIeHHI0 HMHTErpasIbHOro
ypasHenust Ppearonsma nepsoro popa. s ero peuieHust NIPUMEHSIETC MeTOJ BeHBeT-
lanepkuna Ha Gase cruialiHoBLIX Bekipier. VcnonbsoBanne nceBaopa3spe>KeHHOCTH MATPHIBI
CHCTeMBI JInHeHHbIX airebpandeckux ypasuenu#t (CJIAY) nossonsier npuMeHsThL IrOPATMBL
TEXHOJIOTHH Pa3pexkeHHbIX MaTpull. V3ydaiorcs cBoiicTBa MATPHI] M IPUBOISATCS PE3YJIbTaThl
YHCJICHHBIX PACYETOB.

BoruncinTesbHble  TPYAHOCTH DELIEHHS] MHTErpaJbHBIX ypaBHeHMH B  3aJadax
3/IEKTPOAMHAMUKA BO MHOIOM 0OYC/IOBJieHBl 3AMOJHEHHOCTHIO MAaTpPHll, BO3HHKAIOLIMX
OpU MX JUCKPETH3alMH. DTO NPHBOJUT K OTPOMHOMY 0ObeMmy Bhrumcsenuit (ocobenHo B
TpexmepHbIX 3aj4a4ax). OxHaxo, Kak 6p10 mokasaHo B [1], B 6a3uce u3 BefiBieT-dyHKLuM
[2], 6oabmmHCcTBO 3meMenTOB MaTpHLUBl CJIAY 0Ka3BIBAIOTCS OYEHb MAJIBIMA IO a6COIIOTHOMN
BeJIMIMHE, T.e. OHa Oyzer ncesjopaspexensoll [3]. Mcnonssosanue sroro dakra n03BojsieT
CYIECTBEHHO YMEHbIIUTh 00beM BbIYHCJIEHUH U TpeOOBaHHS K ONEPATHBHOH IaMSATH
KOMIIbIOTEPA.
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BeruncanresbHble METOABI B KOHTAKTHBIX 3aJavaX TEOPUH YIPYTOCTH C
OAHOCTOPOHHUMM CBH3SIMU
Bobrunés A. A. (dHenponeTpoBcKuit HALHOHAJIBHDIY YHUBEPCHTET)

KouTakTHEIe 3a094d TEOPMHM YIPYTOCTH C OJHOCTOPOHHHMH CBSI3SIMH SIBJISIOTCS
HEJMHENHBIMU 3a4849aMU BCJEACTBUE HAJUYHA TFPAHUYHBIX YCJOBHH B BHUAE HEPABEHCTB.
OpuuMm w3 Haubosee NEPCHEKTHBHBIX MOAXOJOB K IOCTPOEHHMIO BBIYMCIUTEIbHBIX
aJIrOPpUTMOB [JIA PelleHHs 3TOro KJacca 3aJa4y SABJIAETCS HMCIIOJIb30BaHH€E€ BAPHALIMOHHOI'O
merona. IIpuMeHeHue annapaTa nNpeobpPa30BaHHS BAPUAILMOHHBIX 33784 I03BOJISIET
MOJIy4HTh CEMEHCTBO BAPHAIMOEHBEIX (POPMY/IHPOBOK, BKIIIOYAA BHYTPEHHHH W IPaHMYHBIA
BapHAHTE OCHOBHOH, JBONCTBEHHON M rHGPUIHBIX (HOPMYINPOBOK, & TAKXKE BADHALMOHHbIE
bopMynupoBkHu 1 GYHKIMOHATIOB KOHTAXTHRIX I'PAHUYHBIX YCJIOBHM.

Jlna AHCKpeTH3alMi BHYTPEHHMX BapHalOHHBIX (POPMYTHPOBOK IPUMEHSETCS METO.
KOHEYHBIX 3JIEMEHTOB, 8 JJA JAUCKPETH3AIMM TIPAHUYHBIX (DOPMYJIMDOBOK — METOX
rpaHMYHBIX pelleHHH Ha OCHOBE WHTETPAILHEIX IIPEICTABJIEHUHl peUIeHUs H MeToIa
rpaHUYHBIX 3J1EMEHTOB.

i 9NCIIEHHOro pelleHMs IONYYeHHBIX B pe3yabTaTe JUCKpeTH3alMd 3aja4
KBaPaTHYHOrO NPOrPAMMUPOBAHMSA C OIPAHWUYEHMUSIMH B BUJE HEPABEHCTB HCMOJIL3YIOTCH
BAPHAHTHEl METOLOB COMPSIKEHHLIX I'PAJUEHTOB ¥ NOCIEAOBATENILHON BepXHEH peslakcalluy,
a Jyisl pellleHAs 3384 O HAXOXKJEHHH CEeJIOBHIX TOYEK HCNOJIb3yeTCd BapHaHT aJrOPUTMa
Ya3aBbI ¢ IepeMEHHLIM NIAPAMETPOM.
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PaspaboTaHHBle BBHIYHCINTENbHBIE AJUrOPUTMBI DEAlM30BaHbl B  BUAE IIAKeTa
NPHKJIaIHBIX MporpamMM. [IpoBeen cpaBHUTENBHDI aHanu3 3dMeK TUBHOCTH HCNOTB3YeMBIX
BLIYHCIIMTENbHBIX METOOB.

Banunradeckue U napabolMyecKue ypaBHeHMs JJif Mep
Borayes B. H. (r. Mocksa)

B noksane aaetcst KpaTKii 0630p HeJaBHUX PE3yJIbTATOB U3 COBMecTHBIX pabor [1}-[4].
Ilyctb A = (a™); j<a u b= (b')ica — BOpeseBckme ONepaTOpHOE M BEKTOPHOE 0TOGpasKkeHust
Ha R% x (0,1), npuyem Matpuust A(z,t) cHMMETPHYHBI ¥ NOIOXKUTENbHBL. [Ton0XHIM

Lu(z,t) = Bu(z, t) + a“(z,t)8,,0:,u(z, t) + b'(z, )85, u(z, t),

Te BeJercs CyMMHPOBAHHME IO MOBTOpsiompMcs utgekcaMm. OrpaHudexHas GopesieBcKast
mepa 1 na R? x (0,1) ymosnersopser crafomy mapaGoimyeckoMy ypasHenuwo L*p = 0,
ecin KoadpuupeHTs ¢ U b JOKaNbHO U~HHTErPHPYEMBI U BBIMIOJHEHO PABEHCTBO

/ Lu(z,t) p(dz dt) =0, Vue CPR? x (0,1)).
R¢x(0,1)

AHaIoryyHO OmpeaeNnsIoTCs Clabbie pelleHus 3JIMITHYECKOro ypasHenus. [IycTh u umeer
sua p(drdt) = pe(dz)dt, rne py — beposTHOCTHEIE Mepnl Ha R?. ByaeMm rosoputsb, 4TO f1
HMeeT HavaJbHOe pACIpefesieHHe vV, €ClU V — TaKas BeposiTHOcTHasA Mepa Ha R%, uro

%E.% /Rd ¢(z) pe(dz) = /Rd C(z)v(dz), Y¢eCPRY).

Iycts npu HEKOTOPOM p > d + 2 BHINOMHEHBI ClIeIYIOUIHe YCIOBHS Ha A u b: [yist KaXKIoro
wapa B ectb Takue umcna M; = M (B) > 0 u My = My(B), 4ro npu Beex i, j uMeeM

At,z) 2 M- 1d Y(t,2) € (0,1) x B, sup [la¥(t, -)|lsea(m) < Mo,
te(0,1)

sup [Ib(t, - MLe(my < Mo
te(0,1)

Teopema 1. Ilpeanonoxum, uto cymecrsyor Taxue dynkuus ¥ € C2(R?) u uncio
C > 0, uro limy|_.o0 ¥(z) = +00, A7151 HEKOTOPOI! NOC/IEAOBATENLHOCTH Ty, — 0O MHOXECTBA
U~Y(r,) sBasorca Cl-nosepxsoctamu, npuiem L¥(t,r) < C + C¥(z). Torma ana
BCSIKO!l BePOSTHOCTHOI Mephl v Ha RY Haitmerca cemeiicTBo 4 = (fit)iefo,1) BEPOSTHOCTHEIX
mep Ha RY, ymoenersopsiomux napafosnutdeckomy ypabHemuo L*u = 0 ¢ HadajbHbIM
pacnpenenenmenm v. Eciu xe maTpunt A u A~ papHoMepHo orpanuycHsr, bysxkuuu a™ (z, t)
PABHOMEPHO JIUMIIKHIEBL! 1O Z, BHINOJIHEHb! OLEHKH

bz, t),2) < o1+ [2]%),  [b(z, )} < (1 + o)

1pu HekoTopoM k € N, npuuem HavanbHoe pacnpesesenne v 06aIaeT KOHeIHBIM MOMEHTOM
nopsiaika 2k 1 Takoil MWIOTHOCTBIO ¢, 4TO (ynkuust ¢lng uHTerpupyema, To yKasaHHOe
PCILEHHE eJUHCTBEHHO.
JIureparypa
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{3] Bogachev V.1, Da Prato G., Réckner M. On parabolic equations for measures. Comm.
Partial Diff. Equations. 2007.

[4] Bogachev V.I., Da Prato D., Rockner M., Stannat W. Uniqueness of solutions to
weak parabolic equations for measures. Proc. London Math. Soc. 2007.

Db dexTuBnas Bapnanuonnast popmyna mia Kasifinoro npocToro MHOXUTEIS
Borateipes A.B. (r. Mocksa)

KnsifinoB npocroif MHOXKHTENL ~— 3TO YHHUBEPCAIBHBIA OOBEKT INO3BOISIOMMIT
BOCIIPOM3BOAMTL MepoMmopduble dbyukumnn, nuddepenunans, siapa Beprmana u Cere na
runepbonYecKHX PHMAHOBLIX NOBepxHocTsx. IIpensaraercs Bapuanmonsas dpopMmysna ajist
npocroro Muoxurenia B mogean Ilorrku.

TypbyneHTHOCTh B paMKax cjabo-guccunaruBHoil Bepcum Teopun
Konmoroposa-A pronbaa-Mozepa. 3
Borranos P.H. , Borganos M.P. (HHHA® MI'Y, MI'Y HE)

B 60-e rogpi XX-ro croneTns B TEOPUH AUHAMHYECKUX CHCTEM IMOSBHJIOCH TOHSTHE
"crpansoro arrpaxropa'. Cnycrss nosiBeka TepMuH "CTPaHHBIA aTTPAKTOP"BHITIISLAUT
ycrapepmum. OHaKO, HEOXKHAAHHBIM OBLIO NOSIBJIEHME B OOIIEM NOJIOXKEHMH CBOficTBa
3KCHOHEHUMAJILHOrO  "pasberanus"rpaexropmit auHamuuecknx cucreM. Crepcrrem
ABJISJIOCH CTOXACTHYHOCTh CBOMCTB peLIeHMI [eTePMEHMCTHYECKHX MOJelell JAMHAMHKU.
Ananus npoGiieM TypGyseHTHOCTH, BbinojHeHHs A H. KosmoropossiM, nosanee npusén K
MOSIBJIEHHIO KJaaccu4yecKol Teopun Konmoroposa-Apuoasga-Mozsepa, roe A.H. Konmoropony
NPHHAJJIEXKAT OCHOBHAs Hzes, a ApBoabAy M Mo3epy JOKa3aTelbCTBO MaTeMaTHYECKHX
TeopeM, Jiexxalux B obocHosanny Teopun. B 1990-x rosax nosisuiiach ciiabo-aucCHNaTIBHAS
pepcusi Teopun Konmoroposa-Apronbpaa-Mosepa.

Knaccuyeckass teopus Kommoroposa-Apronbaa-Mosepa (cm.[2]) msyuaer csoiicrsa
JMHAMHYECKMX CHCTEM, NPeJCTABJIAIOWNX cO60H Majioe BO3MYIUEHHAE BIOJIHE-MHTErPHPYeMOit
raMHJIBTOHOBOM CHCTEMHI B KJIACCE BCEX TAaMUJILTOHOBBIX CHCTEM.

Cnabo-auccunaTuBHas epcusi Teopun KosmMoroposa-ApHosbaa-Mosepa, nosiBUBIIAsCS
B KoHUe 90-X roJIOB NPeABIAYIIEro CTONETHL, H3YYAeT JUHAMUYECKHE CHCTEMBI, ABIISIOLINecT
MAJIEIM BO3MYIIEHHEM BIIOJIHE-MHTErPUPYEMBIX [AMHJIBTOHOBEIX CHCTEM B IPOCTPAHCTBE BCEX
rN8AKUX AMHAMHYECKHX CHCTEM.

Ha ceroans HauGonee m3ydeHsrM siBiserca npumep "Bogdanov map"(cm.[1],[3]), B
KOTOpPOM TIpOstBNISeTCA psf ocoberHocTelt cnabo-auccunaTnBrolt Bepcnu Teopun KAM.

TIpumep "Bogdanov map"posnuxaer npu mpocrefimeli aucKpern3anuu (IO NOMysIBHON
cxeme Dilylepa NMepBOro MOpsZKA) AMHAMWYECKON CHCTeMBl Ha NPAMOMN, BO3HHKAlOMiel B
6udypkauun Bornanosa-Takenca:

ou ; (1)

3PaBoTa BHINOAHEHA YACTHYHO Npu nopuepxke donga POOU rpant N 04-01-00115
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3
rae notennuan U umeet sua U (z) = ez + /3, a kosd>puuuenT TpeHus BLIGMpaeTcs B
Buge ptzx.
CooTBeTCTBEHHO, JUCKpeTH3alms no Jitepy Gepércs B Buae

Tpt1 = Tn + Ynt1s Yn+l = Yn + KTy (xn - 1) + (5 + )uzn) Yny (2)

rme k2 = h, a e, 1 € R - mapaMeTpsl MOJENH.

Ilpu nomxonsmeM BeIGOpe MaJbiX NAPaMETPOB &, 4 ~ 1075 cucrema (2) MoxeT MMeTh
nopsiaxa 10° nepuoanyeckux op6uT, MpHUSEM TIEPHOI MeHsleTcs B ipeaetax 1 = 108,

B ofmem TmosiokeHuH INepHORHYECKHe OpOHTHI pa3bMBAIOTCA B COOTBETCTBHH C
TOMOJIOTHYECKHAM TUIIOM Ha 3 TPYNNbL: 8CHMITOTHYECKH (He)yCTONYMBbIE OPOUTHI (COCTOAHUS
"out", cocrosinusa "in") nau runepbonnyeckne (pacceMBaOIIye HEHTPHI).

B  kaaccuueckolt KAM-reopuu acuMnrormyecku (He)ycToHumsble OpOHTHI He
peayin3yiorcs, a B 00IIEM MOJIOXKEHHH HMEIOT MECTO JUINNTHYECKHe OPOHTHI.

Ouenka qucia Pefinosbica.

Iepuoanueckne op6uTHl, 0TOOpaykeHHust (3) MO3BOJISIOT BLIMHCIATb aJnabaTHYECKHe
MHBADUAHTH! JUHAMHUKHA. B 4acTHOCTH, MBI HM€eM BO3MOXKHOCTh BBIYHCIIMTH CPEAHIOI BIOJb
nepuoAHYecKoii opbuThel paboTy CHI JUCCHIALIMA

~ 1
A:—E A
n 2 (€ + px;) &AL, (3)

a TaKyKe u3MeHeHmne obnEMa

)

1 - Dy’ (z)
== g 4)
H, CJIeIOBATEBHO, AABJICHYE B &1Ha0aTHYECKOM IPUOIUKEHHN

6A-pdV =0 p= M/W. (5)

C y4éroM CpeiHuX CHJI TPEHHA
1 n
P =33 e ),
3=

MBI IOJIY4YaeM pachpe/ejieHue uuces PeftHonpica B BuIe
Re = Fpres/Fvisc- (6)

Pacuérbl noKassIBaioT, YTO YMCI0 PefiHoNbACa M3MEHsieTCs B NPeAesaxX 5-TH HOPALKOB
[Py M3MeHeHuH NMepHoja Mepuoaudeckux opbur ot 1 mo 108.

3ameuanne. C yBesnyeHHEM NEPHOIE HUCIO PeliHOMbACA yMeHbUIAeTCH. Y BeJHUeHHe
MEpHOJ]a ACHMIITOTHYECKM (He)ycTofumBbIX opbur (T.e. yMeHblieHHe MacuTaboB
BUXpeil) NpPOHCXOAMT 1O Mepe npubkeHHss K "cTpaHHOMY"runepboideckomy
arrpakTopy B ¢asoBoM npocrpancrse. [10aToMy KpynHoMaciiraGHbIE BUXPH 3aMEHSIIOTCS
MeJIKOMACIITAGHBIME TIocsIe Yero Habmonaercst audby3HoHHAsL JUHAMAKA NPOGHOI YaCTHIbI
(cm.[4],[5]).

Jluteparypa

[1] Arrowsmith D.K., Cartwright J.H.E., Lansbury A.N., Place C.M. The Bogdanov-
map: bifurcations, mode locking, and chaos in a dissipative system// International Journal
of Bifurcation and Chaos, 1993, v. 3. Ne4, p. 803-842.
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[2] Apmonsz B.M. [lonomuuTenbHble rnaBbl Teopul OOBIKHOBEHHBIX anddepen-
HHaJbHLIX ypaBaeHmit. - M.: Hayka, 1978, 304 c.

[3] Borazanos P.M. Henunefinrle AMHAMMYeCKHe CHCTEMBI Ha IJIOCKOCTH M HX IpH-
noxenns. - M.: By3osckas kuura, 2003. 376 c.

[4] Boraanos P.M., Bornanos M.P. Ilepexoa or passuro#t TypOy/eHTHOCTH K KBa-
3upaBHoBecHoMy cocrosuuio. // Hayunsiit Becrank MI'TYTA, Ne 114, cepus MaremaTnka
u Onsnxa. M.: MI'TY T'A, 2007, c. 4-10.

O creKTpanbHBIX CBONMCTBaX Kpaepoii 3anauu A oneparopa Jlamiaca.
Boroawobos A. H., Manbix M. I, Iauun A. A., Ceemmunxos A. I (Mocksa)

IpocTeitinas KpaeBasi 3a7a4a MOXeT GbITh IOCTaBJIeHA KaK 3aJava 06 OTHICKAHUH MO
3aganHbM objgactu U B R™, xycouno HenpepuiBHOR byskuuu f B R™ ¢ KOMIAKTHBIM
HOCHTEJIeM M KOMIUIGKCHOMY mapaMerpy A ajiemeHTa v € WU, ynosnerBopsioniero s
o6obmenHoM cMricsie ypasHenuio Av + Av = f. Kiaccudyeckne TeopeMbl O CHeKTpax
KpaeBHIX 3aja4 Gbun ycranoenenst ®p. Pemmuxom, . Hxoncom n M.II. Bupmanom B
cepeaune 20 Beka, B 1990-x rogax Gulj JOCTHTHYT 3HAUHTEIbLHBIN IPOrpecc B KCC/IETOBAHNH
obnacreit, npeacrasnAomUX cobol BoMHOBOABL. B Hammx pafoTax ciexTph! 3ToH 3a1auM
paceMarpuBaloTes Kak dyHkimu obsacti U, 0 KOTOPHIX yJaeTcs A0Ka3aTh Cliefylolee:

1. Ecin obnactu U u Uy coBnanaoT BHE KOMIAKTA, TO Oessl) = TessUz. DTa TeOpema
[O3BOJIAET BHIYMCIISATH CYIIECTBEHHBIN CEKTP B Clydae, KOTA& OOJACTH C NMPOH3BOJIbLHON
rpanmmel BHe KOMIIAKTA COBIIAJAeT C 0BNAcTbio, B KOTOPOH nensircs mepemennbre. (ns
caydast JOCTATOYHO MIAJKON rpaHMisl 918 TeopeMa Gbiia ycraHosnena M.IIL Bupmanom.)

2. [dna noboit obnactu U B R™ ¢ Kakolt yrogso rpanuueit cymecTBEHHBIN CIEKTP MMeeT
BH], OessU = [a,+00), rae a > 0, HHBIMK CJIOBAMM CYIIECTBEHHbIN CIIEKTP HE MMEET JIAKYH.

3. Mlycrs F — rnamkast noBepxHOCTD, Aensmas R™ uwa ase o6nactn U n V, u nycts n
— ee eJIMHUYHAS HOPMAaJb. EC/IH CylecTByeT Takoll MOCTOSHHBI! BEKTOP @, 4TO CKaJIspHOE
npoussezenne (&, n) > 0 Baomb Beeit rpannus OU un (@,n) > 0 Ha HEKOTOPOM €e y4acTKe,
TO OgiscU = OuiscV = 0. (1O yTBepxkIeHHe 06obimiaeT KpHTepHt IyCTOTH AMCKPETHOro
CHexTpa, yKasansau#t Pesumnxom) YenoBue riaakocTi rpaHHIB! CYIIECTBEHHO: KOHTPIPEMeEp
daxruuecku 6n11 nocrpoen II. Dxcrepom B 1991.

O pasMepHOCTSX AAPa M KOSAPA B INIOCKON sjimMnTHYUecKoil Kpaepoii 3ajaye ¢
KYCOYHO-IVIAZKHMM JHHUSAMM pa3pbiBa Ko3hduumueHTOB.
Boroscku#t M. E., Matpéxuna A. A. (r. Mockaa)

PaccmaTpupaioTcs oGobuieHREe TOCTAHOBKHA KpaeBbix 3aAa4 Jupuxse n Hefimana ans
syumnTHyeckoro ypasuenus div (AVu) = divf B obmacru 2 C R? ¢ rpauuueft kiacca
C?, rne matpuna A = A(Z) NpeNoJaraercsi BeIECTBEHHON CHMMETPHYHO# M KyCOYHO-
nocTosmHOM. PaccMaTpHBAIOTCH KAK OrPAHMYEHHHE, TAK M Heorpanudennbie obmacth (2 ¢
KOMIaKTHbIMA rpanunaMu. Kycouno-rnagkue aunnn {T'x} paspeisa kosdpduupenton {Ai;}
Zenat obnacTs ) Ha KoHeuRoe wmcao mopobaacreft {2m}. B ciyuae Heorpanmuennoft {2
niono6nactu {Qy,} n xpussie {T'x} MoryT okasaThcs HeorpanudenHniMy. Ha xaxoft kpuso#
T'; 3a1210TCs OGLIYHBIE YCJIOBHS CONpPSKEHHS, T. €. YCIOBUsI HENPEPLIBHOCTH PEIIEHHs U
¥ €ro NpOM3BOZHOH 110 KOHOPMATH V4 = Av, Iie v — efuHMYHas HOpPMalb K KDHBOH
T';. ObobmenHoe pemenne umercs B knacceVu € Ly, p € (1,00) ¢ 3ananHOf BEKTOP-
dbynkimet f. Touxu nernaaxoctTn kpuebix {T'k}, HX mepeceveHns Kak MeXay coboft, Tax
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u ¢ rpanunneit 9§) OyayT ocobbiMu TOYMKAMH DPACCMATPHBAEMBIX OOOOIUEHHBIX pellleHHit.
3nech A5 MPOCTOTH NIPEJIOIATACTCS, YTO HK ofHa Kpusas {['x} He xacaerca 0Q € C!.
MHuoKecTBO Bcex 0COObIX TOWeK mNpeanojaraercss KoHedHbIM. OTMETHM, 4TO B Ciydae
IVIAAKHX HerepeceKalouXCcsi JIMHUH pa3pblBa KO3 HUIUNEHTOB paccMaTpuBaeMas 3aJaqa
6n11a necaegosana E.M. Wibunsmm (1973 r.) B orpanndennoit obnactu  nmpu p = 2 B Kjacce
pelLIeHHI ¢ OGHOCTOPOHHeH MIaIKoCThio W2

B cayyae OANHAKOBO 3HAKOONDEJENEHHOCTH BCeX MaTpul A, = Alg, M
BBIYHC/IAEM  DPasMEpPHOCTH siApa M KOS/Ipa  DPAcCMaTPHBAEMOTO  SJIMITHYECKOrO
omeparopa B CMbiCle CcooTBeTcTByomelt obobomennot nocramosku. Ilpn Hamiumu
NPOTUBOIONCXKHOY 3IHAKOOIPEIEJIEHHOCTH KAKNX-Tub0 Marpuil A,, pasMepHOCTH f71pa H
KOfpa OleHHBaloTCs cHudy. OTMeTHM, YTO He HMEIOUMil IPHKIaJHOTO 3HAYEHHA CIIydail
Pa3HOIt 3HAKOONMPELENEHHOCTH MATPHLl A,, CYIIECTBEHHO CJIOXKHEe eCTeCTBEHHOro CIy4dast
ONUHAKOBOH 3HAKOOTIPENEJIEHHOCTH.

ITony4ennble pe3yaLTATE IPOWILIIOCTPUPYEM Ha IIPOCTOM NpHMepe 3ajadn Jupuxie B
kpyre @ = {z € R%: |z] < 1} ¢ oawott ymaMel paspiBa KoadbdUIUEHTOB, NMeoWmel OHYy
YTJIOBYIO TOUKY CTPOTO BHYTPH {2, KOLA2 yIilsl NepeceveHus JHHK pa3piBa Ko3phHIHEHTOB
¢ 09 aBasoTCA NpAMbIME, & MaTpulist Ay = E, Ay = »F ¢ equnndHOl MaTpuneit E u mobeim
BeIlleCTBeHHBIM MOJ0XKATENbHBIM 3¢ # 1. Ilpu cienaHHbIX NpefnoNoXKeHnsX HallaeTcs Takoe
i € (0,1), yro dimKer = dim CoKer = 0 mpu 2/(1 + p) < p < 2/(1 — ), dimKer = 1
u dim CoKer = 0 npu p < 2/(1 + ), dimKer = 0 u dim CoKer = 1 npu p > 2/(1 — p),
dimKer = 0 u dim CoKer = oo mpu p=2/(1 £ p) .

PaccMaTpuBaeMble 3308491 ONUCKLIBAIOT, B YaCTHOCTH, CTALMOHAPHYIO TEIJIONPOBOAHOCTD
MHOTOKOMITOHEHTHBLIX TBEDABIX TeJl, HAIpUMEpP, KOMIIO3MTOB, KOTAa KaXXJasi KOMIIOHEHTa
UMeeT cBOHl KO3((PUIMEHT TEIIONPOBOJHOCTH, & [OBEPXHOCTH pa3phiBa KosdduImeHTa
TENUIONPOBOAHOCTH He HBAsSIOTCH Daakumu. J[Jaxe ecan cMexHsle KodduupenTs!
TEIJIONMPOBOHOCTH OTJMYAIOTCH CKOJIb YIOJHO MAJIO, HEerVIaAKOCTH IIOBEPXHOCTEe! pa3pLiBa
MOTYT HOPOXKZAaTh OCOGEHHOCTH pelueHuii — B YaCTHOCTH, HEOTPAHMYEHHOCTb T'PaHeHTa
pemwrenus. JpyruM NpPUIOXKEHHEM SBJISETCS] TEOPHA YHAPYTOCTH MHOTOKOMIIOHEHTHBIX
MaTEepUasIoB, HaOpuMep, 3ala4da O pABHOBECHH HEOJHOPOAHON MHOrOKOMMOHEHTHON
rMeMOpaHbI.

Asymptotics for the solutions of elliptic systems with rapidly oscillating
coefficients
Borisov D. (Ufa, Russia)

Let z = (x1,...,2q4) be Cartesian coordinates in R¢,d > 1, B = B(¢) be a matrix-valued
d
function, B(¢) = > B:(;, where ¢ = ((i,...,Cq), and B; are constant m x n-matrix with
i=1 .

complex-valued entries. We assume that m > n, and rank B(¢) = n, ¢ # 0. In the space R¢
we introduce a lattice, its elementary cell is denoted by 0. By we A = A(z,£) denote the
matrix-valued function of the size m x m being hermitian, O-periodic w.r.t. £, and satisfying
the uniform in (z,€) € R estimate ¢; E, < A(2,€) < c2Em. We employ the symbols
V = V(z,§), a; = a;(z,£) to denote [-periodic w.r.t. £ matrix-valued functions of the size
n x n. The matrix V is assumed to be hermitian, the matrix a; and B; are supposed to be
complex-valued. Let b; = b;(z) be n x n-matrix-valued functions with complex entries. We
suppose that all the matrices introduced are smooth enough and bounded as well as some
of their derivatives.
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The aim of the work is the studying of the resolvent and the spectrum of the self-adjoint
operator

H, = —B(8)" A B(0) + a.(z,0) + Vs,

d
z z
ac(z,0) = Z;a,- (2, -E-) Bibi(z) — b} (z)8;af (r, ;) R
in Ly(R% C™), having W?(R%; C") as the domain. Here 8 := (,...,84), 8; is the derivative
w.r.t. T;.

We obtain the homogenized operator and establish the first two terms of the asymptotics
expansion for the resolvent of H. in the uniform norm. The convergence of spectrum is
proven. We also construct complete asymptotics expansions for the eigenvalues converging to
the isolated one of the homogenized operator. The asymptotics expansions for the associated
eigenfunctions are established, too.

The work is partially supported by RFBR (07-01-00037). The author gratefully acknowl-
edges the support from Deligne 2004 Balzan prize in mathematics.

Moaynu Cobonesa-Kinddopia un 1eBo-MoHoresnsie hbyHKImn
Boposukos H. A. (r. Mockga)

Ilycrs A, — 2™-MepHas anrefpa Knuddopaa nany noneM R BemecTBeHHBIX YMcen U
G C R™*! — orpanuyennas obnacrb ¢ raagxoii rpanuuest. Onpeneanm npasbiit A,-Moayas
Cobonepa-Kinddopaa ans 1 < p < oo, m € N kax

WG, An) = {u € A, : Yo uq € W(G)}.

Ha HEM eCTECTBEHHBLIM oﬁpaaom BBOIMTCA HOpPMa, KaK Ha BEKTOPHOM OpOCTPAHCTBE HanO
nonem R, B Koropoit meficTue anrebpor A, HenpepbiBHO. JlJsi OTPRIIATEIBHBIX 7 CTPOMTCS
NpaBbIft CONPSIXKEHHBIA A,~MOAYb.

Hanee, seesem oneparopnl Kinddopaosa aHaausa (cm. [2])

0=Dy;y~D u 8=D,; +D, rze

n
D= Z ey Dy, — oneparop dupaxa.
k=1

Hommoxnyns aeso-MoHorenubx dbynxuuit moayns WG, A,) obosnaumm
OG, Ap) = {u € WJ*(G, An) : Ou = 0}.

(Amenno nna sroro BBOmMMCh mpaBmie Monymn WG, A,); urobul usyyaTsh mpaBo-
MOHOTeHHble QYHKURH, HYXKHO paccmarpusath Wi (G, An) Kak sieBbie A,-MOZYH.)

Teopema. Ilycte m € Z, 1 < p < oo u 1/p+ 1/p' = 1. Torna umeror mecro
npencrasienne W,*(G, A,) B BuIe IpAMOl CyMMBI

WG, An) = O7(G, An) ® ann O,™(G, 4,),
a TaK¥Ke H30MOphI3M

8: WG, An) — ann O;™(G, An),
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(Wn+in W‘f)(G, Ap), ecimm >0,
W;"“(G,An), eciu m < 0.

Pasjoxenue u3 gaHHo# Teopembl npu mm 2> 0 u3BecTHO u 6bIIO ycTaHOBNeHHO B [1).
Ho ram mopynu W (G, A,.) paccMaTpHBA/ICh TONBKO KaK HOPMHUPOB&HHbIE MPOCTPAHCTBA
Hal nosieM R 4, COOTBETCTBEHHO, NPH OTPHUUATENBHBIX 771 CTPOMJIMCH CONPSIKEHHBIE
HOPMMPOBAHHBIE [IPOCTPAHCTBA, YTO HE COOTBETCTBYET CTPYKTYpPe U3y4aeMBIX 0GBbeKTOB.
3pmech jke IpH OTPHUUATENbHBIX M YCTAHOBJEHO pasnoxenue A,-monyne#t Cobonesa-
Knudpopaa, uro genaer reopuro 3aMkHyTO# IupaMkax kiaud¢oproBa aHamu3a.

Paznoxenune TeopeMsl MO3BOIWIO U3Y4YATh BAPUAIIMOHHBIE 3334 Ha HOJAMOJYJE JIEBO-
MOHOFEHHBIX (QYHKILMIL: ONUCHIBaTh BKIOYEHUs Diljiepa COOTBETCTBYIOIUNX BapHallMOHHBIX
33784 B BUJE HEIMHEHHOrO YPaBHEHNs: C Y8CTHHIMY POU3BOAHBIMY VISl MUHEMU3UPYIOLIEH
JIeBO-MOHOI'€HHON (DYHKIMH U JOTIOJHUTEILHOTO KOMOHOI'€HHOTO NTOTEHINAA.

JIlurepatypa .

{1] Dubinskii Ju., Reissig M. Variational problems in Clifford analysis. Math. Meth. Appl.
Sci. 2002; 25: 1161-1176.

[2] Ryan J. ed. Clifford Algebras in Analysis and Related Topics. CRC PRESS, 1996.

raoe W%‘“(G, An) =

VYpaBHeHuUe 3iiKOHaNA NI HEOOHOPOAHOM cpenbl
Bopoeckux A. B. (@'l MT'Y)

Ilpusoautcs kinaccudbukanus ypaBHeHHH SMKOHaJA [ TPeXMEepHOH HEOTHODPOAHON
CTAaIMOHAPHON U3OTPOIHON cpenbl

AN AN AR
(5) +(6_y> +(?9?) T v2(z,y,2)

M JJIsl IByMEPHOH HEeOAHOPOIHOM cpelpl

(%)« (3) -7

Kraccudukanus npencrasisier coboft pacciioeHne cemeficTBa ypaBHeHHR Ha KJIACChI
KBUBAJEHTHLIX yDaBHEHMH H MepPapXM3aldi0 KJIacCOB B COOTBETCTBHK C BJOXKEHHEM
COOTBETCTBYIOIUX TPYOn cuMMeTpuil. [Ijisi JBYMEDHBIX YpPaBHEHMI NPHBOIATCA YCIOBHA
3KBHBAJIEHTHOCTH LBYX YPaBHEHHN M YCJIOBHS, [IPX KOTOPHIX Cpe/la SBASETCH CJIOMCTOH.

Jnsi TpexXMepHBIX ypaBHEHHH MOJy4YeHAa CBSI3b MeXJY PpPa3sMEPHOCTHIO TIPYNIbI
CHMMETPHI! YPABHEHUs U XapaKTePOM CPeJbl.

Cpena siBAseTcss OAHOPOZHOM, €CM Bce COOCTBEHHBlE 3HAYEHHS TeH3opa Puyui,
nopoxaenHoro Merpuxoit ds? = (dz? + dy? + dz?)/v*(z,y, z) ABAsMOTC KOHCTaHTamu (B
3TOM cJyd4ae rpymnma CHMMeTpuil mmeer pasMepHocTb 15), "cuomcroit", ecim He BCe OHM
KOHCTSHTBI, HO TIONAPHO (byHKIIMOHAILHO 3aBUCUMBL MEXK Ly co00# (/1 TaKOH Cpelsl PpyIIa
cuMMeTpHil uMeeT pasMepnocts o 4 1o 6), "crpyucroit", ecan panr marpuipt kobu
Ui 3TOi cucTeMbl HHBADIHAHTOB MMeET DaHr, papisiil asyM (Torza rpynna CHMMeTpHit
JiByMepHa), U "HeCTPYKTYpHpOBaHHOR", ecim STOT paHr paBeH TpeM (AAf Hee rpymna
CUMMETPHUH OHOMEDHA).

Jnsa ypasennit ¢ "Gonpumofi"rpynnoit cuMMeTpHil NodyudeHbl SBHBIE OPMYJNBl IS
GPOHTA BOMHBI TOYCYHOTO MCTOYHHMKA U JJIs1 JIydelt.

Pabora nogepkana rpantamu POOU N 04-01-00049, 04-01-00697.
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KoMnakTHbIe 9KCTPeMyMbl BAPHALMOHHbBIX (PYHKIMOHAIOB B NPOCTPAHCTBE
CoGomnesa W}
Boxonok E. B. (r. Cumcpeponosns)

Kak wuseecrHo, B rumabbeproshix npocrpascrBax — CobGonesa — Tuma wi
IuddepeHIHATbHEIE H JKCTPEMAJbHBIE CBOACTBA OCHOBHOTO BAPHAIUMOHHOIO (bYHKLOHAA
CYIeCTBEHHO XyXe, YeM B GaHaxXoBhix npocrpancTeax Tuma C!. B ceasu c stuM B
[1] » apyrux paGoTax GsLIO BBEAEHO MOHATHE KOMIAKTHOIO IKCTpEMyMa (K-3xcrpeMyma)
¢yHKIMOHATA 1 COOTBETCTEYIOMmpe NoHaThs K-auddepennupyemoctu u K-HenpepbisHoCTH,
pa3BuTa TeopHsi K-3KkcrpeMymoB. BbicHHIOCH, uYTO K-3KCTpeMyMbi H (noBTOpHA)
K-anddepeHnpyeMocTh THIHYHbL A1 OCHOBHOTO BAPUAIMOHHOTO (bYHKUHMOHATA THIIA

b
3(y) = / [ y(@) ¥ @)z, y() € Wi(lasb, H), (1)

rae H — runn6epToBo WM siiePHOE MPOCTPAHCTBO.

B mHacrosimieM Jokiade A dyHkuuoHana (1) paccCMOTpeHB! YC/IOBHS KOPPEKTHOM
onpeaenertocty, K-menpepeisroctu u (nopropHoit) K-muddepennmpyemoctu (cm. [2]).
Ha cayuatt K-skerpemyma dynximonana Tuna (1) o6oGieHs! Kiaccuieckue HeoGXoaumMoe
yenosne Jlexanapa u jgoctatounoe ycnosne Jlexxanapa-fIko6u, kak mnsi GyHKIHOHATIOB
OT OmHOH NepeMeHHOH, Tak ¥ AnA (DYHKIMOHAJIOB OT MHOIMX NepeMeHHbIX (cM. [3]).
PaccMoTpeHs! IpuMepHI.
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Stability of spatial dynamics for hypercycles in model of prebiological evolution
Bratus’ A.S. (Moscow University of Transport Means (MIIT}), Posviansky V.P. (Applied
Mathematics Department)

The system of semi-linear parabolic equations which described a mathematical model of
natural selforganization is considered [1,2].

Denote by u;(z,t) (0 < z < I,t > 0) the density of i~th type of macromolecule. The
differential equations for the growth macromolecules in the cases of autocatalyzing and
hypercycles respectively has the form

8’114‘ _ P 621/4- o % _ % n.
8t = U; (kiui — fl(t)) + dzggz— N ui(z,O) = (pl(u’t) s 8::: (O,t) = (% (l,t) =0 3
Ou; uy A, _ Ous _
Ot = Uy (k,—u’i’_l - fz(t)) + dl-a—mi‘ y ’U,i(.’L', 0) = ’w,(.'b) 3 E(O,t) = —a—-:l-:-(l,t) = 0,

Up =1uUn, t=12...m,
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Here p is a parameter, 0 < p < 2, k is the replication rate, fi(t), f2(t) are the following
functionals

Z/ kPt (z, )z,  fa(f) Z/ kiui(z, t)ul_, (z, t)dz ,

which assures the integral condition of constancy summary densities u;:

n 1

Z/o w(z)de=1.

i=1

Consider the problem of existence and stability of nontrivial solution for the correspond-
ing steady state problem

diu + ui(ku; — f1) 0, uf(0) =
di! + ui(kiugor ~ f2) =0, wu

Theorem. If the following inequality takes place

YE<(®)”

then in the Sobolev space there exist nontrivial stable solutions of steady state problems.
For sufficiently small d; these solutions are cycles of arbitrarily large length. The results of
numerical solution of steady state problem and the initial boundary value problem with the
help of Galerkin method are presented.
References
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O6o61ieHHbIe Pe30JbBEHThL JUHEeHHBIX OTHOIIEHUH, ITOPOXKAEHHBIX
anddepeHIHATLHBIM BhIpaXKeHNeM I'MIepGo/IM4ecKoro THIa

Bpyx B.M. (Caparos, CI'TY)

Mycrs H - cenapabenbnoe ruibbeproBo npocTpancTso; A(t) - cuIbHO M3MepnMas Ha
oTpeake [a,b] byHKUMS, 3HAYEHHs KOTOPO# - OrpaHMYeHHble HEOTPULATE/IbHbIE ONEPATOPLI
B H; nopma ||A(t)|| cymmmpyema na [a,b]. Obosmaumm l[y] = 3" + Ai(t)y + q(t),
rae q(t) = g¢*(t) - orpauuteHHnle omepaTopsl, (yHKkuus g¢(t) CHIBHO HenpephiBHa
Ha [a,b]; omepatopni A;{t) Takossl, uTo A;(t) = Af(t) > vE (y > 0); obaacrp
onpepenenus D(A;(t)) = D(A;) ne 3asucur or t; Gynkuus A;(t)z cunbHO HENpephIBHO
nuddepenumpyema 1pu mobom x € D(A;). Bupaxenne l[y] u dynkuusa A(t) nopoxnaor
B mpocrpanctse B = Lo(H, A(t);a,b) mMunumansroe Lo u mMakcumanbaoe Lj OTHOIIEHMS,
Lo C L§. Ona onucanusi oGOGIIEHHBIX PE30IbBEHT OTHOLIEHHS Lo BBezmeMm obo3HaveHHS:
W;(t, \) - onepatoproe pewernne ypasrerus l[y] = AA(t)y, ynosnersopsiomiee HaAILHEIM

YCIOBUAM W;k_l)(a,)\) = (=1)7*%, E (§;x - cumson Kpomekepa, jk = 1,2);
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W(t, \)=(Wy(t,\), Wa(t, \)) - onepaTophas oBHOCTPOIHAS MATPHLA; Qo - MHOKECTBO TAKHX
z € H?, yto A(t)W(t,0)x = 0 noutu sciony; @ = H? © Qp; Q- - nononuenne Q 1o HopMe
[IW(¢,0)xllg; Q+ - MO3UTHBHOE MPOCTPAHCTBO OTHOCHTENLHO &, Q_; J - maTpuna Broporo
nopsaIKa, nepsas crpoka Koropoi - (0, —E), sropas - (E,0).

Teopema. Beaxas obobwennan PE30ALBEHMA, R, OMHOULEHUR Lo
AGAREMCA  unmMezpardoM  onepamopom Ryf = f:K(t,s, AA(s)f(s)ds ¢ adpom
K(t,s,A) = W(t, ) (M(\) +(1/2)sgn(s — t)J)W*(s,A), ede M(A) - eosnomopgnas npu
Im) # 0 onepamoprasn Pynxyus, 3navenus xKomopol ozpanuverHvie onepamopu u3 Q4 6
Q- maxue, vmo M*(A)=M(}) u (Im\)"Im(M(N)z,z) > 0 das ecez € Q.

B sTolt Teopeme mpemnonaraercs, uro R, nopoxkaaercs CaMOCONPSKEHHBIM
paclUMpEHNeM € BBIXOJOM B THILOEPTOBO NPOCTPAHCTBO. MOXKHO 1aTh HEOOXOZHUMOE U
JOCTaTO4YHOe yciaosue Ha ¢yHKumoo M(A), uyTo6bt R) NOPOKAAIACH CaMOCONPSDKEHHBIM
paciuKpenyeM ¢ BBIXOHOM B nipocrpancTso [lonTpsruna I1,.

POWER GEOMETRY AS NEW MATHEMATICS
Bruno A.D. (Keldysh Institute of Applied Mathematics, Moscow)

Power Geometry (PG) is a new calculus developing the differential calculus and aimed at
nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms
of original coordinates. Then many relations nonlinear in the original coordinates become
linear. The algorithms of PG are based on these linear relations. They allow to simplify
equations, to resolve their singularities (including singular perturbations), to isolate their
first approximations, and to find asymptotics and asymptotic expansions of their solutions
[1,2].

Algorithms of PG are applicable to equations of various types: algebraic, ordinary dif-
ferential, and partial differential, and also to systems of such equations. These algorithms
include simplifying transformations of coordinates and truncations of equations. PG is an
alternative to Algebraic Geometry, Differential Algebra, Group Analysis, Nonstandard Anal-
ysis, and other disciplines.

PG was applied to problems of Mathematics (expansions of solutions to general ODEs (3]
and to Painleve equations), of Mechanics (motion of a rigid body [4]), of Celestial Mechanics
(rotation of a satellite [5] and the restricted three-body problem), of Hydromechanics (the
boundary layer on a needle), and to problems of integrability and stability.
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DuTponuitHoe HepPABEHCTBO JJIi HEOrPAHMYEHHOTO ONEpaTopa B rMibGepToBOM
NIPOCTPaHCTBE
Bpycennen A.I. (Bearopoicku#t rocygapcTBeHHbI# TEXHOMOTHIECKHH YHHBEPCHTET
uM. B.I. Ilyxosa)

Ilyets T - nnuednnift oneparop B ruibbeproBom mnpoctpaHcTBe H ¢ muoTHoOM
B H obnacreio onpegenenns D(T), obnacteio 3Havenn#t R(T) mu  HyneBbM
agpoM. PaccMOTpHM  ceMeficTBO O KOHEUHBIX, JIMHEMHO HE32BUCHMMEIX MHOMXECTB
Do = {fi(a),f2(@),...,fa)(c)} sexropor us D(T). Uunexc a € A, tae A -
HanpabjleHHOe MHOXecTBO. CeMefcTBO & Ha3oBeM mpoOGHEIM ans omepatopa T, eciu
ans moboro sextopa h € R(T) limy dist(h, H,) = 0, rae H, nuueitnas obonouxka TD,,.
Mycers S;(a) = z:;(‘;),#] |cos(Tfi(a), Tf;(a))|. HasoBeM mmxHe#t u BepXHel#t SHTPONHAMH
oneparopa T’ OTHOCHTEBHO IPOBGHOTO ceMeftcTBa S BEIMYHHE!

Wo(T) = mAE;’L‘;) Si(a), Va(T)=Timy (n(a) mex S; (a))

coorsercrsenHo. Overngno Wo(T) < Vo(T). Hazosem Taxcke sutanbnuelt oneparopa T
OTHOCHMTEJILHO IPOGHOTO ceMelicTBa S BETHUHHY

-4
na}
Eo(T) =lima | Y IA@I/IT fi()]®

i=1

Teopema. IIycmv onepamop T chaborcen npobH™M CEMETICTIEOM, OMHOCUTIEADHO
KOMOPO20 01 UMEEM KOHEuHYI0 6epTHION Inmponut Vo(T') u noaoscumesdnyro IHmasvnu0
Eqo(T). Toz0a dra cnpasedausocmu pasencmnea R(T) = H mneobzodumo u docmamonno,
wmobw npu ecex h € D(T*) 6vwo 6mnoaneno nepasercmeo

IT*RI* > E§(T) exp (~Wa(T) ~ Va(T)) |Ih|%.

B noknaze npMBOANTCS TAKXeE NPUMEp OLEpPaTopa, CHaGXeHHOro NPOOHKIM ceMefiCTBOM
S ¢ KOHeuHON SHTpOHMEN U NOJOXKUTENbHOW SHTAJIbIHMER, M 06CyXIaeTca BOMPOC O
BO3MOXHOCTH HOCTPOEHHS TAKOro cemelcTBa B 06ImeM ciryuae.

®yukumonansHo-guddepenunaIbHbIe BKIIOYEHHs, He obnanatomue ceolicTBOM
BBINYKJIOCTH MO MNEePeK/I0YeHnI0 3HaYeHuit*
Bysrakos A. H. (r. Tam6os)

B nokname paccMaTpHBaeTcs byHKIMOHAIBHO-AMBdEpEHIMANLHOE BKIIOYEHHE C
onepaTopoM, He 00nANAIOMMM CBOACTEOM BHIIYKJIOCTH 1O IEPEKJIIOYEHHIO 3HAYeHMH.
K TaxoMy BK/ICYEHMIO MOTYT HPHBECTH MATEMATHYECKHE MOJENH MHOTOKOMIOHEHTHBIX
CHCTeM AaBTOMATHYECKOrO YMPABAEHHA, Y KOTOPDHX B CBS3H C OTKA30OM Te€X MJIH
HHEIX NPUGOPOB H YCTPOHCTB OGBLEKTHl PETYIUDYIOTCS DA3HHIMM 3aKOHAMH YMpaBJIeHHs
(pa3HBIMH NIPABLIMH  9YACTAMHA) C pasHHIMM MHOXKECTBAMM JONYCTHMEIX 3HadYeHmit
YNpaBlieHHsl, TO €CThb 38KOH YNpaBleHHss OOBEKTOM COCTOMT u3 Habopa noacucreM
ynpabjienus. 3TH NOACHCTEMH MOrYT OHITh KaK JMHEMHRIMM TaKk M He JHHENHBIMH.

4Pabora semonnena npu dbunancoBo#t moxnepxke POOU (npoekt Nt 07-01-00305), Temnnana
1.6.07
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Takune ciydan BO3HMKAIOT, HAMpPUMEP, B BONPOCAX YIpPaBIeHHsi TUOPHUAHBIMHM CHCTEMaMH.
s paccMaTpUBaeMOro B JOKJade (PYHKUHOHAILHO-AMGDEpeHINATIbHOIO BKIIOYEHHA
HapylaeTcsl PpaBeHCTBO MeXJy MHOXeCTBaMH KBasWpeweHu#! # “OBHHOYKJEeHHOro”
dyuxuoHaIEHO- A1} hepeHINATBEHOTO BKIIIOYEHHS, BliepBble ycraHoBiaeHHoe T. BaxkeBckum
7151 OOBIKHOBEHHBIX AxpepeHuaibHbIX BKIOUeHUH. [Jesto B ToM, 94T0 B paccMaTprBaeMoM
cllyyae 3aMbIKaHue (B cJ1aboi TONOJOrHH MPOCTPAHCTBA CYyMMHUPYEMBIX (hyHKIUN) 3HaYeHUI
MHOTO3HAYHOrO OTOOpaKeHusi He COBHNAJAET C €ro 3aMKHYTOM BBIMYKJIOH 06O/IOYKOI.
Besteacrsue yero He 6yAyT BHINONHSTHCS DYHAAMEHTAIbHbBIE CBONCTBA MHOMKECTB PellieHu:
NPHYHUMN IUIOTHOCTH ¥ “OoHr-6sHr” npuxumn. JlagHHYIO CHTyalMio Hejb3s HCIPaBHTh
HHKAKO#l HEIPEPLIBHOCTLIO OTOOpaXKeHUsl, He o00JaJalomero CBOHCTBOM BBIMYKJIOCTH IO
[EPEKJIOYEHNIO 00pa30B.

B cBsu3u ¢ BbINIeCKasaHHBIM JUIS Hccilenyemoll 3aiadu Kolinm BBOAUTCS MOHSITHE
0BOBLUIEHHOTO peleHusT K U3ydaloTcs ero csoicrea. Jloka3aHo, 4TO st DYHKIMOHAILHO-
AuddepeRIManbHOrO BKIKOYEHHs ¢ BoJbTeppoBhiM no A. H. TuUxOoHOBY MHOrO3HauHBIM
0TOOpaXKeHUEM HMEET MECTO TEOPEMA O CYIECTBOBAHUM JIOKAJILHOIO ODOBIIEHHOrO pelneHust
U €ro MPOJ0IKAEMOCTH. JTO COOTBETCTBYET OAHOMY U3 CHOPMYIMPOBAHHBIX B MOHOrpachuu
A. ®@. ©unnnnosa (M. [1]) TpeGoBanuii K 0606IEHHBIM pereHUAM J1s AN bePeHIMaTbHBIX
ypaBHeHHH ¢ pa3phIBHOMN nIpaBoit YacThio. KpoMe Toro, B paore foxa3aHo, 9TO B PEryisipHOM
cjlydae, KOI8 MHOTO3HAYHOE 0TOGparkeHHe UMEeT BBIIYKJIbE N0 EPeKIIOYUeHHIO 3HAUYEHU S,
06006IIeHHOe pelleHne coBnaaaeT ¢ oObIYHBIM pereHHeM. B To ke BpeMs, mpezJio’KeHHOe
3aech 06obiieHHOe penieHWe He YIOBJETBOPAET BCeM TPeOOBAHUAM, NPEAbSIBISIEMBIM K
06061eHHEIM pemeHusM AuddepeHHaANbHEIX YPaBHEHUH ¢ pa3peIBHONA npaBoli yacThio. Tak
HanpuMep, npeaen 0606menHbX (B TepMHHOJOTUM JaHHON paborsl [1]) peweHnit moxer
He 6bITh 0GODIIEHHBIM pelleHHeM. DTO CBA3BHO C TeM, YTO MHOro3HadHoe oTobparkeHHe,
¢ MOMOIIBIO KOTOPOro ompeaensiercs oGoOlieHHoe peieHne He 00JaJaeT CBOHCTBOM
3aMKHYTOCTH B CJIa0OH TONOJOTHH NPOCTPAHCTBA CYMMHDPYeMBIX bYyHKIMH, MOCKOJBKY OHO
MOXeT OBITh HEBBINYKJIO3HAYHO.
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IIpnMeHeHne 6a3MCOB BCILIECKOB AJIA JIMHefHON u HesmHeltHOl annmpokcuManum
dyHKUMNE U3 aHM30TPONHEBIX NpocTpaHcTBs Becosa
Bypuaes E. B. (r. Mocksa)

Oas nemwix J u N, 2/ > 2N > 0, obosnaunm uepes {@yi(z)}ocrcar1:
{45, k(:z:)}J> Jo<k<2i—1 ~— 083MC  BCILIECKOB npoc'rpanc'rna L%([0,1]), y xoToporo
fo zPYik(z)dz = 0 mpm p = O0,...,.N - [2]). HepeoBosnauum @ k(z)
yepe3 tj-1k(z). Basuc BemieckoB mpocTpaHcTBa ]L2([0 1]9) cocront u3 GyHKumi
Un, ja=d— LWk (@) Yaka },cl kg THE ki = 0,...,2% —1mpn j; > J nu
ki=0,...,2 —1mpuj; =J -1 (cMm. [2]) Hycrs 6 = (01,..-,04), P = (o, P15 - - -2 Pd),
Bg ([0,1}%) - ammsorponnoe npoctpancreo Becosa (eM. [1)). Hast 3 = (ji,..-,Ja)s

= (ky,....,ka) 1 T = (21,...,%a) nOnOKMM ¥; £(Z) = Yj, ks (T1) * - - - - Vju ka(Ta)-

Myecrs wy, = {1,[)3,,;(3’0) : (j,l_c) € I‘L}, I, = {(3,!;:) : ZLI 7 < L} nns nenoro L > d- J,
P, — orepaTop OPTOrOHANBLHOTO MPOEKTHPOBaHUA Ha wr, H(F) = [% (ZLl ;1;)] 'l

CpesHee TapMOHHMYECKOe [SIJKOCTH &, p* = min(p;, ) 0603Haqmvt gepes Card(M) —
MOIIHOCTL MHOXKecTBa M, S(G,p) = ﬂﬂ +3 L ﬂﬂ }:

l—lp : a.
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Teopema 1. [lycrs f(Z) € B3, ([0,1]%), N > max{|o1],..., oa]}, & u § Taxoss, 10

J7
S(5,5) > 0. Toraa Card(wy) = L412L u ||f = Pufll, = O (L%z—S(f’f)-L).
_ -1
Monoxum pg = ... = pa = p. Hyems c(z,a) = (21.(§)" ‘,x1+5) . e
§ € (0,1) - mpoussosnsHoe, I = {(5,%) DI :r}. 3aJalM HEKOTOpbHIE ILeNble

HHIEKCOB I™ ¢ T" tak, urober Card (f’") = [Card(F’)-c(r—j,j)] uVk e T*

~ ~ - - d—1 - ~
J>d-Jul x J+2J'(j> . Hdas J+1 < r < L brifepeM MHOXeCTBa

COOTBETCTBOBAIN HAUBOIBIINM 3HAUEHHUAM K03()PUIMEHTOB |a3‘,-c| = l f[o 12 F(E); 5(T)dZ|.

IMonoxmm @y = {wifc(i‘) : (7,k) efz}, rae fi =TjU Uf=5_“fr, P; — omepaTop
OpPTOrOHAJILHOTO NPOEKTHPOBAHNUS HA Wi -

Teopema 2. Ilyets f(T) € BS ([0, 11%), N > max{|o1],...,l04]}, & u p Takosw1, ¥TO
5(5,p) > 0. Torza Card(@) = J¢-127 u ||f ~ Pz fll, = O (f“—z‘ri&ﬂ-l).

Pabora 4aCTHUHO TONJEPKAHA AHAIMTHYECKON BeJOMCTBEHHON lieieBOR nporpamMmoi
PHII1.2.2.1.1.2467, rpanrom IIpesugenra PO mno rocysapCTBeHHOR moiJepXKke BeAyluX
Hayuseix wmkonm HITI-5379.2006.1, mporpammo#t byuaaMeHTAIBHEIX —HCCle0BaHMHA
Hpeanmuyma PAH 15, rpantom PTH® 06-02-91821 a/G, rpantom POOH 05-01-00944.
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O paspemmmocTy 3aga4yn Komm njisi KHHETHYECKOTO ypaBHeHUs
60ABIIMAHOBCKOTO THIIA
Bypobun A. B. (r. O6unHCK)

PaccMaTpuBaeTCst KHHETHYECKOE ypaBHEHHe

7] 4}
§f+v6_xf = St(f), (1)

t>0, vER™ xeR" (n>1),

¢ HaYaJIbHBIM YCJIOBHEM

Flt=0 = fo(v,x). )
Tpennonaraercs, 9T0 ONEPaTOp CTOAKHOBEHHH St B NpaBoft 9acTH ypaBHEHHS NIPeACTaB/IseT
coBoft HeMHeliHbIH HHTErpATBHEIH onepaTop GombiManoBcKoro Tuma (cM. [1]) ¢ xoneunsM
HabOpOM 3/IEMEHTAPHHIX MHBADHAHTOB CTOJIKHOBEHHUH.

Wsyuaercst HenokaibHas paspemmmocts 3agauu Komm (1), (2) B npocrpaHcTBax
06OBIIEHHO HHTerpHpyeMbIx (YHKIMH [OpH JIOKAJIbHO CyMMHpyeMofi No X HaualpHOM
bynkuun fo(v,x). Hcenenyercs nepexos X JOKaJIbHbIM 3aKOHAM COXDAHEHHS yPaBHEHHH,
CBSI3aHHBIM C MHBADHAHTAMH CTOJIKHOBEHHMI oneparopa St.

Jlureparypa
[1] Yepunnbanu K. Teopus u npuacorcenus ypasrenus Boavymana. M.: Mup, 1978.
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Ill-posed boundary value problems, some new links with geometry and algebra
problems
Burskii V.P. , Zhedanov A.S. (Donetsk)

The communication is devoted to a connection between ill-posed boundary value prob-
lems in a bounded semialgebraic domain for partial differential equations and the Poncelet
problem, recently revealed by authors. The Poncelet problem is one of famous problems of
projective geometry and it by itself has numerous links with a set of different problems of
analysis and physics. Investigations of ill-posed boundary value problems in bounded do-
mains for partial differential equations go back to J.Hadamard. The solution uniqueness of
the Dirichlet problem for the string equation uzy = 0 in @, ulc =¢ on C =0Qin
a bounded domain € is connected with properties of John automorphism T : 02 — 0.
In particular, there is the following sufficient condition of uniqueness: The homogeneous
Dirichlet problem has only trivial solution in the space C?(Q) if the set of periodic
points of T on C is finite or denumerable. We consider this problem in a bounded semi-
algebraic domain, the boundary of which is given by some bi-quadratic algebraic curve
Fz,y) = E?,k:o aixzy® = 0. We show the John mapping in this case is the same as
Ponselet mapping in some rational parametrizations of conics. From it we obtain

Theorem. For generic bi-quadratic curve the Dirichlet problem has non-unique solution
if and only if corresponding Poncelet problem has periodic trajectory.

From Poncelet theorem we obtain if there exists some periodical point then each point
of C is periodical with the same period. On the other hand a Baxter parametrization allows
write the Poncelet mapping by means of elliptic Jacoby functions and obtain a criterion of
existence of periodical points and a criterion of uniqueness breakdown for above the Dirichlet
problem.

In turn the solution uniqueness of the Dirichlet problem is equivalent to solution unique-
ness of some class of boundary value problems for the same equation on C and is equivalent to
an indeterminacy of some moment problem on C: Ja(s) # 0,Vk =0,1,... fc[x(s)]ka(s) ds =
Je [y(s)]*a(s)ds = 0, where (z,y) are Cartesian coordinates of point on C' parametrized by
s.

Except for that a Cayley determinant criterion of periodicity of Poncelet problem for case
of even period can be understood as a criterion of solvable for algebraic Pell-Abel equation
P2 — RQ? = 1, where for given polinomial R of the order 4 it is required to find polinomials
P,Q. The last problem has connections with a lot of different problems of analysis also.

3anaua Kommm nist HeogHopoaHoro ypasHenus auddy3un JpoGHOro nopsaika c
3ana3/LIBaloLMM apryMeHTOM M0 NPOCTPAHCTBEHHOU KoOpAMHATe
Bypnes M.B. (Op.iosckuii rocyapcTBEHHBI# YHUBEPCHTET)

B obnactu D = {(z,t) : |z|0} paccmaTpmBaercst HeOMHOPOAHOE ypaBHeHHe APOGHOTO
NOpsAAKA ¢ 3ana3bIBAHAEM 110 NPOCTPAHCTBEHHON KOOpAMHATe

D§U(x, &) = Upy(z,t) ~ H(x — T)U(z — 7,t) + F(2,1), (z,8) € D (1)
rne D§, - oneparop npobuoro (B cmuicie Pumana-Jluysuis) unTerpo-audde-

peHUHpoBaHus, AeiicTByommit Ha dynkmmo U(z,t) no nepemennoit t, 0 < o < 1; H(f)
- pyuxnus Xesucanza, 0 < h, T = const; F(z,t) - 3afanuad, orpasuieHnas QyHKuua.
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Bamaua. Ha#tru B obmactu D pemenne U(z,t) ypepuenns (1) s xmacca
D& U(x,€) € C(D), t*~-*D&U(z,£), Usz(z,t) € C(D), yooBnersopsiolee yCAOBUIM

Jim D5 (z,€) = w(e), el < +oo
w(£o0) =0;
roe 3aganube bynkmuu w(z) € C[0, +00)NC2(0, +00); F(z,t) = f(z)g(t) € C(D)ﬂC::i(D).

Jloka3aHbl TEOPEMBI EAMHCTBEHHOCTH H CYIIECTBOBAHNUS PellIeHus 3a71a491, KOTOPOe HMeeT
BHT,

+o0 t +o0
Uz, ) = Hz ) / W(E)G(, 6, t)dE + / a(m)dn / FOC(.&,t - m)de,
—00 0 —0c

rae
1 +o0 +o0
G(I,f,t) — % z(_l)m / ei)\(:c-mr—i)th(m+l)—lE::(lm+l)(_.I\Zta)d/\,
m=0 oo

a Ef, 4(2) - obobwennasn dpynxuus Murrar-Jlepdrepa.

Cucrema JlopeHua Kak COBOKYITHOCTb JABYMEDHBIX yNpaBJIsieMBbIX CUCTEM
Byrennna H. H. , Bupiokos P. C. (r. Hixuanit Hosropon)

Ussecrnaa cucrema JlopeHIa paccMarpUBAeTCs KaK COBOKYNHOCTh HEABTOHOMHBIX
cHcTeM BTOpOro nopsika. Kaxkaas 3 Takyux JByMEPHBIX CHCTEM NMPHHAIJIEXKHT CeMeHCTBY
VYIC; ynpapasiome#t dynkuuelt asnsgercs Ta, NPOU3BOAHAA OT KOTOPOH He COAEPXKHTICA B
paccMaTpHUBaEeMOlt cHCTeMe.

TIpu M3BECTHBLIX OrPaHHYEHHSX Ha ynpasieHue (KOTOPBIE MOXHO NOJYYHTb, TIOCTPOMB
COOTBETCTBYIOIIME OCIM/LIOrPaMMBbl) CTPOSITCH OBNACTH IOCTHXKMMOCTH JUIS KAXIOH u3
HEABTOHOMHBIX CHMCTeM NpPH Pa3sNMYHLIX 3HAYEHMsX napamerpa r. IlokasaHo, 4TO npH
Mo6LIX OrPaHHMYEHHAX HA YNPaBAAiomMe (PYHKIMH yCTAHOBHBUIMECS ABHIKEHHS JIEXKAT B
OrpaHn4eHHHX 00J1aCTsIX, PACco/IoKEHHe KOTOPhIX CYIIECTBEHHO 3aBUCHT OT Napamerpa .

B Kaxnolt u3 yKa3aHHBIX BHILE HeABTOHOMHBIX CHCTEM CYyIIECTBYIOT 0coObie TOYKHM
(BekTOpHOE TONIe PACCMATPUBAEMON CHCTEMBI B 3THX TOYKAX IIPH ONpEeIEHHBIX SHAYCHUAX
ynpasasioie#t ¢byskuuu He onpeaeneHo, cm. [1]). Xapaxkrep sTHX 0COBBIX TOYeK
CymeCTBEHHO 3aBHCHT OT napaMerpa r. CTPyKTypa OKPECTHOCTH 3THX OCOGBIX TO4eK
ONpeJieNieT XapaKTep pellleHH#i HEaBTOHOMHON CHCTEMB! Ha KaXkJo# M3 KOOPJMHATHBIX
IUIOCKOCTeHt U, CJleIOBATEIILHO, TIO3BOJIAET ONMUCATL XapaKTep ABHKeHHM B cucreMe JlopeHua.

ITpu TAKOM NOAXOZIE JIETKO OOBACHAETCA UCUE3HOBEHHE XA0CA NPH JIOCTATOUHO GonbuInx
3HAYeHMsX napaMerpax 7. IIpudnHa B TOM, YTO yBelH4YeHHe T' NPHUBOAMT K 3aTYXaHHIO
xosie6aHuit BEKTOPHLIX MOJIeH YKA3aHHBIX HEABTOHOMHBIX CHCTEM.

JIureparypa

[1] N.N.Butenina, R.S.Birjukov, A.V.Metrikine "Special trajectory in a mathematical
model of static equilibrium of a deep-water catenary riser"// VI International Congress on
mathematical modeling. Book of abstracts. N.Novgorod, 2004, p.150.

Cucrema Jlopenua Kax COBOKYNMHOCTb JBYMEPHBIX YNpaBJsieMbIX CUCTEM
Byrennna H. H. , Bupiokos P. C. (r. Huxunit Hosropon)
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Wspecrnas cucreMa JIopeHila paccMaTPMBAETC KAK COBOKYIHOCThH HEABTOHOMHLIX
CHCTeM BTOPOro mopsiaxka. Kaxkaas u3 Takux IByMepHHIX CHCTE€M NPHHAIEXXUT ceMelCTBY
YIC; ynpasnsiome#i GbyHKuMelt sBseTC TA, NPOU3BOAHAS OT KOTOPOH He CONEPIKUTCA B
paccMaTpuBaeMoif cucreMe.

Ipyn u3BeCTHBIX OrpaHMYEHHsIX HA yupaBjeHde (KOTOPhHIE MOXHO MOJIYYUTh, NOCTPOUB
COOTBETCTBYIOIINE OCLMIONPAMMEL) CTPOATCH 00/aCTH JOCTIDKMMOCTH /S KaXKJol u3
HEABTOHOMHBIX CHCTeM IIDH Da3/IMYHBIX 3HAYEHMsX napamerpa 7. Ilokasano, 4TO mnpH
06bIX OTpaHMYeHHAX Ha ynpasisiomue (GYHKUMM yCTAHOBMBIIMECS NBIDKEHHS JIEIKAT B
OTPaHMYEHHBIX 00/IACTAX, PACIIOIOXKEHHE KOTOPHIX CYILECTBEHHO 32BUCHT OT NAPAMETpA T.

B xaxmoll M3 yKa3aHHBIX Bbllllé HEABTOHOMHBIX CHCTEM CYIIECTBYIOT 0CODBIE TOYKH
(BexTOpHOE HOJIE pacCMATPHBAEMON CHCTEMBI B 3THX TOYKAX NpPH ONpeAe/SHHbIX SHAYEHUAX
ynpaBaswome#t ¢ynkuun He onpegeneHo, cM. [1]). Xapaktep sTHX 0cOBEIX TOUEK
CYWIECTBEHHO 3aBHCHT OT napamerpa r. CTDyKTypa OKPECTHOCTH 3ITHX OCOGBIX TOYEK
onpeiensieT XapaxTep pelleHHH HEABTOHOMHON CHCTEMBl Ha KaXKIOH M3 KOODAHHATHBIX
II0CKOCTel H, ClIeJOBATE/ILHO, IO3BOJISET ONHCATh XapaKTep ABKKeHuit B cucreMe JlopeHria.

TTpu Takom noaxoze J1erko oGbICHAETCS HCIE3HOBEHHE Xa0Ca NPH JOCTATOYHO GOIBIINX
3Ha4YeHHAX napamerpax r. [lpwunna B TOM, 4YTO yBejMyeHHe T NPUBOAMT K 3aTYXAHHIO
KoJ1e6aHuit BEKTOPHBLIX OJIell YKA38HHBIX HEABTOHOMHEIX CHCTEM.

JInreparypa

[1] N.N.Butenina, R.S.Birjukov, A.V.Metrikine "Special trajectory in a mathematical
model of static equilibrium of a deep-water catenary riser"// VI International Congress on
mathematical modeling. Book of abstracts. N.Novgorod, 2004, p.150.

O ryo6anbHolt paspemmmMocTy obparnoit 3anaum 4y
uHTerpo-aud¢epeHIRANLHLIX ONEPATOPOB®
Byrepun C.A. (Caparosckuil rocyHnBepcHTer)

ITyers {Ax}x>1 — cnexTp xpaesoit sagaun L(g, M) suna
z
'+ e+ [ M- ude=dy, 0<z<w 3(0)=yn) =0,
0
rae g(z), (r — )M ({z) € L2(0, 7). CoberBennnie 3navenus A\, k > 1, uMeloT BUA:

2 n
w=(kr 5+ 2) A= [aods (uien )
PaccmorpuM caelyoimyo ofpamuyio 3e¢dady: N0 3a8aHHOMY cneKTpy {Ax}i>1 HaliTn
dynxkumio M(z) B npeanonoxenun, uro ¢dyuxuus g(z) ussecrna anpuopu. B [1] gokazana
paspemMMocTh 3To#t obpaTHOH 3a/auM “B MasOM’, TO €CTh KOIJia NOCIEAOBATENbHOCTD
{Ax}x>1 AocraTouno 61u3ka B MeTpHKe l; K cneXTpy H3BecTHON MofesnbHON 3anauu L(g, M).
Kpome Toro, TaM Jioka3aHa yCTONYRBOCTb U [JI06aJIbHasi €IMHCTBEHHOCTS pemenus. VIHbM
MeTOAOM Mbl JIOKa3blBaeM INI0BaIIbHYIO PA3pPEIIMMOCTh PAcCMATpUBaeMoli oOpaTHOMN 3anaun.

Teopema. Iycrs nana dyuxkuus g¢(z) €  Ly(0,7). Torma ans Besxolt
NOC/IEA0BATEILHOCTY KOMIIIEKCHBIX uncen {Ag}x>1 BuAa (1) cyliecTByeT eAnHCTBeHHas (c
TOYHOCTBIO JI0 SKBHBAJIEHTHOCTH) bynkuusa M(z), (r — z)M(z) € L,(0,x), Takas uro

SPaBora BbimonHena npu nopnepxke POOU u rpanra Ilpesunenta P® (mpoexr MK-
1701.2007.1).
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{M}ky1 sBastieTcst cmekTpoM Kpaesoit samauu L(g, M). Takum oGpa3om, (1) aBasercs
HEOBXOMMBIM M JJOCTATOYBEIM YCJIOBHEM Pa3pelinMocTd 0GPATHOM 3a1a4H.

JI0KAa3aTe/IbCTBO TEOPEMbl KOHCTPYKTHBHO ¥ [Ia€T aJITOPUTM peleHus 06paTHO 3ana4m.
B [2] sTOT pesy:bTaT mosyHeH M YACTHOrO ciiyyas ¢(x) = const.

JInreparypa
[1] Opxo B.A., Obpamuas 3adana 0as unmezpo-dubpepenyuaionbiz onepamopos //
Matem. 3ameTkH, T. 50, i 5 (1991), 134-144.
[2] Buterin S.A., Inverse problem of spectral analysis for a convolution integro-differential
operator, Tes. noku. mexa. koH®. "TuxoHoB u coBpemeHHas maremaTuka" ,cex. N4, M: Uzn-
nit ota. d-ta BMuK MTI'Y, 2006, 43-44.

Functional integrals for evolutionary equations on Riemannian manifolds
Butko Ya. (Moscow)

A new approach, introduced by Smolyanov and Weizsaecker ([1], [2]), is used to obtain
representations for solutions of some initial and boundary value problems for heat and
Schroedinger type equations on a compact Riemannian manifold in the form of limits of finite
dimensional integrals over Cartesian products of the manifold. The integrands are elementary
functions of initial conditions, coefficients of equations and geometrical characteristics of the
manifold. These limits coincide with functional integrals over surface measures of Gaussian
type (Smolyanov-Weizsaecker measures) on the space of continuous functions, taking values
in the manifold.

We present functional integrals for Cauchy-Dirichlet problem for diffusion with drift in a
domain of the manifold and for Cauchy problem for Schroedinger equation on the manifold.
References
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(1995), 455-458.
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(3] Butko Ya. A., Functional integrals for Schroedinger equation on a compact Rieman-
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[4] Butko Ya. A., Feynman formulas and functional integrals for diffusion with drift in
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CuHIYJISIPHO BO3MYUIEHHbIe 33/1a4M B CJIydae liepecedyenus KopHeit
BBIPOXK/IEHHOTO YPaBHEHUS
Byrysos B.®. (MI'Y)

PaccMaTpuBaeTca KpaeBasl 3aJada [ CHHTYJSPHO BO3MYILEHHOH CHCTeMbl ABYX
OBLIKHOBEHHBIX AuddepeHNaIbHbIX YPABHEHHHA BTOPOro NOpsAKa, B KOTOPOH Npapas
4acTh BLICTPOrO ypaBHEHHS HMeeT lepecekawolivecs: kopuu. CranjapTHas Npouenypa
[OCTPOEHHS] ACHMITOTHKHM PEIleHUA B 3TOM CJy4ae COCTOHT B HCIOJIb30BAHUM HEIJIAJKOro
KOpHSI, COCTABJIEHHOTO M3 YKAa3aHHBIX Iepecekaromuxcs xopuelt. Ipeiqnaraercs mpyroft
MOAXOA, CyTh KOTOPOTO 3aKIOUAETCS B 3BMEHE HETJIAJIKOTO COCTABHOTO KOPHs OM3KMM
K HeMy [JI3JKUM KODHEM Deryisipu30BAHHOTO BBIPOXKIEHHOrO ypaBHEHUS. Jto nossosaser
nosy4uTh GoJlee TOUHYIO aCHMITOTHKY PellleHis KpaeBolt 3aia4u M, KpoMe TOro, JOKa3aTh,
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YTO 3TO peIIEHHe SBJSETCS ACHMITOTHYECKH YCTOHYMBBIM CTAIHOHADHBIM pelLIeHHeM
COOTBETCTBYIOLIEl MapabondecKoll cucTeMbl. JOKA3aTeNbCTBO CYIIECTBOBARUS PEILEHUS U
€r'0 YCTOMYMBOCTH IPOBOAUTCS € MOMOLIBIO 8CHMITOTHYECKOTO MeTosa Aud bepeHnalIbHBIX
HEPABEHCTB.

HccnegoBanne HEKOTOPHIX BBIYMCIMTENBLHBIX ACIIEKTOB METOJa MYJIBTHIIONeH
Byspiknu I O. (. Mocksa)

Myasrunonu =, (2), n € N ais ypasrenns Jlaniaca Ha IJIOCKOCTH z = T + iy C HyJeM
B TOYKE 2o # 0O M LEHTPOM B 0O ONPEAENISIOTCS 110 hOPMYIaM Zgp -1 (2) 1= Re (2 — z0)™ L,
Zom (2) = Im(2—20)™, m € N. Cucrema {E,,} sBnsiercs noiHol 1 MUHAMATLHOH Ha I060M
JKOP/JIAHOBOM KYCOYHO-TJIAZIKOM KOHTYpe C, OXBATBIBAIOINEM TOUKY Zp. ICHO, YTO pemenne
3agaan Jupmxie B obsactu B — BHYTPeHHOCTH KOHTypa C — MOXKeT OBITh IIOCTPOEHO B
BHJle Tpefena JuHeltHbx KoMOuHaimi Gynkuuit Z,. das HaxoxaeHus KO3DOUIMEHTOB B
THX KOMOHMHAINAX B HacTosimed pabore HCIOMBL3YIOTCS JBa PA3JMYHBIX BLIPHAIIMOHHBIX
NPUHIMIA, J5IS KOTOPHIX NPOBOJUTCH CPABHUTENbHBIN aHamM3 3(PGeKTHBHOCTH: 3TO, BO-
MepBLIX, IPHHLMI HAMMEHLIIMX KBAJPATOB, T.e. MHHMMH3aUMs OMWMOKM ¥ — Uy B HOpME
L,(C), a, Bo-Bropeix, npusuun Tpeddua, T.e. MusnMuzamus omubky B HOpMe wi(B).

[panuunbie MyIbTHIONA §Y, (2) ans oxmocsssmoli obnactu G C C ¢ Hymem B Touxe
N € G u nenrpom 8 M € OG onpenensiores o hopmyie 2, (z) == Im [}' (z)]", roe F —
Taxoe kKoHdopMHoe oTobpaxkenne G Ha {Imw > 0}, uro F (N) = 0, F (M) = co. llycts I' —
JXKODIAHOBa KyCOUHO-TJ/IaIKasi Ayra, cofepxaiuasicss B G 3a UCK/IIOYEHHEM CBOUX KOHIEBBIX
Touek A n B, nexxampx coorseTcTBeHHO Ha Ayrax (MN) u (NM) rpanuup 0G. Cucrema
{2} nomsa u musnmaneua B Lo(T') u, uTo oueBnzHO, Kaxias u3 (2, rapMOHHYHA B Gu
obpamaercs B Hyab Ha 0G \ M. fcho, yto pemenne 3ana4uu dupuxie B obnactu g C G,
rpanuna Kotopo#t cocrout u3 ' u ayru v = (ANB) C 0G c ycnopusmu: ¢ = 0 on 7,
¥ = h € Ly on T, Moxer 6uITh TOCTPOEHO B BUJIE NpeJe/ia JTHHENHBIX KoMOuHaut dpyHKuit
Q. KodbbuipenTs! B 3THX KOMOMHAUMAX BBETUCIAINCE C IOMOIIBIO IBYX YKA3aHHBIX BbIUIE
TNPHHLAIOB, IS KOTOPHIX HPOBOAUTCS CPABHUTEBHBIA aHAIN3 3 dexTuBHOCTH.

YucieHHble MCCIEJOBaHHS II0Ka3alli, 4TO I OOOMX ONMCAHHLIX BbIIIE BAPHAHTOB
MeTola MYJIBTHIOEN HMEIOT MECTO CBOMCTBA: SKCIIOHEHINAIbHAs CKOPOCTb CXOXMMOCTH B
06IaCTH ¥ Ha Iyre 7; BhicOKas 3(bbEeKTHBHOCTH BHIYNC/IEHHS PEUICHUS U ero NPOUSBOAHBIX
B 06MAcCTM ¥ B TOYKAX COOTBETCTBYIOMmEH IJIAAKOCTHM <y; NOrpaHcioiHblll acddexr ansa
norpemsocty 86an3u C 4715 nepsoro BeipuanTa ¥ B61au3n I' 1u1st BTOPOro BapuaHTa MeTOAa.
Kpome Toro, 66110 TPOBEAEHO HCCIeI0BaHNE I0BeAe N Koo DHUIMEHTOB B yKA3aHHBIX BbIlle
NUHeRHKX KOMOHHALMAX MYJIBTHIONEA DU YBEeJINYEHNH JINHE TPHOIIKeHns.

Pa6ora BmmnonHeHa npu cunancopoht momaepxxe PODPU (mpoext 07-01-00503) u
TIporpammu Ne3 OMH PAH.

O CHeKTpaTbHBIX CBOHCTBAX OJHOIO MydYKa ONEpPaTopoB
Brruenxos FO.B. (MI'Y um. M.B. JIoMoHOCOB2)

HWccienoBanne CXOAMMOCTA OBMIMPHOTO Xjacca OJOYHBIX HTEPAIMOHHBIX MeETOMOB
pellieHns: JINHeHHBIX (CHMMETPUYHBIX I HECHMMETPHHUHBIX) CEJUIOBBIX 387184 MOXeT OLITH
CBEJIEHO K aHAJIN3Y CIEKTPa

a(x) = {} € C| kerx(}) # {0}}
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ONEePATOPHOTrO MyYKa

x(A) = f(\ L)g(A, G) + h(N)G,

rae f(A\8), g(A\t), h(A\) — MHOrouneHsl ¢ KOMIUIEKCHbIMM Ko3¢duumentamu, a L u
G - caMOCONpsKEHHBIE ONEPATOPsl B KOHEYHOMEDHOM 3PMMTOBOM Inpocrpancrse U,
YHOBJIETBOPSIIOIHE YCJIOBUSAM

spL C{01,8], 61 <82, spGC{O}U[11,72), 0<m <72

CyuiecTBeHHOM O0COGEHHOCTBIO 33Ja4M aHA/M3a CIIeKTpa X SBJISETCS HaJH4ue y
onepaTopa G HyJeBOro COGCTBEHHOrO 3HAYEHUS. YHHUBEPCATBLHYIO OUEHKY CIEKTpa X JaeT
CleAYIOLHIT Pe3yJIbTAT

Teopema. Ilycte Mg € o(x), Torma g{X,0) = 0 nam Haiimercss 8o € [61,82] Takoe, 4o
f(Xo, 80) = 0 unn, ecnu TAKOTO Sg HE CYLIECTBYET,

conv {t71g(Xo, t)] t € [71,72]} + conv { f(ho, )2 h{Xo)]| s € [61,62]} 30,

rge conv 0603HaYaET 3aMKHYTYIO BBINYKJYI0 0607104Ky MHOXecTBa B C.

[Ipumenenne yHUBEpCANbHON OLEHKM B NPAKTUYECKM Ba)KHBIX CIydYasxX NO3BOJAET
MOJIy4UTH TOUHbIE AHATUTHIECKUE XapaKTEPHCTHKHY criekTpa nydxa X (cm. [1]). Monyuennnie
Pe3yABTATHI MOI'YT ObITh HCIOIbL30BAHBl KaK Ul U3YYEHHUs CXOLMMOCTH HOBBIX AJITOPHTMOB
JUIsi DEUIeHUs CeAJIOBBIX 38484, TAK U JJISl YTOYHEHHs XaPAKTEPHCTHK CYIECTBYIOLIMX
AJITOPUTMOB.

JIureparypa

[1] Bsruenkos }0.B. O cnexmpoavuwir ceoticmeax odnozo nywxa onepamopos [/ K.

BBIYHMCI. MAT. ¥ MaT. dus., 2007, T 47, N 2, C 194-202.

O knacce Bapa makopaHT nokasareneit JIsanyHoBa JNHEWHBIX CUCTEM C
HeorpaHWYeHHbBIMM KoadduumeHTamMu
Beikos B. B. (r. Mocksa)

Yepes M;(:) obo3navaeTcss MHUHHMAaJIbHAd MOJyHENpPepHIBHAS CBEPXy MayKOPaHTa i-
ro nokasarens JIANyHOBa, pacCMATPHBAEMOrO KaK (DYHKLHS Ha MHOXECTBE JIHHEHHBIX
OJIHOPOJHEIX N-MEPHBIX CHCTEM C HempephlBHEIMU Ha RT kosdbdunuentamu, naienenHom
Tononoruett papaoMepHoit Ha R cxomumoctn xoadduumenTos.

Iycrs M — Tomnosormyieckoe npocrpancTso, a A: R x M — EndR™ — uenpeprbisHOe
orobpaskeHue.

Teopema 1. ua Beakoro ¢ = 1,...,n dyukuua M;a: M — R, crapsmas B
cooTBeTCTBHE TO4Ke i € M 3navenue byHKumn M; Ha cucteme & = A(t, p)zr, NpAHAIEKAT
BTOPOMY KJjlaccy Bspa.

3ameuanne. I3 pesyabraTtoB [1] ciefyer, 4TO CYIIECTBYIOT TaKHe TOIOJOTHHECKOE
npocTpaHcTBo M u HenpepbiBHOe oTobpaxkenne A: R x M — EndR", uro byukuus M; 4
He TIPUHAJJIEKUT NEepBOMY Kiaccy Bspa.

Teopema 2. Ecoin M MetrpusyeMo [oiHoO# MeTpukoli, To B TunugHO nmo Bapy Touke
bysxkaun M; 40 M — R, i = 1,...,n, NOMyHENPEPLIBHEI CBEPXY, & HX CY’KeHHs HA
HEKOTOPO€e BCIOJY IIJIOTHOE MHOXKECTBO THIA (G§ HElPEPbIBHBL.

Teopemsl 1, 2 ycHIMBAIOT TeOpeMBI [2], B KOTOPHIX COAEPIKATCS T€ JKe YTBEPIKACHUST DY
JOTIOJTHATETBHOM YC/I0BHH Ha oTobpaenue A: RT x M — EndR™.

JInteparypa )
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Homogenization of scalar problems for a combined structure with singular or
thin reinforcement
Cardone G. (University of Sannio - Italy)

The homogenization of quadratic integral functionals for combined structures with sin-
gular or asymptotically singular reinforcement is studied in a model case in dimension N = 2.
Generalizations to more general cases in dimension N = 2 or to some model cases in di-
mension N > 2 are discussed. Such results are obtained in the frame of homogenization
of problems depending on two parameters developed by V.V.Zhikov in {1], {2] and [3]. In
particular an essential tool is the notion of two-scale convergence of sequences of functions
belonging to Sobolev spaces with respect to variable measures.
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Lyapunov pairs and applications
Carja O. (Iasi, Romania)

The paper presents a characterization of the Lyapunov pairs for a general initial value
problem with a possibly multivalued m-accretive operator on an arbitrary Banach space by
means of the contingent derivative related to the operator. The proof is based on tangen-
cy and flow-invariance arguments combined with a priori estimates and approximation. A
first application treats the existence of global solutions for an initial value problem with a
multivalued w-m-accretive operator and a term satisfying a general unilateral growth con-
dition. A second application provides the null-controllability for a nonlinear control system
involving a multivalued w-m-accretive operator. Here, it is a new approach of the subject of
Kocan-Soravia [2] and is a nonlinear version of Carja-Motreanu [1].

References

|1] Carja O. and Motreanu D. Flow-invariance and Lyapunov pairs, Dyn. Contin. Dis-
crete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 185-198.

{2} Kocan M. and Soravia P. Lyapunov functions for infinite-dimensional systems, J.
Funct. Anal. 192 (2002) 342-363.

O 3azauax B HEOTPAHMYEHHHIX OGJACTSX ¢ KOHIEHTPUPOBAHHLIMHM MaccaMm.
Yeuxkun I A. (r. Mocksa)
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PaccmaTpuBaeTcs 3aJada A/ ypaBHEeHMs! [eJbMrosiblia B HEOrDAHMYEHHOM 06sacTH
KOHIEHTPUPOBAHHBIMH MaccaMy Ha rpaHuile. J[oKa3bIBaeTCs TeOpeMa yCPEAHEHH S, CTPOATCS
pelleHHst M UX AHAJIWTH4eCKM€ NPOJOJIKEHUS W JOKA3bIBAETCA CXOOUMOCTL MOJIHOCOB
8HAJIMTHYECKOTO NPOJOIKEHHs K COGCTBEHHBIM 3HAYEHMAM MpejebHOM 3a1ayn (em. [1]).

Hycts  — rnagxas obnacts B R® ¢ rpanunett T' = 9. IIpeanonaraercs, uro T' = [ UT,,
yuacTok I'y npunannexur mnockoctn {x3 = 0} u cocrout u3 AByx wacredt, Y. u [2\7¥,, rue

Ns [
ve = {U 4% Bemém crenmyiomee oGosnauenue: B, = |J Bl — obbemunenue nomywapos,
i=1 i=1
HaxoAsuuxcsl BHyTpH obiactu (2. Ilosicuum Teneps nocrpoentue. [Iycts B, — roMoTeTHyHoe
cxarue 6B, B - obnactb, nomydeHHas LeJIOUNC/IeHHBIMU  CIBUTAMH MHOXKECTBA, B? na

miaockoctn {€3 = 0}, ¢ uentpamu B Touxkax & = (ki,k2,0), ki,k2 € N, B® — 310

T
noxymap {(£1,&3) | €2 + €2 + &% < €%, & < 0} B pacrsmyTom npocrpascrse R3, £ = 5
— 1
7o = {(€1,€2,&3) | £3+€2 < €2, €3 = 0}. IlpuatoM v, = B.NIN. Samerum, uto N5 = 0(35)
PaccMarpusaeTcs ciayvail, koraa § = §(¢) 3aBuCHT OT € 1 lin}] oy =
E—
Mpeanonoxum, wro F — obynkuus us Lo(R3) ¢ orpanuvennsiM  HocuTemeM,
PaccMaTpuBaeTcs cieyiOWas 3a/1a4a B HeOTPAaHMYEHHO! obacTi:
(A + pekZ) ues=F, B Rs\')’s Uy, )
Ues =0, Ha Y UIy,
C YCIOBUAMY H3JLYHEHUs
1 Oues . —~1
Ues = O(r™7), " tkues=o(r™") mpm r— o0, (2)
1+ ! B B,
rae Imk >0, r = |z| u p°(z) = (g6)m’ £ ,m< 1l
1, B Q\B:

Crnpasennnsa TeopeMa.
Teopema Ilpeamonoxunm, uto f u f — CyTb cyxeHus Gynkuuu F Ha  u Ha ]Ra\Q
coorBercTBenHo. Toraa pemenne 3agaun (1), (2) cxogures Kk dyHKIME

w(z) = uo(z), B Q,
To(z), B R}\Q

cusbHO B H} (R®) mpu € — 0, rue up(z) — pemenne 331441

oc
—Aug=kus—f, B Q, up =0, ua T, “(3)
a Up(z) — peurenue 3a8849K
(A+K)G=f, 8 R\Q, =0, ma T, 4)
YAOBJIETBOPSIONIEE YCIOBHSM U3JIyYeHHst

g = O(r™1), %1—:”9 —iklip =o(r™!)  mpu r— oo. (5)

3Iler npearosiaraeTcs, 4To k‘2 He ABJsSIeTCs COGCTBEHHBIM 3HAYCHHEeM oneparopa 3aJavu

3).
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Ecmu k% = k3 — coGerBenHOe 3HAUEHHE OMepaTopa 3aza4vu (3), TO CYMECTBYET MOJIOC
0 ) Yy Y

Te,§(e) AHATUTHYECKOTO Npouo/rkenus pemenns (1), (2) B moaymmockoctn Imk < 0,

cxomsiamitcst K kg pu & — 0.

Agrop 6naronapur POOU (rpanr 06-01-00138) s3a duHaHCOBYIO NONAEPKKY.

JInteparypa

[1] Yeukun T.A. OG ycpeasenuu pewmenuit 3anaum Jns  oneparopa Jlamiaca B
HEOrpaHN4eHHOM ofyacth ¢ GOMBIIMM KOJWYECTBOM KOHIEHTPUPOBAHHBIX MACC HA
rpanune // IIpobaemvi mamemamunecrozo anaauda.- 2006.- . 33.- ¢. 103-111.

On the relation between the solutions of various 3D a-models of viscous fluid
and the trajectory attractor of the 3D Navier—Stokes system: attempt to
classify ao-models
Chepyzhov V.V. (Institute for Information Transmission Problems RAS)

We study the connections between the long-time dynamics of variouse a-models of vis-
cous fluid (e.g. the Leray-o: model, the Lagrangian averaged Navier-Stokes-o model or vis-
cous Camassa-Holm equations, the modified-Leray-a model, the simplified Bardina-« model
and many other models) and the exact 3D Navier—Stokes system. Different o-models have
different nonlinear terms that approximate and regularize in some sense the nonlinear term
of the exact 3D Navier-Stokes system. It was demonstrated analytically and computation-
ally in many works that these a-models are useful tools in the study of the motion of large
eddy currents. Recently, it was also proved that the Cauchy problems for the mentioned
above 3D a-models are well-possed in the corresponding function spaces.

We consider bounded (in the energy norm) families of solutions of a given 3D a-model
for 0 < @ € 1. For a = 0, we formally have the classical 3D Navier-Stokes system for
which the uniqueness theorem (on the entire time semi-axis) of the existing weak solution
of the Cauchy problem is not proved yet. However, for the 3D Navier-Stokes system, we
can construct the trajectory attractor 2o which describes the dynamics of the system as a
whole.

We prove that time shifts {T'(h), h = 0} (here T'(h)ua(t) = ua(t + h)) of bounded sets
of solutions By = {uq(t),t = 0} of the a-models under the study approach the trajectory
attractor Ry of the 3D Navier-Stokes system in the corresponding topology as h tend to
+oo and a approaches zero. In particular, we show that the trajectory attractors %, of the
a-model converge to the trajectory attractor Ao of the 3D Navier—Stokes system as a — 0+.

Using the proved results, we suggest a simple classification of a-models. We partition a-
models into two classes depending on the character of attraction of the trajectory.attractors
A, to the set Ag as a ~» 0 + .

These results are based on the joint work with M.1.Vishik and E.S.Titi.

The work is partially supported by the Russian Foundation of Basic Researches (projects
no. 05-01-00390 and 04-01-00735) and the Civilian Research & Development Foundation
(CRDF) award no. RUM1-2654-MO-05.

MeTon MOIHHOMHANEHBIX KBasMpelleHU B TeopuU TMHeUHBIX
AnddepeHIHAIEHO-PA3HOCTHEIX yPAaBHEHUH
Yepenennuxos B. B. Epmonaepa I1. I (HHCTHTYT JUHAMHKH CHCTEM H TEODHH
ynupaspaenuss CO PAH)
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PaccmaTprBaeTcsi CKaslsipHas HAYAJIbBHAA 38848 ¢ HA4YadbHON TOYKON And JMHeHHOro
audpepeHuHanbHO-Pa3HOCTHOTO YPABHEHNS HEHTPaJIbHOrO THIA

&(t) + p(H)a(t — 1) = a(t)z(t — 1) + b(t) + f(t), t € R, 2(0) = zo, (x)

IIpeaMeTOM HCCTEIOBAHMA SBJIAIOTCS KAACCUYECKUE pEIIeHHs, T.e. TaKue, KOTOpPhIE MpH
[HOACTAHOBKE B HCXOAHOE ypaBHeHHe o0pawar ero B ToKaecrso. M3BecTHo, uTo npm
HOCTOSIHHEIX KO3(h(HUNEHTaX OOHOPOAHAs HadYalnHAd 3ajada (*) HMeeT OGeCKOHEYHOE
MHOKECTBO AHAJIMTHYECKMX peIleHHH, KaXXI0e H3 KOTODHIX OlpejessieTcss KOPHeM
XapaKTEePUCTHYECKOrO KBA3HIOIMHOMA, NOPOXKAaeMOro ypasHeHneM (*). IIpu nepemennbix
ko3 PUIMEHTAX BONPOCH Pa3PELIAMOCTH 380841 (*) B KJIacCe aHAJIMTHIECKHX QyHKIMM Ha
CeTrOAHAIIHKA JeHb OCTAIOTCH OTKPBITHIMH.

B ToM cayuae, Korfa KosdUIMEHTE YPABHEHUS (*) NPENCTABISIOTCS NOJTHHOMAMH, B
ucciefoBaHMe BBOAMTCS TONHHOM HekoTopoit crenenu N. Tora TepMuH "HONIHHOMHAIBHOE
kpasupemente" (ITK-pemeHne) NMOHUMAETCH B TOM CMBICJIE, YTO IIPA TOACTAHOBKE €ro B
HCXOHYIO 38024y nomsasercs: Hepsiska A(t) = O(tV). B pabore paccMaTpuBaloTes BODpocH
Kak HaXxoxaenus [IK-pemennit pa3anuuHBIX CTereHel, TAK N TOYHBIE OUEHKM HEBH3KH,
XapaKTepU3yolmelt Mepy BO3MYLUEHUST MCXOAHOHM 3ajauM. JAHHEIA MOAXOZ MOXeT OhITh
npuMeneH Ui Hccaenosalust Gonee obumx muddepeHInaIbHO-DA3HOCTHEIX ypaBHEHHHN
3anasJLIBAIOmIero, HeliTPaILHONO U ONEPEXKAIOLIErO THIOB.

IpuBoAsTCA MPHMEDHI, WLTIOCTPHPYIOUIME fpeJlaraeMblil METOL,

CHoucok Jmreparypsl

{1] V. B. Cherepennikov. Analytic solutions of some functional differential equations linear
systems. Nonlinea Analysis, Theory, Methods & Applications, Vol.30, N.5, 1997, p.2641-
2651.

[2] B.B.Yepenensnkop. TTommHoMUaTbHbe KBASMPENIEHHS NHHEHHLIX cucTeM AuddepeH-
LMaJIbHO-Pa3HOCTHRIX ypaBsHeHuit, // U3s. Bysos. Maremaruka, 1999, N10 — C49-58.

{3] V. B. Cherepennikov, and P. G. Ermolaeva, Polynomial quasisolutions of linear differen-
tial difference equations, Opuscula Mathematica, 26/3, Univ. of Gdansk, Gdansk, 2006,
47-57.

JlexoMno3numMsa CHHIYJIAPHO BO3MYIIEHHBIX auddepeHumMansHo-
b YyHKIMOHANBHBIX YpaBHeHHH
Yepesxko U.M. (YepHOBHUKHA HAHOHAMHHBIY YHHBEDCHTET, YKDaHHa)

Paccrvxa‘rpuﬂaeu‘csx HeJIMHeNHas CHCTEeMa CHHI'YJIIDHO BO3MYLUEHHRIX
auddbepeHIHATBHBIX YpaBHeHHiIl
dx dy
E :A(t)$+f(thvyt75)s EE =L(t7$7yz)+9(t1-‘”,yz,€), (1)

reteR, 2R, yeR™, gy =y(t+6), cA<8<0,A>0,>0.
HycTh BLINOAHSIIOTCS YCIOBHSL:
1) matpuna A(t) nenpepoiBHas u orpasuyesnasn npu ¢ € R;
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2) nuneitunit bynaxumonan L(t,z,£) pasHoMepHo orpanuden npu t € R, z € R™ u
YAOBJETBOPAET HEPABEHCTBY

|L(t, 21,€) ~ L(t, 22, €)| < lz1 —~ z2])€], 1>0.

s xaxnoll HenpephiBHOM yukuun () omeparop cagura T(t,s) ypaBHeHEs

5%’ = L(t,¢(t),yt) YAOBJETBOPSIET YCHOBHIO

[T(t, 6] < Ne 21, N, B> 0,t > 5;
3) ¢dyukuuu f u g HEMpepLIBHEIE ¥ PABHOMEPHO OFPaHHYEHHEIE B 00/1aCTH
N={teR,zeR"y e R™ |y| < p,e €[0,&0]}

BMECTE €O CBOMMH YaCTHBIMH NMPOM3BOAHBLIME IO ¢, X, ¥.

IIpu BHINOJHEHNM STHX NPEANOIONKEHMH M JOCTATOYHO MAJBIX &€ cucreMa (1) mMmeer
HHTErpanbHble MHOrO0Opa3ns GHICTPLIX M MeTeHHLIX TiepeMeHHEX [1].

TMocTpoeHa 3aMeHa IEPEMEHHBIX, PACHICIUISAIOIA HCXOIHYIO CHCTEMY Ha OBICTPYIO U
MEIJIeHHYIO NOACHCTEMbl H MeUTEHHAS ONCHCTEMA ABJISETCS HE3ABUCHMOH,

Jast GyHKupMH, OMMCHIBAIOIUX HMHTErpajibHble MHOrooGpasusi, pa3paboTaH aJropHTM
NOCTPOEHHMs] ACHMOTOTHYECKHX PasJokeHHN MO CTelleHAM Majoro napamerpa € [2]. Sro
I103BOJISIET BHIINCHIBATE PACLICIIISIONIME YPABHEHUS C 332HHON CTENEHAI0 TOYHOCTH.

JlnTeparypa

[1] Perestyuk M.O., Cherevko IL.M. Investigation of the integral manifolds of singularly
perturbed functional differential equations // Math. Notes. — 2002. - 3, N 1. - P. 47 - 58,

[2] Yepesko H.fI. 06 acumnmomuxe UNMEZPAALHWE MHOZ006DPAIUL CUNHZYARDHO
BOIMYUEHHDET cucmem ¢ 3anaidusanuem // YKp. maTeM. xKypH. — 1999. — 51, Ne 8. — C.
1005 — 1111.

Homogenization in perforated domains with Fourier boundary conditions
Chiado Piat V. (Politecnico-Torino)

We deal with the asymptotic analysis of a variational problem for a functional defined in
a perforated medium and combining the bulk (volume distributed) energy and the surface
energy defined on the perforation boundary. In the studied model the perforation is obtained
by a homothetic dilatation of a given periodic structure of holes, with a small scaling factor
denoted by ¢. Then the surface measure tends to infinity as ¢ goes to 0. To compensate this
measure growth we assume that the mean value of surface energy as function of independent
variable is equal to zero. Then we show that the said functional has a nontrivial I'-limit for
which we provide a representation formula in terms of of an auxiliary variational problem
on the perforated torus. It is-worth to note that, in contrast with the case of linear partial
differential equations studied in [1], the contributions of the bulk and surface energies to the
limit Lagrangian are coupled. Also, we study the asymptotic behaviour of the corresponding
minimization problems, and show that, if the coercivity constant of the bulk energy is large
enough, the minimal energies and minimizers of the e-variational problems converge to those
of the limit functional. The results have been obtained in collaboration with A. L. Piatnitski,
and represent a nonlinear generalization of [1].
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06 oaHoM cnocoBe ucciieIoBaHus Pa3spPelIHMOCTH CUCTEMBIL
AnddepeHIMANbEHLIX YPABHEHUH C OTKJIOHEHNEM
Yuxauesa O.A. (PusaHckmit rocynapersednnf yaupepenrer umenn C.A. Ecennna)

PacemoTrpum cucremy audpepeHManbHBIX ypaBHEHRH ¢ OTKJIOHEHMEM BRI
Ti(t) + ANt — f(€)) + Bz(t) + C(N)a(t — f(e)) + o(t, 1) =0, 1)

rae z(t) € R*, T, B - (nx n) - matpaupl, A(A), C(A) - (n X g)— marpuul, f(e)— MHOrowien
crenent d 1o €, p(t, ) — KBa3UIEpHOANIECKad 110 ¢ BeKTOp-DYHKIMA, £, A, 4 - MAJIBIE BEKTOD-
11apaMeTphI.

UccnenoBanne cucrembr (1) CBefieHO K pa3pelleHMIO HEKOTOPOH anreGpanueckoi
CHCTEeMBI

(H +G(e, )y = v(n). )

Ecnu detH = 0 u rangH = r. B 3roM ciiyyae cucrema ypaBHeHuH (2) ajeMeHTapHBIMU
peobpa3’oBaHuAMH MOXKeT OBITH CBEIEHA K CHCTEME, CONEpXKawel © CTPOK U 2n — r CTPoK

COOTBETCTBEHHO 1
(N 4+ GM e, )y =y (1),

G2(e, Ay = ¥* (),

®3)

rne H = [ %2 ], N* - (r x 2n) - matpuna, rangN! = r, N? - nynepas MaTpHUA pa3Mepa

((2n —7) x 2n). B
B npeanmonoxxennu, 4to HafiaeHa Touka ] = (£, ),7), yOOBJIETBOPAIONAS YCIOBHAM
17l =1mn _
N5+ GYg, N7 =0, (4)
G*(&, Ay =0. (5)

Jna cucremnl (2) moxkasaHa TeOpEMa O CYUIECTBOBAHMHE, XOTH Gbl OJHOTO, HEHYJIEBOrO
KBa3HIepHOANIECKOTO pellleHus.

O ppluncaenun inf — sup-KoHCTAHTH Ans ob6aacTell ¢ rIaAKMMM rpaHMAMM
Ymxonkor E.B. (MI'Y um. M.B. Jlomonocosa)

HspectHo [1, yro nocroannas § = §(§1) B BuIpaxeHuu

. |(p, div u)| _
2L SUP igradull gl

33aBHCUT TOJIBKO OT PEOMETPHYECKHMX XapakTepHcTuk obaactu 2 C R° (s = 2,3) u napaay
€O CBOMM IUCKPETHHIM anajioroMm (koHcranto#f B LBB-ycsioBHEM) onpenensier KadecTso
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aNImPOKCUMAINY U 3(PdEeKTUBHOCTD AJFOPUTMOB MPH YHUCIEHHOM DEIIEHHH yDABHEHH THIA
Hasbe — Crokca [2].
" B mokmame obcyIaercs NpHMEHeHHE MeTOs KOHEUHBIX 3JIEMEHTOB Ul pacyera
3HadeHMH § B 06MaCTAX ¢ IVIQAKUMHU TPAHHLAMY, AHAJIMBUPYIOTCS PE3YJILTATH YUCJEHHBIX
SKCIIEPMMEHTOB, [IPOBOANTCS. CPABHEHUE C AHAJINTHYECKMMH HCCJIEJOBAHUAMM.

PaGota Beinonnena npu YacTu4Hol nopieprxke Poccuiickoro dorga pyHAaMEHTATBHBIX
uccaegoanuit (nmpoekt 05-01-00511).

JInreparypa .
[1] Ymxonxos E.B. Peaaxcayuonnsie memodo. pewenus cedaosnx 3adanw. — M.: IBM
PAH, 2002.
[2] Brezzi F., Fortin M. Mized and Hybrid Finite Element Methods. — New York:
Springer-Verlag, 1991.

I'mapoannaMuka Ha Bpanjamomueiica chepe
Yynaxuu A. II. (Hucrturyr rugpoannamuxy um. M.A. JlaBpentoeBa CO PAH)

B pabore BeIBOZMTCE H nccuepyercd cucreMa AUMGbEPEHIMANTBHBIX yDPAaBHEHUI,
ONHUCHIBAIONIAS JIBMKEHNA KUAKOCTH MM ra3a Ha Bpamjamomeiics npurdrusaiomeil coepe
B NpUOIMIKEHUN MeJIKOH BOABI

1
Dv = wctgh + row cos § + Zrﬁ sinfcosf — fohg ,

Dw = —vwetgh — rovcos 8 — fo(sin8)~*h,, ,
Dh + (sin8)~1h(w, + (vsin®)g) =0,

VYpasHenus (1) 3anucasbl Bo Bpamaiomeiics chepudeckoii cucreme koopauHar: 0 < 8 <
— JIOTIOJIHEHHE O IHMPOThl, h < ¢ < 2m — [JOJITOTA, U M W COOTBETCTBYIONHE KOMIIOHEHTHI
cKkopocTH, h — mmybuma crmos xumkocts, DO, + (sin8)~!vdy + w0,. Bespasmepueie
napaMerphl 7o M fo BBIPAXKalOTCH Yepe3 NapaMeTphl ABVXKEHUsl, TAK Ha3bIBAEMBIE YHCJA
Poccobu u Opyna, xapakTepusylomue BIUSHAE BPAILEHAS ¥ TPABUTALAHL.

Cuctema (1) onucsiBaeT KpynmHOMAacITabHBIE JBYOKEHNUS I'a3a M XKUIKOCTH B armocdepax
IUIAHET H MUPOBOM OKeaHe Ha cdepe B 11eJI0M, KOTJa BEICOTa aTMochephl Majla [0 CPABHEHUIO
C PaJyCcoOM IJIaHeThl.

Jins cucrems! (1) ucciea0BaHbI Pa3IMYHBIE KJACCH TOUHBIX DElIeHHIL.

1) CranuonapHbie pelleHMs THNA IPOCTEIX BOJH, B KOTODBIX BCE HCKOMble yHKIHH
38BHCAT TOJBLKO OT WMPOTHL. JIOKA3aHO CyINECTBOBaHWe Ha Bcelt cdepe pemnenut,
ONMMCHIBAIOUINX JBUKEHWE XXUIKOCTH W3 HCTOYHHKA, PACHOJIOMKEHHOrO B ONHOM NOJIOCE B
CTOK, HAXORAMHUNCS B JAPYroM. JIMHMM TOKa >KHAKHUX YACTHLl [IDA ABHXKEHHH Ha cdepe
MOTYT MMeThb A0 ABYX Todek meperuba. IIpH ymenudweHwe yrioBo#t CKOPOCTH BpalleHUS
cdepbl IPOUCXOAMT pas3fieseHie 061aCTH CYIEeCTBOBAHMS PELIIEHHS Ha JBa ITAPOBIX N10fCa —
JIBHKEHUE NPOMCXOANT Pa3ie/bHO B KaXKIOoM noiymapun. ITonobHele pereRust ONUCEIBAIOT
BO3/IYLIHBIE [IOTOKH C NOJIAPHBIX IIANOK IIAHETHL.

2) VYpasuenus (1) MMEIOT pelleHHe COOTBETCTBYIOUIEE MOJOXEHHIO PABHOBECHS:
v=uw=0, h = hy+ (r3/8fo)sin? 0. Jokasano, 4To TAKOMy PACTPEETEHHIO IyGMHLI
OTBeYaer NeJbilt K1acC HeTPUBHAJILHLIX pelneHult, B KOTOpOM BeKTop ckopocTH (v, w) # 0.

Hccnenosanue Takux pelnenufi CBOGUTCS K AHAJIM3Y MEPEOIpeneEHHON CHCTEMBI TPeX
nuddepeHuManbHBIX ypaBHeHHH 1ist aByX dyHkimh v 1 w. I[lomydens nosnas cmcrema
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YPaBHeHH# COBMECTHOCTH, JaHHAs CHCTEMa TPHYBEAEHA B MHBOMIOUMIO. PelneHne uMeer
TIPOM3BOJ B OfHY (DYHKIHMIO OQHOTO HE3ABHCHMOTO TEPEMEHHOrO M ONpeNeNsieTcsl 4Yepes
TUNIEPIJUIMNTHIECKNE HHTErPabl. AHAIM3NPYIOTCS PElIEHHs, B KOTOPLIX 3TH MHTErpaJIbl
BBIDOXKZAIOTCS B 3eMeHTapHule GyHkuun. IlonyvenHble pelieHs MHTENPETHPYIOTCH Kak
JABHDKEHMsI BO3AYIUHBIX IOTOKOB B aTMocdepax miaHer.

Pabora BuinosnHena npu ¢uHazcoBol nmopmepxxe POOU, rpant Ne 05-01-00080, CO
PAH, unrerpanuonnsifi noext Ne 2.15 u IlporpamMMbl NOAEpKKH BeLyHMMX HAYYHBIX IIKOJL.

Boundedness of solutions for isotropic and anisotropic degenerate elliptic
equations
Cianci P.

In this talk we shall consider the Dirichlet problem for equation

Y (-)DAn(z, Vou) = f i Q (1)

laj=1,2

At first we shall study the case in which the coefficients satisfy isotropic degenerate elliptic
and growth conditions, after the case where anisotropic degenerate elliptic and growth con-
ditions are considered. In both case, we shall prove the boundedness of solutions, following
a modifications of Moser’s iterations.

O pnnaax nemauckar S

Hawvenxo B.H. (BaauMupckuit rocyfapcTBEHHbIN yHABEPCHTET)

Hyers 2, €C, k=1, 7,

P2 =[I'_G=2), LPur)={z: |Pa(2) =r"}.

Jlnnmu L(P,,r) na3sniBator nemuuckatamu. Kaxnas nemmuckara L(P,,r) cocrour He Gostee
4YeM M3 M 3aMKHYTBIX JKODAAHOBHIX KPHUBREIX Ok, k = 1,7, m < n, BHYTPEHHOCTH KOTODPBIX
He MMeIoT OBIUX TOoYeK.

Teopema. Hmeem mecmo caedyrowan oyenxa 04Ul AEMHUCKATbL

|L(Pp,r) =1+ ... + lom| < 27nr.

3anaua 06 ouenke cBepxy Anunst |L(P,,r)| 6bina nmocrasnena B 1958 roay P.Erdos,
F.Herzog, G.Piranian. HesaBucumo sra 3ajava B 1960-1963 rogax paccmaTpusanacsh
E.I1. Jomxenko. YIM 61710 Oy4YeHO HEPABEHCTBO

|L(Pn,7)| < 4rnur. @

B 1961 r. Ch.Pommerenke onybaukosan nepasencrso |L(P,,1)] < 74n?. Pesymprar (1)
Obi1 HeM3BECTEH aBTOpaM Nociexyiomux pabor (6ubmmorpadmio cm. s [1]). B 1995 roay
P.Borwein noayuun ouenky [L(P,,1)| < 8mwen. B 1999 roay A.Eremenko n W.Hayman
nomyqus yrounenue ouenku (1) npu r = 1: |L(P,,1)] < 9.173n. Cymectsyer runoresa

$Pabora noxaepxana POOU (rpants 04-01-00717, 05-01-00962)
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o ToM, uTO cpeau Bcex JemuuckaT L(P,,1) HanGonpuyro IiMHy WMeeT JEMHHCKATa THMA
Bepnysaau L(By, 1), rae B,(2) = 2® — 1 (P.Erdés, F.Herzog, G.Piranian, E.II.Jomxetko).
Ee pyiMHY HETPYAHO BHIMHCINTD:

L (2 1
FL(Bml)|=2‘+?/ cosn~ltdt = 2% B( ! ) :2n+4ln2+0(—).
0 2’ 2n n

Bosee moapo6uoe uasoxeHune HCTOPHH Bonpoca umeercst B pabote [1].
JIntepatypa
{1] Wang C., Peng L. “The arc length of the lemniscate |w™ + c| = 1”7, Rocky Mountain
J. of Math., 36:1(2006), 337-347.

O MHO>KeCTBe MepHoZeB MePHOAUYECKIX pellleHnit HeKOTOPHLIX JIMHEeHRHbIX
unTerpo-aud depeHIaANBHBIX ypaBHeHHit Ha MHoromephoit cdepe
Hanr Xans Xo#t (Texuonorudeckuit ITouroso-Tenekommynukanuonnpifi Huacruryr, Xanoit)

Ha cdepe S™ = {z € R**! ||z|| = 1,n > 2} paccmoTpuM 3azady O NEPHORMHYECKHX
pemenusx ans ypapHenus tana [lIpeauurepa

(zgt + aA) u(z,t) = vG(u — f) 1)
C YCIOBHSIMU
Ulg=0 = U¢=b, /s- u(z, t)de = 0. (2)

3mecsa # 0, a € R, v € C; G - unrerpanbusiit oneparop Ha npocrpascTse Lo(S™ %[0, b))
¢ riaaxuM sapom ¢(z,y), 3a1aHHbIM Ha S™ X S™ M UMEIOMIMM HeNpephIBHbIE TPOM3BOAHbIE

N0 Z A0 2n-ro nopsifika, NpuYeM / g(z,y)dz = / Azg(z,y)dz =0 Vy € S™; A-oneparop
sn sn

Jlannaca Ha S™, f-sanannas ¢ynkuus. Oneparop L = L = ; + aA paccMaTpuBaeTCs B

ot
runbbeproBom npocrpanctse Ho = {u(z,t) € La(S™ x [0, d]), u(z,t)dr = 0} (zaBucsmEM
S'l

or b). B nanBonee TummuHOM ciydae, Korda BeiamunHa ab/(27) MppauuonanbHa, CIEKTD
o(L) = R un oneparop L He umeer orpaHudennoro obpaTroro. B atoM cmeicie 3ajaua
HekoppekTHa. 1lenbio paBoTHI ABJIAETCS HCCIIENOBAHAE CTPYKTYDhI MHOXKECTBA IePHOJOB,
npn Koropeix omepatrop L~! o G onpenenen u orpammder u 3amada (1), (2) umeer
enuHCTBeHHOE pemenue. CripaBeyBa CieAyOmAs

Teopema 1. IIna n.s. v € C 3amaga (1), (2) uMeeT eqWHCTBEHHOE MEPHOAMIECKOE
pellleHne st TIOYTH BCeX 3HaveHuit nepuoza b € RT.

Tlonb3yace cily4aeM, aBTOp BHIPAXKaeT CBOIO ncxpeﬂmolo 61arofapHoCTh  1IPod.
Manosy E.IO., 3a BunManue x pabore.

AcCUMITOTHKA MIHMMAKCHOTO pemneHus 3aga4yn Kowm a1 ypaBHeHuUs
Tamunsrona-Axobu, 3aBucsaiero oT Majoro napameTrpa
Henumnn A. P. (r. Exatepuu6ypr) '
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PaccMaTpHBaeTCs aCHMIITOTHKA MMHHMaKcHoro pemerust (M. [1]) caemyiome#t samaun
Komm, 3asucameit or Masoro napamerpa € > 0:

edwe — €+ + ||Vywel| =0, 1
we(0,,) = o(a), @
roe z € R, y € R™, A, B ~ NoCTOsAHHbIE MaTPUIbI COOTBETCTBYIOUNX pa3MepHocTedt, o(-)
— W3BecTHas BHIIyKjasi GYHKUUA, — CKanspHoe npoussegenue B R™ mwm B R™, a || - || -
eBKJIUI0Ba HopMa B R™,

Obcyxaal0Tcsl pa3indHble acleKThl JToff 3a7auu. B 9acTHOCTH, NOKa3bIBBAETCH
OTCYTCTBHE PEry/IspHOTO ACHMIITOTHYECKOI'O Pa3jIOKeHHs 10 CTENEHAM MaJIoro Napamerpa.
JIntepatypa

[1] Cy66otun A.Wl. MuHnMaxcHble HepaBeHcTBa n ypaHenus [amuibrona-Axobu. M.:
Hayxka, 1991, 216 c.

O6obuienHbIe pellleHUs] 3aKOHOB COXPaHeHus, coJepXKaluiue aToOMapHyIo Mepy.
Onpenenenne, cymecTBoBanne, GopMUpOBaHye, NPUMePbl HeeAUHCTBEHHOCTH
[annnos B. I (r. Mocksa)

B nmokaage Gyser AaHO OUpeje/ieHHe DEMIEHHA 3aKOHOB COXPAHEHHs (B 4aCTHOCTH,
yPaBHEHHS HEePA3PLIBHOCTH), COAEPXKAIIUX B KadecTpe cilaraembix § dyskumm Jupaxa c
HOCHTEeIIMH Ha KyCOYHO-TJIaJKHX TOBepxHOCTAX B R™ kopasmepHocTn > 1.

Byzer onucano GOpMHpPOBaHHE TAKHX PellleHuit U3 HENPEPHIBHBIX HAYAILHBIX YCIOBHH,
[pUBEEHbl YCIOBHS CYLIECTBOBAHMSA TAKHX PEHICHUHA M NPUMepLI HeeJMHCTBEeHHOCTH.

Pabora nogaepxasa rpasToM POOH 05-01-00912.

JImHaMM4ecKoe MPOrpaMMMpOBaHMe B 33/a4aX CHHTE3a CHCTEM C MMIYJIbCHLIMA
yNpaBieHUAMH
Mapeun A. H., Kypxanckuit A. B. (r. Mocksa)

Peliesue 3aJayM CHHTe3a YHpaBjeHull SBAfeTC OJHOY M3 UEHTPAIBHBIX TeM
coBpeMeHHON Teopuy ympasienns [1]. Bo MHOrMX NpPHMKIUHEIX 3ajadaX (HampuMmep,
il 89POKOCMUMECKHX CHCTeM € MIHOBEHHBIMH KOPPEKIMAMH [IBMI)KEHUS, B CHCTEMaX C
KOMMYHHMKAIJMOHHBIMA OFPaHUYeHMSIMU N B rUOPHMIHBIX CHCTEMAX, & TaKXKe B S3KOHOMUKO-
(PMHAHCOBBIX MOJENAX) PellleHUs MOTYT MMETh UMITyJbCHBIN xapakrep. Ilocienunee Tpebyer
yrpasienu#i 0GOOHEHHOTO THIMA, COCTOSIOMIMX H3 HUMIIYJIBCHBIX “nenvra-pyHKUM” H NX
TIPOM3BOAHBIX.

3ajaya CHHTE3a yNpaBleHUll pacCMaTPHBAETCH JJIA CHCTEMbl BUAR

z(t) = A(t)z(t) + B(t)u(t), z€R", ueR™, (1)

¢ k pa3 anddepennupyempivn marpumamu A(f), B(t), Jomyckawmomyioo B KaecTse
ynpasnennit u(t) m-BeKTOpHEIe pacnipeneienns mopagka r < k. Cormacwo [2], samaun
yTpaBienus s Taxux cucreM (1) CBOAATCA K COOTBETCTBYIOUMM 38434aM JUISl CUCTEMB,
JOTIyCKalOmiel pacipe/eleHHsi JMMb HyJIeBOTO NOPANKa, (T.e. yIpaBJeHHs THIA “/esbTa-
$yHkuuit’), Ho UMeOLIEN BUA:

dz(t) = At)z(t)dt + B(t)dU(t), B(t) = (Lo,..., Lx]
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3aece Lo(t) = B(t), L;(t) = A@t)Lj-1(¢t) ~ G-1(t)

VYkasaHHas ¢GHopMa ypaBHEHUIt NO3BOJISIET JaJjlee NPUMEHHTh METOABI JUHAMUYECKOrO
NpOrpaMMHUpPOBaHUs, IPEJIOKEHHEIE B [3].

B nmoknaze mnpuBomsTess BapuauMOHHble HepaBeHerBa Tnna aMmibrona-Skobu
Bennmana (4] ans yxkasaHHBIX 3884 M NPUBOAUTCS GOPMANM3ALMS PDELIEHHs 3a]ad
CHHTE3a WMIYJbCHBIX YIPABJEHH! B paMKaX CXeM NPHOMDKEHHOTO JUHAMMYECKOro
[POrpaMMHUpOBanus. PaccMOTpeHb IPUMEDSH, HIUIOCTPUPYIOLIHE NOJyYEHHbIE YIIPABICHUS.

JInreparypa

[1] Kpacosckuit H. H. Teopus ynpasaenus deudcenuem // M.: Hayka, 1968.

2] Kypxanckuit A. B., Ocunos FO. C. K ynpaeaeruro AumetHvMU CUCTIEMAMU
0606wénnvmu eoadeticmeuamy // Ondd. ypasn. 1969. T. 5. Ne 8. C. 1360-1370.

[3] Jdapeun A. H., Kypxanckn#t A. B., Cenesués A. B. Memod dunamunecxozo
NPOZPAMMUPOBAHUA 6 3adane cunmeda umnysvcwuiz ynpasaewutd // Hudd. ypasn. 2005.
T. 41. Ne 11. C. 1491-1500.

[4] Bensoussan A., Lions J.-L., Contréle impulsionnel et inéquations quasi varia-
tionelles// Dunod, Paris, 1982.

SIBjIeHHEe HAYAJILHOI'O CKAYKA B CHHIYJISIPHO BO3MYILEHHBIX
uHTerpo-guddepeHuManbHbIX yPABHEHMAX
Jaysinbaes M. K. (r. Anmarsr)

Pacemorpum Ha 0 < ¢ < 1 smHeliHOe nHTErpo-aud dhepeHINaIbHOE YPABHEHAE € MAJIBIM
napaMeTpoM £ > (:

Ley = ey™ + A ()y™ D + - + An(t)y = F(t)+

+} [Ho(t, z)y(z,€) + Hi(t,2)y' (z,€) + - + Hn—l(t7x)y(n_1)(x’5)] dz M

¢ HavaJIbHBIMM YCJIOBUAME B ToUKe tg € (0, 1]:
y(to,i) = 0O, y,(tﬁve) =01y ey .T/("—l)(toyf) = Qn-1, (2)

rae Ait), ¢ = TI,n, F(t) na [0,1}, a Hi(t,z), i = 0O,n—1 B obnacru
D =(0<t<1la<z< 1) asnaores AOCTATOYHO MIaAKuMH Gyrkimsmu u A;(t) > 0,
0<t<1, a i0,n— 1 — usBecTHrie nocrosinuble, 0 < a < tp < 1.

Pemenve  auddepenuuancHoro  ypaBHeHus, —nodydaemoro  u3 (1)  npum
Hi(t,z) = 0,i = 0,n—1 c HavaneueiME ycnoBusmu (2) mpu ycnosum A;(t) > 0,
0 <t < 1 na npomexyTke tg < t < 1 crpemurcs mpu € — 0 X peleHHIO OBBIYHOrO
HeBO3MYyIIeHHOro ypasuenuss LojF(t), a Ha moaymsrepBane 0 < t < fo yXomuT Ha
GECKOHEYHOCTb U, TEM CAMBIM, He HMeeT KOHETHOTO Npefena.

B macrosime#t pabore J0Ka3aHO, 4TO peileHue HHTerpo-NuddepennuansHol 3agaun (1),
(2) npu € — 0 6yaer orpaHudeHHbIM Ha oTpeske ¢ < t < 1 u B Touke t = a obnajaer
SIBJIEHUEM HAYAJBHOTO CKadka (1 — 2)—Tro Nnopsaka.

JlokanpHas yNpaBisieMocTh AByIapaMeTpU4ecKuX cemeifcTs GMAMHAMUYECKHX
CHCTeM Ha HOBEPXHOCTAX
Hasbrzo A.A., Komapos M.A. (r. Bnagumup)
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Hoaudunamuneckas cucmema Ha MHOroo6pa3un 3aJa€TCsi KOHEYHBIM YUCJIOM IVIAAKHX
nojelt HONycTHMBIX cKopocrel. Takue CHCTEMBI eCTECTBEHHO NOSIBJAAIOTCH NPH M3Y4eHHH
adbdUHHEIX ynpaBaseMbIx cucTeM (cM., Hampumep, (1]). JIBumkeHnme Ha HEKOTOPOM
NPOMEKYTKE BPEMEHH C ITUMM CKOPOCTAMHM M C IEPEKTIOYEHHst MEXJY HUMH Ha3biBAeTCs
donycmumvim. JomycTUMOe ABUKEHHUE 3342€T ee JOnyCMUMY0 MPAEKTNOPUI0 CHCTEMEIL.

Touka B € M Ha3mBaeTcs JOCTHXUMON u3 Touku A € M 3a ppemsa T, ecim
CyImeCTByeT MAONYCTHMOE IBHXKEHHMe CHCTEeMBl, nepesoisimiee Touky A B Touky B 3a
ppemss T. IlonuamHamudeckas CHCTeMa HA3BIBAETCS AOKAALHO Ynpasisemoli 8 mouxe P
MHOrooOpasus, ecau s mobolt okpectHoctn U 3Toft Touku cymecrsyer Bpema T > 0
Takoe, 4ro JOObIEe JiBe TOYKM M3 JOCTATOYHO MAJIOH OKPECTHOCTH TOYKH P JOCTINKHMEI
onHa u3 apyro#t 3a BpeMsi Metibliiee T 1 110 TpaekTopuH, Jexamel B okpectHoctn U. Ecom
BpeMs T MOXXHO BLIGPATh CKOJIb YTOOHO MAJILIM, TO TOBOPST O A0KQADHOU YNPAEAAEMOCTIU
8 mouxe P 3a manoe epema.

Jns TUDMYHBIX ynpaBiseMbIX CHUCTEM Ha I[IOBEPXHOCTSX MHOXKECTBa TOYeK,
06/18,12I0MUX OMMHAKOBLIMH CBOMCTBAMH JIOKAJIBHOM YIIPaBJIIEMOCTH, OBLIM IOJHOCTBIO
packiaccuduuuposansl B [1]. Jlasi ceMelCTB cHCTeM COOTBETCTBYIONIAS TEOPHS €llle TOILKO
cosgaercs. TouHee, 3TH MHOXeCTBA K UX OHYPKAIHH U3yUeHHl )18 OAHONapaMeTPHYeCKHX
ceMeltcTB GMAMHAMMYECKHX CHCTeM Ha noBepxnocTsx (cM. [2]), a Takxke [Jisi THOMYHBIX
OJHONIapaMeTpHYEecKUX ceMelCTB adMHHBIX CHCTEM C HEOrPaHHYEHHBIM YNpPABJICHHEM
HajileHbl WHBADMAHTHl TAKMX CeMeHCTB, CBA3aHHBIE CO CBOHCTBAMM HX JIOKAJbHOH
ynpasasemoctn (cm. [3]).

JoKnag MOCBSIIEH Pe3yJbTaTaM aHAJIM3a ITHX MHOXECTB IJIA JBYNapaMeTPHYecKHX
ceMeltcTB GMAMHAMUYECKHX CHCTEM HA IMOBEPXHOCTSIX, B TOM 4HCJE KiacCHQUKAUH
6udypKanuii 3TUX MHOXKECTB IPH U3MEHEHUH NApaMeTPOB.

Pabora BhImOaHeHa Npu uacTH4YHOM (uHaHCOBOH nojuepkke Poccufickoro ¢oHaa
dyHaaMeHTaIbHBIX HcciiegoBanul, rpanT 06-01-00661a.

JInreparypa
[1] Davydov A.A. Qualitative theory of control systems // Translations of Mathematical
Monographs. 141. Providence, RI: American Mathematical Society (AMS). viii, 147 p.
(1994).
[2] Azevedo L. Transitividade Local de Sistemas Polidinamicos.// Departamento de Matem-
atica Aplicada Faculdade de Ciencias da Universidade do Porto, 2006.
[3] Jakubczyk B., Respondek W. Bifurcations of 1-parameter families of control-affine sys-
tems in the plane // SIAM J. Control Optim. Vol. 44 (2006), No. 6, pp. 2038-2062.

06 oanoM kJjacce cucreM auddepeHunalbLHBIX YPaBHeHNH U ypaBHEHHAX C
3ana3blBAIOLLIUM AapPryMEHTOM
Hemunenxo I B. (r. Hopocn6upck)

B pabore paccmarpuBaercd 3ajada Komm Ui CHCTeM  OOBIKHOBEHHBIX
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nudepeHIMaIbHbIX YPaBHEHUH BAAA

dz
d_tl = '—kﬂ,lzl + g(In)y
dz;
i = Fnio1®ie1 = knggs, §=2.0m-1,
(1)
dz,
—_dt— = kn,n—lxn—l -6z,, 6>0,
Zile=0 =z?, i=1,...,n

TaKnHe CHCTEMbI BO3HMKAIOT IIDM ONMCAHHM MHOTOCTaMHOrO CHHTEe3a BellecTBa [1].
KomnonenTn z;(t) peueHus 3aJa4M ONpeesiioT KOHUEHTPAIMIO BelllecTsa Ha i-if cTagnn
CHHTE3a, BpeMs NpoTeKanus KoTopo#t (kn ;) L.

Opnnolt M3 OCHOBHBIX Ilesiell GHONOrOB SABJAETCS ONpefieSieHHe KOHEUHOro NPOAYKTa,
T. e. HAXOXJeHHe MOCTeJHel KOMIIOHEHTHl Zn(t) pemenus 3anauu (1). B cayuae cucrem
HeGONBIIMX pa3MepoB €6 MOXKHO BbIMCAAT, Ha DBM ¢ Bmicokoit TousocThio. Onmmaxo
NpH MOJEJIMPOBAHUU TEHHLIX CeTeli HeoOXOOMMO y4HTHIBATH CHHTE3 MHOTHX JECSTKOB H
8Xe COTeH THICAY HPOMEXKYTOYHBIX CTaJMii BEINeCTBA, YTO IPHBOJUT K CyIIECTBEHHBIM
cloXHOCTAM Tnipu pacderax Ha OBM. Ilostomy mnpm H3ydYeHMH COOTBETCTBYIOIIMX
Mojienell McClIefOBATENb CTAJKMBAETCA ¢ HeOBXOAMMOCTHIO peilaTh “IpobieMmy OGonboi
pa3mepHocTH’.

B sacTosimelt pafoTe JOKA38HO, YTO NPU YCIOBUAX Ha KO3 UIHEHTHI Ky i

n—1 1 n—1 9
Zk .zT, H(l—r)ze_ef, n>1,
n,i

i=1 "™ i=1 i

3HaYeHHe TNOCAeAHe KOMINOHEHTH! pelenus 3a4a4u (1) MOXKHO MPUOIHIKEHHO BbIYHCISITD,
pemias HayaJbHyl0 3ajady ans AuddepeHupanbHOro ypaBHEHUsl C 3ana3/blBaIOLIMM

aprymeHToM
dy(t
WO o))+ s(ult -7, ¢

YeTaHOBJIEHBI OUEHKM amnpoKcuMmaumu Z,(t) = y(f), ¥3 KOTOPHIX BHITEKAET, 4TO
BO3HHMKaOMAa “npobnema 6ombuIoft pasMepHOCTH” NPH MOJAETMPOBAHAH MHOIOCTAJMNHHOrO
CHHTE3a BEIECTBa MOXET ObITh PellleHa ¢ BHICOKOH TOYHOCTHIO.
JInteparypa
(1] Zemuzenko I'B., Kosuanos H.A., Jluxomsait B.A., Matymkun IO.T., ®anees C.1.
Mamemamuneckoe MoOeAUPOBAHLE PEZYARTIOPHWT Konmypos zewwwr cemed [/ AypH.
BBIYMCJIMT. MaTeM. H MaT. pusuku. 2004. T. 44, Ne 12. C. 2276-2295.

O PEKOHCTPYKUMM NOMMHOMAAIbHBIX HeJTMHelHOCTel B ypaBHeHUSX
MmaTeMaTH4yecKol bu3nku
Jemunos A.C. (MI'Y)

XapakTepHblli npuMep ofcyxIaeMoH TeMel orHocuTcs K ofpaTHO#ft 3ajate U
ypasuenus ['paga-Illadpanosa

. (1 6u) P fu) +2%g(u) >0, 1

Toz\zdz) " 07
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paccmarpuBaemoro B obnactu @ € R?, rme = > zop > 0. Ha rpanume I' = 09 sroit
obmactu 3anaercs dyukuus ¥ : I' — R. Jlanee, ¢puxcupyercs JOCTATOUHO MAJO€ UYUCIO
€ > 0 U CTaBUTCH BOIPOC O PEKOHCTPYKIHMH BCEX CYIIECTBEHHO pa3nuunbix (¥,e)-nap
nommHEOMUANEHEEX dynkiuit (f,g) : R — R?, T.e. Takux, 471s KOTOPBIX HANIETCSA PeLIeHue U
ypaBHeHus (1), yAOBIETBOPSIIOLIEE YCIOBUSAM:

def Ou
= — < = —
Wp=0 w |e-wu|<e, /F<I>;é0, e @2
ITpu sTOM mapst
J K J K
(o) um O, g w () ium QoYY gih)
=0 k=0 i=0 k=0

CYHTAIOTCSH CYLIECTBEHHO Pa3INIHBIMH, €CIH (Z;Lo | f]# - f;l + Ef;o |g,’:é - g,"cl) > Ce,rne
C — HeKOTOpas! NOJIOKUTEIbHAs KOHCTAaHTA.

B noknane Oyner wusnoxkeHo Heobxomumoe ycioBue (siBisiiomieecs 0GOOLIeHHEM
COOTBETCTBYIOLIEro yCJIOBUS JIEMMEI M3 3aMETKH [1] mwm, 4To To XXe caMmoe, JeMMbl 1 u3
paborn [2]; cM. Takxe [3]), KOTOpOMY HOMAHBI YIOBJIETBOPATE CYNIECTBEHHO Pa3IUYHbIE
(¥,e)-mapet ans ypasmenust (1) m ux amamorn — (V,&)-ancamMbiau NONMHOMHAAJIBHBIX
HeJUHENHOCTeH I CTAlMOHAPHBIX WJIM SBOJIIOIMOHHBIX YypaBHEeHWI! MaTeMaTHUYEeCKON
uzukn (TaKMX, HANpUMEpP, KAK CHCTEMa ypaBHEHHI, OIMCHIBAIONIAs IIPOLECCH POPeHUs ¥
JAETOHAIUN).

Basupyromuitcst Ha STOM YPE3BBIYAHHO MPOCTOM (M IIOYTH OYEBHIHOM) HEOGXOIUMOM
YCJIOBHM 8JICOPUTM MO3BOJISET CPABHUTENLHO GHICTPO (IO CPABHEHHMIO C NPUMEHSBITUMUCS
paHee MeToAaMu) OT6MpATH JHILb CYLIECTBEHHO pasinynbie (¥, )-aHcaMbIH U3 MHOXKECTBa
HCIIBITYEMBIX ~TOJIMHOMUAJLHBIX HenuHeHHocrelt. HHade roBops, Jaercss aJropuT™M
PEKOHCTPYKIMHM HCKOMBIX HEJIMHERHOCTe! B KiIacce MOMMHOMUATBHBIX (hyHKITHA.

Jlureparypa

[1]. A.C. Hemuzos (2000) O6 obparoit 3amaue ans ypasrennsa ['psna-Illadpanosa ¢
addunnoit npasoit yacreio. YMH 55, sein. 6, 131-132. 5.

{2]. A.C. Hdemungos, A.}O. Ilonos (2008) Ilpumep obmacTu ¢ riadkoft rpaHuues, B
KoTopo#t obpaTHas 3ajada st ypasHenusi I'pyga-IladpanoBa paspemmma OQHOZHAYHO,
Tpyow cemunapa um. H.T. Ilemposecrozo (IPUHATO K NEYATH).

[3]. A.S. Demidov, M. Moussaoui (2004) An inverse problem originating from magneto-
hydrodynamics. Inverse Problems 20, 137-154.

O6paTHkle 334a44 AJIsS KBa3WJIMHEHHOTO BOJTHOBOIO yYpaBHEHUsI
Jenncop A. M. (r. Mocksa)

B dokjiaje pacCMATpHBAIOTCH JBe oOpaTHble Ko3hbHIueHTHEE 3aJadyu s
KBa3H/IMHENHOrO BOJHOBOIO YPaBHEHHS M JOKA3LIBAIOTCS TEOPEMBI CYHIECTBOBAHUA WU
€IMHCTBEHHOCTH MX pelleHus.

Paccemorpum 3aga4y Kown aiisi KBa3uIHHEHHOTO BOJHOBOIO yPaBHEHUs

(2, 1) = aPug (2, 1) + f(7, ue(z,1))q(®) + Flu(z, t))p(x), (z,t) € Ag,

u(z,0) = p(z), ulz,0)=9(z), 0<z<d,
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rae MuoxkecTBo Ag = {(z,t) : 0 <t < 2%, at <z <d-at}.

IIpu JOCTATOYHO CTAHIAPTHHIX APEeANOIOKEHUAX pelenne 3a1auu Ko cymecrsyer u
enuncreenHo. ChopMynnpyem ofpaTHbIe 330841,

O6parnas 3amaua 1. [Iycrs g(z) = 0, bynkuuu F(s), ¢(z) u ¥(z) sanauns, a p(x)
HemspecTHa. Tpebyercs onpenenutb p(T), ecn U3BECTHA AONOIHHTEIbHAS MHGPOPMAIMS O
pemeruu 3ana4u Komm

u(w(t), t) =g(t), 0<t<T,

rae w(t), g(t) — 3ananHble pyHKIMH,
w0) =0, w(t)>at, '(t)>0, tel0,d/2a],

a T aBnsercs KopHeM ypasaenus w(t) + at = d.

O6parnast 3amaua 2. Ilycte p(z) = 0, dynkuun f(x,s), o(z) u ¥(z) sazans, a
g(z) meussectna. TpeGyercs ompezenuTs ¢(x), ecnu 3aj4aHa Takas XKe JONONHHTE/bHANL
nEbopManus o pemeHnd 3a1a4n Komy, kak 1 B ofparHoit 3agave 1.

JloKa3aTebCTBO CYIEeCTBOBAHUS ¥ €IMHCTBEHHOCTH pelleHHs OBPaTHEIX 33184 OCHOBaHO
Ha UX DEAYKINH K HEJHHEWHBIM ONEPATOPHBIM YPaBHEHHAM OTHOCHTENLHO HEH3BECTHBIX
yHKIHM 1 JOKa3aTeNbCTBE OAHOIHAMHON Pa3PEIUMOCTH ITUX YPaBHEHHH.

Pa6ora BhINOIHEHa IPK YacTH4HOM nogaepkke Poccniickoro @onna OyHnaaMeHTaIbHEIX
HWccnenosanutt, npoext 05-01-00232.

PaspemmMocTs 3aa4i 0 OBHPKEHUH ABYX HeCKMMaeMbIX XXHAKocreil 6e3 yuéra
CHJ1 [IOBEPXHOCTHOTO HATHXKEHMS
Jenncopa U. B. (r. Cankr-Iletepfypr)

Mgl paccMaTpiBaeM 3aJady O JBUKEHUH IBYX HECKUMAEMBIX XKUAKOCTEH, HAXOAAIIMXCA
B obmacrax QF C R® u Q] = R3\ Qf c neusecrHOl 3aMKHYTO} NOBEPXHOCTHIO pasfiena
T, 6e3 yuéra CHJI MOBEPXHOCTHOTO HATsKeHus. Buemnss rpanuua S = A UL U Q)
3agaHa, npu 3roM S N Ty = @. TpeGyerca Hajttu rpanuumy pasgena I'y, a Takxke nose
ckopocreft v = (v1,V2,V3) W QYHKIUMIO NABJEHHS D BHEIIHel ¥ BHYTPEHHeH >KHAKoCTeH,
YAOBJIETBOPSIOIINX HaYaIbHO-KpaeBoit 3ajade 115 ypapuenuit Hapbe—Crokca

AT 1 +
5 Y Vv+(v'V)v+;;—Vp=f, V-v=0 BQS, t>0,

Vlt=0 = vo, [V]lr': =0, [Tn”p‘ =0, vls=0,

rae v, p¥ — crynenuarsie GyBKUHN BA3KOCTeH 1 IIOTHOCTE XKUIKOCTEH, COOTBETCTBEHHO,
f — 3a/@HHOE MOJIe MACCOBBIX CHJI, Vo — HadaJbHOe pacnpenenenne ckopocredt, T — Tensop
HaNpsDKEeHA#, n — BeKTOp BHelrHe#t Hopmamu X 2 [wllr, — ckadoK BexTOpa W IpH
nepexone 4epe3 I'; w3 QF B Q. Kpome Toro, npeanojaraercsi, 4TO HaCTHLBl HKHIKOCTH
He IOKUAAIOT Iy ¢ TeueHHeM BPEMEHH, IPH 3TOM B HadaspHbi MoMeHT t = 0 I'g — 3amanHas
[OBEPXHOCTb.

JI1st 5TOR 3a1a4K TIPH JAOCTATOYHO MaJIbX [JI8IKUX 38JaHHEIX OYHKIHSIX NOKA3bIBAETCH
cylecTBOBaHHe perenus (V, p) B aHUSOTPONHEIX MpocTpancTBax [enpaepa. JlokasaTenbCTBo
3TOr0 daKTa OMMpPAETCs Ha CYNECTBOBAHHE FBHOIO PEIEHHS W €ro OLEHKH I MOJesbHON
3a/1a4K ¢ IUTOCKOH rpanmneft pasnena xuaxocteit (cm. [1]).

Jlnrepatypa

[1] Denisova I. V., Model problem connected with the motion of two incompressible fluids

(to appear in Advances in Math. Sciences and Applications, 17 (2007), no.1).
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CnekTpabHble cBOHCTBA G-CaMOCONPSI>XKEHHBIX ONEPaTOPOB
Aenncos M. C. (r. Boporex)

Iycrs (H,(:,)) — runsbeproBo npoctpancro. G: H — H u A : H — H— nuseliHble,
HerpepLIBHBIE H CAMOCOIPSKEHHBIE 01epaTopsl, npu 31oM 0 ¢ 0,(G) u 0 ¢ o,(A4).

Tunsbeproso npocrpancrso H ¢ dopmoit [z,y] = (Gz,y) Ha3bIBaETCA CHHTYISAPHBIM
G-npocrpancrsoM, eciu 0 € 0.(G), n peryasipuniv G-npocrpauncrsom mpu 0 € p(G).

B pabfore MeToNaMH TEOPHH MPOCTPAHCTB ¢ MHAeMHUTHON METPHKON MCCIEeZYIOTCS
crneKTpaibHble cBoitcTBa oneparopoB AG m GA, ecsim OoTpuilaTeslbHblE Y8CTH CIEKTPOB
onepatopoB A u G (6(A) N (—~00,0) u o(G) N (~00,0)) cocroar u3 n ¥ M COOCTBEHHBIX
3HAYEHHH C yIETOM MX KPaTHOCTH, IpUYeM 72 # m.

Wceneposanue nogaepxado rpanroM POOU 05-01-00203-a.

Jlureparypa

[1] Asuzor T.51., Hoxeunos N.C Teopua auretinwic onepamopos 6 npocmpancmee C
undepunummnot mempuxot. M. Hayxa 1986. 352cmp.

[2] Langer.H Spectralfunctionen einer Klasse J-selbstadjungierter Operatoren. — Math.
Nachr., 1967, 33, 1-2, S. 107-120.

Problems in multidimensional scattering theory
Denisov S. A.

I will report on the recent progress in scattering theory for multidimensional Schrodinger
and Dirac operators. The main goal is to obtain some analogs of the classical Szego results
for polynomials orthogonal on the unit circle. We will discuss the operators defined on Caley
tree and in Euclidean space with various types of decaying potentials. These models describe
the wave propagation in the media.

O crabnausauum pewrenus 3agadu Komm ans napaGonudeckux ypaBHeHuit B
KJaccax 3KCIOHEHIMANbHO PACTyIMX HaYaIbHBIX QYHKIMHA
Henucos B.H. (MI'Y)

W3yyaroTcsi AOCTATOYHBIE YCJIOBHSL Ha Miague Ko3bdHUHeHTs! napabosuaecKoro
YpaBHEHHs!, IPH BHINOJHEHUN KOTOPHIX peinenue 3aaa4u Komu

Au+l_7(m,t)Vu+c(z,t)u—g—1:=O, zeRY, t>0, (1)
u|ymo = uo(z), z € RV, (2)

HMeeT Ipejes
Jim u(z,t) =0 (3)

paBHOMepHO 110 T Ha joboM komnakTe K B RN, npm mobo#t mavansholt byuxuuu up(z),
n
pacTyieli Ha GecKOHeYHOCTH He GbicTpee, YeM [:cjme“m ,a>0.
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O HOBBIX aCHMMETPUYHBIX UEHTPAJLHBLIX KOHMDUrypauusax B HbIOTOHOBOM
npo6iieMe MHOrMX TeJl
luaposa .M. (Arsipaycckuit nHCTHTYT HepTH M rasa, Kasaxcran), 3emuosa H.H. (BI]
PAH), Uxcanos E.B. (ArbiTaycckuit HHXeHePHO-TyMaHHTaPHBIH HHCTHTYT, Kazaxcran)

Jokazano, 4T0O B  HbBIOTOHOBOHt  mpoGremMe  9-TH  Tel  CYWECTBYIOT
"cocrasHble"leHTpAJIbHRE KOH(Urypauuu B cMbicie BuHTHepa, cocrofmye H3
IByx poMmboB uam u3 pomba M INPAMOYro/IbHHKA. DBpiBeZileHbl TOYHBIE COOTHOLIEHHS
MEXJY reoOMeTpHYeCKMMH H JHHAMHYECKHMH I1apaMeTpaMH MogeJsieit, rapaHTHpyomHe
CYLIECTBOBaHHE ITUX KOHpurypauuit. Brnepeble nokasaHo, 4To B npobieme MHOIMX Tea
cymecTByloT KoHpurypaunu ¢ "Gonabummu"maccamu. JIoka3aHo, 4TO 3TH KOHPUIYDPALMH
HEeyCTOWYHBHI IIPN BO3/eHCTBMH HAaYaJIbHBIX BO3MYLUEHHH.

JIuteparypa

[1] E.A.T'pebenuxos, I.M.dnaposa, H.M.3emuosa Cyujecmeosanue u neycmotinueocms
POMBONOIOOHDT UEHMPAALHUT Konfuzypayuti 6 cmbicre Yunmhepa Oaf HBIOMOHOE0T
modeau deeamu mea. C6. "Teopemuueckue u npuxaadnvie 3a0anu Heaunelinoz0 anaauda”,
BI[ PAH, 2006, c.65-76

|2] D.M.Diarova, N.I.Zemtsova, E.V.Ikhsanov Definition of the central configurations
in one model of a nine body problem with big masses, -4 International Workshop,
Siedlce, Poland, 31.01.07-03.02.07, p.59-66

Generalized Canonical Maslov Operator for Localized Asymptotics and
Tsunami Waves
Dobrokhotov S. (Institute for Problems in Mechanics of Russian Academy of Sciences,
Moscow)

We suggest a new asymptotic representation for the solutions to the multidimensional
wave equations with variable velocity with localized initial data. This representation is the
generalization of the Maslov canonical operator. It is based also on a simple relationship
between fast decaying and fast oscillating solutions and on boundary layer ideas. Our main
result is the explicit formula which establishes the connection between initial localized per-
turbations and wave profiles near the wave fronts including the neighborhood of backtracking
(focal or turning) and self intersection points. We show that wave profiles are related with
a form of initial sources and also with the Lagrangian manifolds organized by the rays and
wavefronts. In particular we discuss the influence of such topological characteristics like the
Maslov and Morse indices to metamorphosis of the profiles after crossing the focal points.
We apply these formulas to the problem of a propagation of tsunami waves in the frame of
so-called “piston model”.

This work was done together with S.Sekerzh-Zenkovich, B.Tirozzi, B.Volkov and was
partially supported by RFBR grant N 05-01-00968 and Agreement Between University "La
Sapienza", Rome and Institute for Problems in Mechanics RAS, Moscow.

References

[1] S.Yu. Dobrokhotov, S.Ya Sekerzh-Zenkovich, B. Tirozzi, T.Ya. Tudorovskiy The de-
scription of tsunami waves propagation based on the Maslov canonical operator, Doklady
Mathematics, 2006, v.74, N 1, pp. 592-596

[2] S.Dobrokhotov, S.Sekerzh-Zenkovich, B.Tirozzi, B.Volkov Ezplicit asymptotics for
tsunami waves in framework of the piston model, Russ. Journ. Earth Sciences, 2006, 2.8,
ES408, pp.1-12
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HedeKTHbIe YHUCIa OGHOYIEHHOIO CUMMETPHYEeCKOro MpperyJispHoro
audpepeHIANTBHOro oleparopa YETHOTO NopsiaKa
Ionrnx U.H. (ITomopcknit T'ocynapcrennsiit Yraupepcurer um. M.B. Jlomonocosa,
. ApxaHrejbcK)

PaccmoTpum 06bikHOBeHHOE qudrdbepeHInalbHoe BEIPaXKeHHe IIPOU3BOJILHOTO MOPAAKa

o2m (m=1,2,...)
bam[)(@) = (1) (c(2)y"™ (2))"™,

3aaHHOe Ha oTpeske [ :=[—1,1].
Ipeanosnoxum, 9T0 Kosdduument ¢(z) BeIpaskeHNns oy, NPEACTABIACTCA B BUIE

o(z) = zPa(z), ecmm z € [0;1];
z9(z), ecmm z € [-1;0],
roe p.g € {1,2,...,2m — 1}, byskuun a(z) n b(z) - aHamuTHYecKHe DYHKIUMH IpH
lzl<zg<lm

+o0 )
a(z) ==ap + Zajz’, ap # 0,
=1

+00
b(z) :=bo + Y _b;z’, bo #0.

j=1
Iycrs Lo - MHHAMAJbHBIH 3aMKHYTBHIA CHMMETDHYECKUHl Oneparop, NOpOXIeHHbIH
nddepeHIAIbHBIM BHIpaXKeHneM o, B ruapbeproBom npocrpanctse Lo(I). Obosnaunm
obuiee 3HaYeHne ero AedeKTHHIX HHCE] B BepXHEH M HIDKHE! OTKPBITBIX KOMIIJIEKCHEIX
[OJIYILTOCKOCTSIX CUMBOJIOM Tipg.

Teopema. Jedexmmoe wucao onepamopa Ly onpedeasemca no gopmyae:

4m —max{p,q}, ecaup,g€{m+1,m+2,...,2m—-1};
Npg = § 2m + min{p,q}, ecaup,q€ {1,2,...,m};

3m+p—gq, ecaup €4{L,2,...,m},ge {m+1,m+2,...,2m - 1}.
JIureparypa
[1] Opouko T0.B. Hudewcw  deexma — OOHOUAENHO20 — CUMMEMPUHECKOZO

Juieperuuanvrozo Onepamopa Hemnozo nNopadKa, BbPONHCONIOUSEZOCA BHYMPU URMEPEANA
// Matewm. c6opruk. — 2005. — T. 196, Ne 5. — C. 53-82.

On the correlation function of statistical solutions of the Navier-Stokes
equations
Dostoglou S. (University of Missouri)

We shall address statistical solutions of the Navier-Stokes equations on three dimensions
in the spirit of Kolmogorov’s theory of turbulence and following the work of M.I. Vishik and
A.V. Fursikov.

In particular, we shall discuss results concerning the space-ergodicity of homogeneous
solutions, existence of isotropic solutions, and properties of correlation functions and average
energy densities of such statistical solutions.

78



HenuneiiHble MHOTOMEpPHbBIE ypPaBHEHNUsI, CBA3aHHbIE ¢ KOMMYTHUDYOIIMMU
BEKTOPHBIMHM IIOJISIMM ¥ UX MHTErpUPOBaHue.
Apioma. B. C. (r. Kumnres)

Yenosue KOMMYTATHUBHOCTH INapbl BEKTOPHBIX noJelt

[Lls LZI\I’ = Oy (1)

roe

LY = U, + U,)¥; — lexp(—~U)¥, + ¥, )

LW = (l2(Uy +U.) + (U + exp(U)U, + exp(U)Uy))¥; — (Pexp(-U) + DT, + T, (3)
9KBUBAJIEHTHO HeJIMHENHOMY ypaBHEHHIO oTHOocHTenbHO dyHkuuu Uz, y, 2)
Uzz = (exp(U))yy + (exp(U))y2- 4)

Ilpeanaraerca MeToj NOCTPOEHHS TOYHBIX pelteHMi ypaBHenust (4), a Takxke ero
o6obwennit (cm. [1]). v
JInreparypa
[1] Dryuma V. S. arXiv:nlin.SI/0612046 vl 20 Dec 2006, pp.1-14

AcUMIOTOTHYECKOE PAa3JIOXKEHUs PelleHNs CTAlMOHAPDHOTO yPaBHEHMS
TEeIIONPOBOAHOCTH B MHOrONAPAMETPUYECKUX MIEPUOANYECKUX Cpeaax
Ly6unckas B. FO. (r. Mocksa)

B wHeonmoponmuo#t mepumoguueckodl Cpele PpacCMATPHBAETCH CTALIOHApHAs 3aJa4a
TEIUIONPOBOAHOCTH. B 3aBHCHUMOCTM OT KOJHMYECTBA XAPAKTEPHHIX pA3MepOB siueiiku
NepHOJWYHOCTH MOJIHOE ACHMIITOTHYECKOE PA3/IOXKEHHE PEIIeHNs HIIETCs [0 OlHOMY M3 ABYX
CLieHapHeB, OCHOBaHHbIX HA METOZe ACHMITOTHYECKOro ocpennenus {cm. [1]).

B obsacTu, nepHOIHYECKOH O TpeM HAIPABJIEHHAM, 38JJaHO YDABHEHHE

d T, T2 T3\ Ou
Lu=— (_7—_1__)-'—_ = ’ ’ Q1 Q= 5
U T (amn i Xl o fzy,z2), z € 0
rae  amn{é) - l-nepuommuueckue GeckoHeuHo Juddepenunpyemble GYHKUHH,

Y/IOBIETBOPSIONINE YCIOBUSIM CHMMETPHH ¥ SJUTHITHYHOCTH.
Ecmu € ~ §, T0 GopManbHOe aCMMIOTOTHYECKOE PElLIeHue 3aa4H HIIETCS B Bue psilia 1o
CTemeHsiM JByX MaJIbiX napaMeTpoB — € U h/e, a ecmn b € § < €, TO Tpex:

w2 Y P (d/e) (h/0) Y NET(E)D(x),

P.g.r2>0 lil=p

e p,q,r € Z, £ = (&,60,63) (21/6,%2/8,23/R) , i = (i1, ..., ip), D% = OP x [8z;,..01; .
lefl HaJIM4YHUHK ABYX MaJIbIX NapaMeTpOB OTBICKaHUE KOMIIOHEHT, 3aBUCAILLINUX OT 6bICprIX
II€EpEMEHHBIX, NPOBOAUTCA B JBa 3Tana, a MNpy HAJIUYNAM TpexX - B TpH, HO B 3TOM
cayyae Bce AYeeuHkbIe 33249 PEINAIOTCs ABHO, & KO3(DQOHUUHMEHTH! OCPEAHEHHOTO ypaBHeHus
BBIYHCJIAIOTCS HENOCPEJCTBEHHO qepesvxo:e(bd)uuueﬂ'rm HMCXOOHOTO ypaBHEHUS .
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JIlemma. KoschduImeHTH OCpeJHEHHOTO ypDaBHEHUS &mp YAOBNETBOPHIOT YCIIOBHUSM
CHMMETPHH U JUIUIITHYHOCTH.

Pemenne ypaBHeHUs!, OCPEJHEHHOTO 1O GHLICTPLIM MEPEMEHHBIM, BHOBb OTHICKUBAETCH B

BHIe pala 1o CTelleHAM TeX K€ MAaJlbIX BeJIMYHH. B cnyqae TPEeX MaJibIX napameTpOB 3TO
6yner psan

v N ek (/e) (h)8)™ v (),

kilm20

O6o3HaunmM uEQ)R)( ;€)=

- T G g T @) e

p=0,P, lil=p k=0,P,
q=0,Q, 1=0,G,
r=0,R. m=0.R

Teopema. s yacTuuHON CyMMEL ul&R BEPHBI OLEHKH
4 (P)

Q.R)
”“ u() H

L (7 070+ (hf)™),

o5y 2 6+ 619 5.

ﬂOKaB&TeJleTBO TMIPOBOJUTCH € INOMOLIBIO ANPUOPHBIX OLUEHOK HEBA3IKH npaBoﬁ qacTu

HCXOZHOTO YpaBHEHMs ¥ (M Cpefbl, MepHOAUYECKOH MO JBYM HANPABJIEHUAM) HEBA3KH
KPaeBoro yCJIOBHS.

JInteparypa

[1] Baxsasos H. C., Ilanacenxo I. II. Ocpednenue npoueccos 6 nepuoduneckuz cpedaz.
- M: Hayka, 1984.

[2] Ay6unckas B.FO. AcuMnToruueckoe pasioKeHHe PelIEHHs CTAIMOHADHOM 3a1a4m

TEIVIONPOBOAHOCTH B Cpeie c JABymMa MajpiMu napamerpamu // Tpydw Mocxosckozo
Mamemamunecxozo Obuecmea. 2001. T. 62, C. 105-135.

O paspemmnmoctu 3anauu Jupuxse nnsa cucremsl Kown-Pumana B Ly-mkanax
Jybuuckuit }0. A. (r. MockBa)

Paccmarpusaercs 3anaua Jupuxie
vip(z) = Q(z)a z€GC Cnv
p(2)lse =0,

rae V; = {8;,,...,0;,} — xomnnekcusl rpaauent Komu-Pumana.
VYcranapmsaercss HopManbHast (no Xaycaopdy) paspellMMOCTh 3TOM 3aJauM B
[=]

cobonesckux mkanax W, W™, a takyke B IpaQHeHTHO-IMBEPreHTHON 1IKaje
p>p

={q(2) e W* & divg(z) e W™t ), m>0, k>0
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IIpnMeHenne ONTHMANBHBIX HHTErPAJIBLHLIX NPEACTABICHUM AJ18 KOPPEKTHOIO
BOCCTaHOBJIEHMs pelueHu#l B o6paTHON 3a/laye TENaONPOBOSHOCTH
Jy6osuuxkuit B. A.

PaccMoTpuM rpaHHYHYIO 3aa4dy AJsi NapaboauyecKoro ypaBHeHHs

Bu/dt = Lu, (z,t)€ QT =G x[0,T) ' (1)
D,u+ h(z)u =0|s,, u=0|g, = uo(z),

rae G orpaHudenHas obnacTh KoHewHoro nepumerpa, Lu = 30 i=1Dz,(aijDs;u) cunbio
SJUIRNTAYECKU! OepaTop ¢ rIaaxuMu KodbduimentaMu ai;(c), V - BHEIHAA HOPMab K
G, a 81,5, ectb pa3buenue rpanuns G Ha HerepeceKaomuecs MHo)kecTBa. Pewenue (1)
IIOHMMaeTcs B Kiacce 0606mennnx bynxnutt BV2(QT), npudem HauaibHOe yciaoBue up(Z)
ectb npeaen-cien u(z,t) npu t — 0+ B Lo(G). Nssectro [1}, yro rpanudnas samaka (1)
OHO3HAYHO paspelliMa ¥ ee pelieHHe BoipaxkaeTcs MerogoM Dypse.

PaccmotpuM cBsizannyio ¢ (1) o6paTHylo 3a1ady OMpefesieHHs HAYANbHOrO YCJIOBUS
uo(z) no s3HavenusMm pemenuss u(z,T) Ha BepXHeM cJloe UMIHHIApA. T2 MOCTAHOBKA
06obimaer KIACCHYECKYI0 OGPATHYIO 3ajlady PeTPOCHEKTHBHOM TeIIONPOBOJHOCTH I
HEKOPPEKTHA& IPH JII0GOH TPAKTOBKe, CBSI3LIBAIOIIEH ee ¢ JIMHEMHBIM ONEPATOPHBIM
yPaBHeHHeM NepBoro poja. TpajunHOHHO 3Ty TPYAHOCTD MBITAIOTCH IIPEOAOJETh TEXHIKOM
perynspusaiui. 37eCh Ke INPEeAJIoKeH aJbTePHATHBHBIN DPEeryispH3aliy NpPsAMOH IyThb
YCTONYHBOrO BOCCTAHOBIIEHUs 0GOOIEHHOrO HAYAIBHOTO YC/IOBUS.

Insa u(z,t) ussecTHo MHTerpasbHOE npeacTasiesne [1]

u(z,t) = /G T, t,y)uo(y)dy,

rae I'(z,t,y) ects nenpepwiBras mpu ¢ > 0, x,y € G byHKuMsA, BHIpAXKAEMAS B PAMKAX
merona Dyprbe yepes cobeTernbie GyHKLuy U cnekTp (1).
PaccMOTpUM BBHILYKIIYIO 3KCTPEMATIBHYIO 33184y

/ dz(/_I‘(:z:, t,¥)uo(dy) — 2(2))? — min, ue(dy) € M(G), (2)
G G

rne ug(dy) ecrs HeoTpuuaTenbHas GopeseBckas Mepa Ha xommakte G, a M(G)
BBITTYKJIbI KOHYC BceX TaKMX Mep. Pernenne (2) Ha3blBaeM ONTHMAJIBHBIM HMHTETPAJBHBIM
npeacrabienveM QyHKUuH z nocpeacrsoM saapa (z,t,y) . Ilpu z2(z) = u(z,T) pemrenne
(2) cosnajaer ¢ nasansubiv yciosuem B (1). Crenyiomast Teopema XapaKTepH3yeT
YCTORYHBOCTD JAHHOM KOHIENIHMH 0606LIEHHOro pemeHns 0OPaTHOMN 3aJa4H K BO3MYLIIEHHAM
Jyuxnuu 2(z).

Teopema. Pemenne (2) cyuiecTByer, €AHHCTBEHHO U C/1ab0 HENPEPHIBHO 33BHUCHUT OT
z € LQ(G).

Ipu uucieHHolt peanusanun ypasuenue (1) Quckperusupyercs mo HesIBHON pasHOCTHOM
cXeMe M COOTBETCTByoIas 3ajada (2) NIpUHUMaeT BHA JMHeHHON 3ajayu MeToAa
HAMMEHbIINX KBAJAPATOB Ha KOHYCE HEOTPHUATENbHBIX BeKTOpoB. Ona sdddexTuBHO
pemaercss MeTOROM JorapudpMadeckux wTpagoB B KOMOWHALMH CO CITyCKOM BTOPOLO
nopsgKa, a Ipu MaJjiolft Pa3MEPHOCTH CETKH y3710B B G - Tak)Ke KOHEYHBIM AJIrOPHUTMOM
NNLS. B nokniafe NpHMBOASTCS HPMUMEPH! BOCCTAHOBJIEHMS HavallbHBIX pacnpeleeHui
sHepruy B 0GpaTHOI 3aja¥e TEIIONPoBoAHOCTA. PaboTa Bhilio/HeHa pH Tioauepxke POOU
(04-01-97202-p2004Hayxorpas a).
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[1] A.-M.Boavnepr, C.U.Xyases, Anaius 6 xaaccar paspuensiz Gynxyutl u ypaeHenus
Mamemamunecxots gusuxu. M: Hayxka, 1975.

Critical behaviour in the focusing nonlinear Schrédinger equation, elliptic
umbilic catastrophe and the itritronguée solution to the Painlevé-I equation
Dubrovin B. (SISSA, Trieste, and Steklov Mathematical Institute, Moscow)

We discuss the critical behaviour of solutions to focusing nonlinear Schrédinger equation
near the point of “gradient catastrophe” . We argue that this behaviour is described by a
particular solution to the Painlevé-I equation restricted onto certain lines on the complex
plane. Analytical and numerical evidences supporting this conjecture will be presented in
the talk.

On Convergence to Statistical Equilibrium in a Crystal Coupled to Scalar Field
Dudnikova T. V., Komech A. I. (r. Saextpocrans, r. Mocksa)

In [1] - [3], we have started an analysis of convergence for partial differential equations
of hyperbolic type in R? and for harmonic crystals in Z¢. Here we extend the results to a
harmonic crystal coupled to a scalar Klein-Gordon field. We study the Hamiltonian system
with the following Hamiltonian functional:

Hwums) = 3 [(V6@PF +In@P + milv)) do
Rd
d
5 3 (D lulk +e) — ) + (k) + lu()

kezd j=1

+y / R(z — k) - u(k)y(z) de,

kezd

involving a real scalar field ¥(z) and its momentum 7(z), z € R, coupled to a "simple
lattice"described by the deviations u(k) € R™ of "atoms"and their velocities v(k) € R",
k € Z%. Here mg, 1 > 0, R(z) is a R™-valued smooth function, exponentially decreasing at
infinity.

Assume that an initial state Yy = (v, uo, 7o, vp) of the coupled system is a random
function with a finite mean density of energy which also satisfies Rosenblatt- or Ibragimov-
type mixing condition. Moreover, initial correlation functions are translation-invariant with
respect to translations by Z%. For a given t € R, we denote by u; the probability measure
defining the distribution of the solution Y () = (¢(-,¢), u(-, 1), ¥(-, ), @(-,)) to the dynamical
equations with the random initial state Yp.

The main result (see [4]) is the weak convergence of the measures p, to a limit stationary
measure Lo,

Mt 7 Poo as 1 -+ 00.

The measure 1., is Gaussian and translation-invariant with respect to the group Z4. We
give explicit formulas for the covariance of the measure poo.
References
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Hepasenctso I'amunbrona - Ikobu U JoCcTaTOYHBIE YCJIOBUS B ONTHMAJILHOM
ynpasJIeHUH
Ueixra B. A. (r. Hpkytck)

Joknaa — NOCBANEH  OPUMEHEHHIO  HEKJACUYECKHX  pelieHuil  HepaBeHCTBa
lamuiabTona - SIxobuM U1 OLEHOK MHOXKECTBA JOCTHXKHMOCTH YIPABJISAEMOH CHCTEMBI
z = f(t,z,u), u(t) € U u BbIBOJA OCHOBAHHBIX HA HUX JOCTATOUHBIX YCIOBHIt abCOMIOTHOrO
M CHJBHOTO 3KCTPEMyMa B 3aJiade ONTHMAJbHOrO YNpaBJeHHs] ¢ OCIMMH KOHLEBBIMH
orpaunyenusmu (tuna (g, z(te); t1,2(t1) € C).

Yrobsl OXBATHUTH CIOydYaH U3MEpHUMOH 3aBucuMmocTH GyHKUME f OT BpEMEHH U
3KCTpeMaJielt ¢ KOHEIHBIM YHCIIOM TIepPeKJIIOYEHMH YIIPABIIeHHs!, €CTECTBEHHO PACCMATPHBATE
obobuennble perenust ¢(t, z) Hepasercrsa 'amuibrona - Hko6u

sup DFo[(t,2); (1, f(t,2,u))] £ 0
uel

(3anucaHHOrO Yepes BEpXHIOK IPOM3BOAHYIO JMHH MO HANPABIEHHIO), JOMYCKAIOIHe
Pa3pHIBLL 110 BpEMEeHH NPH JIMIIMUEBOH 3aBICHMOCTY MO I.

Konkperuzauust 6a30BHIX JOCTATOYHBIX YCAOBHI ONTUMANBHOCTH, OCHOBAHHBIX Ha
onucaHHOM 3aMmbiciie (cM. {1]) DpUMEHMTeNBHO K MCCIEJOBAHHIO HA CHULHBIN MUHEMYM
HeocoObix 3xcTpemadielt IloHTpsirHa DPMBOAMT K TOSIBJAEHHIO B CHCTEME YCJIOBHIl
ONTHMAJIBHOCTH DP&3DBIBHBIX pelleHnii MaTpuyHOro AuddepeHnualbHOrO HepaBeHCTBa
(ypasHenust) Tina Pukkary. TeM caMbIM PacHIUpPSETCS apeasl NPUMEHHMOCTH KJIACCHIECKOM
Teopun yciaoBuit ko6 OTCYTCTBHS CONPSIKEHHBIX TOYEK W3 BRPHALMOHHOIO MCYHUC/IEHUS.

JInreparypa

[1] Hpixra B.A. Hepasencrso JlsnysHoBa - KporoBa M HOCTATOYHbBIE YCIOBHS B
ontumansiom ynpasnenun // Utoru Hayxm u TexH. CoBp. MaTeMaTHKa U ee IPUJIOXKEHUs!. /
BUHHNTHU PAH. - 2002. - C.52-84

O HeNOKAJILHBIX 3aJa4daXx JJIsS ypaBHEHHUs] TeNJONPOBOAHOCTH CO CIeKTPAJbHbIM
napaMeTpoM.
Jxenasmes M. T. , Amanranuepa M. M. , Pamaszanos M. H. , Tytime6aesa. A. E.
(r. Anmvarar)

Myctes Ry = (0,00), R = (—00,00). B obnacru Q@ = {z € Ry, t € Ry} Bo,
BBEICHHBIX B pabOTe, KJIaccaX C BECaMM CyYILECTBEHHO OTPAHMYEHHBIX H CYMMUDYEMBIX
byHKIMI PACCMATPHBAIOTCA CIIEAYIOIHUE [PAHNYHbIE 38084

Ut(fﬂ, t) - uzz(zv t) = f(.’l?,t), (1)
’U,(.'ZI,O) =0, U(O,t) = }\u(xlt)lz=t“’;
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{—v,(z,t) ~ Vga(z,t) — M(z — t*) ® v2(0, 1) = g(z, t), @

v(z, 00) = v(0,t) = v(o0,t) = vz(00,t) = 0;

rae A € C — cnekTpansHsift napaMerp, w € R, f, g— 3amans.
T'panuunsie 3agaau (1) u (2) CBOAATCS COOTBETCTBEHHO B NPOCTPAHCTBaX Loo(Ry) M
L;(R,) K ¥HTerpaJbHbIM YDABHEHHAM:

i 00
u(t) = A / Kt n)un)dr + A1), v) - / K(rntp(r)dr =a(), ()
0 k1
OTHOCHTEJIbHO HEM3BECTHBIX (DyHKUHUMN
p(t) = 320Uz, ) pmpe, V() = 7 %0,(0,1),

rae f1 € Lo(Ry), g1 € L1(R4) onpenensiorest cCOOTBETCTBEHHO 3aJaHHRIMH QyHKuMaMu f
ug,

K(t,7) = (t/r)**v Laf exp | — i
= Wi —1)2 P\ Tat-n) )
¢
K(t,-) e Li(Ry) aa Vt € Ry, tliTO/ K(t,7)dr = const > 0. (4)
=+0Jo

Tlpepenvhoe cooTHomeHue (4) oriauwdaer ypaBHeHust (3) OT HM3BECTHBIX YpDaBHEHMIY
BosapTeppsl BTOpPOro pona. .

B AOKJ1a/le B 3aBUCMMOCTH OT 3HAYEHUH 1oxa3aTesis CTENEHH W TIOKa3aHO, YTO rPaHHvYHan
3aaa4a (3) sBaseTcss HéTEPOBO:

— C HENOJIOXXHUTEJbHBIM HHIACKCOM, yGHBalOmPIM BMeCTe C MOAyJ/IeM CNEeKTPaJIbHOro
napaMerpa A, npH w < 1/2; — ¢ MHJAEKCOM, PaBHBIM HyJlIO WM €AuHHUE, IpH w = 1/2
(aBTOMOzENILHBIA City4alt),

— H C HEOTPHUATEJILHBIM HHIEKCOM, PacTyIqUM BMeCTe C MOAYyJeM CIeKTPaJbHOro
napaMerpa A, pu w > 1/2.

YacTHyYHO pe3ynbTaThl pabotni ony6iukosansl B {1].

JIureparypa
{1] Axenannes M.T., Pamazanos M.M. "Cub.mam.ocypran”, 2006, 47, & 3, 527-5{7.

Metoa napaMeTpU3alMM pelleHus JuHeliHolt KpaeBoll 3ana4y JJis cHCTEM
nHTerpo-aud pepeHIMANBHBIX ypaBHeHRHA
Ixymabaes Z.C. (Muacrutyr matematnxu MOH PK)

B coobuenun Ha [0, 7] paccMaTpuBaeTcs AByXTOUedHas KpaeBas 3a1ada

T
L A+ / K(t,s)s(s)ds + f(t), =€ R, (1)
o
Bz(0)+Cx(T)=d, = de€R", (2)

rae A(t), f(t) renpepnisam nHa [0,T), K(t, s) nenpepuisua na [0, T} x [0,T].
Ortpesok [0,T] menntcsa Ha uacty ¢ marom h > 0 : Nh = T, 3nauenus pemenns

B HavYaibHLIX TOYKaX WHTepBaJyoB pasbuenms [(r — 1)h,rh), r = 1,N, BBOAATCA Kak
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JIOTONIHUTENbHbIE NapaMeTpsl U 3aa4a (1), (2) 3aMeHsieTcs 9KBUBAJIEHTHO! MHOIOTOYEYHOIL
KpaeBoft 3a7aueilt ¢ IapaMETPOM JJIi CHCTEM HHTErpo-IudbdepeHHabHbIX yPABHEHMUI.

TpenyiaraeTcs ‘aJropuTM HAXOX/EHWs] DelleHHsi KpaeBOH 3aJadM ¢ INapaMeTpoM.
Kax/pl#t Imar aJropuTMa COCTOHT M3 JABYX IYHKTOB: a) pellleHHe JHHelHOH ClcTeMbl
yPaBHEHHUI OTHOCHTENILHO BBEJEHHBIX apaMeTpoB; 6) pemleHue crennanbHoll 3anaun. Kown
LTS MHTErpo-auddepeHIMaIbHBIX YPaBHeHH . YCTaHOBJIEHbI HEOOXOAMMBIE H JOCTATOHbIE
YC/IOBUS OJHO3HAYHON paspeummocty 3ata4n (1), (2).

Uccnenosanne MHTErpUPYeMOCTH ypaBHeumit Ditnepa-Ilyaccona ¢ noMomeio
HOpMaJIbHOM (hopMBbI
Ennepan B. @. (r. Mocksa}

PaccmarpuBaercss cnenuasibHbiit caydait A = B, Mgz = 1, yo = 2z = 0
cucremsl ypasHenuit Ditnepa-Ilyaccona, onucsBaOWEel ABUKEHUs TAXKEIO0ro TBEPIOTo Tejla
¢ 3aKpeIUIeHHO! TogKol. B6iu3u 01H0T0 AByapaMeTpHyecKoro ceMecTBa ee HeMOABUIKHBIX
penieHufi H3yyaioTcst ee HopMasbuble dopmel (cM. [1]). Ha atom cemeticTBe BbIIENSIIOTCS
OJHOIAPAMETPUYECKHE ceMelicTBa ¢ (PUKCHPOBaHHBIMM pe3oHancaMu 1:2 u 1:3. s uux
U3yYaeTcs CTPYKTypa HOpMaibHOH ¢opMbl u nepBeix uHTerpanos (cM. [2]). Cymectsyer
[OC/IEJOBATENLHOCTD HEOGXOMMMEIX yCJIOBUH HAJIMYAS JOUOIHHTEILHOrO (HOPMAJIBHOTO
[epBOro MHTErpaJia IPH Pa3jIMYHbIX 3HAYeHUsAX napamerpa. Hesbimonnenne kakoro-amnbo n3
ITHUX YCIOBUIA ABAAETCS JOCTATOYHBIM YCIOBHEM OTCYTCTBUS (HOPMaIbHON HHTErPUPYEMOCTH
CHCTEMBI M, TAKUM 00pa3soM, OTCYTCTBHSA M JIOKAJBLHON, a Clief0BaTeIbHO U [0basbHOl
UHTErpupyemMocTd. Bbramcienusmu HopMaubHO#t dopMbl (cm. [3]-]5]) ycranasmmBsaercs,
4YTO YCJIOBUA, HEOOXOQUMbIE JJIA CyIIECTBOBAHHsS AONOJHHTENBHOIO JIOKAJIHHOIO MEepBOro
HHTErpajia, He BBINOJHSIOTCS BO BCEX CJIy4asX, KpOMe KJIACCHUECKHX CJIy4YaeB riuobasibHol
HHTerpupyeMocTH. Takxke HaleHbl HEIOABUXXHbIE pellleHHs, BOJIN3UM KOTOPBIX CHCTEMA
JIOKaJIBHO MHTerpupyema (cum. [6]).

JInteparypa

(1] Bpiono A. O, Jloxaavnoili memod wneaunelnozo amaausa duddeperyuanvros
ypasnenut. M.: Hayka, 1979. 256 c.

[2] Bprono A. O, Amnasus ypeswenuti Suaepa-Ilyaccona memodamu cmenennoti
2eomempuy u Hopmaavhot opmo. TIpukiaaHas MaTeMaTHKa U MexaHKKa, 2007, 1. 71, BbIin.
2, c. 192-227.

[3] Bprouo A. ., Eanepan B.D. Hopmaasnas gopma u unmezpupyemocms cucmem OY.
IIporpammuposanue, 2006, T. 32, No 3, c. 22-29.

[4] Bprono A.J., Exsepan B.®. Bunucienue nopmasvroir gopm ypasneruts Jiaepa—
Iyaccona. Hpenpunt No 1, M.: IIIM um. M.B. Kengpima, 2007, 28 c.

[5] Edneral V.F. Looking for Periodic Solutions of ODE Systems by the Normal Form
Method. Differential Equations with Symbolic Computation. Dongming Wang and Zhimming
Zheng Eds. Birkhauzer Verlag, Basel, Boston, Berlin, 2005, p. 173-200.

[6] Bprono A. . Jloxaavnas unmezpupyemocmv ypasnenuti Sisepa-ITyaccona.
Hoxaaast PAH, 2006, 1. 409, No 3, c. 1-5.

Attracting Sets and the Smoothness of a Simplest Skew Product of Interval
Maps
Efremova L. S. (Nizhny Novgorod)
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The description is given of w-limit sets of a C*-smooth skew product of interval maps
with a closed periodic points set. It is shown the convergence (or, vice versa, the divergence)
of the special serieses constructing with the use of the trajectories defines the structure of
the w-limit sets.

Deflnition. We say a compact set A C I is a nonchaotic attractor of a skew prod-
uct F : I — I (I is a closed rectangle distinguished by coordinate straight lines in
the plane) if there is an absorbing neighborhood (i.e. a neighborhood U(A) satisfying (z)

+00
F(U(A)) c U(A); (it) A = [ F*(U(A))), and the restriction Fi4 has zero topological
n=1

entropy.

The example is constructed of the C'-smooth map with closed periodic points set such
that there is the one-dimensional nonchaotic attractor (unstable in C'-norm), which is w-
limit set of some trajectory.

References
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06 oaHOM KJacce JUIUNITUYECKHX KPaeBHIX 3a/1a4 C MaJbiM IIapaMeTpoM
Eropos IO. B. (r. Tynysa)

Mbl paccMaTpuBaeM IIMOTHYECKMEe KpaeBhle 3alladd C MAJILIM TIapaMeTpoM &
cnexyommero Buia : B BanaxosoM mpocTpaHcTse V HafiTH Takot 3jeMeHT uf, 4To

a(u,v) + e2b(us,v) = (f,v), VeV

Ksanparuunsie Gopmbt a u b HelpepEIBHE! M NOJOXKUTENBHE, 8 ¢opMa a + b KospuuTHBHA.
TIpu kaxaoM € > 0 3a4aua sIBAseTCS SJUTANTHYECKON M OAHOSHAYHO PaspeliuMa, HO IpH
€ = 0 He cyumecTBYyeT pelleHus 3843491 B POCTPAHCTBE pacrpeaeneHutt.

Taxue 3aJa4¥ BO3HHKAIOT, HAIPHMEp, B TeODMH TOHKHX oGosouek. B wacThOCTH,
TaKHe ypaBHEHHs ONHCHIBRIOT JIOKABHYIO JebopMaIHIo Ky30Ba JErKoBOro aBTOMOOHIISA MK
Gbrozenska camosera.

Moxno nokasaTb, 4TO mpenen pewreHnft mpu € — 0 cymecTByer B HEKOTOPOM
DYHKIMOHATILHOM NPOCTPaHCTBe, ompeaeisiemMoM ¢dopmamn a u b . Xora 3TOoT npegen
U He sIBJIsIeTcs paclpeie/eHUeM, OJHAKO OJIsi MPAKTHYECKHX IPUJIOXKEHMR NOJIE3HO, YTO
cymecryer npeaen bynxnun ¥, (D)uf, koTophit sBnsterca pacnpeaesenneM. 3aecs Y (D)) -
ncepaoanddepennyuabHEI OepaTop ¢ OrPAHUYEHHEIM CHBOJIOM, HOCHTENIb KOTOPOrO HMeeT
nauamerp In1/e.

Ms1 paccMaTpuBaeM psii TPHMEDPOB.

Pabora semonnena comectHo ¢ H. Menbe n 9. Cangec-Ilanencus.

JIuteparypa

[1] Yu. V. Egorov, N. Meunier, E. Sanchez-Palencia , Rigorous and heuristic treatment
of certain sensitive singular perturbations, Journal of Math. Analysis and Applications, to
be published
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06 oxnoil 3azaue AMHAMUKM TOHKOrO HEOLHOPOJHOIO BA3KOYNPYTOro CTepHs
u3 marepuana Kennsuna-®Polirxra.
Eroposa A.A. (HUH matemaruxu npu AT'Y m.M.K. Ammocosa, r.5Ixyrck.)

B pafoTe CTpOMTCA [OAHOE ACHMIITOTHYECKOE  Da3jioOXKeHWe  TpeXMepHOH
3aJ1a4¥  JIMHEMHO# TeOpUH BA3KOYNPYroCTM B TOHKOM HEOQHOPOJHOM  CTEpIKHe,
HCIBITHIBAIOMEM JeHCTBUE CHT 1O BceMy oObemy. YcpeaHeHMe NMPOBOAUTCH IO METOLY
H.C.Baxpanosa [1]. Paccmarpusaercst GeckoHeuHas o6JacTb THNA TOHKOrO CTEpPXHA
z € U =R x B, B = {2’ = (z2,23)|z' /¢ € B}, B - nBymepHas orpanndennas obnacrs ¢
KyCOYHO-TJIaKO}l TPARHHLEH, W CTPOMTCS ACHMITOTHYECKOe Mo € > () pa3iioxkeHHe pellieHns
CHUCTEMBI ypaBHEHHI:

(% (W OR) ok (W Qam;) = a0

rae A?nj, A}nj - HEKOTOpble MATPULLI-(DYHKUMH, YABOJIETBOPSIOIIIE €CTECTBEHHBIM YC/IOBHAM

THIA S/UIMNTHYHOCTH COOTBETCTBYoMMX AucbdepeHuanbHeIx onepaTopos. Koagduunenrst
CHCTeMBI ypaBHeHu# - miaakue dyskiuu Beiony B U, 38 HCKIIO9eHHEM HEKOTOPOro Habopa
NOBepXHOCTel, [Je OHY Pa3pHIBHLL, M Ha KOTODHIX pellleHHe yAOBJIETBOPSIET €CTECTBEHHbIM
YCIOBHSIM conpsikeHusi. [paHMYHBlE M HAYAJIbHbLIE YCJIOBHS HMEIOT BHX

ou o du 1 8u _
7y ="m (Amj(xle)a—zj + Amj(z/f)m lo,Tyx88. = 0, 2)
tlt=0 = 0, Utlt=0 =0 (3)

¢ ycaosueMm T-nepuoguunoctd u(t,z) mo zp. Ilo nosropsommpmcs mHAeKcaM BedeTcs

cymmuponanne ot 1 g0 3. B (1)-(2) Bexkrop u(l,z) - Tpexmepunit, T- 4ucio nopsiaka 1,

¢ =T/n, n - HaTypabHOE YHCIO, (11, Nz, Ng) - BHEMHAA HopMadb K JU..
Ilpexnnonaraercs, 9TO TPEXMEpPHAs BEKTOP-DYHKIMS fe MMeET BUI

ft(t’x) = @(ml/s.)wt(tﬂzl)’

rae ®(£') - maTpuua xectxux nepememenutt (£ = (£1,&2), 2’ = (22,73))

1 00 0
BE)=[0 10 —ats ||, a=(E+&);V*
001 af
_ [ Fe)de
)= [ TEF

w(ta zl) = (wl(t,xl)aazwz(sta xl),Ez’(ba(Et,x]), ¢4(ts$1))T s

¥'(6,z1) = 0 mpu gocratouno maneix 9, ¢(6,;) - HocTaTouHO rAgKME byuxnuu, T-
NEPUOAMYECKHE IO Tj.

Pemenue 3amaun (1) - (2) oTvickuBaercs B Kiacce T- MepUOAMYECKHX 1O T3 BEKTOP-
- dynxuuit.

TokasaHo, 4T0 KObMUIUEHTH ACHMITOTUYECKHX DA3IONEHHN DellleHHs HaXOMATCH
43 BCHOMOTATeIbHBIX 38484 ympyrocT [2] u samau cocrapHoro Tuna [3] ma "suefike
nepuomuynocT". BuiBefieHbl yCpe/HEHHble YPaBHEHMS JJIfi MPOAOJBHBIX, KPYTHJBHBIX
U momepeyHhIX xonebamuil crepkua(Ha YHKIEM, 3BBUCAIWE TOJBKO OT OAHOrO
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TMPOCTPAHCTBEHHOIO liepeMeHHOro). Ilpn HaJM'iuk JONOJHATENbHBIX YCIOBHH CHMMETPUH
(cMm.[4]) cmeTeMa ypaBHeHmil, ONMCHIBAOIIAS YCDEAHEHHYIO MOJENb, pPacrajaeTcss Ha
YPaBHEHHIs 2-TO IOPSAKa IUIsi NPOJOJBLHBIX ¥ 4-TO NOPAIKa IS NOMEPeYHbIX CMEIIeHut.
IToxazano, 4To 3TH ypaBHEHHS] COJEPKAT WHTErPANbHBIE UJEHBl THIA CBEPTKH, AOKA3aHA
TeopeMa 0 GIH30CTH pelIeHuil A1l YCPeAHEHHON 1 MCXOOHON 3a]ad.

Cnucok aurepartypsi [1] Baxsanos H.C., Ilanacenko I'TI.  "Ocpednenue npoyeccos 6
nepuoduneckuz cpedaz” M.:Hayka, 1984.

[2] KosmoBa M.B., Ilanacenko I'Il., "Ocpednenue mpexmepnoti 3adawu meopuu
ynpyeocmu 6 neodrnopodrnom cmeporere”, K. Bera. Mar. m Mar. ®us., 1991, 10,7.31.

{3] Koxanos A M. K meopuu ypasnenuti cocmasnozo muna: ABTopedepar AuccepTaLyn
JokTopa ¢dusuko-maremarnieckux Hayk: 01.01.02. HoBocubupcek, 1993. 26 c.

{4] Panasenko G.P.,"Asymptotic analysis of bar systems I"

Ilpepenbupiit cieKTp Ajisi HecamoconpsizkenHoit 3anayu Iltypma-JInysunns c
KyGMUYeCKMM MOTEeHLMAJIOM.
Daxpytaunos B. K. (r. Mocksa)

Mbl u3yuaeMm CeKTPalbHYIO 334349y

Lie)y = iey"” + 2%y,
y(-1)=y(1)=0

Bpecs € > 0 — dusuyecknii napamerp. Hawa uens — gate onmcaHue mpeessHOrO
noBefeHusA cnekTpa npu € — 0.

B paborax (1], [2], [3] A.Alllkanukosa n C.H.Tymanosa Gnlid pelleHb 3aja4u O
HAXOMKJEHHU TpeJebHOr0 CIIEKTPaIbHOTO MHOXKECTBa A/isi NoTeHupmada ¢(r) = z2 Ha
HIPOU3BOJILHOM OTpe3Ke, a Takyke Ajifg CTPOro MOHOTOHHOTO MOTeHunamta g(z).

Lnsa norenupana q(z) = z° npu a06om £ > 0 CHEKTpP 38J84K AMCKDETEH H JIEXUT B
noaynonoce Il = {A]| =1 <ReA < 1,ImA < 0}

Onpeaenenune. Touky A € Il HazsoBeM HenmpeaesbHOHN, eciu Haligercsi §-OKPECTHOCTH
3TOM TOUKH, KOTOPAs He COAEpP>KUT COBCTBEHHBIX 3HAYEHMH 38,184 NPH JIOOHX JOCTATOIHO
Mauiblx € < £9(d). MHOXeCTBO OCTaJIbHEIX To4dex B I Ha30BeM NMpeaeNbHEIM COEKTPAJILHBIM
MHOZKECTBOM, W NPEAEJbHbIM CIHEKTPaJbHBIM rpad)oM, €CIM OHO COCTOMT M3 OTDPE3KOB
KPHBBIX.

Hycrs P =N up= ar_q/\ 3agaanM 2 KOPHA Wy U Wz ypaBHenus w° — A = 0 ycsoBuaMu
w = re":s_ wy = ré’

B nonoce 11 onpe,ue.rmm crenyiouye Kpusble:

bo={rell| Re[ VAE@=Nd=0)
h={\ell| Re f VA= Ndt = 0}
Lb={Ael| Re +l\/:T»Es——T\?dé=0}

Kpusas Iy coBnagaer ¢ orpunatensHoit MauMmolt ocsio. Kpnente Iy u Iy npoxonar ydepes
TouKHK —1 11 +1 cooTBetrcTBenHO. Bee Tpu Kpane UMEIOT €/JHHCTBEHHYIO TOUKY NepeceueHus
— TOYKY-Yy3ea Ag.
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IIycrs 71 — 9acTb KpuBoil 11, nexamasn Mexxy —1 ¥ TOUKOI-y3/10M Ag; Y2 — YaCTh KPHBOI
la, nexxamas mexay +1 u Ag. O6osnauum yepes I' o6beauHenHe Tpex YKa3aHHBIX KPUBHIX
5 725 bo-

CdpopmynupyeM OCHOBHO# pe3ysibTar.

Teopema. Onncannoe MHOXKecTBO [' sIBJISieTCs NpeeTbHBIM CIIEKTPAJIBHBIM Tpadon
onepatopa L(e).

Jokna/ 0CHOBaH Ha COBMeCTHOH pabGore ¢ npod. A.A.IlIkanmukoBbiM.

JInreparypa

[1] Tymanos C.H., Illkanukos A.A. O npedesvnom nosedenuu cnexmpa MoOJeAvHOU
sadavwu dan ypasnenus Oppa-Sommeppenvda ¢ npopusem [yazedan. // V3. PAH. - 2002.
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[2] Tymamos C.H., Illxkamuxos A.A. O wmodeavbroli 3adaxe Oas  YpaeHeHUA
Oppa-3ommeppervda ¢ xeadpamuunsim  npofusem [/  DIEKTpOHHAsL ~ BEPCHsI:
www.arxiv.org/ps/math-ph/0212074

[3] Iixanuxos A.A. Cnexmpaavrse nopmpemw onepamopa Oppa-3ommepdennda npu
boavwuz wucsaz Petinoavdea // Cosp. matem., @ynnam. namp. - 2003. - T.3. C.89-112

On an initial boundary value problem in a half-strip for the Kawahara equation
Faminskii A.V. , Kuvshinov R.V. (Peoples’ Friendship University of Russia)

We consider an initial boundary value problem for the Kawahara equation in a half-strip

0f = (0,T) xRy
Ut ~ Ugpzzzz + Uz =0, (1)
uw(0,7) =uo(z),  u(t,0)=wuit),  uz(t,0)=uz(t). )

Let ®o(z) = up(z) and for natural m
m—1
Bn(z) = 20L,1(2) = 3 Oy Bi(@) Bl ia(2).
=0

Theorem. Let ug € H¥(Ry), u; € H¥+2/50,T), u; € H*+D/3(0,T) for some T > 0
and natural k > 2. Assume also, that ug"')(O) = ®,,(0) for any integer m € [0,k/5),
ug'")(O) = &/ (0) for any integer m € [0,(k — 1)/5). Then there ezists a unique solution
u(t,z) of the problem (1),(2) such, that

Djue C([0,T); H*"5(Ry)), 1< k/5,
Dju€ C(Ry; HE™D/0,T)),  n<k+2,
DiD?u € Ly(0,T;Co(Ry)), Bl+n<k+1,
DiDM € Ly(R4;C[0,T)), Sl+n<k-2.

The work was supported by RFBR grant 06-01-00253.
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Controllability problems for the string equation on a half-axis
Fardigola L. V. (Kharkiv, UKRAINE)

In this work sufficient conditions and necessary conditions for null-controllability and
approximate null-controllability are obtained for the control system

8w(z,t) 0%w(zx,t) _ ow(0,t)
otz 9x? dr

where ¢ > 0, T > 0, w(-,t) € H§ (¢t € [0,T]), s < 1 (H§ is a Sobolev space). We assume that
the control u satisfies the restriction |v(t)] < U a. e. on (0,T) where U > 0 is given. Controls
solving these problems are found explicitly. Bang-bang controls solving the approximate null-
controllability problem are found by means of the solutions of the Markov power moment
problem. Continuous controls solving this problem are constructed with the aid of the Cesaro
means of a Fourier series generated by the data of the control system.

w(z,1),

u(t), z>0,te(0,7),

06 oaHOM MHTerpajabHoM npeobpasoBanny yHKIME Spmura
Qazysummn 3. I0. (r. Ya)

VYreepxaenue. [yemv I = (z1,22), ¥ = (y1,92) u
on(t) = (27nlym) "2 exp(—t2/2)H,(t), n > 0, 20e Hn(t) - nosunom Spmuma. Tozda
UMEETN MECTNO MOHCIECTE0

o
/ On(VZ21 + 7)o (V2y1 + 7)eVETE 0 dr = L (|2 — gi?)e 17/ 2-ilmtm)@a—ua) ()
~00
2de Ly(t) — mmozonnen Jlazeppa.
OTMeTHM, YTO, C OJHOM CTOpOHHI, ToxzecTBo (1) ycTanaBmuBaeT HOBYIO (opMmyny

CBSI3H MKy OPTOTOHAJILHBLIMH MHOPOWIeHaMH DpMuTa u Jlareppa, ¢ JApyro#t CTOpoHEL, U3
pesyibTaToB paborsl [1] crenyer, 4To QyHKIUs

irza~y1y) J )
Pulz,y) = E_____;r___ / (Pn(\/i'l'l +'r)<pn(\/§y1 +T)e'ﬁr(x2_v’)dT

~ 00

ABIAETCH $JPOM OPTOTOHAJBLHOTO mHpoeKTopa P, Ha COGCTBEHHOE MNOANPOCTPAHCTBO,
COOTBETCTBYIOLIEe COOCTBEHHOMY 3Hauenuio A, = 2(2n + 1), n > 0 oneparopa Ilpeaunrepa

2 2
H = (—. Pre —z2) + (% 3'2—2 +xl) B OAHOPOAHOM MATHHTHOM MOJie B NPOCTPAHCTBE

Jlurepatypa
(1] Myprasun X.X., @azymmmu 3.10. Cnexmp u dopmyaa credos deymeprozo onepamopa
Ilpedunzepa 8 0drnopodnom maznumuom noae.// JAH PAH. 2003. T. 390. Ne6. C. 743-745.

Inhomogeneous Cauchy problem for perturbed Sobolev type equation
Fedorov V.E. , Ruzakova O.A. (Chelyabinsk)
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In the work the Cauchy problem
u(0) = ug (1)
for Sobolev type equation
Lu(t) = Mu(t) + Nu(t) + f(t), teR,, (2)

with continuous operator L € L(i; §), ker L # {0}, and closed operators M, N € Cl(4; §) in
Banach spaces il and § are researched by the methods of the theory of degenerate operator
semigroups [1, 2].

Theorem 1. Let an operator M be strongly (L, p)-radial, LT'QN, € P(L7M;) (see
[3]), imN € &, (I — Q)f € CP*1(Ry;9), Qf € C' (R 9),

(I- Pug=-Y_ H*M;'((I - Q))*(0).
k=0

Then there exists a unique solution u € C*(Ry;41) of the problem (1), (2). The solution has
the form

t
u(t) = S(t)Puo + /S(t -9)Li'Q (f(S) - NZP:H'“MEI((I - Q)f)(k)(8)> ds—
0

k=0

r
= ST HMGH((I - QHW ().
k=0

References
(1] Fedorov V.E. Degenerate strongly continuous semigroups of operators. St. Petersburg
Math. J., 2001, v.12, no.3, p.471-489.
[2] Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semi-
groups of Operators. Utrecht; Boston: VSP, 2003.
3] Handopa H., isapn Jx. T. Junetinme onepamopsi. Obwas meopus. M.: Exuropuas
YPCC, 2004.

On the spectral properties of the weighted Laplace operator in unbounded
domains
Filinovskii A.V.7
(Moscow State Technical University)

Let Q C R™, n > 2, be an unbounded domain with smooth boundary. We study here the
spectral properties of the first boundary problem for operator | = — ;(lz—)A. This operator aris-
es in the investigation of the first mixed problem for the wave equation in non-homogeneous
media .

Uy — —Au=0,
)

with positive function p(z) € C(%).

7The work was supported by the program "Scientific Schools"N 1464.2003.1 and RFBR grant N
04-01-00618
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Let us denote by L; ,(Q2) the Hilbert space of complex-valued functions v(z) with the

o ol = ([ pia@iote) dx)m.

Let Lo be an operator in Ly ,(§2), defined by ! on Co’ °°(£2) (functions from C'*°(Q) with
compact support in 2). Operator Ly is a symmetric non-negative operator in Ly ,(§2). Let
L, be the closure of Lg in L2 ,(Q), and let L be its self-adjoint Friedrichs extension. It is
known that there exist conditions to function p and domain 2, providing discreteness of
spectrum of the operator L ([1], [2]). For 2 = R™ it is known that there also exist sufficient
condition to spectrum of operator L to be continuous ([3]).

In this paper for the case p(z) = r~#, r = |z, in the domains  with star-shaped
boundary we establish the estimates to the resolvent of L and its derivative with respect to
spectral parameter. There exists the critical value of 3 providing the spectrum of L become
discrete. So we use obtained estimates to study the behavior of resolvent when the spectrum
transforms from continuous to discrete.

References
[1] Lewis R.T. // Trans. Amer. Math. Soc. 1982. V. 271., N 2. P. 653-666.
(2] Sovremennye problemy matematiki. Fundamentalnye napravlenija (Russian). V. 64.
M.: VINITI. 1989.
[3] Eidus D.M. // Journal of Funct. Anal. 1991. V. 100., N 2. P. 400-410.

AcuMnToTHnka crHekrpa oneparopa MakcBesia B HEerJIaakux obJacTsax

Dusonos H. 1.

DIeKTPOMAarHuTHBIE KOJIeOAHUA 3AII0JHEHHOIO DPe30HATOpa € HIAEAJNbHO MPOBOAsUEl
rpaHuneii onuchiBalorcs omeparopomM Makcsensa. Brepsble acMMnTOTHKY —CriekKTpa
oneparopa MakcBe/mia noyunn I. Beitne B 1912r. st caygasl IyCTOTO DPE30OHATOPA
¢ rnaakoit rpanuueit. Hamnuue cpenst BHyTpH paccMaTpuBaeMol ofiacT, OTKa3 OT
TJI8AKOCTH KO03(DHUIMEHTOB, XapaKTEePUIYIOIMX CBORCTBA 3TOH cpeabl (B ciydae BakyyMma
91 KO3(hUIMEHTH — KOHCTAHTBHI), & TaKXKe OTKa3 OT WIAJKOCTH TI'paHMLBl obnactu
noTpeGoBa NPeONOeHUs CePbE3HBIX TPYAHOCTeH. ACHMOTOTHKA BEH/IEBCKOTO THNA TIPH
HPOUBBOJIBHBIX 02PAHUMEHHMT KOI(DMUUHEHTaX 3alOHEHUs, HO AJIA 22a0K0d rpaHHubl
pesonaTopa, Gbia obocoBada B 1976 1. B [1]. C apyro#t croponsl, B 2] B 1987 r. 6bina
JokxasaHa popMysta Beltnsa nis nycmozo pesoHaropa ¢ aunwuyesot rpanuneit. Ham yaanocs
NOMYYUTh BEHJIEBCKYI0 ACHMNTOTHKY ChHeKTpa ofieparopa Makcsemia B obuem ciaydae
HerIaAKuX Ko3hUUNEHTOB B HerIa Kol rpaHuubl obnacTy (unumness obnacty n obiacti
C 9KpaHaMH).

PaboTa BrInOJHEHA coBMecTHO ¢ Bupmanom M. III.

JIureparypa

[1] Anexceer A. B., Bupman M. III, Acumnmomuxe cnexmpa sAAUNMUNECKUT
2panunHHT 3aday ¢ paspewumumuy ceasamu, Joka. AH CCCP 230 (1976), 3, 505-507.

{2] Bupman M. III., Cosomsix M. 3., Betinesckas acumnmomura cnexmpa onepamopa
Mawxceeara das obaacmeti ¢ aunwuyesol eperuuets, Bectauk JITW, cep. 1 (1987), Beim. 3,

23-28.
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Attractors and bifurcations in sine maps
Fournier-Prunaret D. (Toulouse)

We consider maps defined by :

Tny1 = asin®(Tp_x +b) (1)

withkeNneNzeR,aeR,beR.

Our aim is to study the evolution of attractors of (1) when k is fixed. We choose k = 1,2,3.
We present periodic orbits, invariant manifolds and chaotic attractors in the state plane
(21, ..., Zx+1)- Then, we consider bifurcations of attractors and their basins in the (a, b) plane.

Previous studies have already been done concerning other kind of sine maps ([2].)
and also 2-dimensional decoupled maps ([1].).
Possible applications are related to secure transmissions ([3}.) or pseudo-random generators.

The presented work is a joint work with Xu J., Taha A.K. and Charge P.

References

[1] Bischi G.I., Mammana C., Gardini L. Multistability and cyclic attractors in duopoly
games. Chaos, Solitons and Fractals 11 (2000) 543-564.

{2] Maistrenko V.L., Maistrenko Y.L., Mosekilde E. Chaotic synchronization and anti-
synchronization in coupled sine maps. International Journal of Bifurcation and Chaos, Vol.
15, No. 7, (2005), 2161-2177.

[3] Larger L., Fournier-Prunaret D. Route to chaos in an opto electronic system. Proceed.
European Conference on Circuit Theory and Design (ECCTD 05), Cork, Irlande, (August
2005).

One-phase Stefan problem with vanishing specific heat
Frolova E.V. (St.-Petersburg Electrotechnical University)

We consider the one-phase Stefan problem with a small positive multiplier € at time
derivative in the equation, which corresponds to the assumption that a specific heat of
melting material is small. Let Q(t) C R" be an unknown domain with the boundary
dQ(t) = I'(t) U S consisting of two non-intersecting surfaces, where S is a given surface,
T'(t) is a free surface lying inside the domain bounded by the surface S. We denote by n(t)
the unit normal vector directed inside the domain Q(t). The problem is stated as follows

eur — Au=0, zeQt), t>0,
du
=0, Vp=—-C—— s 1
Yeere " ©Bn lzere (1)

here V, is a velocity of moving the surface I'(t) in the direction of n(t), co > 0, f is a known
positive function, T(0) =T, §2| > do > 0.
We consider also the Hele-Show problem which describes the process of melting materials

with zero specific heat and can be regarded as the quasi-stationary approximation to the
one-phase Stefan problem. Assuming that the initial position of the free boundary and the
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given function f in the Hele-Show problem are the same as in problem (1), we analyze the
asymptotic behaviour of the difference of solutions to these problems as ¢ tends to zero.
We prove that problem (1) with a small specific heat € € (0,&¢) has a unique solution in a
certain time interval (0, Tp) independent of e.

This is a joint work with V.A. Solonnikov.

Unlocal stable invariant manifolds for Ginzburg-Landau equation
Fursikov A. (Moscow)

In a bounded domain € C R® we consider the Ginzburg-Landau equation (GLE)
with zero Dirichlet condition on 8. Let T be a steady-state solution of GLE. Define by
{e;, b M € ... AN <0< Any1 £ .. = 0 88 k — oo eigenfunctions and eigenvalues
of linearization on ¥ for space part of GLE. Let V = HZ2(Q) N H}(2) be the phase space
of GLE. Then V = V, @ V_ where V. = [ey,...en],V_ = [en+1,...]. As well-known the
stable invariant manifold M_ C V exists in a neighborhood of ¥ and

M_ ={T+v-+ F(v_),v- € O(V.)} (1)

where O(V_) is a neighborhood of the origin in V.., and F : O(V_) — V. is a map satisfying
I F(u)ll/ilv—f| — 0 as |lu-| — 0.

Existence of M_ is well know when O(V_) ¢ B(V_,r) = {v- € V_ : |lu_|lv. < r}
with small enough r. We prove existence of M_ for a O,(V.) ¢ B(V_.,r) with arbi-
trary big r. Let V¥ = [ex,ex41,...] with k > N, and in V_ define the ,cruciform® set:
CR, (k) = B(V_,r) U B(V¥,p).

Theorem 1. For a certain r > 0 and for arbitrary p > 0 one can find k£ > N such that
there exists an neighborhood O(V..) satisfying: i) CR, (k) C O(V_), ii) A stable invariant
manifold (1) with this O(V_) exists.

The proof is based on analytical decomposition of stable invariant manifolds ([1]).

References

[1] Fursikov A. Analyticity of stable invariant manifolds of 1D-semilinear parabolic equa-
tions. Proc.of Sum.Research Conf."Control methods of,x PDE-dynamical systems", AMS
Cont.Math.series. Providence (2007)(to appear)

Crextp camoconpsxkénnoro auddepeHIMalbHOro onepaTopa Ha ocu ¢ GeicTpo
ocuMILUINpYIoIMME Ko3dduueHTaMu
Tagpuibmun P. P. (r. Ya)

Hccneayercs ACHMITOTHYECKOE moBeJeHue CIIeKTpa CAMOCOTIPSIXKEHHOT'O
nuddepeHnUaILHOr0  onepaTopa BTOporo nopsaka Ha ocu. Koadduumentst aaHHOro
OllepaTopa 3aBHCAT OT OBICTPON M MCAJIEHHOM NepeMeHHBIX X NMEPHOAWTHbI 1O BricTpoit
nepemenHolt. 3aBUCHMOCTb K03 duumenToB 0T OHICTPOf NepeMeHHON JIOKAIH30BaHa,
H Ha BEeCKOHeYHOCTH KO3(HIMEHTbI IIepecTaloT 3aBHCETb OT OBICTPOH MepeMeHHOM.
CrposiTess ACHMITOTHYECKHE PA3IoKeHUs. COGCTBEHHBIX 3Ha4eHnil u cobeTpennbix QyHKIm
NaHHOTO ornepaTopa. IIOKa3aHO, YTO IMOMHMMO COOCTBEHHBIX 3HA4YeHHH, CXOHAIMXCA K
CcOOCTBEHHEIM 3HAYEHUS YCPEOHEHHOIO OIepaTopa, BO3MYIIEHHBIN OMEpaTop MOXeT Takike
uMeTh cOBCTBeHHOe 3HAaYeHHe, CXOJAIIeecs: K MPAHALE HenpephIBHOro cmekrpa. Ilosydenst
HeoGX0oquMBle ¥ JOCTATOYHLIE YCIOBHS CYLIECTBOBAHUSI TAKOTO COOCTBEHHOTO 3HAYEHHS.
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O cXOZAMMOCTHM MOYTH BCIOAY Pa3JIoKEeHMIl 110 HEOPTOrOHAJIBLHBIM CUCTEMaM
c>KaTHH U COBUIOB
Tanarenxo B. B. (r. Mocksa)

Tycrs M C L?[0, 1] — npoussosbHas HOpMHpPOBaKHas cucTeMa GyHKumit. Joonpenenum
Bce npunagexanme M bysknuy na R\ [0, 1] nysem. Byaem rosoputs, 4o cucrema {¢, 132,
SIBJISETCS CHCTEMOM TBOMYHBIX CXKATHH U CABUIOB, TOPOXKAeHHOH M, ecin quist moboro n € N
cymecTsyer Taxas GyHKIMA F, € M, uro @ (x) = 2¥/23,(2%z - j), rne n = 2F +j, k € Z*,
jefo,1,...,2F-1}.

Has dbynxumu f € L20,1] opTopexypanHoe PA3NOMKEHHE 10 CHCTEME {pn}52
ompeessieTca cieayomuM obpasoM (cM. [1]) UHAyKTHBHO CTPOSTCS IIOCJIe,'_LOBa.TeJIbHOCTH
ocTaTkoB {r,,(2)}3 1 xos¢¢nunemon { fn}n i ro(:c) f(z) f,,+1 = fo 7n(Z)Pnt1(x) dz,
rne1{z) = rmal(z) — Jnt10ns1(z). Pan Yy Fron(z) nasbiBaeTCA OPTOPEKYDPCHBHBIM
pasnoxenneM f o {pn}32,.

Wnrepecen Bompoc 06 ycioBusx Ha NOpOXJalWLylo cucreMy ynxkmu#t M,
FapaHTHPYIOIAX CXOAMMOCTh OPTOPEKYDCHBHOTO PAa3JioXKEHMs [0 CHCTEME JIBOMYHBIX
CXKaTHlt M CIBHIOB, MOPOXAeHHOH M, K pasznaraeMoi &yHKIWH.

Ins  coxpamenus QGOPMYTHUPOBKM BBEJEM Clelylollee O0DO3HAUeHME: IIOJIOKUM
w(é, M) = sup{|§(z) — ()| : € M, 2,y €[0,1], |z —y| < 6},

Teopema. [lycte J o0 ,w?(27", M) < oo, mf{‘fo P(z) dz‘ pe M} > 0. Torga onst
M060N cHCTEMBI JBOMYHBIX CXaTHI W CABUIOB, MOPOXKAEHHON M, n nns mobolt GyHKuun
felL? [0,1] opropekypcuBnoe pasnokenne f MO 3TOH CHCTEME CXOAMTCS K pasjaraeMmolt
GbyHKIUH NOYTH BCIOAY.

OTMeTHM, YTO IpPU TeX Ke YCJIOBHAX MMEET MeCTO M CXOAHMOCTh Da3NiOXeHUs B
merpuke npoctparctsa L2[0,1] {cm. [2]). Takxke ormernm, uro B copmyanposanHoit
TeopeMe CXOMMMOCTDb [0YTH BCIOAY Hesb3sl 3aMEHHTb Ha CXOMMMOCTb BCIOAY Jaxke B Cry4ae
pasiioskenus HenpephiBHLIX Ha [0, 1] dyHKiuit,

Pabora BhimonHena npu Gunancopolt noanepxxe POOU (mpoexr 05-01-00192),
NpOrpaMMbl TIOJNEPXKKY BeAylux Hayunwix wkon P® (HIII-4681.2006.1) u rpanTa
pesngenta PO ajist rocyaapcTBeHHOMN TOAREPXKKHM MOTOABIX yuenbix (MK-4936.2006. 1).

JIureparypa

[1] Jykamesmko T. TI. O ceolicmear 0pmOPeKYpCUSHUT —Ppasrodcenuti no
neopmozonanvhbm cucmeman // Bectn. Mock. yn-ta. Cepusi 1. MaTem. Mexan. 2001, Nel.
C. 6-10.

[2] Tanatenko B. B. O cucmemaz cocamutl u cJ6u208, NOPONHCOENMHBIL HECKOADKUMYU
dynxyuamu  // Mexaynaponsas xoncbepenuus “OyHKUMOHAJbHBEE TPOCTPAHCTBA,
Teopusi NpUOTIKeHHH, HeAMHeWHbI aHaiw3”, TOCBAIICHHAS CTOJETHIO 2KAJIEMHKA
C. M. Huxoabckoro: Teamcnt goxnamoB. — MockBa: MaTeMmaTwiecKuil HHCTUTYT HM.
B. A. Crexnosa PAH, 2005. C. 81.

OTcyTcTBHE HEHYJIEBBIX BeIeCTBEHHbBIX ocobe”HocTell pelieHus1 3aJa44 TE€OPHUH
pacceaHUs
Taanmos A. H. (Yba, Baml'y)

B [IPOCTPAHCTBE LY(R3) paccMOTpHM onepaTop [IpeauHrepa

H = i(Pk + ax(z))? + V(2), tae a(z) = (a1(z),a2(z), aa(z)) u V(z) - coormercTnento
k=1
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MAHHTHBIH M 37eKTpHyecKufl IOTeHuuanl, py = i~10/0zk, ar(z) = ax(z),(k = 1,3),
V(z) = V(z).
ens nansol paBoTh - 570 0606INeHHe pe3yibTaToB paGoThl (cMm. [1]) Ha cayuatt a(z) # 0.

3
Tyers ®(z) = a2(x) + idiva(z) + V(z), @%(z)= Y. a}(z) u semosnsiorcs ycnobust:

(i) (12(2)l + la(2)]) € L(R?)

(it) ans seex & > 0 dynrkuun

r@)= [ Wiy, o) = [ 1wtz —viay
|z—-y|<8 |lz—y{<s

orpannyens! B R3, npuuem
i - _
lim fe(x) lim g5(z) =0

pasHomepro B R3.
VpapnenueM JInnnmana-1[IBusrepa ¢ MArHUTHBIM DOTEHIHATIOM HA30BEM MHTETPAJIBHOE
ypaBHEHHe
oz, A\ w) + [ (nlz —y)"er=H[@(y) + 2\ -yl 7+ i
R3
'H‘I‘T - yl_z)(z - yva(y))] : go(y,w, A)dy = ei/\(x,u)'

o ananornu co ciydaeM, Korna a = 0, pemenne ¢(z,\,w) ypapuenus (1) nasosem
peileHHeM 3aJa4M TeOpuM paccestuus. Ypaseenue (1) TpH BelecTBeHHOM A HMeeT
eIUHCTBeHHOE pelllenne, ecii oaHopoaHoe ypasHenue f+ K(A)f = 0 umeeT TONBLKO HyleBoe
peutenue, tae K(\) - 3T0 murerpaibhbii onepatop ypasmenus (1). OBosHasum uepes £
MHOXKECTBO Tex TodeK A, ImA > 0, mjsi KOTOPHX 3TO OJQHOPOAHOE ypDaBHEHHA HMeeT
HerpuBRabHOe pewenne. Boeaem Muoxectsa £ = €N {AIm) > 0}, & = E\EN{0}. Mu
JIOKA3bIBAEM YTO CIPaBeIJIMBBI

Teopema 1. Ilycte swinommenn! ycnosnusi (i) — (i4). Torna muoxecrso £ He mMeeT
KOHEUHBIX MpeIeJbHEIX Todek. IIpu sroM, ecnmm A € &, TO A2 - ectb cobeTBEHHOE
3Hauenye onepatopa H KOHEYHON KPATHOCTH, & COOTBETCTBYIOLas COGCTBEHHAA YHKIMs
f(z) ynoenerBopsieT OLEHKe

sup (1 + |z])%|f(2)| < co.
z€R?

Teopema 2. Ilycts Bbinommensl yciaosus (i) — (it), Ao # 0, Ao € . Toraa cymectayer
npeaen Xlin}\ (2, A,w) paBHOMEPHO OTHOCHTEJILHO & € R3,we S2
— Ao

JInreparypa
{1] Mypmasun X. X., Cadosnuvuti B. A. CrnekTpasibbiil aHATM3 MHOrOYaCTHHHOLO
oneparopa [lpenunrepa.// Uan-s0 MI'Y, 1988, 229 C.
Hayunsiii pykopogurens: A.¢. - M., Myprasun X.X.

MareMaTndeckue MoOJeJM JUHAMHKN CMCTEM CTAJIKUBAIOLIMXCH YacTUIll U
HenMHeliHbIe ypaBHeHUs (PU3NYECKONR KMHETHKU
Taaxnn B. A. (r. O6unnck, HATS)

PRCCI\-(anI/lBaeTCﬁ (b}13nqecxaa CHCTEMA, COCTOALIAA M3 YacTHL, ABHXKYIIUXCA BAOJIb
[IpOCTpAHCTBeHHbIX Koopau#aT & € R,. Kaxnas Hactiia XapakTepH3yercs napaMeTpoM
k — cocTOSHUeM YACTHIB!, IPHEHMAIONIMM 3HAYEHUS BO MHOXKECTBE HATypastbubx uucer N,
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npu4YeM CKOPOCTh Uk IlepeHoca dacTull B R, sBisercs dyHKuuell cocrosiHmit yacTHupl. B
npolecce JBUXKEHHs! JACTUUB! MOCYT Yy4acTBOBATh B NAPHLIX COYIAPEHUSIX C BEPOATHOCTBLIO
Dy, k; (k1,k2 — cocrosiuns B3ammonelcTByomux dactuu). IlycTh KOHUEHTpPAIMS HaCTHIL
B COCTOSiHMM k B OKpeCTHOCTH TOYKM z € R, B MoMeHT Bpemenu t > O paBHa ug(Z,t),
k=1,2,.... IIpunstoit B Gpu3nKe MOAEIHIO ONHUCAHHS SBOIOHUH MHOXKECTBA KOHIEHTpaLuit
u(z,t) = {uk(:c,t)}ioz1 cayxuT 3aha4a Komu ANs DPOCTPAHCTBEHHO HEOAHOPOJHOTO
ypashenus (cM. [1]): ?ginequation

Oug(z,t Ou(x,t
(2, )+vk (2, )Sk(u(z,t)), z€R,, kEN, t20, (1)
ot oz
rae S — OnepaTop CTOJNKHOBEHHH, SBAAIOIAACT KBaJApPaTHYeCKo# (POPMOI OTHOCHTEIHHO
HeM3BeCcTHOl u. YpasHeHue (1) JONONHAETCH HAYAILHBIMU AaHHBIMH

ur(z,0) = ud(z) 20, keN, z€R,. (2)

B Hacrosimeit paGore pacCMOTpeHb! psa MoZesell AMHAMHWKH CHCTEM CTAIKHUBAIOUIEXCSH
YacTHI, KOTOPbi€ IPM HEOrPAHMYEHHOM BO3DACTAHHH YHCJIA YACTHH NMPHBONAT K 3a7ade
Kommn (1)-(2) u goxasasHHBI TEOpEMBI CyMECTBOBAHMSA OGOGUIEHHEIX PeHIeHHH 3TO 3aMauu
Koms MeTogoM KOMIEHCHMpPOBAHHOW KOMIIAKTHOCTH ISl TOCTEAOBATENLHOCTH TIJIAIKHX
HEOTPHUATENBHBIX PEIIeHHH KOHETHOMEDHBIX 3a4a4.

JInteparypa

[1]. Tankuu B. A. Ypasuenue Cmomyxosckoro. M.: dusmataut, 2001, 336 C.

[2]. Tanxkun B. A. CxoaumoCTh DPA3HOCTHBIX CXeM M METOJa HETOCPEJCTBEHHOTO
MOZEIMPOBAHUS K PellieHUAM ypaBHeHus: CMOJIyXOBCKOrO KHHETHYECKOH TEOPUHN KOATYISLIUY

//Toxn. PAH. 2004. T. 397, C. 4-11.

CxoaumocTs 1o ¢popme pemieHUA HavaabHOM 3amauu Kormuu anas
KBa3suJnHellHOro ypaBHeHusl napaboJiM4ecKOro TMIA K CHCTeMe BOJIH
Tacuuxos A. B. (r. Mocksa)

B pafore usy4aercss aCUMOTOTHYECKOE MO BPEMEHH IOBEJEHUE PEUIEHHsS HAYaJIbHON

3anaun Komu )
on(w) Bp(uy %
w90 _ Y0, 1) = . 1

Tpeanonoxenue 1. uh(z) > 0; limgso0 Uo(z) = us; n(u), pu) € C? (fu_,us));
Vu€lu_,uy] —n'(u) >0.

OkasblBaeTcsi, YTO €C/M CHpaBeIJIMBO HpeAnoIokeHHe 1, To 3agaga Komm (1)
nocTasjieHa KoppekTHo. Kpome Toro, V t > 0,—00 < = < o0 — ug(t,z) > O,
Vi>0— limgyotoo u(t, ) = Ust.

Ob6o3nauum 4epes H(y) - HHXKHIOWO T[PAHALY BBILYKJION OOOJOYKHM MHOXECTBa
{@v): v e Inw)mu)], v 20 (W)}

OCHOBHBIM pe3y;pTaToM paGoThHI ABJSETCH CJeAyiouast Teopema (s ciydas n(u) = u
em. [1)).

Teopema 1. Ilycrs crpasegmuso npeanonoxenue 1. Toraa, paBHOMEPHO 110 U € [U—, U]

Ua(u,t) = W () = p(u) = H (n(w)), npn ¢ — 0.
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Ecnn caenats qononunresnibroe npeanosokenne 0 CKOPOCTA CXOAUMOCTH Ug(Z) K U, TO
B TeopeMe 1 MOXKHO OIIEHHThL CKOPOCTh CXOJMMOCTH.

IIpeanonoxenwe 2. 3a > 0,b > 0,4 > 0 : Vo > a — uy — up(z) < br¥,
Vz < —a— ug(z) —u_ <blzl”.

Teopema 2. Ilycts cupasesusn npeanonoxenus 1, 2. Torma

1\
3C>0,60>0: Vt>ty,ue [u_,u+]ﬂ]u,(u,t)—W(u)]ﬁC(z)

HoxasarenbcrBo Teopem 1, 2 Ga3upyercss Ha NpHHIUIE CDaBHeHHs Ha (a3’oBoOH
TJIOCKOCTH JUIs ypaBHeHHM napafonnyeckoro Tana. 1o ocobhiit THIT TeOpeM CpaBHEHHs, IIe
CPaBHUBAIOTCA HE [(Ba PA3JIMYHBIX PELIEHNs YPaBHEHHS, a UX IPOM3BOJHEIE TI0 KOOPIMHATE,
ITepsott Taxolt Teopemot MOXKHO cuuraTh TeopeMy 11 paborst [2].

JIuTeparypa

[1] Mejai M., Volpert Vit. A. Convergence to system of waves for viscous scalar conser-
vation laws // Asymptotic Analysis, 1999. T. 20. C. 351-366.

[2] Konmoropos A. H., Tlerposexutt 1. T, Muckynos H. C. Hceaedosanue ypasnerua
Judpdysuu, coedunenHotl ¢ 803PACTNAHUEM KOAUNECTNEA GEULLCNEA, U €20 TPUMEHEHUE K
o0noti 6uosozuvecxold npobreme // Broa. MIY. Mamemamuxa u mexanuxa, 1937. T. 1.
Bun. 6. C. 1-26.

Asymptotic Analysis of the Eigenvalues of a Laplacian Problem in a Thin
Multidomain
Gaudiello Antonio (DAEIMI, Universita degli Studi di Cassino, Italia.)

This is a joint work with Ali Sili (Université du Sud Toulon-Var, e-mail: sili@univ-tln.fr).

We consider a thin multidomain of RY, N > 2, consisting of two vertical cylinders, one
placed upon the other: the first one with given height and small cross section, the second one
with small thickness and given cross section. In this multidomain we study the asymptotic
behavior, when the volumes of the two cylinders vanish, of a Laplacian eigenvalue problem
and of a L2-Hilbert orthonormal basis of eigenvectors. We derive the limit eigenvalue problem
(which is well posed in the union of the limit domains, with respective dimension 1 and N —1)
and the limit basis. We discuss the limit models and we precise how these limits depend on
the dimension N and on the limit ¢ of the ratio between the volumes of the two cylinders.
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HNurepnonsuuonHas 3a3a4a B KJacce HeabiX GyHKHu# ¢ orpaHHYeHreM Ha POCT
T'epacumenxo B. A. (r. Cymsr)

ITycrs v — nekoropas ¢yHkuusi pocra. Llenas dynkuus f(z) saseiBaerca dynxuuei
KOHEYHOPO Y-pPOCTa, €CJIi NpH HekoTopuix A, B > 0 (saBucsimux ot f) mjs Beex z € C
BRIMONHAETCA HepaseHcTBO: In|f(2)] < Avy(Blz|). O6o3naunm uepes £(vy) kaacc umebx
bynxuut xoneunoro <y-pocra. Juemzop D = {ak;qk}ie; (T.e. MHOXECTBO pa3IUYHBIX
KOMILJIEKCHBIX YHCeJ (; BMECTE C HX KPATHOCTSMH gk; gk = 1 - HEJIoe YMC/I0) HA3BIBAETCH
HHTEPIONALUMOHHBIM B Kiacce £(7y), ecnu qis mobol MOC/IeI0BATENHLHOCTH KOMILTEKCHBIX
gmcen by j, 1 =1,2,...,qx, kK =1,2,..., yIOBNETBOPAIOMMX YCIOBHIO

[bk, 51

sup ——1In T < 00,
e y(lar) 8% G- 1

cymecrByer ¢ynkuus F(z) € £(v) taxas, yro
Fla)¥ VY =b;, §=12,...,q,k=1,2,....

IIycrs C(a,r) — OTKpHWTHI KPYr ¢ LEHTPOM B Touke a paauyca r. Ilo aumsusopy D
onpegennM Mepy np(G) = 3. qx 1 ceMelicTBo dyHKuuH:

ax€

max{np(C(2,alz])) - gn; 0}
V(Blz|) ’
rae an, — Tovka, Ommkaimas k z. Hycrs aususop D ssasiercs y-gomycrumsim (M. [1]).

Tora cnpaBeiuBa CJIeAyIOIasi TEOpeMa.
Teopema. Tusuzop D siBAS€TCSE MHTEPHOIAUMOHHBIM B Kiacce £(7y) TOTAA M TOIBKO

TOrIa, KOTaa

Inr V29, gla
upq’c k<oo, sup/ —zLMda<oo,
ke Y(Brk) zec Jo o

npu Hekoropom B > 0.

®..8(a) = B>0,

JIureparypa
(1] Mamorun K. I Padw QPypve u -cybzapmornunecxue dynxyuu // Tpydw HIIMM
HAH Yxpaunw. - 1988. - T. 3. — C. 146 — 157.

YucneHHasi cxemMa JJjisi CHCTEMBbl ypaBHeHuil rereporeHHoill cnnomnoiét cpenbi
Tupua A.I. (Onecckuit nanponanbnbl yansepcuter uM. U.H. MeyHnnkosa)

Jns HaxoXKAeHWs! PelieHH CHCTeMbl HeJIMHelHBIX ypaBHEHU! MEeXaHHKH reTeporeHHON
cpexnl NMPEAJIaraeTcsl YMCJIeHHbIE MeTOd, OCHOBAHHLIK HA NMPHMEHEHWH KOHCEDBATMBHBIX
PA3HOCTHBIX CxeM. Pacyer pelleHHsi B NPOM3BOJIbHON CYeTHOH sdeilke NPOM3BOAMTCA B
TpH 3Tana. Ha nepsoM npu 3aMOpOXKEHHBIX MPABBIX YaCTAX HAXOAATCS IPEIBAPHTENbHBIE
3HAYEHMs pelueHMs Tunepboanyeckol moacucTeMbl A1 HecyuieR Ga3bl ¥ NOJ0KEHNS
TPaHHIl s4eeK B HOBLIYt MoMeHT BpeMenu. [IpnMeHsieTcss KOHcepBaTHBHaA cxema [onyHosa
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C pacyeToM Ha Iuare ‘mpeiuKTop” 3aJa4M O pacnajie MNPOM3BOJILHOTO pa3phlBa A
onpeaeneHns 3HaveHHN Ha GOKOBbIX rpaHsax svefiku. OHa HaeT BO3MOXKHOCTb BbIAEIHTH
MOJBYOKHBIE CHJIbHBIE Pa3pbIBbl B DPEIEHHH AJisi Hecywelt ¢pasbl, Y4TO HEOBXOAMMO 11
TOYHOTO Yy4YeTa CHUJbHOIO BJFMSHNS NPAaBBIX 4YacTell yYpaBHEHHI B 0O/aCTH peJlaKcaluu
pelreHnii NOACHCTEM 3a& Da3pblBOM, M MNO3BOJAseT H3bexarTh ocuuuisauuii. BosmoxHo
pa3buenne Hecyie#t ¢asbl Ha JArPAHXKEBBl sSTYEHKH, UTO YIPOWAET OMMCaHHe (PUBMKO-
XMMHYECKHX MPEBPALIEHAN B r'eTepOreHHON cpeje. 3aTeM ONPENEISIIOTCS NPaBble YacTH
ypaBHeHu#i. Ha BTOpOM 3Tane HaxoauTcA peileHHe IIOJCHCTEMBI JIS AMCIEpCHOH azbi,
pUYeM Ha Iare “IipedukTop” JJisA ONpelesieHHst 3HaueHWl Ha GOKOBBIX IpaHAX sdYelki,
ABYOKYLUEHC TPOM3BOJLHO IO OTHOIIEHHIO K jucriepcHofi dase, HCNONB3YeTCsi sABHAs
KOHEYHO-Pa3sHOCTHasl CXeMa, a Ha wmare “koppekTop” - niepBoe npubimxeHWe s
Hecymel ¢a3pl. Ha TpeThbeMm sTane NOPOU3BOAMTCS YUYET BJIMSHWS MNPaBBIX YacTedl u
YTO4YHeHHe 3HaYeHu ! pernenus ajis Hecyeit dasol. PesyasraTnl TecTupoBanus corracyiorcest
C HM3BECTHBIM{ UMCJIEHHBIMH PeElHeHUsiMH, NOJYYEHHBIMM MORMQHUIMPOBAHHBIM METOAOM
kpynHeix 4actuy B Hucruryre Mexanukun MIY. Ilpemnaraemast meTonuka ycreurHo
NpHAMEHEHa AJIs pelleHus 3a0ad O TIOpIIHe, BABHUIAIOMIEMCH C MOCTOSHHON CKOPOCTBIO B
JVMCHOEPCHYIO CMECH, & TakXe 00 HCYE3HOBEHWUM YAAPHON BOJIHBI B 3aIIbIIIEHHOM BO3/YXE.
Wraes sT0it cxeMbl A0NyCKaeT NpUMEHeHHe Ha [IePBOM STAlle HHOrO YMCJIEHHOrO MeTona st
runepboIMYecKUX ypaBHEHHN, HalpuMep, oOpaTHOroO MeTORA XapaKTePUCTHK.

Nonlocal initial boundary value problem for semilinear parabolic equation
Gladkov A. L. (Vitebsk State University)

We consider the following nonlocal initial boundary value problem:

u = Au — ¢(z, t)uP for ze€, t>0,
u(z,t) = Jo k(z, y, thul(y,t)dy for z€0Q, t>0,
u(z,0) = up(z) for z € Q,

where Q is a bounded domain in R™ for n > 1 with smooth boundary 89, p > 0 and ! > 0.
Here, ¢(z, t) is a nonnegative locally Holder continuous function defined for z € @ and t > 0
and k(z,y,t) is a nonnegative continuous function defined for z € 89, y €  and ¢t > 0. The
initial data ug(z) is a nonnegative continuous function satisfying the boundary condition at
t=0.

We prove uniqueness of solution with any initial data for ! > 1 or I > (p + 1)/2 and
with nontrivial initial data otherwise, nonuniqueness of solution with trivial initial data for
I < min{1, (p + 1)/2}, local existence theorem. Criteria on this problem which determine
whether the solution blows up in a finite time for sufficiently large or for all nontrivial initial
data or the solution exists for all time with sufficiently small or with any initial data are also
given. Our global existence and blow-up results depend on the behavior of the coefficients
c(z,t) and k(z,y,t) as t tends to infinity.

This is joint talk with M. Guedda.

On the Floquet-Favard theory for linear almost-periodic systems
Glavan V. (Moldova State University)
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The well known Floguet-Liapunov theorem for linear periodic systems gives us the struc-
ture of the extended phase space: a spectral vector subbundle is attached to each Liapunov
exponent, and each such bundle consists of flags of invariant vector subbundles, the supports
of “secular solutions”.

A series of obstacles prevent to extend the Floquet theory for almost periodic dif-
ferential systems: a) the irregular systems (V.M.Millionshchikov, 1968), and closed inter-
vals in the “dynamical spectrum” (R.Sacker and G.Sell, 1975); b) existence of topologi-
cally nontrivial vector bundles over the Bohr’s compact (1.U.Bronshtein and V.F.Cernii,
1976; B.F.Bylov, R.E.Vinograd, V.Ja.Lin and O.B.Lokutsievski, 1977; K.Palmer, 1980); ¢)
small denominators (I.N.Blinov, 1967) and generated by them topological effects (R.Johnson,
1980; M.G.Lubarski 1984; M.Nerurkar, 1987; A.M.Samoilenko and V.Glavan, 1989; A.Jorba,
C.Nunez, R.Obaya and J.C.Tatjer, 2005).

The Favard theory for almost periodic systems is concerned with the separability condi-
tions of bounded solutions to assure existence of almost periodic solutions (V.V.Zhikov and
B.M.Levitan, 1977).

R.Sacker and G.Sell (1978) were the first who used the Favard condition to give a
“threechotomy” structure theorem for linear systems without secular solutions.

To catch the “secular solutions”, the author proposed to extend the Favard condition
up to all the exterior powers of the linear system. Under these conditions “zero” is an iso-
lated point in the Sacker-Sell spectrum, and the corresponding spectral subbundie admits
a flag of invariant vector subbundles - the supports of “secular solutions”. These Favard-
type conditions permit to obtain for linear almost-periodic systems a Floquet-type structure
theorem as well as some reducibility results. The talk will be concerned with some relax-
ations of the Favard conditions, still enough to obtain further structure theorems for linear
almost-periodic systems.

O ckopocT craGuiansanmm npu { — o0 peleHni HA4aNILHO-KPAeBLIX 3aaY
TEIJIONPOBOAHOCTH
Inymxo A.B., Psbenko A.C. (BopoHe>xckuif rocyfapcTBeHHbI yHHBEPCHTET)

P aCCMaTpHUBAETCH CJIelyIOliasl HA4aJIbHO-KpaeBasd 3aJa4a

008D 2 (o) dum,0) = 9 7,0); 0
v(T,t) |e=0 = 0; 2
v (fv t) |¢3=0 =v (_f! t) lra=00 = 01 (3)

rae t > 0, T = (z1, T3, T3), =’ = (z1,22) € R?, z3 € [0,00), a®(23) € C([0,0)) u
CYMIECTBYIOT TaKHe £1 H £2 4TO Hpu 23 € [0, 00): 0 < &1 < |a(z3)] < es.

H3ayuenue pa3pemMocTH M mNoBefeHMs npu t — oo 3ajaun (1)-(3) ceoaures
HCCIENOBAHUIO TE€OMETPHH OOJACTH AHATHTHYHOCTH oﬁpaaa ®ypee-Jlanuaca pemeHus
sagaqu (1)-(3) (upeobpazopanne Mypne mpoBomurces no z’, a mpeobpasobanue Jlarnaca
npoBoauTes 10 t ).

B ¢Bfi3u ¢ OTCYyTCTBUEM SBHOT'O [IPe/ICTAB/IEHNS PELIEHUs Bhlle/leHHe KOHTYPOB NIOTEpPH
aHaIMTHYHOCTH 0bpasa Pypbe-Jlannaca pemenus 3agayu (1)-(3) npoBoAMTCS HA OCHOBAHHK
ANPHODHOM OLEHKH, NOJYYeHHO! A obpasza @ypre-Jlannaca pemenns 3aaaun (1)-(3).

IIpH BHINOTHEHHWH HEKOTOPHIX YCJIOBHH [MAIKOCTH M YOBIBAHHA IPH {T| — 00 Mt — 00
Ha dynkumio g (T,t) cupaBelyIMBO CIELYIOLIEE YTBEPK IEHHE.
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Teopema. ¥ 3azauu (1)-(3) cymecrsyer eIMHCTBEHHOE KIACCHYECKOE DeIIeHHe, O/
KOTOpOro cnpapei/uea ouenka [v(Z, t)| < ¢t~7/4 (¢ > 0), papHomepnas 1o T npu z' € R?,
z3 € [0, d] , cae d > 0 - moboe.

OTMeTuM, 9TO COOTBETCTBYIOMIAA 3aJa4a ¢ HEOMHODOIHBIM TPaHMYHBEIM YCTIOBHEM TpPH
3 = 0 CBOOUTCA K PACCMOTPEHHO NPH NOMOlLM 3aMerbt McKkoMolt dyukuuu. s 3ana4n ¢
HEeOJHOPOJHbIMHA IPAHUYHLIMHA YCIOBHAMY NOJIYH€H AHANOTHYHEL pe3yabTaT.

B cayuae, korjga paccMaTpHBaeTCs HavaJbHO-KpaeBas 3aa4a Jyuis ypasnenus (1) B
nonoce =’ € R2%, x3 € [0,d], tne d > 0 n B (3) ycnoue v (T,t) |zy=oc = 0 3ameHsieTCH
Ha yenosue v (%,t) lz,=a = 0, TPU AHATOTHIHBIX YCI0BUAX Ha a®(Z3) MOXKHO NOKA3ATH, YTO
IUIA PEIleHus 3aJadn B nojoce Byaer cripaseaiusa onedka |v(%, t)| < ce™*t, raec > 0 u
e>0.

TpaexTOpUH—YTKH U KpUTH4YecKde Geryluyie BOJIHBLI B 3ajjaye ropeHus.
TI'ononosa E. C., Ilenaknuna E. A. (Camapcknil rocyzapcTBeHHB YHHBEPCHTET)

Pafora NOCBAUIEHA M3YYEHWIO CBSI3M MEXJAY TPAEKTOPHAMH-YTKAMH CHHIYJISPHO
BOBMYIIEHHON cHeTeMbl OBniKHOBeHHbIX JHGGEpEeHIMANbHBIX yPaBHEHHN # OerymnMn
BOJHAMH B O4HON 3ajade ropenns. MHWcenenoBanme BOMH ropeHus  TPSAMUMOHHO
apaseTcs onHOR u3 dyHmaMeHTanbHBLIX TpobieM Teopum ropenusi. Paccmarpusaerca
HeaMabaTiyeckas MOJIENb ABTOKATATATIYECKOTO FOPEHMS € YYETOM PACX0/la PearnpyIomero
BEIIECTBA. B  CJIyYae OAHOMEPHON  TIPOCTPAHCTBEHHOM NEPEMEHHOM.  YCTaHOBJIEHO
CyHIECTBOBaHHE U U3y4YeHbI CBOAcTBa Oeryiuelt BOHL HOBOTO TUIA — BOJHBI-YTKH.

Ha ocHoBe aHaim3a coOTBEICTBYIOLIEN KpaeBoli 3a0a4H GUEJAH BHIBOL O BO3MOMXKHOCTH
BoIbopa napameTpoB cucTeMbl audxbepeHUMANBBLIX ypaBHeHHH, MOIEJMPYIOIHX Npouecc
ropesusi, TaKMM 06pa3oM, 4T0 NPOEKIAH COOTBETCTBYIOMEH IreTepOKINHAYECKOH TPAEKTOPHH
JIEXKHMT B MaJjIOl OKPECTHOCTH TPAEKTOPHH—YTKH (O[HOMEPHOTO YCTOHYMBO-HEYCTOWIHBOTO
MEJIEHHOTO  MHTErPAJLHOTO MHOrooOpasusi CHHIYISPHO  BO3MYIUEHHON — CHCTEMbi),
onuckiBaomie Kpurudeckuft pexxnM. CoorTBercrByiomee peuteHune n spisercsa Oerymed
BOJIHOM HOBOrO THNA, KOTOpPYIO HasopeM Geryuielt BosHo#i-yrkoit. ITokazano, uro Gerymas
BOJHA-YTKA MIPAeT pojib NPOMEXYToUHON (hOpMbI, pasmensiomiell BOJHLI MEJIEBHOIO
BBIPOPAHUA H BOJIHBI CAMOBOCIITIAMEHEHH .

AcCuMINTOTHUKA BBICOKOUACTOTHBIX COBCTBEHHBIX KoebaHMil ¢ KBAHTOBAHMEM
MAJIOr0o napamerpa
Tonosaroiit FO. 1. (JIbBoB, Ykpanua)

Joknaa MOCBAIMIEH HCCAEIOBAHMIO CIIEKTPAJIBHBIX CBOMCTB YIPYTHX Cpel, COCTOSIIMX
#3 KOHEYHOI'O UYMCIa KOMHOHEHT C pPasHEIMH (DU3MYECKHMHM  XapaKTEPHCTHKAMH.
MonenupoBaHie TaKHX CHCTeM NPUBOIUT K M3Y49CHHIO ACHMIITOTHK CNIEKTPa ¥ COOCTBEHHBIX
MOANPOCTPAHCTE KPAaeBHIX 3aiad s AudpdepeHHHANbHBIX ONEPATOPOB C CHHTYJASPHO
BO3MYWIEHHBIMA  Koaddunuenramy. Kak npaBusio, BO3MYIIEHHOM 3ajade CTaBHTCH
B COOTBETCTBHE HeOrpaHM4YeHHHH onepaTop A, B ruasbeproBoM mpocTpaHcTBe L,
obnajiaomuil AUCKPETHBIM NONOKHTENBHEM CHEKTPOM {Ai}52; ¥ HabopoM COGCTBEHHBIX
dynxunit {uf},, ofpasyoumx Gasuc B L. Tunudsol sBAsfeTca CUTyalHs, KOLIa Bee
co6CcTBeHHBIE 3HAYEHNs Af, CyTb HenpepblBHbIE (DYHKIMN MAJIOro NapaMeTpa, CTpeMsieecs
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K Hyno npu € — 0 (1. H. nusxue wacmomo). ACHAMNTOTHKY COBCTBEHHBIX (yHKUHMI
u§ = Uk + 0 [leellc — 0, anf Kammoro ¢HUKCHMpOBAHHOrO HOMepa k Ha3biBaeM
nuskouwacmomnoti. B ciiydyae cHIBHBIX BO3MYIIEHHN HCXOAHOE HIPOCTPAHCTBO PACNAAETCs B
npamyio cymmy £ = Hy P Hoo, 1piyeM Bee TpefesibHble QYHKIMH Uk TPHHAIJIEKAT JIHIIb
Hy, obpasys 6a3uc 3TOro HOANPOCTPAHCTBA. BO3HHKAET eCTeCTBEHHBIN BOMpOC, HOMEMY
noanpocTpaneTBo Hy, ocTaI0Ch "HezanonHeHHsM" .

Ilonyuurs apyrue ycrofuussie dopmbt KoneGaHulf, NpHCylMe CHCTEME NP CKOJIb
YrOAHO MaJbiX £, MOXKHO ciaeayiomum obpaszom. PaccMoTpum JAByXmapaMeTpHYeCKOe
cemeitcTBo cobersennnix dymxumit {uf: e € (0,1], k € N}, nexamee sa eausuuHol
chepe B L. 3aMblKaHMe 3TOr0 MHOXKeCTBa B ¢J1abofl  TONONOTHM JaeT HOBBIE
npepenbHbie TOYkM npd & — 0. Kak npaBumo, 3TH TOYKM JIeXAT CTPOIO
BHYTDH eIMHMHHOrO [MIapa, YTO CBHAETeJLCIBYeT O dacTuuHod "auccunmanuu sHeprun”
B rmpefene. VI3 HHX MOXKHO cocTaBuTh 6a3uc B Hy. OTH OpenencHnle  TOYKM
peanmayores nocneposatensuoctamu (N, b {wi )} e €5 — 0 u k(es) — +oo.
CllenoBaTe/bHO, NPH YMEHBIICHHN MAJIOO MapaMeTpa HYXHO CABHTATLCA BBEPX MO
CUEKTPY, NOANEPXKHBast COGCTBEHHBIC 3HAUEHUs HA ONpeIe/eHHOM SHepreTHYECKOM YPOBHE.
Takue KonebaHHSI MBI Ha3bBIBAEM 6bicoxovacmomusimu. I3 CBOHCTB cnekTpa onepaTopa
Ac llerko caefyet, 4To Jio60oe HEOTPHUATENLHOE HYHCAO SIBISAETCH IMPeleoM HeKOTOpOofi
[IOC/IEI0BATEBHOCTH {)‘iZe.)}‘ OnHako, NI TOYTH BCEX TAKMX IMIOC/IEN0BATENbHOCTEN
COOTBETCTBYIOMIAA MOCAEI0BATENBHOCTh COBCTBEHHBIX (YHKIME CTPEMATCS K HYJMO cnabo
B L. [okazaTe CyumeCTBOBaHHE BBICOKOYACTOTHBIX CODCTBEHHBIX KojebaHull 03HAMAET
IOKA34Th CYIIECTBOBAHUE NOCIEN0BATEILHOCTEH {ui‘z z,)} C HETPUBHAJILHBIM NPEAEIIOM.

B moxnage Gymer paccMOTpeH psJi 3aJad, [JIsi KOTOPhIX JOKa38HO CYyIeCTBOBaHUE
BBICOKO4ACTOTHBIX KosieGanuii. KomOGuaupys crenesnsle 1 BKB acaMnToTHRH, MOXKHO
HONYYHTb ABHbIE (OPMYJIBI Aus HoclefoBaTenpHocTel {€5}, "BAONL" KOTOPHIX CTPOATCA
ACHMITTOTHYECKUE TPUOIHKEHNS ’\i‘(e,) u ui‘( ) JIF060Oro HOPsAAKa TOYHOCTH.

O MHOTOMEpHBIX ABIDKEHHUSAX ra3a ¢ MJIOCKUMU TPAeKTOPUSMU
T'onosuu C. B. (r. Hopocu6upck)

PaccMaTpUBAIOTCA MHOMOMEPHbIE HECTAIOHADHBIE JIBMXKEHHS MJEaJIbHOro ra3a, B
KOTOPbIX TPAEKTOPHM HYACTHL| HABISIOTCH IUIOCKMMH KpPuBbMH. JIJIA TaKuX JBHKeHHH
BBIJENSAETCH CIIEHUATBHBIN MOMKAACC, OTBEUAIOUWME cleqyomeMy cBoitcTsy. IIpennonoxmnm,
4TO B NPOCTPAHCTBE, 3aHATOM TeYeHHEM ra3a, 33JaHO CeMEMCTBO IOBEPXHOCTEH ypOBHS
Hexkoropolt dbynkuuy h(z,y, z). Pasinomum BeKTOpP CKOPOCTH KaXJ0# JACTHIB Fa3a Ha JBe
KOMIIOHEHTHI, OJHA M3 KOTOPBIX OPTOrOHAJIBbHA, 8 APYrasi KacarTe/bHa K COOTBETCTBYIOMIEH
noBepxHocTH ypoBHs h = const. ITorpefyeM, 4rofel MOZYAH HOPMaJIbHON H KacaTe/bHON
KOMIIOHEHTBI BEKTOPA CKOPOCTH, & TAKXKE TEPMOAHHAMHUYUECKHEe DYHKLIMH 3aBHCENIH TONBKO
or BpeMenH t ¥ oT GyHKumH h, T.e. IpH (PHUKCHUPOBAHHOM ! GBI NOCTOSHHBI HA KaXKIOM
noBepXHOCTH ypopHs. IIpH 3TOM Ha yroJ ITOBOPOTa BEKTOPA CKOPOCTHM BOKDYT HODMA&JM K
MOBEPXHOCTH YPOBHS HHKAKUX OTPAHMYEHUH He HAK/AJbIBAETCH.

Buinesennnii Takum o0pasoM KJIACC ABHIKEHUIl COAEPIKHT H3BECTHHIE ABIMKEHHMS rasa
rTina Buxps OBCAHHMKOBA, B KOTODOM IIOBEPXHOCTSIMH YPOBHS GYHKUun h SBIAIOTCA
cohephl ¢ GUKCHPOBaHHLIM leHTpoM. B pabore craBuTcA 3aJa4a M3y49dTh BCE THIIHI
yuxupu b, Npou3BoASIIME ONHCAHHBIE ABHXeHUs ra3a. M3 ypaBHennit razosoil JUHAMMKH
B CHJly CIEN4HHBLIX NPEMIOJICKEHHH cneayer, 4TO (YHKUHS h QO/DKHA YAOBJIETBOPATH
ypaBHenuto sfikonana |Vh| = 1, a Takxe anrebpaudeckne HHBAPUAHTLI MATpHIL Tecce s
sTOft QYHKIMHM AOMKHBI 3ABMCETh TONBKO oT camolt dyHkmuu h. B pesynprare anaimsa
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STHX YyCJNOBMI BCe BO3MOXKHEIE THNBEI (PyHKUMM h CBOLSTCS K TPeM THIAM: IJIOCKOMY,
nuIHHApUYeckoMy M cepuyeckomy. IlpoBonuTess aHaiu3 pelleHust ypaBHeHuit rasosoft
JMHAMUKH B KaXAOM U3 ONHCAHHBIX CJIy4aeB.

Pabota Beinonxena npu nojyuepxkke POOU (mpoexr 05-01-00080) u Ilpesmmentckoro
rpaHTa 418 Mooabix yaenbix (npoext MK-1521.2007.1).

Bapuanuonusie crpykrypnt Ilyaccona-Huttenxeiica ans HenoKanbHBIX
onepaTopoB
Tonosko B. A. (. Mocksa)

M3BecTHO, 9TO NPakTHYECKH BCE KIACCHYECKME WHTErPUPYEMBIE CHCTEMBl MOTYT OHITB
ONHUCAHBI B TEPMUHAX OMIaMUIBTOHOBHIX CTPYKTYD Ha (pa30BOM IpOCTPaHCTBE. acTHEIM
cnyyaeM OHIaMUABTOHOBEIX CTPYKTYp SIBAAIOTCA CTPYKTYphl Ilyaccona-Hullenxelica,
KOTOPBI€ BO3HHKAIOT NPM HONHTKE [IOCTPOHTH OUraMIUIBTOHOBY HAapy KaK KOMNOIHIMIO
nyacconoBa 6nsekropa P 1 Tensopa Huitenxeiica N Tuna (1, 1) ¢ nynessim kpydennem. [Ipu
ITOM BOZHUKAET HECKOJLKO YCJAOBHI COBMECTHOCTH, OIHO M3 KOTOPHIX HEOGXOMMMO J1s TOrO,
9robp koMnoauuus N o P raxske siBisiack OMBEKTOPOM, a JIpyroe, YTobbl STOT GUBEKTOD
6b1JT IIyaCCOHOBBIM.

Crpyxrypst [Tyaccona—Huitenxefica pacCMaTPUBAINCH PA3IMYHLIMA aBTOPaMH, ¥ OuLIH
MOJIyYIeHbl Pa3HBIe HHTEPIPETALNH YCJIOBHA COBMECTHOCTH Ha MyacCOHOB OHBEKTOp U TEH30P
Huttenxefica, M., Hanpumep, [3].

B nanuo# pabore nyacconos 6usexrop P u tensop Hultenxelica N paccmaTpuBarTcs B
6eCKOHEYHO MEPHOM CJIy4ae KAK ONepaToOph! B NOMHBLIX MPOM3BOAHLIX HA COOTBETCTBYIOMMX
NMpocTpaHCTBaX GeCKOHEYHBIX [UKETOB (CTPYH), TO eCTb KAK TaMHJIBTOHOB ONEpaTop H
onepaTop PeKypcuy, COOTBETCTREHHO, TPUYEM BO3MOXHO M HEJIOKAJILHEIE, T.e. CONEPKALIHE
uyienn Buga D 1.

Uz pa6orwi [2] ciienyeT, 9TO ONepaTOPHl PEKYPCHH W T@MHJILTOHOBBI ONEPATOPE MOXKHO
[OHMMATh K&K TeHW B {- M [*-HAKDHITHSAX, SBJISIOMMXCH AHAJIOTAMH KACATEILHOTO M
KOKacaTeIbHOI'O Dacciloenult, coorsercrenno, Tenu sipasiorca obobimeHuaMu cuMMeTpuis
U BO3HHMK&IOT, HanpuMmep, NpH JeHCTBHM ONEPATOPOB PEKYPCHMH Ha CHMMeTpusax. B
OT/IMYHE OT CHMMETPHfi, KOTOPhIE SIBJIAIOTCSH BEKTOPHBLIMHM NOJAMH HA PacCMaTPUBAEMOM
AnddepenunansioM ypasHeHnn £ (MK Ha HAKPHIBAIOLIEM MHOr006pasun £ B HEIOKAJILHOM
ciydae), TeHM SABIMIOTCH Anmb AuddepeHUMPOBAHHAME BIOMb TIPOGKUMH HBKPHITHA
T : & — £, cM. [1]. HecMorpst Ha 3TOT hakT, CTPYKTYpa HAKDHITHS [O3BOJIAET MOCTPOUTH
KOMMYTaTOp TeHell, spasiomuiica obobuenuem ckobku fkobu cummerputi.

B panno#t paboTe mokazaHo, YTO yCioBuE coBMmecTHocTH Ha Crpykrypy Ilyaccowa-
Hufienxeiica, a TakKe W yCJI0BM€ F4MHJIBTOHOBOCTH B HHHAEHXEHCOBOCTH COOTBETCTBYIONIMX
ONEPaTOPOB, BO3MOXKHO HEIOKATIBHBIX , MOXKET OHITH BHIDAYKEHO KAK YC/IOBUE PABEHCTBA HYIIO
ckoOku fIko6H COOTBETCTBYIOIMX TeHelt.

Jluteparypa

[1] Bouapos A. B., Bepboseuxu#t A. M., Banorpagor A. M. u gp. Cummempuu u
3axonyl co.panenus ypasnenutl mamemamunecxold guauxu.// Mon pen. Bunorpaxoea A.M.
u Kpacnapmuka 11.C.— M.:®akropuas, 1997.— 464 c.

[2] Kersten P., Krasil'shchik 1. 8., Verbovetsky A.V. Hamiltonian operators and £*-
coverings.// J. Geom. and Phys. — 2004. — 50.— C. 273-302.

[3] Kosmann-Schwarzbach Y., Magri F., Poisson-Nijenhuis structures.// Ann. Inst. H.
Poincaré Phys. Théor. — 1990. — 53, No 1. — C. 35-81.
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O TEeH30pHBIX CTPYKTYPaX, CBSI3AHHBIX C KBAHTOBLIM oneparopoM Jlupaka, n
CIOMHOPHBIX CTPYKTYypaX, aCCOMMPOBAHHBLIX ¢ 06001IeHHBIMM ypPaBHEHUAMN
KHumxnuka-3amonoaunkosa
TIony6esa B.A. (BUHHTH PAH, Mocksa)

Paccmorpum oneparop JTupaka Ha g-nedopmanun G, rpynnst G (G.Fiore, 1998). Tycrs
V - koHeuHoMeTHBI# g-MOAYIb ¢ HPUKCHPOBAHHON MHBAPHAHTHON CHMMETpHYeckol popMoil.
Anrebpa Knudpdopaa Cl(V) nonynpocra u He uMeeT HEeTPHBHAILHBIX Aedopmpanuit. s
dukcuposannoro usomopdusma anrebp ¢ : Un(g) — U(g)[[h]] umeerca orobpaxenne
V[[Rl] — CUV)|[R]], conanaromee ¢ Broxennem V — CIU(V) no moaymo h u Ug-
SKBHHBapuaHTHOe. Takoe 0TOOpaKeHWe MOIYYaeTcss NP HCHOAb30BAHHH CKDYYMBAHHS C
nomomsio snementa F € (Ug ® Ug), raxoro uro (¢ @ ¢)A, = FV(-)F~L.

Onepatop JIupaka Ha G pacCMaTPHBAETCs KakK 1eMeHT D B TeH30pHOM NPOM3BELAEHAN
Ug ® Cl(g). Tax xaKk aHauMTHYeCKMe CBONCTBA CKPYYMBApHs TPYAHO MCCIEJOBATb, HA
[IOMOHIb MPUXOAST CBONCTBa YHMBEPCAJIBLHOW R-MATpHIBI H acCOUMATOPa B NOAXOAsIIeH
TeH30pHO# Kateropun Upg-monynest (B. [pundenna), cBasaHHON ¢ MOHOIPOMHeH
ypaBrenus Knwxnuka-3amosnonuukosa. Takum 00pasoM, aHAIWTHYECKHE CBOMCTBa
KBaHTOBOro nepatop Jupaka onpezeisitorcs 6osee eCTECTBEHHO HE Yepe3 CKPY4HBaHHUE, a
4Yepe3 YKa3aHHBIN acCOLHUATOP.

C [pyro#i CrOpOHB, HCCNEJOBaHHE TNOJHO# HMHTErpUPyeMOCTH  0GOBHIeHABIX
MHOromapaMerpudeckux  ypaeHenn#i  Kuumxuuxa-3amonogaumkosa,  kosdbdunuesTst
KOTOPHIX B KJI4CCHYECKOM CJIYYae ONPeJe/sIoTCs depe3 Ga3uCHBIE 37IeMEHThl TEH30pPHOTO
KBaJpaTa COOTBETCTBYIOIeN areSpsl JIM, NPUBOAHT €CTECTBEHHO K HeoOXOAMMOCTH B
KadecTBe KO3GM()HUMEHTOB YpPaBHEHHMs DaCcCMaTPUBATh CIHHOPH. ByayT paccMOTpeHbl
CNMHOPHbIE PellleHHs CHCTeMBbl YPaBHEHWH NOJIHON MHTerpupyemoctd njist ypasHenuit K3,
acCOIMUPOBaHHLI ¢ cucremolt kKopHelt Tuna B,. Koporko 6ynyT paccMOTpeHb! CBA3HM TON
3a/1a49M C TeOpHell CIIMHOPHBLIX ypaBHeHus! B reoMerpu Beling (ypassenus Jupaka, cucrema
ypaBHenuit ais cnuHopos Kunimura).

Mogenu CIIOIIHBIX CPesi C FeOMETPHYECKUMH CBA3IMU
Tony6srunkos A. H.

IpoBoauTcs aHaiu3 BO3MOXKHBIX adUHHBIX CHMMETPHUH aHH3OTPOIHO JKECTKUX
CILUIOUIHBIX CPEM, UX YCTORYHBOCTH M NPUYMH BO3HMKHOBEHUs NPU Pa3pyUIeHMH CTPYKTYPhI
MATEPHAJIOB.

PaccMaTpHBAIOTCS CBOHCTBA yPABHEHMH, ONpeAENAIONIMX 3aKOH Apmxenus z°(£%,t)
OJHOPOIHBIX CIUIOMIHKIX CpeJ NP HaJIW4WH CBs3elt, BHOa

orx i
Tige = <)"<5}T , I*(gap) = 0, Gap = 8i;TpTy.
al/ a
Huxune wuHAeKCH THNa t,a 06O3HAYAIOT 4YaCTHHE Npou3Boasne; i,a = 1,2,3;

k=1,...,N<6.

TlpesensHbMu cydasiMa ABAsTIOTCA abcommorHo TBepaoe Teno (N = 6) n mslib — cpeda
6e3 cas3et. MeanbHas HeCKMMaeMas KHAKOCTh HMeeT OfHy CBsi3b Bua det(zl) = 1. Ha
3TOM IyTH MOXHO JaTh ONKCAHME MHOXKECTBA BCEX BO3MOXKHBIX CBs3el U, C1I€40BATEIbHO,
COOTBETCTBYIOMMX CIVIOMHEIX Cpel, & TakKe uX (asoBbIX NEPEXOA0B, OCHOBLIBASCH Ha
KJIaCCUHKALMY HENpPepHBHLIX MOAIPYNN MONHOM JuHefHOH rpynnsi npeoGpasopanmit
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[epeMEHHBIX £, KaK IPYII MaTEPUAIbHON CHMMETPHM, H MX UHBADUAHTOB [ *(gap). Taxux
FpYII 0Koo 80 THIIOB, CUMTAdA MO OAHON KOHEdHbIE U HelpephIBHbIe cepun [1].

UccnenoBaune rHnepbOAMYHOCTH YPaBHEHMH IBHXKEHHsI CBOJUTCH K BBIIOJHEHUIO
HepaBeHCTBa .

2
k—afl——fmimjnang >0
At Oz

[pH BCEX HEHYIEBHIX Mi H Mg, YAOBIeTBOpsIowMX cooTHomennsm (8I*/dzh)ming = 0.
Cpesbi, He YJIOBJETBOPSIOIHE 3TOMY HEDABEHCTBY, SB/SIOTCS  HEYCTOAIMBBIMA.
CooTBeTCTBYIOIMA aHanu3 WpoBeseH Aas rpymn cummerpun ¢ N < 2 u N = & B
KadeCTBe NpUMEPa DACCMATPUBAETCH INIOCKAs CTAIMOHApHAs 3ajada Al Cpej ¢ AByMH
CBSI3SIMY.

Pa6oTa BhinoJHeHa pu GuHaHcoBOl moxaepxxke POPHU (npoexter 05-01-00375, 05-01-
00839) u rpanros Ilpesnaenta PO (npoextsr HIIT 4474.2006.1 u MK 9352. 2006.1).

JIutepatypa

[1] Tony6srruxos AH. Cummempuu cnaownsz cped — YeIeXu MeXaHuKH. 2003, . 2,
No 1. C. 126-183.

3agauy yNpaBJiseMOCTH A MOANGMUIMPOBAHHOTO yIPABJIeHUsA MepeHoca
Tony6uanantt K. B. (Poc. yH-T Apy>6bl HapOJOB)

PaccMoTpensl npsiMast M ofpaTHas 3ajadd s uHTerpo-auddepeHIIHaILHOTO
ypaBHEeHUs, ABJISIOLIErocss MOIUpUIMPOBAHHBIM YPaBHEHHEM IlepeHOca:

u(z,v,t) + (v, V)u(z,v,t) + Z(z,v,t) uo(z,v,t) =

=/ J (z,v,t,0") uz,v', t) dv’ + F(z,v,1)
v

(B 06bIYHOM ypaBHEHHH TIEPEHOCA BMECTO Ug CTOUT U [1]). Do ypasrenue Gonee ynobuo mns
HCCHIEZI0BAHUS. HEKOTOPHIX €ro HesuHedHbix Boamyinenuit. OyHKIUA BHEIHUX UCTOYHHMKOB
U3;Iy4eHHs NpeJCTaB/IeHa B BU/e

F(x,v,t) = f(z,v) g (z,v,t) + h(z,v,t),

Meuoxurens f(z,v) urpaer posib yupasierns. PelrenneM obpaTHON 3a/4a4u SB/ISETCS Napa
(4, f) € Hoo(D) X Loo(GX V) (Ha camoM Aenie TOMBKO f), ¥ CMBICI 38841 COCTOUT B Nepesoae
¢ [MOMOIBIO f CHCTEMEI U3 HAYAJIBHOTO COCTOAHMA ¢(&,V) B (PUHANBHOE COCTOSHUE ¥(z,v).
ITosy4eHHbie pe3y/IbTATEI SBIAIOTCA IPeABAPUTEIBHbIMIL 15t HEHHEAHBIX 38184 (IHHeAHbIe
3a7a4YM HCIIEIOBAHBI pamee; cM., Hanpumep, [2]). IIpu paccmoTpenuy npsaMo#i 3aja<u I
HAILErO yDaBHEHMS HCIOJb30BAN W3BECTHBI MeTox [2], cocrosumit B CBEACHMHM MCXOIHOM
33894 K MHTErpajbHOMY ypaBHeHuio. IToc/ie 9TOro ¢ NMOMOIBbI0 NMPHHLKIA CKUMAOIAX
oTOBpaskeHnit JOKA3aHA KOPPEKTHAs! Pa3PEeUiHMOCTh HHTEIPAIbHOTO yPaBHEHMS.

JIntepatypa
{1] Xamzau H. Sadawu ynpasaremocmu dan neaunetrnos ypasnenud nepenoce. Jluc. kamx,
Jus.-MaT. Hayk. - M.: PYJIH, 2004. - 155 c.
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[2] Tpunenxo A.H., Bonkos H.IL Obpamnsie 3a0anu onpedeseHus NAPAMEMPOS
HECTNAUUOHAPHOZ0 YPAGHEHUA NEPEHOCE TO NEPEONPEJEAEHUAM UHMEZPALLHO20 Muna. [/
Hundd. ypasuenus. 1987. - T. 23.

O HEeKOTODHIX YNPAaBJASEMBIX CHCTeMaX BTOporo nopsaka ¢ ¢dha3oBLIMHI
OrpaHUYEHUAMHU
TIonvapoa M.H. (Yupexnerne obpasopanua "I'ponneckuii rocynapcTBeHHbri
yHuBepcuTeT umeHu Suku Kynaner")

PaccmarpuBaioTes ynpasiseMble CHCTEMBbI BTOPOro nopsiika Buaa © = Az + Bu, rae
JABYMepHBIN BEKTOp Z ONMCHIBAET COCTOsAHUE 06bekTa, u = (ul,u?) - BexTop ynpabnenus,
MaTpulla B He BhIpoXKieHa, a o0jacTb ynpasienus U onpenensieTcss HepaBeHCTBAMHU
lu}] < 1,|u?| < 1. Ha TpaexTopmio HanoxeHo junefinoe (ha3oBoe OrpaHUYeEHHe, KOTOPOE
JIOJXHO BBITIOJIHATHCS Ha MPOTSIKEHUH BCEro ABMXKeHUsl. Tpebyercss nepeBecTH 0ObLEKT U3
NPOU3BOJBHON TOYKH T , YAOBAECTBOPSAIOLIEH PAa30BOMY OrPAaHHYICHHIO, B HAYAJIO KOOPIAMHAT
38 HAMIMEHbLIIEe BPEMSL.

Pemenne nocraBieHHO! 3alla4M 3aBHCUT OT NAPaMETPOB, ONpPEACNSONHX (a3oBoe
OrpaHWYeHHe, M OT pACHOJIOXKeHHsI HadalbHON Toukd. B  ¢dasosom mnpocrpancTBe
BBIAEJAETCS MHOXKECTBO HAaYaNbHBIX COCTOSHHH, JJisi KOTOPBIX peINEHHsl 3aJ89M He
CYIECTBYeT, MHOXECTBO HAYaJbHBEIX COCTOAHUH, VI KOTOPBIX (pa3oBoe OrpaHHyenue
He sBJISIeTCsl CYLIECTBEHHBIM M HAa MHOXXECTBO HAYaJbHBIX COCTOSIHHM, AA8 KOTOPBIX
ONTMMAJIbHAS TPAEKTOPHUS OTIMYHA OT ONTHMMAJIBHON TPAeKTOpHK B 3ajade 6e3 ¢rasoBbIX
orpanuyennii. B mocienHeM cnydae a5 aH8JIM3a pelIEHHs] IPUMEHSIFOTCH HeOGXOAUMEIE
[1] m pmocrarounsie {2}, [3] ycmoBms onTMMasbHOcTH. B ciydae, xorma marpuma A
MMeeT pa3luuHble JelicTBUTeNbHble COOCTBEHHbIE 3HAYEHMs, CONpsIXKEHHas (YHKUHMA,
YAOBJIETBOPAIOIAsA HEOOXOJMMBbIM YCJIOBUSM ONTHMAJILHOCTH, SBJISIETCS NPUEMJIEMOi
JUIS BBINOJIHEHHs JocTarToudeix yciou# (2] u [3]. Bo ciuyuae, xorga marpuma A
UMeeT KOMILIEKCHble COGCTBEHHBIE 3HAYEHMsI C OTPHULATEILHON AEHCTBUTENBHOM YACTBIO,
conpsikeHHast (PyHKIMS, YA0BIETBOPSIOas HeoGXONMMBIM YCIOBUSIM ONTHMAaJIbHOCTH [1],
He Y/OBJETBOpsieT TPeGOBAHHMSAM JOCTATOYHBIX ycioBuit [2]. OpHAKO ONTHMAILHOCTH
PacCMaTPUBAEMBIX TPAEKTOPHI MOXKHO JOKA3aThb C UCIOJb30BAHMNEM NOCTATOYHBIX YCJIOBHN
3].

Jlureparypa

[} Tourparun JI.C., Boarsuckm#t B.I\, Tamxpemuaze P.B., Mwumenko E.O®.
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[2] Blagodatskikh V.I. Sufficient Conditions for Optimality in Problems with State Con-
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[3] F'onuaposa M.H. octaTounbie ycaoBus ONTHMAILHOCTH B 3a4ade GbICTpoAeficTBHSI.
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The Phragmen-Lindelsf principle for solutions of elliptic equations in a Banach
space
Gorbachuk M.L. (Institute of Mathematics, National Academy of Sciences of Ukraine)

We consider a differential equation of the form

y'(t) = By(t), te€(0,00), (1)
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with a positive operator B on a Banach space. We set s = s(B) = inf{R\ : A € ¢(B)},
¢ = @(B) = inf{p €0,%):5,, D0o(B), C\ T,y Cp(A)}, where o(B) and
p(B) are the spectrum and the resolvent set of the operator B, respectively,
Esp ={A € C:|arg(A —s)| < ¢'}. It follows from the positivity of B that s > 0.
Theorem 1. Let y(t) be a solution of equation (1) inside the interval (0, 00). If

Ja>0, 3, >0 [[y(t)]] < cae®’, t > tg,

where 3 < =Z— to > 0 is fixed, then for any € > 0 there exists a constant ¢, > 0 such that
s

ly()ll < cee™ Ve, ¢ > 1.

In the case when B is a positive normal operator on a Hilbert space, Theorem 1 may be
made more precise.

On stability of solutions of abstract parabolic equations
Gorbachuk V.I. (Institute of Mathematics, National Academy of Sciences of Ukraine)

We consider a differential equation of the form

yl(t) = Ay(t)s te (Ov 00)7 (1)

where 4 is the generator of a bounded analytic Co-semigroup {e*4};>¢ of linear operators
on a Banach space.

The equation (1) is said to be uniformly (uniformly exponentially) stable if, for any
solution of this equation on (0, c0),

lim {y(t)]| =0 (Qw>0: lim e*t||y(t)] = 0).
t—o0 t—o00

We show that equation (1) is uniformly (uniformly exponentially) stable if and only if
0 € 0. (A)Up(A) (0 € p(A)), where p(A) and o.(A) are the resolvent set and the continuous
spectrum of the operator A, respectively. In the case where equation (1) is uniformly, but
not uniformly exponentially stable, the behavior at infinity of the solutions for equation (1),
depending on the smoothness degree of their initial data with respect to the operator A™!,
is studied.

Positive Definite Functions and Generalizations of the Prime Number Theorem
Gorin E.A. (Moscow Pedagogical State University)

A refinement of the B.M.Bredihin theorems (see, e.g., [1])} concerning the asymptotic
behavior of the number of basis elements of a free Abelian semigroup with countable basis is
presented under the assumption that the semigroup is a locally finite part of the semigroup
of nonnegative real numbers.

Standard analytic tools are used, including the Fourier — Laplace transforms; how-
ever, we also explicitly use the fact that some specific functions, including the function
t — log¢(o +it), o > 1, are positive definite, and apply the algebraic approach to the
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Tauberian theorems due to G.E.Shilov; this enables one to substantially simplify the expo-
sition as compared with the elementary approach used by Bredihin and to establish much
more (for example, an analog of the Dirichlet theorem). For details see [2],[3].

Remark. 1 am going to report in Russian.

References
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Positive Definite Functions and Generalizations of the Prime Number Theorem
Gorin E.A. (Moscow Pedagogical State University)

A refinement of the B.M.Bredihin theorems (see, e.g., [1]) concerning the asymptotic
behavior of the number of basis elements of a free Abelian semigroup with countable basis is
presented under the assumption that the semigroup is a locally finite part of the semigroup
of nonnegative real numbers.

Standard analytic tools are used, including the Fourier — Laplace transforms; how-
ever, we also explicitly use the fact that some specific functions, including the function
t — log((o + it), ¢ > 1, are positive definite, and apply the algebraic approach to the
Tauberian theorems due to G.E.Shilov; this enables one to substantially simplify the expo-
sition as compared with the elementary approach used by Bredihin and to establish much
more (for example, an analog of the Dirichlet theorem). For details see [2],[3].

Remark. 1 am going to report in Russian.
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MeToap! anoCTEPUOPHOro KOHTPOJA TOYHOCTH s 3aJa4 BA3KONH HecoxnmaeMoi
XKHUAKOCTU C BpauwjeHueMm
Topmxosa E. U., Penuu C. U. (r. Canxr-Ilerepbypr)

3agaun BA3KOH HECKMMAEMOR JKHIKOCTH C BPAIEHMEM BO3HHKAIOT TIPU HCCIIeIOBAHUH
IIBHXKEHUST KUIKOCTH B OTHOCHTENbHON (Bpamaomeiicst) CHCTEMe KOOPAMHAT, 4To Gbipaer
HeoBXOAMMO, HATIPEMED, [IPH PacHeTe NBIKEHHs OKeaHMUECKHX Mace B CpeJHHX mupoTax. B
naEHON paBoTe NpeICTARIIEHE! HOBEIE ATIOCTEPHOPHBIE OLEHKH JJIs INHEWHOH MoZlesn BA3KOH
HeCKMMaeMOl XKHUAKOCTH ¢ BpaleHueM. ONEHKH MOJIYYeHH! IPH HCIOIb30BAHMI METO.a,
omucarsoro B [2]. [Ina mofeneft 3a5a4 BA3KOH HECKMMAaeMOH XNIKOCTH, He BKIIOUAIOUMX
BpalleHHe, Takue OLeHKH 6uumu mosmydensl B paborax (3], [4]. Ouenxa dynximonanbHOro
TMma IS 3a7adH ¢ BpalleHneM Obula nomydena HemasHo B (1. B macTosme#t pabore
TIpeJCTaBJIEHRl OLEHKU OTKJIOHEHHs OT TOUHLIX pellenmit B HopMax Gosee obmero Buia u
MCCIIEZIOBaHO WX YHCIEHHOE IPUMEHEHNE,

Tonyyennble ONEHKU He 3aBHCAT OT Cnocoba aINPOKCHMALMHI M PELIEHHs! CHCTEMb, He
COAEPKAT HEM3BECTHBIX KOHCTAHT, 3aBUCHI|X OT CTPYKTYPEI ceTKH. IloMuMo peanncTuaHOH
HHYKAIMY DACTpefesenus OWHOKH MO O6JNacTH, OUEHKH IO3BOIAIT HANpAMYIO H,
9T0 Hamboee BAXKHO, TAPAHTUDPOBAHHO OLEHATH SHEPTETHYECKYH HOPMY OTKJIOHEHUS
NpUB/IMKEHHOTO pelieHns oT TouHoro. IIpakTnyeckas 3PQeKTHBHOCTb NPEHATONKEHHOro
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[IOAXOZa MPOBEPAETCS Ha CEPUM YHCJIEHHBIX [PUMEPOB, JeMOHCTpHpYeTcs 3¢ deKkTuBHOCTL
HHAMKALMY OUIMOKM JJ18 KOHEYHOMEPHBIX AIIMPOKCHMALME, MCHONB3YIOMMX AJaNTHBHbIE
CEeTKH.
Jlnteparypa
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Bce acUMITOTHYECKHe Pa3JIoXKeHHs! peulenuii mrecroro ypasnenus Ilennese.
Toproukuna H. B. (r. Mocksa)

Tosy4eHs! BCe ACHMITOTHYECKHE Da3OXKEHHs pelleHuft mectoro ypasHerus Ilensese
pOIM3KA BCeX Tpex ero ocobbix Towek £ = 0,z = 1 m T = 00 mpH BCex 3HAYEHHAX €ro
JeThIPeX KOMIIEKCHEIX napamerpos. Oun 06pasyior 105 ceMe#icTB M BKIIOYAIOT PA3IOXKeHUSA
YeTHIPEX THIIOB: CTENEHHbIE, CTeNIeHHO-JI0TapHhMITIECKHe, CIIOXKHbIE H IK30THecKme. B aTnx
PA3IIOKEHNAX HE3ABHCHMAS IePEMEHHAS T MOXKeT MMeTh KOMILIEKCHbIE IOKA3ATEN CTENeH .

Crauaia MeTOZAaMM CTelenHoft reoMerpun [1] mosydens Bce ACHMITOTHUECKHe
DA3JIOXKEHUs PeNIeHUH BCeX YeThIpeX THIIOB BOJI3K 0coboit ToukH £ = 0, y KOTOPbIX OPAIOK
nepBoro unena menbme eauHrnet (cM. (2], (3], [4]). DTu pasnoxenns: HasBaHB! 6a30BHIMH.
Oun obpasyior 18 cemelicts. Bee npyrne acHMITOTHYECKME Pa3/OXeHUs pemeHuH BOM3n
Tpex OcoBbIX TOYEK yPaBHEHHsI BBIYHCIIAIOTCS #3 6a30BbIX Pa3JIOKEHHH C NOMOLIBIO
cuMMeTpHil ypaBHEHHUS.

Ioaasnsomee GOMLIMMHCTBO STHUX pa3/ioxKeHuii — Hosble. [IpuBozATCA NpHMEpH! M
CpaBHEHMs C U3BECTHBIMHA pesyiabTaTamu [4].
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O 1HeoBXONMMBIX M JAOCTATOYHLIX YCJIOBMSAX CyUIeCTBOBaHMA roMorpaduyecKux
peireHnii B HbI0TOHOBOI mMpo6jiemMe MHOIUX TeJl

I'pebennxos E.A8 (BL PAH)

8PaBora nanucana B coapropcrse ¢ ITpokonenelt A. H.
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BriBeaenbl HEOOXOAUMEbIE M JOCTATOYHBIEC YCJIOBHSI CyIECTBOBAHUS IOMOrpadH4ecKux
pellleHu#t B HBIOTOHOBOH mpo6jieMe NPOU3BOJIHOTO YHCJIA B3aHMHO NPUTATHBAIOIIMXCH
ten. IlokazaHo, yTO HeOOXONMMblE YCIOBHA MOXXHO HMHTEDIIPETHPOBATL KaK PaBEHCTBO
Mexay cobo#t yryoBRIX ckopocTelf "COGCTBEHHBIX"BPAIIAIOMMXCA CHUCTEM KOOPAHHAT
KaXKJOTO U3 Tesl. BbiBeJIeHnl JOCTATOUHLIE YCIOBUA, BHIPAXKEHHBIE CHCTEMON HeNMHelHbIX
YHKIUMOHATBHBIX yPaBHEHNH, MCCIEJOBAHHE KOTOPHIX MOXKHO 3(D(eXTHBHO Pealn30BaTh,
Hanpumep, B Cucreme Komnbiorepro#t AnreGpsr "Mathematica”.
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Heat kernels for Schrodinger operators
Grigoryan A. (Bielefeld)

We present the results on two-sided estimates for the heat kernel and the Green function
of an elliptic Schrodinger operator L = A — ®, where A is the Laplace operator in the n-
dimensional Euclidean space and @ is a smooth function. The results include a eritical
potential @ of the form & (z) = ¢ |z|~2, for large |z]. Our approach rests on the observation
that if h (z) is a positive solution to the equation Lk = 0 then the operator L is conjugate to
the weighted Laplace operator Ay = h~2div (hZV). The latter is a symmetric operator with
respect to measure h®dz and can be studied in the context of general weighted manifolds.
Using the results for the stability of the parabolic Harnack inequality under a non-uniform
change of measure on weighted manifolds, we estimate the heat kernel of the operator Ap,
which implies the estimates for the heat kernel of L.

Hossle 6udypkanun gudgeomopdusmos Mopca-Cmeiisia
Tpunec B. 3. (r. Huxuuit Hosropon)

Jlokn8,1 MOCBSNIEH U3JIOKEHHUIO PE3YJIbTATOB, NMOJYHEHHBIX aBTOPOM B COTPYAHUECTBE
¢ Xp. Bonarru, B. Measenersm 1 O. ITounnkott.

CpaBHHTeNIBHO HejaBHO ObLIo  OOHApy)KeHO TNpPHHIMNMANbHOE —pasiuine B
Tonosornueckolt  xnaccudpukanuu auddeomopdusmos Mopca-Cmefiza Ha TpeXMepHBIX
MHOroo6pasusx IO CpaBHEHHIO C Kiaccudukaiuell aHAJOTHYHLIX —MOTOKOB M
nuddeomopdusMOB Ha NOBEPXHOCTAX. IJTO CBA3GHO, B 4aCTHOCTH, C BO3MOXKHOCTBIO
[IAKOTO BJIOXKEHHS CeNapaTpPUC CEJJIOBbIX MEePHOAUYECKHX TOUYEK B OKPECTHOCTH CTOKOB
u ucrounukoB. Tak B pabore [l] mokasaHo, 4TO B RJlacce G4 auddeomopduamos
Mopca-Cwmetina TpexMepHoit cepbt S$3 ¢ Hebmyx[JalomMM MHOXECTBOM, COCTOSLIMM U3
4eTHIPEX HENOABUIKHBIX TOUEK: JBYX CTOKOB, OJHOrO MCTOMHHKA M OJHOH CEANOBOH TOUKH,
CYIIECTBYeT CYETHOE MHOXECTBO TOMNOJIOIMYECKH HE CONPIKEHHBIX nuddeoMopPU3MOB.
DroT eHOMEH ecThb ClIEACTBHE HAIMYHMS CUETHOTO MHOXKECTBA HESKBHBAJIEHTHBIX THNOR
JIMKOTO BIIOXKERUS CENapaTpHC CeTIOBLIX HETIOABIMKHBIX TOYEK.

Mycrs Diff+(S%) — 1poCTPaHCTBO BCEX COXPAHSIOUIMX — OPHEHTAUMIO Cr-
nuddeomopduamos (r > 2) Ha §3, crabxennoe C'-Tonosornet. HanomuuM, 4To ceMefcTBO
{fi} nasbiBaercst TyafKOH IYTroOH, coefMHsIOMEHR ouddeomopbuamut f, f' € Dif f+(8%),
€C/IW CymIeCTBYeT rnajkoe oToGpaxenne F : $3 % [0,1] — S® Takoe, uTo oTOGpaxeHUe fts
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samannoe bopmyaoit fi(z) = F(z,t), npunamexut Dif f4(S®) mas kaxuoro t € [0,1] n
fo = f, fi = f'. Obosnauum yepes Gz kiacc muddeomoppuamos Mopca-Cymeiina Ha S,
qbe HeGIY XKAIolIee MHOYKECTBO COCTOMT B TOHUHOCTH M3 OJHOTO CTOKa H HCTOYHHKA.

Teopema [Jas mobbix auddeomopbusmos f, f' € G4 cymecTsyeT riankas Lyra
{f. € Dif f+(S®)} u qucaa t1, ty TaKMe, 4TO:

Dfo=f =1

2) fi € G4 mns Beex t € [0,81) U (¢, 1];

3) fi € G2 pas Beex t € ({1, ta);

4) Hebayxnawoniee MHOXeCTBO Auddeomopdusma fi, i = 1,2, cocrour u3 AByX
rHnepGOAHIECKIX TOUEK: MCTOYHUMKA M CTOKA W OJHON Herumnepbosmueckoft HENMONBUKHOMN
TOYKM THIA CEIj10-y3ell.

Pabora nopmepxxana rpanrom 05-01-00501 POOU n rpantom 9686.2006.1 npesunenta
71 HOAAEPKKH BEAYIINX HAY4HBIX MIKOJ.
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HbIO0TOHOBCKAA AMHAMMKA Ha MJIOCKOCTM, OTBEYaloasi ABUXKEHHUIO C
[OCTOSIHHOI reoie3nyecKkoii KpuBM3HOH Ha KpuBoit yu? = v" — 1,n € Z:
SProAMYHOCTb, H30OXPOHHOCTD IIEPHOAUTHOCTD U paKTaIbI
Tpunepyya I1. T, Canruan IT. M. (r. Mocksa)

Knaccudeckas Teopema 06 unTerpupyeMocTH 1o JIMyBWIIIO YTBEPXKIRET, 4TO
ecmu 2n-MepHAs TaMWJIbTOHOBA chcTema (MBI npeanojaraem IlyaccoHOBY CTPYKTYPY
HeBprO)K,ﬂeHHOﬂ) HMeeT N UHTErpaJjioB B HHBOJNOUUHU, TO HEBBIPOXKIACHHBIC KOMNAKTHbIC
TMOBEPXHOCTH yPOBHS Hi = C¢; SABIAIOTCA TN-MEPHbBIMH BEILIECTBEHHBIMH TOpPaMi
1 IropoxjaaeMasi 3THMH HHTEerpajJaMu AMHaAMHKa peaju3yeTcss Kak JABUXKEHHE IO
npsMosiMHeiHeM  o6MoTKaM. HanBonee uHTepecHble NPUMEPBl HMHTETPAPYEMBIX M0
JIMyBHILTIO CHCTEM BBICOKO!f Pa3MEPHOCTH BO3HMKAIOT B MeToJe OOpaTHOH 3aja4d, u IpH
STOM BCe OHH MHTErpupyeMbl B 6osiee CHIBHOM CMbIC/IE: TOPbI JIMyBHIIS A7s HUX — 3TO
BellleCTBeHHbIe TIONTOPhI 7i-MePHBIX KOMIIJIEKCHBIX TOPOB, BOHUKAIOMUX Kok SKOOMAHBI
CHeKTPAJIbHBIX KPHBHIX. B 4aCTHOCTH, 3TO O3HA4aeT 4TO NP MPOAOIKEHMM B 0GracTh
KOMIIJIEKCHBIX BpeMEH Mbl nosiydaeMm MepOMOp(bHyK) KBa3uMepUoIU4eCKyIo JNHAMHKY.

B gaHHON paboTe MBI M3yuaeM [OBeJeHHe peileHuit B 0671aCTH KOMIUIEKCHOrO BPEMEHH
A9 OOHOMEPHOIr'o AHTapMOHHYECKOTO OCHUHRJILIATOPA BLICOKOII CcTenend ¢ MOHOMHAJILHBIM
TIOTEHIIMAJIOM

I =—nx . o)

B 3nauntesnpHON Mepe sTa pabora Spiia MoTuBupoBana uneelt ©.Kanomxepo o mocrpoernn
H30XPOHHBIX CHCTEM IyTeM BBEJEHUsS BBEJIEM KOMIUIEKCHONO BDEMEHH t = Rexp(ir) + to.
Ilpu 3TOM nNOJyHalWaAcs 7 — AHHAMHKA [ ypaBHEHHS (1) nomxonsmelt 3aMeHOH
nepeMeHHO} MOXeT OBITh cleaHa aBTOHOMHOM. TIpu nOCTATOYHO MaJbIX R MBI HAXOAMMCH
B obiactyu rosioMopdrocTy peitenus (1) umeeM cTporyio 2m-IEPUOAUIHOCTE IO T. OpHako
¢ ysemmuenneM R kapTuHa ycaoxusercs. IIpu 3ToM H0CTaTOYHO eCTeCTBEHHO! 3aMeHOI
IMepeMeHHbIX 3ajad4a MOXer ObITh CBeJeHa K JBIDKEHHIO C MOCTOSIHHON FeOoe3nIeCcKOH
KPUBM3HOH Ha CHELUAJBbHOM PUMaHOBOH 1IOBEPXHOCTH C MOYTH BCIOAY MIOCKOM MeTPHKOHN
¢ TpuBUalbHOH rojoHomuedt. IlpenenbHbll ciayyait R — o0 oTBewaer mnepexoay K
npaAMonuHeitHo! TUHaMHKe Ha TaKHX PHMAHOBBIX IIOBEPXHOCTAX. B 3TOM ciyyae ABIIKeHHE
NPOMCXOANT MO Ie0/ie3WdeCKHM, BEKTOD CKOPOCTH CTAHOBHTCH HHTErPajoOM JABHIKEHUS U
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NOPAJOK CHCTeMBb! MOHHXKAEeTCA N0 NepBOro. rta 3a1a4a HMCCJIENOBJACH PHAOM ABTODPOB
(Masur, Weech, 3opuy, Eskind, Kounesuy n muorme apyrue). Cayualt Komednoro R
HavaJl U3y4aThCH JIHIObL HEJaBHO aBTOpaMH paborhl, a Takske F0.®@enoposrniM u D. Gomez-
Ullate. Ml npuBoauM Pe3yJILTATHI KOMIBIOTEPHBIX JKCIEPHMEHTOB, KOTOPBIE NO3BOJIAIOT
chopMyIMpOBATH CIIEAYIOLLYIO THIIOTE3Y: BCE TPAECKTOPHM NEPHONMYHEI pu n = 2,3,4,5,6,
a npu n > 6 uyacth (a3’oBOro NpOCTPAHCTBA € HOJIOXKHUTEJILHON Mepoil 3anosiHeHa
¢dpakranpHbiMH  (anepHogudecKHMu) TpaexkTopusimi. Ilpemnaraercst uuest BO3MOMKHOIO
obbAcHeHus 3Toro heHomena.

O noJysMHeHOM 3JMITHYECKOM YPABHEHUM C CHHTYJISpHON HeJnHeHHOCTBIO
I'pummmna I. B. (. MockBa)

Msl paccMaTpMBaeM JITHNTHYECKOE yPaBHEHHE BTOPOTO NOPHIKa C OrPaHHYEHHBIMU
N3MePUMBIMHE KO3 DUIHEHTAMH

(a3(2)uz, )z +p(2)|2]’w™" =0,  z€Q\{0},

rae o > 0, s — npousBosbHOE AeficTBUTENBHOE YHCo, 0 < C) < p(z) < Cp, 2 @ C R™
— orpaHudeHHas 0BJIaCTb, cofepKalas Hadao koopausar O.

Usyuaerca noBeneHHe TONOXKHTENbHBIX Cabbix pemeHuit B okpectHoctu toukn O. B
YaCTHOCTH, NOKA38HO, 9TO He CyMIECTBYeT MOJNOXKUTENbHBIX pemeHuit u(z), Taxux, 4To
w(z) - 0mpu z — O.

Bee peayabTaTsl SBJISAIOTCH HOBBIMH K AJIS MOJEJIBHOIO YPABHEHHS

Au+ [z]*u™ =0, z e Q\ {0}

On measure of maximal entropy for Teichmiiller flow
Gurevich B.M. (Moscow State University)

The Teichmiiller flow g; on the moduli space M,, & = (k;,..., k), of Riemann surfaces
of genus g > 2 endowed with a holomorphic differential of area 1 with zeros of orders
ki,...,ks > 0 is known to preserve a natural absolutely continuous probability measure i,
on a connected component KC of M,. Veech [1] proved that g; on K is a Kolmogorov flow
and its Kolmogorov-Sinai entropy (with respect to u.) equals 2g — 1 +n. We claim that u,
is a measure of mazimal entropy for g and that such a measure is unique.

The proof is based on the relationship established by Veech 2] between g; and a flow
(also called after Teichmiiller) on the Veech’s space of "zippered rectangles". The latter flow
admits a representation as a suspension flow induced by the countable state Bernoulli shift
(X,T) and a function f > 0 ("roof function") on X. The T-invariant measure on X obtained
from p, as a result of a few transitions has a property that resembles the Margulis uniform
expansion property of the measure on an unstable manifold of Anosov’s system. Combined
with some information on f this leads to the assertion stated above.

The talk is based on a joint work with A.I. Bufetov.
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Honueiif Tononornyeckult uupapuant B Kiaacce gucddeomopduamon
Mopca-Cmeiina Ha muoroo6pasusix pasmeprnoctu Goabmeii 3
TI'ypepnu E. . (r. Huxxnutt Hosropon)

B poxname wusnaraiorcs pesynbTaThl NOMydeHHble coBMectHo ¢ B.3.I'pusecom u
B.C.MeaBenesbiM.

Pemaercss 3amaua Tomosorudeckodl KiaccupUKAUMM COXPAHSIONUX OPMEHTALIO
muddeomopduamor Mopca-Cueltila, 3aJaHHBIX Ha CBA3HOM 3aMKHYTOM ODMEHTHPYEMOM
MHoroobpasum M™ pasmepHocTH N > 3, Takux, 4T0 awoboit auddeomopdusm [ u3
PaccMaTPUBAEMOro KJIacCa YAOBIETBOPSET CIEAYIOINM YCIOBUAM:

1) Heycro#uuBoe MHOroO6pasMe JuoGOH  CEAJIOBOM  NEPHOAUYECKOM  TOYKH
anddeomopdusma f sSBAsSeTca OHOMEPHBIM;

2) HeyCTOKYMBBIE M YCTOMYMBEIE MHOPOOGPA3Hsl PA3JIMYHEIX CEIJIOBHIX IEPHOAMYECKMX
Touek auddeomopdusma f He mepeceKaroTcs.

Las n = 2 pemenye nocrasieHHol 3ana4u ceayer u3 [1]. Tononorndeckue MHBAPHAHTHL
B 3TOM Cly4dae sBIAOTCH He NPHHUMNUAJIBHBIM obOoOmenueM cxemel E.A. JleonroBuu-
Annponosoit u Al Maitepa (1966 r) u rpada M. Ileikcoro (1973 r.). Cayuait
n = 3 CyIIECTBEHHO OTJIMYAETCE OT N = 2, IIOCKOJBbKY, B Ccady [2], yXe B kuaacce
nuddeomoppuamMoB TpexMepHON ceprl ¢ HEOIYKIAIOMHAM MHOMXKECTBOM, COCTOSILIHM
U3 dYeThlpeX HENOJABHXKHBIX TOYEK, CYUIECTBYET CYETHOE MHOXECTBO TONOJOTHYECKH
HeconpsKeHHbIX anddeomopduamos (npu 3ToM Bee aucheoMopPU3MEl UMEIOT OAUH M TOT
xe rpad Ileitkcoro). [locTpoeHuo TONOIOrNYeCKHX UHBAPUAHTOB Ais audbeoMopdu3MoB
Mopca-Cmefina, 3aJaHHBIX Ha MHOrOOOpa3sHsX pasMEpHOCTH 3, B NPEATNOJIOXKEHHAX
pasnuyno# obuHOCTH MoCBsieHE paborsl (2]-[4].

B Hoxnane mokasblBaeTcsl, 4UTO [Jis  PAasMEPHOCTH GoJjblef Tpex IIOJHBIM
TONOJIOTMYECKHM WHBADHAHTOM BHOBb fABJIseTCs OpueHTHpoBaHHmX rpad Ileiikcoro ¢
3aJaHHOM Ha HEM IIOJCTAHOBKON Ha BEpLIMHAX.

Pa6ora wacTuuno mopmeprxkana rpantom 05-01-00501 POOU u rpantom 9686.2006.1
Ipesupenra PO BeayuM HayuHBIM IOKOJISM.

JIureparypa
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of gradient-like diffeomorphisms on two-dimensional manifolds. Selecta Math.Sov., 1992. V.
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{2] Bonatti Ch., Grines V. Z. Knots as topological invariants for gradient-like diffeomor-
phisms of the sphere S%. Journal of Dynamical and Control Systems (Plenum Press, New
York and London). 2000. V. 6 Ne 4. P. 579-602.

[3] Bonatti Ch., Grines V. Z., Medvedev V. S., Pecou E. Topological classification of
gradient-like diffeomorphisms on 3-manifolds. Topology. 2004. V. 43. P. 369-391.

[4] Bonarrn X., I'punec B. 3., [Touunxa O. B. Kaaccugurayua duddeomopdusmos
Mopca-Cmeting ¢ xonewnwm  Muoolcecmeom  zemepoxaunuueckur opbum wa  9-
muozoobpasusz. Tpynet Marvem. muctutyra mM B.A. Crekmopa. 2005. 250. C. 5-53.
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On measure of maximal entropy for teichmiiller flow
Gurevich B. M. (Moscow State University)

The Teichmiiller flow g; on the moduli space M., x = (k1, ..., k,), of Riemann surfaces
of genus g > 2 endowed with a holomorphic differential of area 1 with zeros of orders
ki,..., ks > 0 is known to preserve a natural absolutely continuous probability measure u,
on a connected component K of M,. Veech [1] proved that g, on K is a Kolmogorov flow
and its Kolmogorov—Sinai entropy (with respect to fi.) equals 2g — 1 +n. We claim that i,
is a measure of marimal entropy for g, and that such a measure is unique.

The proof is based on the relationship established by Veech [2] between g; and a flow
(also called after Teichmiiller) on the Veech’s space of "zippered rectangles ", The latter flow
admits a representation as a suspension flow induced by the countable state Bernoulli shift
(X,T) and a function f > 0 ("roof function") on X. The T-invariant measure on X obtained
from g, as a result of a few transitions has a property that resembles the Margulis uniform
expansion property of the measure on an unstable manifold of Anosov’s system. Combined
with some information on f this leads to the assertion stated above.

The talk is based on a joint work with A.I. Bufetov.

References

[1] W. Veech. Ann. Math., 124 (1986), 441-550.
[2] W. Veech. Ann. Math., 115 (1982), 201-242.

Periodicity of solutions for nonlinear parabolic problems modelling
thermo-control processes.
Gurevich P. (Moscow, Heidelberg), (Moscow, Heidelberg), Jiger W. (Heidelberg),
(Heidelberg), Skubachevskii A. (Moscow)

We consider mathematical models of thermo-control processes occurring in chemical re-
actors and climate control systems. The temperature in a domain is controlled by a thermo-
stat acting on the boundary. The feedback is based on temperature measurements performed
by thermal sensors inside the domain.

Let Q € R" (n > 1) be a bounded domain with boundary T" of class C*®,Qr =Qx(0,T),
I'r =T x(0,T), T > 0. Let w(z,t) be the temperature at the point = € Q at the moment
t > 0 satisfying the initial-boundary problem

w(z,t) = Aw(z,t) ((z,t) € Qr), (1)
w(z,0) = p(z) (z€Q), 2)
w(z,t) = K(@)(u(t) —u) ((z,t) €Tr), (3)

where K € C(T), u > 0. We introduce the “mean” temperature wm(t) = fQ p(z)w(z, t) dz,
where p1 € Loo(Q) is determined by characteristics of the thermal sensors, and let u satisfy
the Cauchy problem )

w(t) + au(t) = H(wm,t) (t€(0,T)); u(0) = ug, @)

where u € R, @ > 0. The functional H takes the values 0 or 1 according to therule: H=1
for wm(t) < wy, H = 0 for wy(t) > ws, and H = const for wy < Wy (t) < w2, where wy and
wy (wy < wg) are fixed.
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Instead of the Dirichlet condition (3), one can consider the Neumann or the Robin
boundary condition.

The existence of solutions for corresponding mathematical models was studied in [1] (in
the case of the Robin boundary condition). We investigate the periodicity of solutions for
problem (1)-(4). In particular, we prove that the existence of a periodic pair (wm(?), u(t))
implies the existence of a periodic solution (w(z,t),u(t)) for a.e. z € Q. We also give an
example in which a periodic pair (wm(t),u(t)) (hence, a periodic solution (w(z,t),u(t)))
exists.

This research is supported by RFBR (project No. 07-01-00268) and the Alexander von
Humboldt Foundation.

References
[1] Colli P., Grasselli M., Sprekels J., Appl. Math. Optim., 39, 229 255 (1999).

VcunenHast rébaepoBa HENPepHIBHOCTh PellleHMit 3JITMITHYECKOrO yPaBHEHU
Tymua AK. (Matemarnseckntt uncrutyT uM. B.A. Crexnosa PAH)

Xopolo u3BecTHO, 4To 0606IEeHHbIe (M3 W21,loc(Q)) peIleHns! JIMHEAHOIO PaBHOMEDHO
SJUIMNITHYECKOT0 YDABHEHWS BTOPOT0 TNOPAKS C H3MEPHMEIMH  OrpaHHYEHHBIMU
ko3bunpenTaMH  HenpepbiBHH 1no Léablepy BHyTpH paccMaTpuBaemolt obmacTi
Q C R, ¢ HEKOTOPHIM, 3ABHCAIUM JHIIb OT Pa3MEPHOCTH NMPOCTPAHCTBA M IOCTOSAHHON
SIIMIITHIHOCTH TOKa3aTeneM a. HacTodmee coobuieHue NOCBSEHO H3I0XKEHHIO Pe3YJILTaTa,
OGbENMHSIOEr0 B TEPMHHAX NPHHAIIEKHOCTA CHENHAJIbHOMY (DYHKIHMOHAIBHOMY
npocTpancTBy "MHTerpanbHoe"cBolicTBO MpuHamTexxHocTH pemennlt W3 (Q) Q' CC Q,

"poueqnoe"cBONCTBO ero HenmpepeiBHOCTM N0 Iénbzepy B Q' M CBoOliCTBa, 3aHHMMAlOIUe
"npoMexxyTounoe "nonoxxenne. IIpryeM cpeau STUX MPOMEXYTOYHBIX CBOACTB €CTh M TaKue,
KOTOpBIE HE BHITEKAIOT M3 IPHHALIEXKHOCTH W}v,OC(Q)ﬂC"(Q). Joka3aHa JIpHHA,IEZKHOCTD
BBEXEHHOMY NPOCTPAHCTBY JIOGOro pelieHnst ONHOPOJHOrO YPABHEHHS B CAMOCONPAKEHHOM .
¢opMe 6e3 MIAAIIMX WIEHOB H CHPABEIJMBOCTL ONEHKH €ro HOPMH! B STOM MPOCTPAHCTBE
uepes W;}-nopMy B Gosee mmpokot nogobnacry.

Beenénnoe GyHKUHOHATIBHOE NPOCTPAHCTBO COCTOMT H3 HENPEPLIBHBIX B Q’ (byﬂxunﬁ

4, OAA KaxkIoll M3 KOTOPHIX OrpaHM4eHo ceMeficTBo uurerpaios | [ %ﬁﬁy—dqb z,Y),
The ¢ — crenuaibHBIM 06pa3oM HOpMUpoBaHHAsS (He 06s3aTeNbHO KOHedHasi) GopeseBckas

Mepa. Ha MHOXectBe D = {(2,y) € Ryn :  # y} ¢ HocuTenem B Q' x Q' w3 Hekoroporo
kJacca. DTOT Kaace Mep MopoxKqaer 6aHAXOBO MPOCTPAHCTBO 3apsaos. CpolicTea pemreHuit
SABJISIIOTCS CIEACTBHSIMY OTPAHNYEHHOCTH B 9TOM IPOCTPAHCTBE Pa3IMiHEIX ceMeficTB Mep. B
YaCTHOCTH, OrPAHHYEHHOCTh MHOXKECTBa Beex eanHU4HBIX (¢(D) = 1) Mep faeT rénpaeposy
HeNpepLIBHOCTE. B 6/IM3KHUX TEPMUHAX MCCIIEAYETCS TIALKOCTD BIIOTh A0 FPAHHIIBI PELIeHH
3anaun Jdupuxie ¢ rpanuuHol dyHkume# w3 L.

Pabora BhinosHeHs npu ¢puuancosoft mogaepxke POPU (rpant N 04-01-00377) u
rpanTa npesugenta PO (HIH - 6705.2006.1).

Strange limit sets in impulsive linear oscillators
Gutu V. (Moldova State University)
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We are concerned with linear oscillators governed by differential equations under instan-
taneous changes of velocity:

E+ct+kz=0 (c#£0), Azx|,_ =¢&. (1)

Suppose that &, € D = {Ajv,Agu, ..., Anv} C R for any n € N. We will say that the
sequence {£, }neN is universal if it contains every word in the alphabet D.

If (zn,Z,) denotes the state of the system immediately after the n-th kick,
then the system (1) generates a Poincaré system, consisting of m affine maps
D, : (Tn,En) P (Tnt+1, Ens1) (in € {1,...,m}) of the (z,£) phase space.

In case {&n}nen is constant or periodic the behaviour of the system (1) is quite simple:
there exists an unique (attracting or repelling) periodic solution. However, this situation
may be drastically changed in the general case.

Consider the Iterated Function System (IFS) {R% &;,®,,...,®,.} and let K denote its
invariant set, which is an attractor or a repeller. If {£,}nen is universal, then the orbit of a
typical point of K under the Poincaré system is dense in K.

Consider the two-dimensional linear system associated to (1) and defined on the cylinder
[0,1) x R2. Let A denote the matrix of this system. Denote by ¢(, zo,7) the solution, which
verifies the initial condition o(t, zp, T)|¢=r = 2o € R2.

We show that:

- there exists an invariant subset K = {(t,et4z) : t € [0,1),z € K} C [0,1) x R? such
that the solution (-, o, 7) is bounded if and only if (7,z) € K;

- if the sequence {£,}nen is universal, then the motions on K are chaotic;

- the system (1) has the Shadowing Property.

Abel-summation in Hermite-type Weighted Spaces with Singularities
Horvéth Agota P. (Budapest)

Investigating the connection of the weighted norm of the Hardy-Littlewood maximal
function with the weighted norm of the original function the following question arised by
Benjamin Muckenhoupt in 1972 : There is an orthonormal system ({¢.}) in a space/ with
respect to a weight w on [0,27), and there is another weight u on the same interval. The
Poisson integral of a function f is defined by P.(f,z) = 3., r"an(f)¢n, Where an(f)-s are
the Fourier coefficients of f with respect to w. The question is the following: Under what
conditions will this Poisson integral converge to the function (with » — 1-) according to the
weighted norm with u? B. Muckenhoupt gave the answere in two cases: in the trigonometric
case (that is w = 1), and in ultraspheric, or Gegenbauer case (w(§) = sin**(6)). In these
cases the necessary and sufficient condition was that u had to fulfil the A,- or the weighted
Ap-condition.

If u is an A,-weight, then u may has only "week"zeros. The whole situation changes,
when u has "strong"zeros, like sin* £7%. On the trigonometric system the question was gen-
eralized (in this direction) by Kazaros S. Kazarian in 1987 . Developing the multiplicative
completion method of R. P. Boas and H. Pollard, he gave a method for giving the funda-
mental system in the weighted space with respect to u with "strong"zeros, and for giving
the modified Poisson kernel here. Roughly speaking the new system (with respect to «) can
be get from the old one by deleting some consecutive ¢, ~s, and the number of the members
has to be deleted depends on the zeros of u. The characterization of the existence of the
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solution of Dirichlet’s problem in a weighted LP-space on the unite disk was given also by
K. S. Kazarian.

A sufficient condition for the similar problem in the continuous case was given by K. S.
Kazarian and the author in 2007.

Turning to the real line we have to mention that Abel-summability for Hermite weights
(w(z) = e“”) was proved by B. Muckenhoupt in 1969. He showed in this paper, that to
get and to solve a Dirichlet-problem here, a modified Poisson integral has to be introduced.
With the original Poisson integral, the differential equation is lost, but we can discuss the
Abel-summability.

In this talk we give give a sufficient condition for Abel-summability by the combination
of the real line- and the unite disk-methods, when besides the Hermite weight (w(z) = e‘%)
we have another weight (s(z)) with finite many "strong"zeros. We want to get a wider class
of functions to be Abel-summable than in the original Hermite case, so we will suppose that
s(z) has no singularities, and s(z) is bounded on the whole real line.

Variational Modeling of the Transient Non-linear Flow in Porous Media, its
Geometrical Interpretation and Numerical Simulation
Ibragimov A. , Aulisa E. , Toda M. (Texas Tech University, Lubbock, Texas)

Our report is focused on certain theoretical aspects of non-linear flows in porous media,
inspired by problems in reservoir and petroleum engineering. The goal of this paper is to
develop a mathematically rigorous framework to prove the existence of time invariants for
the transient dynamic processes associated to the Darcy-Forchheimer flow in a reservoir.
This approach is based on our recent results on modeling transient Forchheimer flows. It
was observed that for transient non-linear Forchheimer flow in porous media, there exists a
steady state invariant. This invariant is called diffusive capacitance and has a clear physical
and engineering meaning, in terms of productivity index. For linear Darcy flows, the diffu-
sive capacitance is usually computed by solving a transient problem via certain analytical
or semi-analytical tools. These methods are very difficult and sometimes impossible to ap-
ply for non-linear cases. In our previous papers [1] [2], we showed that the ratio expressed
as diffusive capacitance/productivity index is actually time-independent in the class of the
time-dependent solutions. This class appeared to be closely related to a certain non-linear
elliptic equation, which can be regarded as the degenerate equation of a constant mean
curvature (CMC) graph. It was proved that the value of the time-independent productivity
index can be computed by solving the steady state problem for the non-linear PDE only
once. We showed that the non-linear equation for the Forchheimer two-term law can be
transformed by some appropriate mapping into an equation, that can be interpreted as a
Laplace-Beltrami equation on a Riemannian manifold. We have obtained relations between
the well productivity index and the energy-type characteristics of CMC graphs or mini-
mal surfaces with degenerate metrics. The relationship between these very different objects
is interesting in itself. In addition, we showed that the newly obtained properties of fast
flows through this geometrical interpretation can be used as analytical tools for some new
numerical methods.
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BudypkauuoHHbIe 3a4a4 CO CNaboOCHUAMPYIOIMMHE ITapaMeTpaMu
Hb6paramosa JI.C. (Cubatickust nnctutyT ((puinan) Bamkupcekoro rocyaapcTBeHHOTO
YHHBEpCHTeTa)

PaccmaTpuBaercs 3aada 0 JOKAJIBHBIX 6GHDYDPKANKAX B OKPECTHOCTSX CTAUMOHADHBIX
COCTOSIHHI ~ QUHAMHYECKHX CHCTEM C T[apaMeTPaMy, 9JBOJIIOLHMOHUPYIOUMME IO
MEPHOIMYECKOMY 3aKOHy. V3yuaorcss cueHapun O6udypKALMOHHOIO NOBEAEHUS CHUCTEMBL,
JaloTC KDHTepHH ee ycToiumBocTH. I[lOKa3aHo, YTO B €CTECTBEHHOH IIOCTAHOBKE
6u\bypxaumx JBYKPaTHOTO paBHOBecHst npeobpasyercd B OUDYypKauuio BBHIHYXKIEHHEIX
xonebanuit, a Oudypxauus AuaponoBa-Xonda — B 6udypKalMO MOYTH HEPHOIUYECKHX
Kosebannii. Onpenenedsl acuMnToTHYecKue (POPMYJBI i BOBHHKAIOIIMX Kojebanuil, a
TaK>Ke PeKOMEHJAIMK 110 MPOLeAYPe MOCTPOEHHUS PEILeH .

Analyticity and small scales for the solutions of the damped-driven 2D
Navier-Stokes equations
Ilyin A.A. (Keldysh Institute of Applied Mathematics)

We consider the 2D space periodic Navier—Stokes system with damping

2

atu+2ui6¢u=-uu+VAu—Vp+f, divu =0, (1)

i=1 .
where z € (0, L/} x [0, L]. Here the damping pu represents the Rayleigh friction term. In the
geophysical context the viscosity plays a much smaller role in the mechanism of dissipating
energy than the Rayleigh friction. That is why the friction coefficient ;1 > 0 will be fixed
and we consider the system at the limit when v — 0%.
The fractal dimension of the global attractor of the system (1) satisfies

_ [Irot fllol®
ny ’
where ¢, is an absolute constant (¢; < 12). This estimate is sharp as both v — 0 and v — 0.

1/2
Therefore the small length scale defined as Iy ~ (E"u%‘j) is of the order of

dimp A <D, D (2)

Ql/?

This heuristic estimate is, in fact, a rigorous bound for the small length scale expressed in
terms of the number of determining modes and nodes, which means that any lattice of points
in Q at a typical distance ! < [y is determining for the long time dynamics.

Finally, we show that the analyticity radius I, of the solutions of (1) (with analytic f)
lying on the attractor satisfies the lower bound:

Cziml/2

>
2 5i7a(1 +10g D)1/2

119



which up to a logarithmic correction agrees both with the smallest scale estimate (3) and
the rigorously defined typical distance between the determining nodes.
This a joint work with E.S. Titi.

I'panuunoe ynpasjieHue npoueccoM KoJsebanuii CTpyHbI 3a JOCTATOYMHO
GosbiIol NMPOME>XKYTOK BpEMeHH.

Hnpun B.A. , Moucees E.H. (MI'Y um. M.B.JIomoHocoBa)

Dopmyasl o6palieHuss 1 KPUTEePHU OrpaHWYeHHOCTH JIMHEHBIX onepaTopos B
npocrpancTse Kpeitna®
Hoxsunos E.M. (BopoHexcKuit rocy1apCTBEHHbIH TEXHHYECKHE! yHHBEPCHTET)

Hccnenyiorea  sumelinpie  onepaTophl A, upuHajexampe Kiaaccy I, Te.
yaosaeTpopsitoue yeiiosuio ker (P + P_A) = {0}, rae Py un P_ - B3aHMHO-JONIOJIHUTENIBHEIE
OPTONPOEKTOPH!, ONpeJensomue nHaehHHUTHYI0 METPUKY B npoctpaHcTee Kpeitna. Jns
oneparopa A € I' umeer cmeica npeobpasoBanne Ilotanosa-I'un3bypra

B =0(A) = (P- + PLA)(Py + P_A)"%.

OcCHOBHbBIE Pe3YABTATHI.
Teopema 1. lmeior MecTo caenytomue $hopMybl oOpallenns:

(Py+P. A '=P, +P_.B, APy +P A '=P_ +PB

Teopema 2. Orpanuyennoctb oneparopa P_B 3KBHMBAJIEHTHa OrpaHMYEHHOCTH
oneparopa (P, + P_A)~!, a orpanuuenHocTs onepatopa PyB 9KBUBAJEHTHa
orparuuensoctH oneparopa A(P, + P_A)~1.

JlokasaHHble TEOpeMbl MO3BOJMIN OLEHMTh HOPMEI omepatopoB (Py + P_A)™! u
A(P; + P.A)™! B cyuae, xorma A € Ty (o > 0). Hanomany, 4to omepaTopHoe ceMeRCTBO
T, xapaKTepusyercs TeM, 4To onepaTop B = §(A) orpanmyen u npu aroM || B|| < \/a. Panee
6BLII0 W3BECTHO JIMUIb TO, YTO B HaCTHOM Ciiydae J-HepacTsrupaiomero oneparopa (o = 1)
oneparop (P4 + P_A)~! spnsiercss OrpaHHYeHHbIM.

PaspeummMocTs 33484l MHUNUAIM3AUMM 4JIS OCHOBHLIX ypaBHEHHH AMHAMUKMU
OoKeaHa
Hnarosa B. M. (r. Joaronpyausiii, Mockosckast 0611.)

SUccnenopanne noanepxano rpanrom POOU 05-01-00203.
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PaspemnMocTs OCHOBHBIX ypaBHenuit aunHamuku okeana (PEQO) Gpuia panee usyyena
B NPEINOJOXKEHMH, 4YTO TIoTHOCTL Boibl p = p(T,S) JuHeHHO 3aBHCHUT OT
Temneparypul T u conenocte S (em. {1-3]). B nacTosme#t paboTe paccMaTpHBAETCs
cIyyal, Korja IVIOTHOCTh SIBJSIETCsl HejMHeNHON HenpepbisHo# no Jlunmmny yHxumeft,
]p(Tl,Sl) b p(Tg,Sz)I < L\/(Tl —T2)2+(Sl —52)2 VTI,TQ,Sl,SQ € R, a TakKXe
HCCIeyeTcsl CyeCTBOBAHKE PelleHu 331841 O BOCCTAHOBIIEHHN HEM3BECTHOIO HAYAJIbHOIO
COCTOSIHUSL TI0 MMEIOIIMMCS. JaHHBIM HabmoneHnAl.

Iycrs 2 — oTKpHITOE MOAMHOTO06pasue cephl paguyca R ¢ KycOYHO-IIa K0! rpaHuieH,
z,y,7 — cepudeckne xoopaunatsl, G = {(z,y) € 2,0 < 2 < H(z,p)}, 0 < t; < o0,

D = Q x (0,t1); (w,v,w) = (u,w) — BexTOp cxopocru, w = w(u) = div sz(z’y) udz’,
& = &(z,y,t) — BO3BHILIEHHE YPOBHS NOBEPXHOCTH OKeana; d/dt = 8/8t + u - V + w(u)d/0z,
A= —pA—vd?/822.

Cucrema PEQO 3anucniBaeTcs B BHJE

d 2z
&+ A+ B@)u+gVe+o/mV [ piz' =1,
0

H(z,y)
£+ATT=fT, E+AgS:f.g;, §¢+div/ udz = Q,

dt dt 0

rae B(u)u = (2wsiny + utgy/R)(—v, u).

Jia yKa3aHHOH CHCTEMBbl MOKA3BIBAETCS CYIIECTBOBAHHE DENICHHN HAYalIbHO-
KpaeBo#t 3amaum B Xiacce bynkuuit u,T,§ € Lpc0,t;; WH(G)) N Leo(0,t1; L2(G)),
€ € Loo(0,t15 Lo(D)).

IIpeanonaraercs, YTO HA H3MEPUMOM NOAMHOXKecTBe Dy C D u3BecTHEI HabmoOaeHHS
32 BO3BbllieHHEM YDPOBHA & = &qbs(2,y,1) ¥ 32 MOBEPXHOCTHON TeMmepaTypolt
T)z=0 = Tobs(z,y,t), KOTOpbIE UCTIONB3YIOTCA il OTHICKAHMsA 3Hauenuit dynxuuit u, T, S,
¢ B momenT Bpemenu t = 0. Pacxoxaenme Mexnay pemennem PEO n nabmonaeMbiMu
BeJIMYMHAMH  XapaKTePU3YIOTCH  PErylsipM3OBaHHLIM  (YHKIUMOHAJIOM  CTOMMOCTH.
JlokasnIBaeTCs pa3peluMOCTh ONTHMA3AUMOHHOM 3as1a4u iph BeeX Tobs, Eobs € La(D1).

Pabora BBIIOJHEHa B paMKax npoekTa "Meronnl pelieHHMs 3a4a4 BapHallMOHHOTO
YCBOEHHS JAHHBIX HabIIOfeHUN 1 ynpas/ierust CIoxKHbIME cucTreMamuio Teme 3 OMH PAH
u npu nogaepxke POO®U (mpoekr 07-01-00714).
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06 oxgxoM ananore TeopeMnl AMGapiyMsiHa
Hmxun X. K. (r. Yopa)

TIpakTHYecKH BCe pe3yIbTATHl [0 ACHMITOTMKE CHEKTPa HeCaMOCONPSKeHHBIX
I depeHIUaNLHEIX  OMEPaTOPOB  NONYYeHH B NPENOTOXKEHMM — QHATUTHYHOCTH
ko3pumpenTop  coorBercTBylOmero uddepeHnyuanIbHOr0  BHIPaXKeHU (em.[1-2] wm
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uMefolylocss B Hux Oubanorpacduio). B cBA3M ¢ 9TUM BO3HHKAeT BONPOC: HACKOJBKO
3TO YCJIOBHE CYLIECTBEHHO?
B npegnaraemoit pabote usyuaercss oneparop L, NOPOXKAEHHBII B HPOCTPAHCTBE

L?(0; c0) AucdepennpanbHEIM BoipakerneM [y = —y” + gy U KpaeBbIM ycIOBHEM y(0) =0,
rme ¢(z) = e¥z* +r(z), a > 0, 0 < |4 < 7, dynxkuus r(z) anamuTHuHa B yrie,
orpanuyensom jgyuamu {argz = 0}, {argz = —0/(2 + &)} n yaosieTBOpsier paBHOMEpHOI

1o arg z oueHke 7(z) = 0(2%), z — oo.
AcuMnroTrrKa cOBCTBEHHBIX 9MCes orepaTopa L xopoio u3secTHa [1]:

1
/\k~/ VI=z%dz - kT¥sefls, k- oco. (1)
0

IIycts V — oneparop ymHOxeuusi Ha GuHHUTHYIO cymmupyemyo dymxumio V(z) c
nocurenem supp(V) = [0;8], 5> 0.

Teopema 1. CripaBeJyIuBH CAEAYIONHE YTBEPKIACHUS:

1) Crnektp oneparopa L + V, moMiUMO OCHOBHO# cepuu {ug)}, yaosieTsopsiowteis (1),
HMeeT JONONHATENbHYIO: p,fcl) ~ (1tk/b)?, k — oo;

2) Ecan cmektp omepatopa L + V cocromr TOnbKO M3 OmHOM cepuu  {itk},
yaosnersopsiroweit (1), o V =10.

YrBepxKaenue 2) HAOMHHAET H3BECTHYIO TeopeMy AmbapuymsiHa. OIHaKo, aHanorus
apech TonbKo opmasbHas. [leso B TOM, YTO B X0/ JOKA3aTeNbCTBa MhI HOTydaeM Gosee
CHJIbHOE yTBEpXXJEeHHe: B yCJIOBHUSX yTBepxaeHus 2) dbyHKuus V uMeeT aHajIuTHYECKOe
NpOJOJKEHHE B HEKOTOPYI0 OKpecTHocTb mnojyock (0;00). D10 M ecTh oTBeT Ha
YIOCTABJIEHHBI BbIIIE BONPOC: yCJIOBHE AHAIMTHYHOCTH KO3( bHIMEHTOB — 110 CYIIECTBY.

Pabora nomyepxkana PO®IL, rpanter NeNe 05-01-97914 u 05-01-00515a.

JIureparypa
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Pacuyér MUHMMAaNbHbIX OGJIOKOB 00paTHOM CBA3M IJIs YIIPABJISAEMBIX CHCTEM
Hcenamon I'I. (Yamyprckuit rocynusepcurer)

IIycrs z(t) = colon(zy(t), ...,z4(t)) ecrb HaGop mokasaTeneil yupaBisieMON CUCTEMBI,
omuchiBaeMoil quddbeperumanbauM ypasaenuem ' (t) = Az(t) + u(t) + v(t),t € R, rne R -
4UC0BAast OCh, V(t) - Bo3elicTBHE BHeIIHeH cpeanl, u(t) - ynpaBienue, KOTopoe GopMHUpyeTcst
110 Meroay ofpaTHOl cBs3u ¢ 3ana3npiBanueM: u(t) = —K x(t —h) . 3necy h > 0 - Beanyuna
3ama3gpiBaHus 6s10Ka obpatwoit cBsasu, K - Marpuua srtoro 6aoka. Pasr r sTolt MaTpuilbl
ompejiesifeT YACAO YNPABASIOMUX BO3NEHCTBUN HA CHCTEMY CO CTOPOHBI 6i0Ka 0GpaTHON
cBsi3u. Bioxu o6paTHON CBSI3M ¢ MHHUMAJbHBIM paHrom Matpuusl K, ofecneuusaromue
3a/laHHBII XapaKTep MOBEJeHUs], Mbl HA3bIBAEM MHHHMAJbLHBIMA OIOKaMn OGPaTHOM CBSI3H.
MusuMaIbHbIE paHr MaTpuibl G610Ka 0GpaTHOl cBs3H, ofecrednBaloniell BaXHOe CBOHCTBO
cHcTeMbl C OOpaTHOI CBA3BIO: COXpaHeHHe “4acTOTbl KoJebaHMi” BHEIIHErC BO3MYHLIEHHS
v(t) = eMe), rae BexTop-cronben ¥ = colon (v, ..., Y,) MOXKET BBITH TIOOBIM JTEMEHTOM W3
npoctpancTsa C™, a napamerp A - JoObIM YHCJIOM U3 334aHHON obnacTu () KOMIIEKCHOM!
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mwiockoetd C, a TakKiKe HENpPEepbIBHYIO 3aBUCHMOCTb “aMIIHTYIbl KosneGaHuii” CHCTeMbl
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z(t) = eMy or “ammmuTyas Konebanuit” v(0) = 9 STOro BOMYILEHHS VISl yKA3AHHOTO
KJlacca BO3MYIIeHHH, fa€rcst paBeHcTBoM minrank K = maxyeq dimker(AE — A), rne E-
eMHIYHAs MaTpUua nopsiaka n. Ilpu noctpoenun marpuubi K ucnonw3yercs pe3ynbTaT
paborst [1].
JInreparypa

[1] Islamov G.G. On the ezact formula for eigenvalue geometric multiplicity //
CoBpemeHHble MeTOABI TeOpHH GYHKUMA M CMexXHble npobiaemsl: Marepuansr kord.
Boponex: BI'Y, 2005. - c.7.

KpasnonTuMassHble HelpEePHLIBHEIE CTpaTeruy B Aud depeHmaabHEIX UIpax ¢
JIANCONJAIBHBIMI 1ITPadaMu
Hsanop I'. E. (r. Mocksa)

PaccmaTpuBaeTcst aHTArOHACTHYECKast IuHelHasa auddepennuanpaas urpa
&(t) = A(t)z(t) + B(t)u(t) + C(t)v(t), z(0) = zo

Ha oTpeske BpeMent t € [0; 9] ¢ dyHKuMOHATIOM KadecTBa

9
J= %||z'(19)||2+/0 YY1 - vTG(tvdt

H 3JUTANICOHOAJIbHBIMY eOMEeTPUYECKUMHU OIPAaHUYCHUAMH Ha YIIPaBJIEHUA HI'DOKOB
TR Fut) <1, TG w(t)<1,  Vtelo;d]

Llests Mrpoka u — MHHMMH3MPOBATH J, LeJb MrPOKa ¥ — IIPOTHBONOJOMKHASL.

3mech u(t) € R?, v(t) € R? — ynpasnenusi urpokos, z{t) € R" — dasoBhil BekTOp
cHcTeMbl. 3aJaHEl HenpepbiBHas GyHKuns 7 : [0;9] — (0; +00) U HENpepHIBHBIE MATPHIHO-
sHaunsie pynkmpu A : [0;9] — R™™, B : [0;9] — R™P C : [0;9] — R™*9,
F :[0;9] — RPXP, G : [0;9] — RI%9, mpuvem st moboro t € [0;9] marpuust F(t), G(t)
CHMMETPHYHE ¥ NIOJIOXKUTEIbHO ONPEAEIIEHEL.

Ilyctb MarpuyHo-3HayHas oymkmus @ @ [0;9] —  R™*™  ynosnerBopsier
nmubdepennmansromy ypastenuo $(t) = —A(t) $(t), npuem $(9) — eaunmaHas MaTPHLA.
OnpenenuM MaTpUYHO-3HAUHBIE (DYHKLIMH

P(t)=®(t) B) FT () BT()@7(t), Q1) =2()C(t)G (1) CT (1) @7 (1)
Teopema. Ilycrs

< 1.

9
/0 Y 1(t) P(t) dt

Torma mns moboro uwucaa € > 0 cymecTByer M eAMHCTBeHeH Bektop ¢ € R7,
YAOBJIETBOPAOLIKIT YPABHEHHUIO

¥+ / ( POy QWY )dt:<1>(0):co. 1)

VETPTPO S /220 + 9T Q0 v
TIpn 3TOM pE3yJbTAT Urphl, FADAHTHPOBAaHHBIH cTpaTerneit

ROEHOLAOL
Vet + T P(t) ¢

Ue(t) = —
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He TPEBLIIAET Pe3yJIbTaT, ONTUMAJIbHBIN AJ18 UTPOKA U, IIIOC €9,
3ameuanue. s penrenust ypastenus (1) nocTpoennl HuICTpoCXoasIIMecst a.m‘opm*be
HMeloHIe MOJIMHOMMAJBHYIO CJI0XKHOCTh OTHOCUTEIHHO Pa3MEPHOCTH 3a1a4H.

IToBenenue y rpaHuubl caaboix pewrenuit 3agayu J{upuxie ais
m-TeCCHAaHOBCKMX ypaBHeHMIt
Hsouknna H. M. (r. Cankr-Ilerep6ypr)

s m-recCHaHOBCKHX ypaBHEeHMH PACCMATPHBAETCH B3AHMOCBA3b BA3KOCTHBIX PelTeHu
u cnabbix pemeHu#t B cmbiciie Tpyaunrepa (T-pewennsi). Ias HenmpepbiBHbIX T-
penieHu#t uMeercst npuHiun makcumyMa A.Jl. AnekcaHapopa, YTO HO3BOJISET JOKa3aThb
CyIIeCTBOBaHHE ¥ €IMHCTBEHHOCTh HenpepbiBHBIX T-peureHu#t 3agauu Jlupuxie, a Takxke
MOCTPOUTH ANOCTEPHOPHBbIE OUEHKH HX MOCTOsIHHOM lenbiepa B 3aMKHyTOH obsactu. Ilpu
3TOM NIpaBble YaCTH ypaBHeHu#l mpuHagexar L, ¢ JocTaTouHo 6ombumM p. Mbl npuBegeM
Tak>Ke 6oJiee TOUHBIH N0 P AHAJIOT STOTO MPHUHIIKIIA MAKCUMYMa, BHOHCHPOBAHHEI B paboTax
H. Tpynusrepa.

O1eHKM XapaKTepHCTMUYeCKNX oKa3aTejelt JuHedHbIX quddepeHnuansHBIX
cucrem Konnens—Kounrn .
H3zo608 H. A. , IIpoxoposa P. A. (Munck, Benapycs)

PaccMaTpuBaeM JuHeliHble CUCTEMBI
z=A(t)z, zeR", t>0, (1)

C KyCOYHO-HENpepHIBHBIMM Ha moayock [0,+00) koabduumentamu, GyHAaMEHTATLHOM
marpumei Xa(t) m wmuammmm A (A) u crapmuMm  A,(A) XapakTepUCTHHECKHMHU
NIOKa3a.TesIsIMA.
st muoxecrs Konmens—-Konru (1, ¢. 131; 2, 3] cucrem (1) npusenem sxBuBajieHTHOE
Onpegnenenue. Byxem roBoputs, uro cucrema (1) npuHagyiexxur MHoxectsy LPD c
napamMeTpoM p > 0, ecsin s He€ CYLIECTBYET Hapa B3aMMHO JOTMOJHUTENBHBIX [POEKTOPOB
P, u Py, P, + P, = F, Takux, 4T0 BbIIOJHEHb! YCIOBUS

t
Cpl4) = Tm_ / IX4t)PLX 31 (7)|Pdr < +oo,
0

Dy(A)= Tm_ / XA P XL (r)|Pdr < +c.
t

B cayuasx Py = E u P, = E muoxecrso LP D o6o3nauator coorsercrBenHo LPS u LPN.

Teopema 1. Crapmmii xapakTepHcTHUecKH# IoKasarenb A,(A) cumcremsr (1) u3
muoxecrBa LPS mpm moboMm ¢uxcnpoBanHoM 3HauveHnn mnapamerpa p € (0, +0c)
yaossnietsopsier oneHke A, (A) < —[pCp(A)] 1.

Teopema 2. [Ins Miazuero xapakTepiucTHUecKkoro nokasatens A;(A) cucremst (1) us
MHOXecTBa LP N cnpasesyusa ouenka A (A) > [pDy(4)]7!, p> 0.
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B obmem ciyyae Muoxectsa LPD, p > 0, ¢ HeHyneBsIMu npoektopamun P, u P
CIIpaBeInBa,

Teopema 3. XapakTepucTuueckue nokasatenu A[z;] 1 Alzg] n06bix HETPUBHAILHBIX
pemennuii ) u T cucremsl (1) m3 muoxecrsa LPD, p > 0, ¢ HaYanbHBIMM BEKTOPAMH
z;(000 € PR"\ {0}, i = 1,2, ynosnersopsior omenxkam A[z1] < —[pCh(A4)]71,
Alza] 2 [pDp(A)] ™, p> 0.

PaccMoTpuM Takske BOBMYIUEHHYIO CHCTEMY
g=AQ@y+ft.y), yeR", t2>0, (2)

¢ BoamyuienreM f € UpysiFp, BHICIIETO NOpSiaXa MalocTH, rae Fy, — MHOXeCTBO KyCO4HO-
HenpepbiB Hbix Mo ¢ > 0 u HempepmBHeix Mo y € U, = {z € R : |z| < p},
p = p(f) € (0,1], Bexrop-byukunit f, ynosaersopsuommx ycnosuio || f(t,y)|| < Lliyl™,
m>1, (try) € [0’ +00) x Up(f)'

Teopema 4. Ilycts cucrema (1) npunamiexut muoxecrsy LPS npu p > 1. Torma
JUIsl XaPAKTePHCTUYECKOTO NOKa3aTels Aly| BCAKOrO pemeHUs y ¢ HAYATbHBIM 3HAYEHHEM
y(0) ¥3 JoCTATOYHO MasIoONt OKPECTHOCTH Hauasia KOOPJAMHAT BO3MYMIeHHOH chcremb (2) ¢
f € Um>1Fy, BrnONHEHa ouenka Aly] < —[Cy(A4)]71.
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Asymptotic Optimization of Nonlinear Singularly Perturbed Systems
Kalinin A. I , Grudo J. O. (Belarusian State University, Minsk)

Within the framework of the theory of optimal control, great attention is given to the sin-
gularly perturbed problems. As is known, the numerical solution of optimal control problems
entails repeated integration of the original and conjugate systems. In singularly perturbed
problems, these dynamic systems are stiff, and, as a result, serious difficulties arise with the
computations. For this reason, the asymptotic approach is preferred, especially because it
allows decomposition of the original control problem into problems of lower dimension.

In the report, we consider the time-optimal problem for a nonlinear singularly perturbed
system with multidimensional control the values of which are bounded in the Euclidean
norm. There are a lot of applied problems with such control constraints. First of all, this
refers to control problems for mechanical systems, where the control actions are, as a rule,
forces bounded in magnitude.

In the class of multidimensional controls u(t) = (ui(t),:..,ur(t)) with piecewise-
continuous components we consider the time-optimal problem

7=a (yv t) + Al(y’ t)z + By (yvt)u’ y(O) = Yo,
pz = az(y,t) + A2(y,t)z + Ba(y, t)u, 2(0) = 2o, (1)
yT)=0, 2(T)=0, |u®)|<1, te[0,T], J(u) =T~ min,
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where 4 is a small positive parameter, y is a n-dimensional vector, z is a m-dimensional
vector, and |[ul| = /42 + ... + uZ. Matrix As(y,t), y € R, ¢t > 0, is Hurwitz, that is, the
real parts of all its eigenvalues are negative.

‘We propose an algorithm by means of which asymptotic approximations to the solution
to problem (1) can be constructed. It is essential that its realization presupposes the de-
composition of the original problem into problems of lower dimension, and, what is more,
the algorithm does not contain integrations of stiff systems. It is conceptually close to the
algorithm developed by Kalinin and Semenov [1] for linear singularly perturbed systems.
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44, No. 3, 2004, pp. 432-443.

Nonlinear elliptic systems in dual Morrey spaces
Kalita E. (Donetsk)

We consider high order nonlinear elliptic systems of tupe div™A(z,D™u) = f(z),
x € R™, with the natural energetic space W™ and standard structure conditions. Although
existence and correct behavior of solution in the natural energetic space is known by a long
time, there are very few results in weaker spaces (a priori estimates in W™, and solvability
in dual Morrey spaces for p = 2). We present the a priori estimates in dual Morrey spaces
in general case p € (1, 00).

We define the dual Morrey spaces Ly, = Lq,o(R"), 1 < ¢ < 00, 0 < a < n(g—1), by the

. 1 _ 1-

norm ||fllg,e = inf, (fn" |f[qwd:):) /q7 where w(z) = (le“ re/t Q)l{lz—ka}d(’(y’ 7')) .
inf takes over nonnegative Borel measures 0 on R}™* = {(y,7) : y € R",r > 0} with

normalization a(RQ“) = 1. Let I, be a.fractional integral of order m, 1/p+1/p’ = 1. For
the solutions of system we establish the estimate

1ID™ulP/|qa < e[| TmfIP /g

for 1 < ¢ <p', a € (0,min{a*,b(g — 1)}), where a* > 0 depends on n,m,p and a modulus
of ellipticity of system, b < n.

In case of p close to 2 the correct behavior of solution is established on the arbitrary big
part of scale of spaces. Namely, for arbitrary a* < nand 1+a*/n < ¢ < g2 < 2 there exists
& > 0 such that for {p—2| < § and systems which are sufficiently close to (m, p)-Laplacian (in
terms of a modulus of ellipticity) the estimate above holds true for a € (0,0*), ¢ € (q1,g2)-
In particular, it allows to extend the estimates of solutions near the singular point as well
as the existence of the fundamental solutions (known for p = 2) to (m, p)-Laplacian with p
close to 2 and to close systems.

Cucrems! ypasHennii Boasteppa-®pearonsma ¢ 4aCTHBIM#M HHTErpajlaMu
Kanuteun A.C. (J/Inneuxuit rocysapCTBEHHBIH NI€AarorHyecknii YHHBEPCHTET)

IIycrs oneparopsr Lij, M;;, Nij, Kij, K, M onpeznensiorca paBeHCTBaMH

t d
(Liju)(t, 8) = /lij(t,S,T)u(T, s)dr, (M,'J-u)v(t,s) = /mgj(t,s,a)u(t,a)do,
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(Niju)(t,s) = //nij(t,s,‘r, U)U(T,O')deU, K{j = L,‘j + Ai,‘j + N,'j,
G

Ky ... Kin My ... M,
K., .. Kun M,y .. My,
rae (t,8) € D = [a,b] x [¢,d], G — onno u3 MHOxecTB [a,t] X [¢,d], [a,b] x [¢, 8], D; Lij, mi; n
nij (i,j = 1,...,n) — 3anaunble u3MepuMble (DYHKIUH, & HHTErpajbl IOHUMAIOTCS B CMBICIIE
Jlebera.

B npocrpancrse C™(D) nenpepuieubix Ha D BekTop-pyHKIuit co 3Havenuamu B C7,
rae C — Ioe KOMIUIEKCHBIX 4YHCEN, DAaccMaTpUBaeTcs cMcTema ypasHeHu#t BosbTeppa—
®Dpearonbma ¢ YaCTHHIMA MHTErPATAMU

(t,s) = (Kz)(t,8) + f(2:5), 1

e z(t, 5) = (21(t,8), ..., zn(t, )T, f(t,8) = (f1(t,8), e, fu(t,8))T ¥ f1,..., fn — 28maHHbE
HenpepbiBHBle HA D dyHKIMH.

Onepatop K peiicteyer 8 C™(D) Toumo Torga, korsa B npocrpancree C(D)
HenpephIBHBIX Ha D dynkuuit geftcryor omepatopsl Ki; (1,7 = 1,..,n). Ilpu srom
oneparop K nempepniser B C™(D), onHako He sIBIIsieTCst KOMIIAKTHEIM Jaxxe B o0meM ciyvae
HenpepHBHEIX siaep. IloaToMy ypasrenne (1) BooGuie roBopsi He sB/IsieTcs (PPeroIbMOBLIM
B C*(D).

Mycrs C(L}(R)) — npocTpaHcTBO HENPEPLIBHEIX Ha D BeKTOP—hYHKUHH CO 3HAYEHUAMNI
B L1(), rne Q — oxno u3 muoxecrs [a, b}, [c,d], D.

Teopema. Ecau l;; € C(L*([a,B)), mi; € C(L'([ed), niy € C(LY(D x D))
(4, = 1,..,n) u f € CY(D), mo 8 C"(D) gpedzoavmosocmo ypasnenus T = Kz + f
pasnocuavra obpamumocmu onepamopa I — M.

K=

Kpurepuit cunnHolt paspemmmocTs 3agauyu Komu a8 ypaBHeHus Jlanmaca
Kanomenos T.II., Hckaxosa Y.A. (Llentp dpusuro-matematiyecknx uccaenosanuit MOH
PK, r. Anmartsr)

B obnactu Q = {(x,t): 0 <z < m,—1 < t < 1} paccMoTpuM CIEAYIOLYIO 3aady:
3anaua Kowm. Haittu B obaactu {2 peutenue ypaBsenus Jlamtaca

Lu:utt""uzz =f(x!t)l (1)
YAOBJIETBOpsilONIee YCIOBHAM Kouu

U =T7{r), © =y(x). ‘ 2
=) | =vi@) @
1 .

K.C. Anamap [1] B cnywae f = 0, 7(z) = 0, v(z) = zsin k(t + 1) sin kz yxa3an na
HEKOpPEKTHOCTE 3aaa4u Kommn ans ypapnenus Jlamnaca.

B paborax Tuxonosa AH. [2], Jlaspentnesa M.M. [3]-[4] n npyrux, sazawa (1) -
(2) cBemema X HMHTErpaibHBIM YDABHEHMSM IEPBOTO DOJ@ W [aHA PasIHIHEIE METOALI
peryIsipU3aIuH ITON 33]a9H H YCTAHOBJIEHA €€ YCIOBHAs KOPPEKTHOCTb.

Ipeamonoxum, 4o pemenue safaun (1) - (2)u € C?(Q)) cywectsyeT 1

u_ =, uf_ =00, ®
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e ¥i(t), i = 1,2 HeusBecTHble DYHKIMH, NOJJIEIKAIUE OPEIETIEHHIO.
Bumecto 3aaaum (1) — (2) paccMOTpUM clleAylOImyo 3a4a4y:
CMmemrannas 3agada Kowmu. Hatttu B Q pelenne ypapHenus

Lu = Au(z,t) = f(z,t), 4)

YAOBJCTBOPSIONIEE YCIOBHAM
u = 7(x), U =v(z), u =P1(t), u = o(t). (5)
t=0 t=0 z=0 =1

z ; zll«'l(t) - %%(t), 3a/1aUa

(4) - (5) cBeném k cmermanHolt 3ama4e Kou ¢ 0ZHOpPOAHEIMU PPAHHIHBIME B HaA/IbHBIMH
JaHHBIMH:

Tonb3ysacs 3amerolt w(z,t) = u(z,t) — 7(z) — (¢ + Lv(z) -

T—

Aw=Lw=f - 7"(z) - (t+ D'(@) - 200 - 2950 =T, (6)

=0. )

=T

=0, w

w =0, (.Ugl =0, w
t: 1 T=!

t=-—1

IMosb3ysch KPUTEPHEM CHIILHO Pa3peluMocT cvemantok saatu Komu (6)-(7) noxasana
(em.[5]).

Teopema. Tycrs 7(z), v(z) € C2[0, 7], f(z,t)} € L2()), Toraa cuibHOe pellleHHe 38,1a4H
Komm (1) - (2) orpanuyen B Ly(£2), TOrma u TOAbKO TOLA®, KOLAA BEINONHAIOTCH yCIIOBU:

o0
STID " Paras(ma; +vaj = fon)I* < 00, (8)
k=0 j=0
oo k
2k+12j+1\T2j+1 2541 — J25+11 ’
|y P (Toj41 + ¥ fagen)P < o0 (9)
k=0 j=0
rae Porzj - MaTpHlla OPTOTOHAMM3AUMM cHCTeMBl ¢a2k(t), a Partizj+1 — Marpuua

OPTOTOHAJIM3AIMH CHCTEMBI (p2;+1(t). 3aeck up1(x,t) = sin kzpi(t) — coberBennble dbyHKUMHI
CneKTpasibHON 33784l
Oury

Augy = Mgy (z, —t), uuL:O = ukaﬂ =0, un 1= B e 0 (10)

COOTBETCTBYIOUIME HAHMEHbIIEMY COGCTBEHHOMY 3HAYEHMIO Mgy IpH ¢uUKCHPOBAHHOM

k = 1,2,3.., a TeVUkfr1 - Kodhduuuentsr @ypbe pasiioKeHUs bysxuun
(), (t + 1)v"(z), f(x, —t) MO OpTOHOPMHPOBAHHOK cucTeMe k1 (Z,1).
Jluteparypa
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|5] Kasmernos T.I., MckakoBa Y.A. Kpurepuit cuibHOM DA3pemuMOCTH CMeITAHHOM
sagaau Komu ansa ypasaenus Jlannaca// Becrauk KasHY, cep. Mar., Mex., uud. Aamarsl,
2006, Ne1(48),C. 36-44.

Teomerpuyeckuii crioco6 oGocHoBaHus peaykuuu Jisnysosa-IlIMuara B 3anade
0 6udypkanuu NepuoAUYecKHX pelleHuit U3 UKJIa aBTOHOMHON CHCTeMBbI®
Kamenckutt M. H., Makaperkos O. IO. (r. Boponex)

IIycrs mpennokeHa 3anada 06 M3y4eHHH CYIIECTBOBAHUSI DPELICHHIA CHCTEMbl IOBYX
ypasuenuit b2 +eg;(a, b, &) = 0 u b+egz(a, b, €) = 0 npu ManbIx 3uavennsx € > 0. Pexykrmett
JIanysoBa-IIIMuara HasbIBaeTCH CIEAYIOMA METOZ PelleHHs Toff 3afaum: 1) cHavaia, ¢
MOMOIIIBIO TEOPEMB! O HesIBHOH (YHKLMH, yCTaHABIMBaETCH cyinecrtsoBanue B : Rx[0,1] —» R
Taxoro, 4ro b(a,c) = eB(a,€) yAOBNETBOPSET BTOPOMY YPABHEHHUIO P OrPAHMYEHHBIX @ U
Masbix € > 0; 2) 3aTeM HaBzeHHoe 3Havenue b(a, €) MOJCTaBAeTCS B IEPBOE YPABHEHNE, UTO
Jaer

eB%(a,¢) + 91(a,eB(a,¢),e) = 0; (%)

3) HaKOHell, TMPEAMOIATaeTCsl, YTO JUls HEKOTOPOro Hyns ap $yuxkuun M(a) = g1(a,0,0)
BBITIOJIHEHO yci1oBUe ero npocTorsl M’ (ag) # 0 u Teopema o HesiBHON DYHKIMY NDUMEHAETCS
BTOPHYHO Ul [OKa3aTeJbCTBO CyLIECTBOBaHMS a(€) paspemaioulero ypasaenue (*) mpm
MaJIbIx € > 0.

Ha penykuun JIanynosa-IlImuara ocHoBana Teopema Mankuna (3] o 6udypkauuun T-
NepHOAHYECKUX perneHull B cucreme £ = f(z)+eg(t, T, £) U3 NpeAeNbHOIO LUKIA To CHCTEMB

&= f(z). (x)
Peaykuust mpHBOZMT K 3ajade O CyIIECTBOBaHMM NPOCTBIX Hynel y yHKuum
Mg, (0) = fOT(z(T),g(-r — 0,z0(7),0))dr, tae z - T-nepuoauyecKoe pelieHWe CHCTEMBI

2= —(f"(zo(t)))"2.

BosBpamasch K IpuMepy, MOXKHO 3aMeTUTh, 9To eciu A > 0 TakoBo, 4TO
M(ao—A)'M(ao+A)$é0, (***)

é > 0 pmocratoyHo Mamo M € € (0,6%), To BexTOpHOE moONe
F(a,b) = (b* + eqi(a,b,e),b + €g2(a,b,e)) MoxeT GBITb NEPEBEHEHO HEBHIPOXKAEHHON
Ha rpaHuue MHOXecTBa Vi = (ag — A,aq + A) X (=46, 8) medopmauuelt B BeKTOpHOe 110]1€
(M,I). Takum obpazom ycaosue (***) rapauTupyer cywecTBoBaHuwe y uonst F myneis
BHyTpH Vs npu Mausix § > 0 B orcyrersuu ycnosust M’ (ag) # 0.

B nmoknase 6yner pacckasaHo o pesysnbrate u3 [1]'0, rnme Takoit reomerpuueckwmii
NOAXOA ~ pasBHT  JJA  JIOKA3aTEJbCTBA  COOTBETCTBYIOMIEIO  &HAJNOrA  TeOPEeMBI
Mankuna, Ilomoxum (Qz)(t) = x(T) + fot flx(r)dr + efot g(r,z(r),e)dT w
Wy = {z € C([0,T},R™) : Q(0,t,z(t)) € V, t € [0,T]}, rae Q-,to,v) ~ peutesne cucTemsl
(**), npuUHEMalOIee 3HAYEHUE U B MOMEHT BpeMeHH to. KpaTko roeops, Merogamu u3 [2]
MBI [IOKaskeM, 4To orobpakenue @ Ha Wy, roMOTONHO BeKTOpHOMY moio (Mg, A) Ha Vj,
rae {Vs}s>0 — Moaxonsimiue aHajOr¥ MHOXKeCTB Vs M3 mpumepa ¥ A — HeBBLIPOXKJEHHAs
n —1 x n — l-mMarpuua.

Jlurepatypa

10pa6ora nogaepxana POOU, rpanter 07-01-00035, 06-01-72552 1 05-01-00100, a Taxxke rpaHTOM
BF6M10 Muno6puaykun P® u CRDF(CILA)
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On solvability of inverse problems for parabolic equations with integral
overdetermination in time
Kamynin V.L. (Department of mathematics, Moscow Engineering Physics Institute)

We investigate the existence of the solution of the following inverse problem in
QT == [O, T] x 0

ot e — ale)du+ 3 (@, +dlt, 2 = F(2,3), )
i=1
’U(O, $) =Ug, T € Qi (2)
u(t,z) = &(t,z), (t,z) € (O, T) x 89, (3)
T
/u(t,x)w(t)dt = x(z), z € [0,T). (4)
0

Here 2 is bounded domain in R™ with smooth boundary 952, the pair {u(t,z),a(z)} is
unknown.

We find the conditions on input data functions which sufficient for solvability of the
problem (1)-(4). We show by the examples that such conditions are fulfilled either for
sufficiently small Q or for sufficiently large T

This research was supported by RFBR, Grant N 06-01-00401.

Perynsipusie guddepenuanbibie onepaTopsl He MOTYT UMETD JIMIIL KOHEYHOe
4NCI0 COBCTBEHHBIX 3HAYEHUHN.
Kanryxuu B. E. (r. Anmate)

B nanHolt paboTe uccnenyercs CeKTp OOGEIKHOBEHHBIX AU dbepeHIaIbHbIX OePaTopos.
Tounee [OKa3BIBAETCS, YTO CYMIECTBOBAHME XOTH OBI OJHOrO COGCTBEHHOTO 3HAYEHHMS NPH
JOBOJNBHO OOIUMX INPEATIONOXKEHUAX TrapaHTUpyeT HX OeckoHedHoCTb. Takum o6pa3soM,
OTCYTCTBYIOT AucbdepeHIHaTbHEIE ONIEPATOPH ¢ HEMYCTHIM KOHEUHBIM CIIEKTPOM. Y Ka3aHHOe
CBOMCTBO THNHYHO [ JuepeHINATbHEIX ONEPATOPOB HE3aBUCHMO OT HUX THMA,
NOpsAOKa U KOJIMYECTBA HE3ABUCHMBIX [I€PEMEHHBIX. [IpH [JOKa3aTeNbCTBe CyHIECTBEHHO
HCIIOJIb3Y€eTCsl CBONCTBO JIOKAJILHOCTH JudbdbepeHnnanbhbix onepaTopos. OcHOBHas uues
nokazarenscrBa npunamiexkur T.11. KanbmenoBy. Ormerum, 410 Ga3ucHble CBOACTBA
¢ynmamenTanpHbeiX cucreM GyHKNME OOBIKHOBEHHBLIX JIMHEHHHX AnddepeHInanbHbBIX
0TepaToOpPOB IIPOM3BOJILHOIO MOPSIKa CUCTEMATHYECKU N3ydaauch B paborax B.A. Vneuua u
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ero ygenukos. ITycts b < 00. B runn6eprosom npocrpancrse L2(0, b) paccmorpum onepaTtop
Lq, 3amaBaemeit quddepeHnMaibEbIM BEIpaXKeHHeM

n—2
Loy(z) = l(y) = y™(z) + Zpk(z)y(k)(a:)
k=0

¢ gocratouHo raakumu Ha [0, b] xosdduumenramu py(-) ¥ KpaeBbIMI yCTOBHAME

n—-1

Qcly) = Z (ajky(j)(O) + bjky(j)(b)) =0, k=1,...,n,
j=0

rhe ajk, bjx npousBonbHble uncaa. Massecrno [1], uto ecau oneparop Lo B mpocTpaHcTse
L,(0,b) umeeT orpanndeHHbI 06paTHBIA, TO OH GYIET BIIOJIHE HEIPEPHIBHBIM OLEPATOPOM.
Lenb coobuienus: A0Ka3aTh CASAYIOUIMI OCHOBHON pe3yIbTaT

Teopema 1. ITycmwv xoadpuyuenmu duddepenyuanvhozo svipasicenus I(-) nodrunen
yeaosuam: Hatidemca nocmosmnoe wucao C| maxoe, wmo 6unosnAemca ]pgk)(x)l < C,
Vi = 0,1,...,n — 2; Vk; Vz. Ecau onepamop Lo umeem zoma 6w odno cobcmeerroe
3navenue, mozda cnexmp onepamopa Ly — becxoneunoe mruodrcecmeo.

PaGora BhinonseHa cosmecTHo ¢ Kasbpmernoseim T. 111

JInreparypa
[1] Hatimapx M.A. JTunetinwe dubbepenyuaavnne onepamopni. M.:Hayxa, 1969. - 528c¢.

O6 oxHoM cBolicTBe ceMelicTB MOP(HU3IMOB B KATEIOPMM BEKTOPHBIX paccjioeHul
Kanmaes W. P. (r. Anmatsr)

Vccnesyercst cBOMCTBO HACHIIEHHOCTH ceMeBicTBa MOP(U3MOB B KATErOPHU BEKTOPHOTO
pacciIoeHHsl, onpejesiseMsle JHHEMHbIME cucTeMaMH audrbepeHUManbHbIX ypaBHeHnH,
sBegennoe B.M.MuumvonmukossiM B [1,2]. B [2] aokasbisaercs, aro cemeiictsa MopguamoB,
ompezessieMble MPON3BONLHBIMU JUHeHHEIME AU depeHIHaNIbHBIME CHCTEMaMH, SIBJISIOTCS
HACHIIEHHBIMH.

Ilycts (E,p,B) - BexTopHOe paccioenue co cioem R™ n 6azoi B (B - mosnoe
MeTpudeckoe npocrpanctso). Ha (E, p, B) pukcupyercss HeKoTOpasi pUMaHOBa METPHKA (CM.
(3], crp. 58-59).

PaccmaTpuBaeTca ceMefictBo MopbuamoB & JHHEHHOrO pacCHIMpeHHs JMHAMHYECKOH
cucremst (cM. [4]), Braa:

(X(m),x(m)) : (E,p, B) — (E,p, B),
(m € N), sexropHoro paccnoenns (E,p, B), rae
B=M, E=BxR, p=pr, )
XA, z) = (A, X(t,0, A) - 2),
XA(C) = A+ (),
smec M, - npocrpaHcTBO cucTeM AudbdepeHUHANbHBIX yPABHEHHll, SKBHBANCHTHBIX

nunelinomy audbepenunaibroMy ypaBHeHHIo n-ro mopagka (em. [5)), A € B, z € R",
X¥(©, 7, A) - oneparop Komm cucremer & = A(t) - z.
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Teopema 1. CemeiicrBo Mopduamos & BexTopHOro paccioenusi (1) ne sBisiercs

HACHILEHHBIM.,
JInreparypa
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NuaBapnanTHbie TeH30pHl 1 AuddepeHnnalbHble YPABHEHNS C YaCTHBIMM
NPON3BOAHBIMHA
Kannos O. B. (r. KpacHosipck)

B joknane paccMaTpHBAIOTCE TeH30pH ¢ KodddunmeHTamH, NpHHANIEXAIUAMI
KoMMyTaTuBHOR quddepenunansuon anrebpe A. C nomoipio npoussogHolt Jlu ssoguTcs
MOHSITHE TEH30pa MHBaPMAHTHOrO OTHOCHTENbHO AucdepenipoBanns Ha Haease anreGprt
A. HokasbiBaeTcsi paf yTBepXKIeHuH 06 MHBADHAHTHBIX TeH30pax ¥ mupdepeHIMaNTbHEIX
dopmax, cpeau Hux ajrebpamdeckuit papuaHT Teopembl OpuaMaHa 0 COXpaHEHHM
JIMHMI ¥ MHTeHcuBHOCTel Tpybok BekTophoro mons. Kaxkpas cucrema ypaBHEHHM ¢
YACTHHIMHM I[IPOM3BOAHBIMHM NOPOXKIaeT HIeas B HekoTopoit anddepenunanbHofi anrebpe.
3TO0 NO3BOJSET H3yYaTh HHBAPUAHTHbIE TEH30PH HA HAeaJe, IOPOXKIEHHOM TaKoi cicTeMolt.
B xayecTBe NpHMMEPOB pacCMATPHBAIOTCH YDABHEHMSI ra3oBOf JMHAMHMKH M MarHUTHON
PUAPOJMHAMUKH.

On singularly perturbed elliptic—parabolic equation
Kapustina T. (Moscow State University)

This work is devoted to one singularly perturbed boundary value problem for elliptic—
parabolic equation, and is based on results of V.G.Sushko and N.Kh.Rozov.

Let us consider the rectangle domain in R? plane. Consider the mixed type equation
which is parabolic in one part of the domain and elliptic in the other, and contains small
parameters by the second—order and first—order derivatives. Let us supply the equation with
Dirichlet boundary condition at the border of the domain and two conditions sewing the
solution and its normal derivative at the line where type of the equation changes. Thus, the
solution of our problem is a function of C? class in the entire domain. Under appropriate
presumptions this boundary value problem has unique solution.

Our aim is to construct the asymptotic representation for the solution of our problem.
The structure of asymptotics essentially depends on the ratio of small parameters. We con-
sider several principally different situations. The similar problem under other assumptions
was studied in the work [1].

Asymptotic methods used in the theory of singularly perturbed differential equations are
the basic means of this research. Asymptotics is constructed using the method of boundary
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functions (see [2]). Asymptotic solution consists of regular part, a number of boundary layer
functions, and interior layer functions which appear near the line of type change. Interesting
effects arise when boundary layer intersects interior layer, especially when the scales of
intersecting layers are different.

As the problem is considered without any concordance conditions between the coeffi-
cients of the equation and boundary value, then we can construct only finite number of terms
in asymptotic solution. In each case we determine the maximal order of asymptotics possi-
ble to construct. At the certain step of algorithm some boundary layer functions, which are
the solutions of parabolic problems with discordant initial and boundary conditions, have
unbounded derivatives. Hence, the boundary layer functions of the next step don’t vanish
at infinity, and this fact doesn’t allow to continue the process.

Finally, we obtain the estimate of difference between the approximate and exact solution.
The proof of this estimate is based on the maximum principles for elliptic and parabolic
equations. Thus, the main result can be summarized in the following statement: the formal
asymptotics is a uniform representation for the exact solution of our problem.

This research is supported by the program "Leading Scientific Schools", project NSh-
2538.2006.1.
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KoMnakTHEIe paguajibHble ONepaTopbl B BeCOBEIX mMpocrpaHcTBax Beprmana u
npeobpazopanne Bepe3nna
Kapaneranu A. H. (r. Pocros-na-/lony)

PaccMaTpyBalOTCA paJMaJbHBIE ONEpATOpbl B BECOBBIX NpPOCTpaHCTBaX Beprmana
A%(D), X > -1 na emunumuHoM nucke D. Omeparop A Ha30BeM DajMasIbHBIM, €CJH OH
coBnajiaer co ceoelt pammanusanmeit: Rad(A) = 51;; 02 " Uy AU¢dt, rae U, - yHuTapHslit B
A2%(D) oneparop U,f(z) = f(e~*z), f € A3(D). llpusonsircss AoCTATOUHEIE YCIIOBHS, IPK
KOTOpHIX y6biBaHHe npeobpazopanus BepeanHa pasuanbHOTO OnepaTopa Npy MPUGIHKEHNH
K IpaHmie AMCKAa BJleYeT KOMIAKTHOCTb 3JTOrO ONEpaTopa B BECOBOM NPOCTPAHCTBE
Beprmana. Ocofoe BHuMaHHe yielieHO omepaTopaM Ternua ¢ pajualbHBIMH CHMBOJIAMH.

Quantum Magnetonics, Hamiltoniancy of Maxwell Equations, and Geometric
Superconductivity
Karasev M.V. (Moscow Institute of Electronics and Mathematics)

The motion of a charge in a magnetic field along a 2-dimensional film (thin layer) posesses
a hidden quantum structure, which becomes a dominant in the nano-momentum regime. In
this case the “light” vortex component [1] of the motion is separated from the dynamics
of the “heavy” quasiparticie. The original surface of the film (the cofiguration manifold) is
found to be the phase space for the quasiparticle. The Poisson bracket is determined by
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the inverse tensor of the magnetic field. In the quantum version, the bracket is replaced
by the commutator,and the surface becomes quantum manifold, e.g.,in the sense of [2]. The
Hamiltonian of the quasiparticle [3] is given via the joint geometric invariants of the magnetic
and metric tensors, and the Hamilton system coincides with the second Maxwell equation
on the surface (the first Maxwell equation is the Jacobi identity for the Poisson bracket).

The surface is found to be stratified by quasiparticle orbits. In the quantum case, closed
orbits carry the discrete magnetic flux. Under a collective motion, on the surface there ap-
pears an irrotational flow of a “liquid” of quasiparticles. This provides a possible geometrical
explanation to the effect of localized 2-dimensional superconductivity oserved in experi-
ments. Moreover, the density of such a supercoductive current is given by the 2-dimensional
Maxwell (- Loretz —Einstein) equation + quantum corrections.

The work is supported by the Russian Foundation for Basic Research, grant 05-01-00918.
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Newton’s polyhedron and eigenvalue distribution of a differential operator
Karol’ A.I. (Saint Petersburg State University)

Let P(z,D;) = Y., Pa(z)Dg, Dy; = —id/0y,, be a formally selfadjoint differential op-
erator with C° coefficients in a bounded domain Q € R4. Define a Newton’s polyhedron
of a symbol P(z,£) as a convex hull of the set {8 € R4)0< B <oyl <5< dfor
a multi-index @,pq(z) # 0}. We suppose that so defined polyhedron doesn’t depend on
point 2 € Q. Under natural conditions of nondegeneracy of P with respect to its Newton
polyhedron operator P is semibounded in L2(Q) and the spectrum of its Friedrichs ex-
tension is discrete. We obtain the asymptotics of the corresponding counting function N :
N(t) = at?/*1n* t(1 + 0(1)), — 00, here s is the coordinate of the intersection point of the
line s; = sg = - - - = 84 with the face of Newton’s polyhedron, k is the dimension of the nor-
mal cone at that point. The coefficient a is classical if at the intersection point there exists
the normal vector with positive coordinates, in the other case the coefficient is expressed in
terms of the corresponding operator valued symbol. The proof uses the Approximate Spec-
tral Projector Method and calculus of pseudodifferential operators, associated with given
Newton polyhedron.

O6 oaHOM YacTHOM ciydae ypaBHenus Kuaeitna-I'opaona
Kapiok A. U. , Peapkuna T. B. (r. Crasponoiis)

B pabore [1] nonyueso ypaBHeHne

Elﬁ (0‘31 + —}L‘w aclzl ) Uz — 713 (031 + %%ﬁ) Uz + %(lnu)z,—

1
—o} k(Inw)zs — ta%—fzulnu =0, )
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KoTopoe umeer napy Jlakca. Paccmorpum dacTHble Cllydad.
1. _ aqo =1
Tlonaras B ypasHenun (1) KoaddbuuuenTs! o) —5(11?32: o =g, k = 2 u BHIONHAR
npeobpa3oBanus KoopauHar & = z+1, £ = z—x,u(%, Z) = e(%2) posyynM gacTHLL coaydait
ypasuenus Kieitna-Toprona

Qws;z + agaaze” (wz + Sws —w) =0, (2)

rie @;j - NOCTOAHHBIE k03 PUIMEHTHI.

i 1s
a) HaiigeHo pemenue B Buae w = ]'[,;";0 wg, TOe Wo = e° + 5% TakxKe pelleHHe ypaBHeHHs
(2), ¥ KaxABIl HOCIEAYIOMMNE MHOXUTENb Wy, TONY4aeTCsl U3 CHCTEeMBI:

{ Wie + Swk, = 0,
W(k—1)sWhz + W(k—1)zWkz + W(k—1)Wkzz = 0.

6) Ucnons3ys 3ameny £ = £+ aZ u %% = p(w), (2) cBomuTcst K AuddepeHIEATEHOMY

ypaBHeHmO niepBoro nopaaka eV (Aw — Bp) = pp, rne A = %tazl1_aaz’ B = (5a+ 1)A.
8) Ypasrenue (2) monyckaer npeoGpasoBaHne KOOPAUHAT, NepeBOAsIIee JaHHOE ypPaBHEHHe
caMo B cebsi: T’ =52/, 7 = 55:’, W' = w.

2. Eciu B ypasuenun (1) azz = 0, T0o ¢ momompio JuHedHbIX npeobpasoBaHmit
HE3ABHUCHMbIX TIepEMEHHBIX H 3aMeHbI U = e TNOJIy4YHM M3BEeCTHOE ypasHeHue (2]

wz;O%w;, C — const, (3)
JUIsl KOTOPOro cymiecTsyeT mpeobpasosanne Beknyhna wz — Wz = —Ce v, w; = ¥,
MepeBOAIAIee UCXOAHOE K OAHOPOJHOMY THIIEpPGOIMYeCKOMY ypaBHEHHIO wz; = 0. Pemenne
ypasHenus (3) umeer Bug w = ¢(Z) +In(§), £ = fe“’(z)di - Cfe"d’(i)di, rae ¢(Z), P(Z) -
NPOM3BOJIbHBIE (DYHKITHH.
Jlureparypa
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[2] U6parumos H. X. I'pynnw npeobpasosanuti 8 mamemamuveckoti pusuxe.-M.: Hayxa,
19832. - C.153

MHoromepHbie KpaeBble 3a/1a4i B POCTPAHCTBaX MOCTOSHHON KPUBU3HEI C
TOYEYHBIMH OCOGEHHOCTIMH
Karpaxos B.B. , 3aitnes ILH. , JIaxos A.B. (Boponexcknit I'ocynapcrpeHHbIH
VYuusepcurer)

B IoKiaje nNpEANoNaraeTCsi M3I0KUTH HOBbIE DPE3yJIbTaTsf Y0 MHOTOMEPHBIM
CHHTY/IADHBIM S/UIMITHYECKMM KpaeBHIM 3aadaM C TOYeYHBIMM OCOGEHHOCTSMY B
06JaCTAX BCEX THIIOB TPOCTPAHCTB € IOCTOSHHOM KDUBU3HOH, TO €CTh B €BK/IMIOBLIX,
runepbonudecknx (IpoctpancTs JloGadeBckoro) U Ha cdepe.

ByAeT HU3/OXKEHs TEOpUs ONepATOPOB npeoBpasopamus, TeopHs (yHKUMOHANBHBIX
NIPOCTPAHCTB B OXHOMEPHOM M MHOTOMEDHOM CIIy4asX U coBCTBEHHO TEOpHA KPaeBbIX 3aJa4.
B reopun GyuKIMOHATIBHEIX TPOCTPAHCTB OCHOBHOE BHMUMamue OyZeT yAeneno HOBOMY
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B PacCMaTPHMBAEMbIX CIy4asX NOHSTHIO CHIMa-Cllelld M MPAMBIM M OGPaTHHIM Teopemam
BJIOXKEHHUS C STHM CJIEJIOM.

OCHOBHO#M pe3yJIbTAT COCTOHT B TOM, YTO 1IOCTABJIEHHbIE KPAeBble 33/1a4H B YKa3aHHbIX
yHKLMOHANBHBIX [POCTPAHCTBAX HMMEIOT eJMHCTBEHHOE M KOPpeKTHoe No Azxamapy
pelileHne.

Intersection theory on moduli spaces and the KP hierarchy.
Kazarian M. (Moscow)

Equations of integrable hierarchies govern many enumerative problems appearing in
physical models. They appear in the theory of Hurwitz numbers enumerating ramified cov-
erings of the sphere as well as in the intersection theory on moduli spaces of complex curves.
The relationship between the two theories is described by the Ekedahl-Lando-Shapiro-
Vainshtein formula. Starting from this formula, we derive a number of new equations on
the generating functions for Hodge integrals over the moduli spaces. This gives a new simple
and uniform treatment of certain known results on Hodge integrals like Witten’s conjecture,
Virasoro constrains, Faber’s )g-conjecture etc. Among other results we show that properly
arranged generating function for Hodge integrals satisfies the equations of the KP hierarchy.

Jlutepatypa
[1] M. Kazarian, KP equations for Hodge integrals, preprint.

On a model equation arising in nonlinear diffusion theory
Kersner Robert (Budapest)

The equation (and the like ones)
ug + buFug = (auPug)z + cu(l — u¥), (1)

where a,b,c > 0,k > 0 are constants, can encapsulate the essence of several diffusion
processes the realistic description of which might be quite complex: chemical reactions,
combustion fronts, thermal waves in plasma, spread of favorite genes, population dynamics.
The special form (one can even take k = 1) is chosen because this model in some sense
is explicitly solvable which happens not very often in the theory of nonlinear PDEs.
1 will discuss some Fisher-KPP-type results about travelling wave solutions, about com-
pactly supported generalized self-similar solutions and about the relation of (1) with a

nonhomogeneous purely diffusive model

plz)vr = (a(2)v*vs)s. (2)

A part of results are joint with B. Gilding and A. Tesei; I also will mention some works
of Shoshana Kamin and of Ph. Rosenau.

K TEOPUN KPAEBHIX 3ATAY AJIsI MHOTOMEPHBIX
SJIAITUYECKUX IO IETPOBCKOMY CUCTEM YPABHEHU B
YACTHBIX INTPOU3BOJHBIX
Xanunos IILB. (Hucrutyt marematuxu AH Pecny6anku Tamknkucran)
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B [1,2] pa3paboTaH MeToJl CBeJeHHMs TPAHHYHBIX 33734 AN JJUIMIOTHYECKHX CHCTEM
ypaBHEHMH B YACTHBIX NPOM3BOAHEIX K MHTEIPaJIbHBIM ypapHeHHsaM. O[HABKO BOIPOC 06
SKBUBAJIEHTHOCTH STHUX WHTErPabHLIX YPABHEHUH MCXONHON 3aja4e H3y4eH HeHNOCTATOYHO.
H03TOMy BO3MOXXHOCTb CBE€JeHHA TI'PAHHYHBIX 33Ja4 K MHTEerpaJIbHbIM YpPaBHEHMAM
He BCErha HO3BOJSET JMCCAENOBATh TPAHMHYHBIE 33Ja4Yd JOCTATOYHO nonHo. Mcmomeays
0COBEHHOCTH CTPYKTYPBI CHCTEMBI,HEKOTOPbl€ TDaHHYHBIE 33Ja4i YIAeTCA NPUBECTH K
HHTErpajbHBIM YPaBHeHHSIM JpYruUMH criocobamu. 3T crnocobbl NPHrOAHBI HE TOJBKO
S CUIbHOSJUIMITHYECKMX CHCTEM, HO M JUIS He CUWJIbHOMUIMITHYECKHX CHCTeM. A
3KBHBaJIEHTHOCTh HCXO,D,HOﬁ 33084H HHTErpaJibHbIM yDaBHEHHAM odYeBHIHA. O;ma TaKasa
CUCTEME B N-MEPHOE MPOCTPAHCTBO 6y,11er pacCMOTpeHa HMXKe.

Mycrs D— orpamndeHnas o61acTh €BKAMIOBOrO MpocTpaHcTBa R™ ¢ JslyHOBCKOM
rpanunelt S, u nyctb B obaactu D 3anaHa cucTeMa AuddepeRUUabHBIX ypaBHEHHA B
HaCTHBIX IPOU3BOJAHBIX

n
Ou; .
—Auj + A; <,-=1 E) = fi(z), j=1,n, (1)
rae
’\J() = Z)‘jk(z‘-)a—zk’ .7 = 17”»
k=1
~ ()0
j U
ji\') = i =y ji 5 3= 17 )
L;i() ;alk (#) g +bs(@) Gi=Tm
ik = =i, J # kA = Aoz =+ = dan = AMz),
npuyeM
Ajk(@), dd, (z), € C¥(D), bji(x), f; () € C1(D).
3anaua Jdupnxme. Haiimu peeyasproie 6 obaacmu T C D pewenus Ui, Uz, ... Un
cucmemn (2) ydosaemeoparouee na zpanuye Sy obaacmu T Kpaesum ycaosuam
Uj 131: h‘j(m)’ Jj= mi (2)
20e

hj(z) € CY(D), j=Tn.

Teopema. 3adava Jupuzae (2) 0as cucmemst (1) 6 obracmu T ¢ asnynosckod epanuyet
Sy npuscerz € TUS; ul-—- %/\(z) # 0 npu x € Sy ecezda Ppedzorvmosa, a npu
Mz)—-1>0,z€eTUS; ul~ 1)(z) = 0 npu x € 51 nocmasaeno HexOPPERMHO.
JIureparypa
(1] Manupo 3.41. Wiss.AH CCCP.Cep. Mat.1953.T.17.N6.C.530-562. [2] JlomaTmuckuit
4.B. Ykp.marem. xypH.1953.T.5.N¢2.C.123-151.

VnTerpaibHbie ONEPATOPhI ¢ MHBOIONMEH !
Xpomos A.II. (CapaToBckHil rOCYAaPCTBEHHBIR YHHBEPCHTET)

U paora BoinonHesa npy duHancosolt noggepxke POOU (mpoexT 06-01-00003).
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Ilycts A — uHTErpaJibHBIN ONEPATOD:

6(z)
ar= [ as@.ns0a, )
0
rne 9(z) — unnomomm, T. e. 0(0(x)) = . lpumeps: muBomowmit: a) 6(z) = 1 — x;

6) 8(z) = oy 1, rme @ > —1; B) 6(z) Haxomurcs u3 ypasHenus o(z) + ¢(y) = 1, rae

o(z) MOHOTOHHO soapactaer u p(0) =0, p(1) = 1.

Teopema 1. Ecau ®(z,y) sewecmsenna, cummempuyra npu z,y € [0, 1] u dan xaorcdozo
z € [0,1] cywecmsyem moavko odno y = 0(z) maxoe, wmo ®(z,8(z)) = 0, mo 6(z) —
UHBOAIOUUA.

Teopema 2. Ecau 6(z) — uH60M0OUUA, MO CYWECTISYEM  GEULECTREENNAA

cummempuunas dynxyus (z,y) maxaz, wmo y = 6(z) seasemca eduHCMEEHHHIM
pewenuem ypasnenus O(z,y) = 0.

Teopema 3. ITycmv 6(z) onpedeasemca u3 B), npusem @(T) HeNpepusHO
Jufpepenyupyema u ¢'(z) > 0. Ecau Az, z) = ¢'(z) u Az, As, Age, Ag2y, Aspe

(A opi = 8633’5’ A(z, t)) nenpepuisus npu 0 < t < z < 1, mo dan wmobot f(z) € L[0, 1}

i 15:01,2) - TorT £y =0,

2de e € (0,1/2), Tf = f(8(x)), Sr(f,z) — wacmunnar cymma pada Pypve no cobemeennvim
u npucoedunennbm GYHKUUAM onepamopa A OAR MeT TAPAKMEPUCTIUNECKUT “uces Ng, 04
xomopuix |Ak| < r; or(f, &) — wacmunnasa cymma padae Pypve no cucmeme {e?kmiz}ie
dan mez k, dan xomopwx 2km| < r.

Teopema 4. ITyemv 0(z) u A(z,t) me orce, vmo u 6 meopeme 3 ¢ mot Luwv pasnuyet,
wmo menepv A(z,z) = 1. Toeda dan mobot f(z) € L[0,1]

lim [IS,(f,2) - T5 o (Tof, 2) =0,

HC[e,l—e]
20e Tof = f{po(z)), wo(z) onpedeanemca us coomnowenus

po(®)

/ V=@ dt = a.

On Boundary Value Problems at Resonance for Nonlinear Differential
Equations
Kiguradze I. (Tbilisi, Georgia)

Let —00 < a < b < 400, n be a natural number, and f : [a,b] x B* — R and
fo : [a,b] — R be continuous functions. For the differential equation

u™ = f(t,u,...,u™ V) + folt), )
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there are found optimal in a sen$e conditions for the solvability of boundary value problems
at resonance, including the problem with integral conditions

b
/¢,~(t)u<">(t)dt =0 (i=1,...,n), 2)

where ¢; : [a,b] — [0,+00) (i = 1,...,n) are Lebesgue integrable functions.
In particular, the following theorem is proved.

Theorem. Let
/qx Hdt > 0 ( /¢n B o)

and let there exist numbers ¢ € {~1,1} and 7 > 0 such that on the set [a,b] X R™ the
inequality
0 < f(t»xly ce. vzﬂ)Sgn(Uzl) <r

holds. Then problem (1), (2) has at least one solution.
Supported by INTAS (Grant # 03-51-5007).

Differential Equations of Fractional Order
Kilbas A. A. (Belarusian State University, Minsk, Belarus)

Our report is devoted to some aspects of the so-called differential equations of frac-
tional order in which an unknown function is contained under the operation of fractional
differentiation. Some methods and results in the theory of such differential equations are
discussed. The method based on the reduction of the Cauchy-type and Cauchy problems
for the one-dimensional fractional differential equations to the Volterra integral equations is
presented. The operational and compositional methods to solve in closed form some classes
of fractional differential equations are given. Methods of the Laplace, Fourier and Mellin
integral transforms for the solution of linear partial differential equations of fractional order
are presented. Problems and new trends of research are discussed.

Existence of solutions to stochastic Navier—Stokes equation
Kirillov A. 1.

We begin with a general theorem on existence of solutions of stochastic equations and
apply it to the stochastic Navier—Stokes equation.

Let H be a real separable Hilbert space w.r.t. {-,-)y and W be such that (H, W)
be an abstract Wiener space. Let e;,ez,... be an orthonormal basis in H that belongs
to some dense subspace X of H and is such that Vz € X the sequence of projections on
Span{e,,ez,...,en} converges to x w.r.t. a norm || - || x which is not weaker than || - ||#.
The space X is Banach w.r.t. || - || x. The space Y is the completion of X w.r.t. a norm
Wty <0l

A Lyapunov function V : X +— R is called a reducible Lyapunov function iff there is an
orthogonal basis e;, ep,... in H such that Vj,k,n € Nand Vz € X

k>n=0V(rz)=0 j>nor k>n= aka(vr,.x) = qr(7nz)djk,
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where gx(-) > 0.
Theorem. Let these conditions be satisfied
1. The imbedding X C H is compact.
2. For some reducible Lyapunov function V, some ¢ >0, and any x € Y*,

Lv(z) < cV(z) — Q(x),

where Q(z) > a1llz|% and Q(z) > collz||3® for some a,cq, 02 > 0.
3. For some C >0 and any z,y € X,

I1B(z) = B@)lly + llo(2) — el sworn) << C[R() + QI Il — yllar-

Then the equation
dz(t) = B(z(t)) dt + o(z(t)) dw(t)

with B(): X Y, o(): X~ LW;H), E(w(s),e)n(w(t),e)u = 0i;5At, and
generator L has a weak solution x € L% (Ry; H) N Cioc(R4;Y).

Let U be an open bounded subset of R® with smooth boundary oU,
X ={ue W2 U)*" : ul,,=0 and Opux =0},
H =LAU)*", Y = (C(U)™)",
B(u) = Au — uxOku, and o(u) = 0.
Then the Theorem implies that the stochastic Navier-Stokes equation

du(t) = (Au — urdku) dt + o dw(t)

has a weak solution u € LZ_(Ry; L2(U)*™) N Cloc(Ry; (ng)(U)x")*).

loc

Unsapnantsl Bacunbesa 1 JMHAMMYECKHE CHCTeMbl BUXpelt Hexapra na
niocKocTH!
Kupun H.A. (r. Konomza)

B MexaHdKe [BH)KEHHE CHCTe€Mbl MATEPHUAJNBHBIX TOYEK OIMCHIBAIOT C IOMOILBIO
KAHOHHYECKMX ypPaBHEHMY JBHIKEHHst. OTH ypaBHEHHS [DEACTaBISIOT  CHCTEMY
uddepeRIuaTbHEIX  yPABHEHM, KOTOpas, KaKk [PaBHilo, FABIAETCS TAMHIBTOHOBOA
cucremoii. Cama bynkuus [aMUIBTOHA ABJISIETCH MHTETPAJIOM 3TOH CHCTEMBL.

B nmsuHO#t crarhe paccMaTpusaercs ofpaTHast 3amada. Mmp Gymem  cTpowThb
rAMILIBLTOHOBBI CHCTEMBI [0 33JAHHOMY [JBHIKEHUIO M HCCJIENOBATh JMHAMUYECKHE CBOACTBA
TAKHX CHCTEM.

Kax H3BeCTHO, FeOMETPHUECKHE KOChL U3 7t HUTe! TECHO CBA3aHBI C AMHAMUKON ABHIKEeHHS
Touek wiockocTH. OHY NPeACTaBISAIOT IPOCTPAHCTBEHHO-BPEMEHHYIO MarpaMMy ABHIKEHHS
N MaTepHaJbHbIX TOYEK Y ONpPENCIISIOT AMHAMUYECKYHO. CUCTEMY Ha KOHQHIYDPAIMOHHOM
npoctpancree X, = {(z1,...,2,) € CMz # z;,i # j}. B csoio ouepenms,
reoMeTpHecKue KOChl ONpEIesiTIOTCS MHBAPUBHTAMH Bacwibesa KoHewHoro mopsika. B
cTaThe WCCIe[yeTcsi CBA3b CBONCTB MHBAPHAHTOB BacuibeBa H CBOHCTB JMHAMMTIECKHX
CHCTEM, KOTODble OHH ONpPEAeNIAIOT. B KadecTse raMHIbTORMaHA Mbl Gysem OpaTh MHUMEIE
YaCcTH KOMILIEKCHO3HAYHBIX AHAJHTHYECKHUX (DYHKUMH, NpeJCTAB/ISIONME NHBAPHAHTEI
BacmibeBa KOHedHbIX NOPAAKOB. Taxue dYHKUMM BbIPAXKAKTC CYMMON HTEPHPOBAHHDIX

!PaGora nopnepxana POOU, npoexr 07-01-00085
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unterpanos Yewa or jorapudbmmdeckux muddepeHIHaNBHBIX <¢opM, nopoxKIEHHBIX
dopmamu w;; = d :‘_ :j .

B craTbe ofcy>x/1810TCs1 CBOKCTBA AMHAMHYECKHMX CHCTEM, TOPOMKICHHBIX HHBAPMAHTAMH
Bacunnesa mepsoro u BTOpOro nopsmxa. Brissasercs CBfI3b, NIOCTPOSHHBIX TAKUM 06pa3oM
FAMUJILTOHOBRIX CHCTEM, C TaMIJILTOHOBHIMH CHCTEMBMH, ONPEAENSIONIMMU JMHAMMKY
ABWKEHUA BHXpell Ha NNOCKOCTH. BhIACHAIOTCS yCTOBUS cOXpaHeHHsT KOJIWHEAPHBIX
KORGUIypaImi 1 TOMCOHOBCKIX KOHGbHIYpauut BuXpeit.

JIureparypa

(1] Berger M.A. Hamiltonian dynamics generated by Vassiliev invariants J., Phys. A:
Math. Gen. 34 (2001) 1363-1374

[2] Bopucos A.M., Mamaes M.C. Mumemamunecrxue memods dumamumu 6UTPESHL
cmpyxmyp.- Mocrea- Hoceacr: Huemumym xomnsromepume uceredosanud, 2005.- 368c.

[3] Kupun H.A. Tamuasmonosw cucmemo, omsevaowue unsapuahmam Bacuavesa
nepéoeo nopadra. COopHux naywnmz cmamell acnupanmos u coucxameaeii "Havano". -
Buin. 5. - Koaomna: KTIIH, 2006. -216 c.

[4] Koanor B.B. O6was meopus euzpets. - Hoceack. Hadameavcxud dom "Yomypmexuti
ynueepcumem”, 1998 (24-34).

JInteparypa
{1] Miparos U. W. u ap. Haseanue ucmownuna.

HecamoconpszkeHHEIe ONEPATODEI € NOYTH SPMUTOBBIM CIIEKTPOM: c1abast
AHHYIAUMSA
Kucenes A. B., Haboko C. H. (Cauxr-Ierep6ypr)

Paccmatpusaercsi  kiacc  HeCAMOCONPSIKEHHEIX, HEIMCCHNATHBHBIX  BTHTHBHEIX
Boamyenuit I, = A+ iV orpaHUYEHHOTO CAMOCONPAKEHHOTO oneparopa A B rusinGeprosom
npoctpancTee H.

Cnexrpanbupie noanpoctpancrsa N, N7 ,N® C N; BuifensioTcsi eCTECTBEHHBIM
00pa3soM uisl MPOM3BONBHOTO HECAMOCONPSIAKEHHOTO OMEPATOpa L U3 yKa3aHHOTO KIacca.
3pece noampocrpancrso Nt (N) coorsercrsyer TOYEYHOMY CHEKTPY B BepxHei
HOMYMIOCKOCTH M A&CTH BEMIECTBEHHOTO CHHTYIAPHOIO CIEKTpa (TOYEHHOMY CHEKTpYy B
HHXKHet IOZIYIIOCKOCTH H YACTH BELECTBEHHOIO CHHTYISIPHOTO CTIEKTPA, COOTBETCTBEHHO)
M BIOJIHE BHAJIOTHYHO CHHTYJISIPHOMY NOANPOCTPAHCTBY AMCCHIATHBHOTO (COMPSIKEHHOTO
K IUCCHNATHBHOMY) BIIOJIHE HECAMOCONDKEHHOTO omepaTopa. IloAmpocTpaHcTBo N?
COOTBETCTBYET YACTH BELIECTBEHHOTO CHHTYJISPHOTO CHEKTP& M HrpaeT ocobyl poib B
CMEKTPRILHO! T€OPHH HECaMOCONPAXKEHHOrO, HEANCCHIIATHBHOTO onepaTopa. B HekoTopoM
cMEIce GOJbIuAs YACTh HOBWIX CBOHCTB HE/MCCHIIATHBHBIX ONEPATOPOB (N0 CPABHEHMIO C
AMCCHIIATHBHEIMH H COTIPSXKEHHBIMH K JMCCANATHEHLIM) CBA3AHA C HAJIMIHEM M CBOMCTBAMM
[

Hamu nonyweno omucanme STOrO NMOANPOCTPAHCTBA, 8 TAKIKE YCTAHOBIEHO ADYroe
BaXXHOe CBOHCTBO CrEKTpajbHOTO mogupocrpaHcrsa NP, KOTOpoe COCTOMT B TOM, 4TO
N0 CYWIECTBY €ro CBOHCTBA B HEKOTODOH CTEIleHH HANOMHHAIOT CBOKCTBA CHHIY/ISPHOTO
CIIeKTPAJILHOTO NIOANPOCTPAHCTBA CaMOCONPAMXKEHHOTO oneparopa. C 3THM CBS3aHO Haille
TPE/IOXKEHNE HA3hIBATL ONepaTophl, ans KoTopwix NP = H, oneparopamm ¢ nowmu
JPMUMOBHM CeKTpoM. FIMeHHO, cHpsaBenuBa CHEAYIONIAs TeOpeMa, SBISIOWIAICH
€CTEeCTBEHHBIM 0606meHMeM XOPOUIO H3BECTHOI'O TOXKIECTBaA Kem:
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Teopema 1. Iycre L = A + iV - HecaMoCOoupskeHHBI OMEpATOD, NpuHeM BCe
weThipe CKHMAalomue oneparop-pyHKumM, yuacTBylome B Gaxropusanun I'musbypra-
MoTanopa ero xapakTepUCTHUecKof (yHKuuY, 06i1aaior cKaaapusMu KpaTusivi. Torja
kak onepatop L, Tak u ero conpsukenHsift L*, cnaBo aHHYIMDYIOTCS HEKOTOPHIMM
CKAJIAPHBIME OFPAHHYEHHBIMH AHAMUTHYECKMMH QYHKUMAME B TOM M TOJIBKO TOM Cilytae,
KOLJA ORUH U3 HUX SBJISIETCS ONEPATOPOM C MOYTH IPMUTOBLIM CHEKTDOM.

31ech MCIONBL30BAHO CleylolIee onpedeaenue: BHeWHss B BepxHel nonynaockoers C
PABHOMEDHO OrpAHMYEHHAS CKAJISPHAS AHAINTHYECKAA DYHKIHA ~(A) HazbiBaeTCA CAAbHM
AHHYAATNOPOM HECAMOCONPSIKEHHOTO onepaTopa L, eciii BHINOTHEHO ycoBue

w — lmy(L + i) =0,
el0

a TaKol onepaTop L, COOTBETCTBEHHO, — ci1abo aHHy/IMpyeMolt byuxmueld v(X).
Jluteparypa

{1 A. B. Kucenes, C. H. HaBoxo, Hecamoconpasicennsie onepamops ¢ noumu
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[2] A. V. Kiselev, S. N. Naboko, Non-Self-Adjoint Operators with Almost Hermitian
Spectrum: Matriz Model. I, J. Comp. App. Math., vol. 194 (2006), pp. 115-130.

[3] A. V. Kiselev, S. N. Naboko, Non-Self-Adjoint Operators with Almost Hermitian
Spectrum: Cayley Identity and Some Questions of Spectral Structure, submitted.

II10cKHe BOJIHEI C NOnepeqHolf CTPYKTypoll B NPON3BOJILHO AHM3OTPONHON
ynpyroit cpeae
Kiselev A. P. (r. C-IlerepGypr)

Crpositcs HOBble TOYHLIE DELIEHHS CHCTEMbI ypaBHeHWH, OMMCBHIBAIOWIEHA CMEINEHHH
OJTHOPOAHON] TpexXMEpHOH ynpyro#t cpelibl u = (ul, Ug, U3 ),

62u.'
cijudi0kw — P = 0, (1
8, = 8/0x,. D10 PACIPOCTPAHSIOUNECS [IOCKHE BOJIHEI, AMIIITY/bI KOTOPHIX ABAMIOTCH
npelsiME  QYHKIMAME JEKapTOBBIX KOODAMHAT X = (&1,Z2,%3). IlnoTHocTs p M

yOpYTHe MOJYJIH Cijki, 00Nanaiomue oOBMHbIMY CBOACTBAMK CHMMETPHH K obecneynBaroIIpe
TIOJIOXKHTENbHOCTE 3HEPIUM AedopMalui, NPeao/IaraloTCa MOCTOSHHBIMY.

Distributed Order Calculus and Equations of Ultraslow Diffusion
Kochubei A.N. (Kiev)

‘We consider equations of the form
(D(“)u) (t,z) — Au(t,z) = f(t,z), t>0,z€ER",

where D) is a distributed order derivative, that is
1
DWy(t) = @) tu(a) do,
0
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D) is the Caputo-Dzhrbashyan fractional derivative of order o (see [1}), p is a positive
weight function.

The above equation is used in physical literature for modeling diffusion with a logarith-
mic growth of the mean square displacement. In this work we develop a mathematical theory
of such equations, study the derivatives and integrals of distributed order.

References

(1] 8. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei, Analytic Methods in the Theory

of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhauser, Basel, 2004.

Henan dopmyna, BEIpaXKarOUasi 3aBUCUMOCTh JIOGOBOrO CONPOTHBICHUS OT
TeoMeTpPHM TPENATCTBUA NPH OGTEKAHMH €ro MJIOCKHUM HECTAIMOHADPHBIM
MOTEHUMAIbHBIM [TIOTOKOM ¢ BMXPEBBLIMH OCOBEHHOCTAMU
Topunxnit M. A., Kouypos A. C. (MI'Y)

TTycThb CKOPOCTE MIOCKOTO HECTAIMOHAPHOIO CHMMETPHIHOTO TETCHHS £ i z(t) = z (&) +iy(t)
HECKIUMACMOH XKMIKOCTH NOTEHHMANbHA BHE HCKOMBIX BUXDEBHIX HeHTpoB zt(t) u
2z~ = z¥(t) B creme 3a npensTcTBUEM, HAIIPEMeED, JeTHIPEXYTOILHAKOM, ONPeAeIsaeMbln
(¢ TOMHOCTEIO [0 IMHERHLIX PA3MEpOB) yraaMu t — fo(t) u ¢ — B1(t) (cM. Bepxnuit puc.).
rofel SBHO BHIPA3UTHL 3ABHCHMOCTL J10GOBOFO COMPOTHBIEHHS OT 3THX YIJIOB, JOCTATOTHO

HAlTY ABHYI0 GOPMYITY ANl CKOPOCTH TedeHns, kak GyHKImIO yritos Gy(t), By (t).

Teopema [1]. Hexomas sasucumocmo onpedessemca Popmyaoti

w(t)
t 2(t) = /0 exp{A@E,7) +iBEMIA, =&+ in € Qogy.
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3decv Qu(ry — 06aacmo, NPedCMABACHHAR HE HUNCHEM PUC., A+1iB — smo anasumunecxan
6 Qo(1) PYNKUUR, NOOMUNENHAR TRAKUM KDPAEEVM YCAOBUAM! AIU_ oo =0, a

B(u,40) = Bo(t) npu u€ (0,02), B(u,+0)=0 npu u¢[0,a9],

B(u,—0) = 6;(t) npu u € (01,02), B(u,—0) = —7m npu u € (03,04)
v B(o1,v) = B(og,v) + 27, 8,B(oy,v) = 8,B(04,v) npu v<0.

HMapamemp a(t) = (01(t), 02(t),03(t)) — Asaremca peutenuem cucmemv ug 3-T ypasnerud,
svipasicarouus wepes gynxywo A + iB xoopdurame (x1(t),y1(t)) mowku Py (cm. seprrud
puc.) u abeyuccy T2(t) mowku Py. Tem camvim, 0 swparcaemes xex dynsyua yeaos fo, B
Janee, 04(t) = 01(t) + w, 20e w — 300aHHAA UHMENCUBHOCTD BUTPA, GCCOUUUPOGANNHOZO C
mowxoti 2~ (). A dynxyus t v w(t) = u(t) + iv(t) — amo pewenue cucmems ypasrenut

U = Z Fl] u, v, 015)0] +Zk le(uyvaaaﬁ)ﬁk+H1(U7Uvdvﬂ)7

b= ’_3 3 Foj(u,v,0,8)0; + Yoreg Ga(u,v,0,8) Bk + Ha(u,v,0,8)

¢ asnvmu Popmyaamu das xospduyuenmos Fij, Gig, Hy.

Jokazana equHcTBeHHOCTh yHKIMU A + B u nonydena dopmyna, ee sajaouad,
Pabora Beimosnena copmectHo ¢ A.C. Jemuaosniv 1 B.1O. [IpoTacorkim npu noaaepke
PO®U (npoexTsr 05-01-22001, 05-01-00066, 07-01-00500).

{1] A.C. Jemuzos (2006} Merox Penbmrombna-Knpxroda u rpanuuoe ynpasieHue npu
OBTEKAHHH TIIOCKHM NOTOKOM. Pymdam. u npuraadnai mememamuxa, T. 12, Ne 4, 65-77.

XapaxTtepusauus dbyukuuil ¥3 BMO}(V?) B TepMuHax npeoGpazoBaHus
Bepesuna
Kodzoeva F. D. (r. Poctos-sa-ZoHy)

B Hacrosimelt paGore BBOAMTCS Becosoe npocrpasctBo BMO)(V?) dbyuxkuu#t Ha
6umucke V2 B C? ¢ orpanuuennclt cpemHeft ocuMInAnuel NO OTHOWIEHHIO K JeBerosoit
Mepe H HEeKOTOpOH MeTPHKe, MOCTpOoeHHON no runepbonuyeckolt merpuxe Beprmana B
nucke. Tlokasano, uTo npeoGpasopanue Bepeanna dbynxuuu uza BMO}(V?) ynosaersopsier
yenosuio Jlummuna., PesynbTaTH QaHHOTO MCCHENOBAHHS MOAYYeHs cobMmecTHo ¢ A.H.
KapanersnueMm.

Homogenization of an Optimal Control Problems for Blowing up Systems on
Thin Structures with Mixed Boundary Controls
Kogut P.I. (Dniepropertovsk National University, Ukraine)

We study an optimal control problems on the thin periodic planar structures 2, whose
geometry depends on two small parameters, ¢ and h(e), related to each other and deter-
mining the cell of periodicity and thickness of components. We focus our attention on the
control objects which are described by the singular parabolic equations with the Robin
boundary conditions on the boundary of holes, and with two different types of boundary
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controls - the Dirichlet and Neumann controls - on the external boundary of Q.. Having
admitted that blowing up phenomenon can appear in the original problem we provide its
asymptotic analysis as the small parameter ¢ tends to zero. It is shown that the structure
of the homogenized problem depends essentially on how h tends to zero as € — 0 (so-called
"scaling effect"). We derive also the conditions under which in the limit we obtain not an
optimal control problem, but rather some initial-boundary value problems with or without
controls. In conclusion, using the approach of homogenization theory, we construct so-called
asymptotically suboptimal controls for the original problem and show that an approxima-
tion properties of such controls for small enough ¢ are close to the true values of optimal
characteristics.

Karacrpoda rony6oro Heba B pesIakCAllUOHHBIX CHCTEMaxX
Kouecos A. FO., Pozos H. X.

Karacrpodoit romyboro neb6a HNpPHHATO HA3LIBATb HEJIOKAJIBHYIO 6udypxarmo
KOPa3MepHOCTH OJIMH, KOTOpas B MpocTefIeM C/lydae COCTOMT B cieayomeM. PaccMoTpaym
CI8JKOE OJHONAPAMETPHYECKOe CEMENCTBO BEeKTOPHBIX mojeit X, B R?® u mpeanosnoxuM,
4ro npu g = 0 noToK X, MMeeT MEPUOJMYECKYIO TPAEKTOpHIO Lo THMNa NPOCTOf Ceao-
y3en. PaccmorpuM, nasiee, HEKOTOPYIO JOCTATOYHO MAJYI0 OKPECTHOCTb U TpPaeKTOPHH
Lo, pasgensieMyio IBYMEDHbHIM CHJIBHO YCTOMYMBBHIM MHOTOOGpasHeM W=*5(Ly) na mpe
obnacti: yanosylo UT, Bce TpaexTopuu u3 Koropolt crpemarca X Lo mpu t — +oo,
U ceanoByio U™, B KOTOpOHM JTeXHT JByMepHOe HeyCToliumpoe MHOroobpasue W (Lo) ¢
Kkpaem Lo. Creayiomee orpaHiyeHie HOCUT CYIIECTBEHHO HEJIOKAJIbHBIH XapaKTep U COCTOMT
B TOM, YTO BCE TPAEKTODHM CHCTeMbl X( C HBYQJIbHBIMH YCIOBHAMH M3 Wit (Lo) mpu
yBesudenun ¢ cHadasa MOKHJAIOT OKPECTHOCTb U, a 3aTeM CHOBa BO3BPALAIOTCH B Hee,
nonagasi B yanosyio obnacrb Ut. Torna, o4eBHAHO, KaXAaA U3 YNOMSHYTHIX TPAeKTODHH
OKa3bIBaeTCs ABOsKoacHMITOoTHHecKOH K Lg. I HakoHeln, 6yfeM CYMTaTh, YTO MHOXXECTBO
WH(Lo), nomyqasomeecst u3 W (Lo) nocsie NPOJOIKEHHA 0 TPAEKTOPHAM NOTOKa Xo, He
SIBJISIETCA TONOJIOTHYECKUM MHOTO0OpasueM (B TPEXMEPHOM CJlydae 3TO O3HAYAET, YTO OHO
He TOMeOMOPMHO JBYMEPHOMY TOPY).

Kak moxaszano B [l|, npu chOpMYIHPOBAHHBIX OrPaHUYEHHAX M TNPH HEKOTOPBIX
JIOTIONHHATENIHBIX YCOBHSIX TEXHMUECKOLO XapaKkTepa HCUesHOBeHMe B cucreme Xy,
0 < pu < 1 cego-ysnosoro mukna Ly TPUBOAUT K MOSBJIEHHIO YCTORUMBON 3aMKHYTOH
rpaexkropun L(i), MepUOR M IJMHA KOTOPOH CTPeMATCA K GECKOHEUHOCTH NpH f — 0.
Cama e Tpaexropus L(j) nMeer CBOMM BepXHHM TOMNOJIOIMYECKHM IpezenoM mpm 4 — 0
muoxecTso W*(Lp) U Lo. Omucansas Gudypxauus nonyduia Ha3paHue "katacTpoda
roayboro rHeba’. .

B pafore [2] npomnmocTpupOBaHa peaNu3yeMOoCTh ynoMsiHyTO# Beille Budypxauun
B CUHTYJSPHO BO3MYIUIEHHBIX CHCTEMaXx C OnHOM MegeHHOR M m, m > 2 6GBICTPBIMU
nepemeHHbIME. HaMu ke pelnaeTcst B HEKOTOPOM CMBICTE IPOTHBOTONIOXKHASA npobiema. A
MMEHHO, YCTAHABAMBAIOTCH YCIIOBHS, IIPU KOTOPHIX KAaTacTpoda roay6oro Heba Habmonaercs
B peJlaKCAllMOHHBIX CHCTeMAaX BHIA

i=f(:c,y,,u), €Q=g($,y), .'1!=(1'1,1)2)€R2, yE]R1

e 0 < £ < 1, |p| < 1, dbysxmun f, g Geckomegno muddepeHuupyeMsl 1O CBOUM
nepemeHHBIM. Kak OKa3biBaeTCs, MHTEPECYIOLas Hac KaTactpoda ronyGoro neba moxer
NPOMCXOIUTH B TAKHX CHCTEMAX TPH BBIIOJHEHHMH Psila CTAHIAPTHBIX yenosuit (cM. [3, c.194
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- 200]), rapaHTHpYIOLIHX CYIECTBOBAKHE TAK HA3BIBAEMBIX KJIACCHYECKHX DEJIAKCALMOHHBIX
xoae6GaHult.

Jlnreparypa
[1] Typaes J. B., Iluavnuxos JI. I1.// JAH. 1995. T. 342. Ne 5. C. 596-599.
[2] Shilnikov A., Shilnikov L., Turaev D.Blue sky catastrophe in singularly-perturbed sys-
tems. Preprint WIAS. Ne 841. Berlin, 2003.
[3] Muwenxo E. @., Posoe H. X.Judbdepennuanbubie ypassenns ¢ MaJIbIM IaPAMETPOM |
peslakcalyoHHble Kosebanus. M., 1975.

Reversible and Hamiltonian dynamics near a homoclinic orbit
Koltsova O. Yu. (Nizhny Novgorod University)

We considered a reversible vector field having a homoclinic orbit I' to a singular point
p of the saddle-center type. We obtained a classification of the (generic) linear part of the
return map which has highlighted different types of global dynamics near I'. For each of
these types, the dynamics has been studied. Under some generic condition we prove the
existence of a two-dimensional manifold X filled by symmetric homoclinic orbits to the
center manifold W¢. We also established the existence of a countable set of two-dimensional
manifolds accumulating to X. These manifolds consist of one parameter families of symmetric
periodic orbits.

If we consider a Hamiltonian reversible vector field then all obtained manifolds are
foliated by Hamiltonian level sets such that:
- There exists a countable set of symmetric periodic orbits on the level where p is located.
These orbits are accumulated to I'.
- There exist two symmetric homoclinic orbits to each periodic orbit on W¢ and a countable
set of symmetric periodic orbits accumulated to these homoclinic ones.
- There are a finite number of periodic orbits for all other level of Hamiltonian.

Comparison of the results for reversible systems with those obtained in the Hamiltoni-
an category has already led to a number of observations of differences, most notably the
occurrence of non-symmetric heteroclinic cycles.

This research was supported by Royal Society, Russian Foundation of Basic Re-
search (grant 04-01-00483a) and program of supporting Russian scientific schools (grant
9686.2006.1).

Global Geometry of Generalized Lienard Equations and Limit Cycles
Kolutsky G. A. (Lomonosov Moscow State University)

The main result is the upper bound of limit cycles for a special class of polynomial vector
fields on the plane. This class is called generalized Lienard equations (in the canonical form):

& =yH(z) - zF(z),
y=-z.

v

Our results are very natural continuation of Ilyashenko-Panov investigation for (stan-
dard) Lienard equations [1]. Their results based on the theorem of Ilyashenko and Yakovenko
that binds the number of zeros and the growth of a holomorphic function [2].
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We split the space of the parameters of system (1) into pieces with topologically different
phase portraits. For one of these types we find the Bendixson trap for all limit cycles of 1)
using pure geometrical arguments for the vector field only. We consider the type determined
by following conditions:

i) The degree n of the polynomial F(z) is even and degree of polynomial H (z) is not greater
than n,

ii) Modules of the coefficients of polynomials F'(z) and H(z) are smaller than some constant
C > 100,

#1) For every real = polynomial H(z) is not smaller than some constant #, which belongs to
the interval (0, 1).

We estimate the number of limit cycles of (1) in the bounded nest through the attributes
of the Poincare map, which is continued in a complex domain. The estimate is a function of
four parameters: n, C, § and A, where A is a function of F(0) and H(0). Informally speaking,
the parameter A means “distance (in the space of parameters)” between linearization of (1)
and one that defines center.

References

[1] Yu. llyashenko, A. Panov Some Upper Estimates of the Number of Limit Cycles of
Planar Vector Fields with Applications to Lienard Equations, Moscow Math. J. vol. 1 (1999),
no. 4, 583-599.

[2] Yu. Ilyashenko, S. Yakovenko Counting real zeros of analytic functions satisfying
linear ordinary differential equations, J. Differential Equations vol. 126 (1996), no.1, 87
105.

On relation between the Cauchy data in scattering problems on a wedge
Komech A. 1. (Russia), Merzon A. E. (México)

The nonstationary scattering problem of a plane wave by a wedge is reduced to a bound-
ary value problem for the Helmholtz equation (A + w?)u(z,y) = 0, (z,y) € Q = RZ\ K in
complement of a plane convex angle K [1]. To solve this problem, the method of the com-
plex characteristics [2] is used. The central role in this method plays so-called “Connection
Equation” which is an algebraic relation between restiction of the Fourier-Laplace trans-
forms of the Cauchy data of solution onto the Riemannian suirface 2% + 23 — w? = 0 of the
complex characteristics. In the case of convex angle Q this connection equation is obtained
directly from by the Paley-Wiener Theorem. In the case of the nonconvex angle the theorem
does not work. Nevertheless, we find an analogue of the relation in this case too. Let us
consider the angle K : z,y > 0 for simplicity of exposition, and denote 1§(z1) = u(z1,0),
W(z3) = u(0, z2), v}(Z1) = Uz, (21,0), v3(%2) := 1z, (0, 72). Let #(z), Imz>0,1=1,2
be the corresponding Fourier-Laplace transforms, and ﬁlﬁ (z1(w)) be the restrictions onto
the Riemannian surface, where z;(w) = sinhw, z;(w) = —icoshw (in the case of w = i).
The functions 1'){’ (w) = f)f (zi(w)) are analytic in the parallel strips Im w € [0,7] and
Im w € [-37/2,-7/2] for | = 1,2 respectively.

Theorem The functions 9 {w) — #){w) coshw and 9}{w) — #9(w) sinhw, admit an an-
alytic continuation to Im w € [~7/2,0] and their sum is equal to zero.

Crucok IuTepaTypbl

(1] A.LKomech , A.E.Merzon, Limiting amplitude principle in the scatterind by wedges,
Math. Meth. Apll. Sci. 20 (2006), 1147-1185.
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[2] Komech A, Merzon A, Zhevandrov P. A method of complex characteristics for elliptic
problems in angles and its applications. Amer. Math. Soc.Transl (2), 206 (2002), 125-159.

K nccnepoBanmio pesoHaHCOB B CHCTeMaXx C JABYMsl CTeIeHSIMH cBOGOAbI
Kondrashov R. E. Korolev S. A. Morozov A. D.  (r. Huxnanit Hosropoxn)

PaccmarpuBaercs 3a/1a4a HCCIEI0OBAHUs PE3CHAHCOB B CHCTEME JBYX CIaboCBS3aHHBIX
ocunysTopoB.  Ilpeamonaraercs, 9YTO HeBO3MYLIEHHBIE YpaBHEHMsl HeauHelHble. B
OKPECTHOCTH DE30OHAHCHBIX 3HAYEHHWN WMHTErPAOB YHEPrMH HEBO3MYILIEHHBIX ypaBHEHMH
HUCXOJHAs CHCTeMa NPHBOAUTCH K yAoOHON mns ucciemoBanusi TpexmepHol cucreme. Ha
MOZEIbHOM IIPUMepe NPOBOJUTCS €e aHAIN3, BKIIOYAIOIHA KOMIBIOTEPHYIO BU3YAJIH3AIHIO
$a30BBIX KPHBBIX.

Pabora nopuepkana rpautamu POOH, N06-01-00270 n HIII, N29685.2001.1.

Ileppas kpaesast 3aAaua [Jid napaGoJM4eCKHUX ypPaBHEHHN BTOPOro nopsaka B
MpOoCTPaHCTBaxX 3UrMyHAA
Konenkov A. N (r. Mocksa)

PazpemnMocts nepsoft kpaepolt 3a1a4u B obaacTu Q) 1is napabo/i4ecKux ypaBHeHHH
BTOPOrO NOpsiika B aHH3OTPOMHLIX TMpocTpaHcTBax lepaepa C™*(), m > 2,0 < a < 1,
xopomo u3Bectsa [1]. IIpu menbumx TpeGoBaHMSAX Ha JAHHBIE 38a9H PA3DPENIAMOCTbL B
npoctparctse C1%({Y) ycranosnena E.A. Bazepko [2]. Ecrecrsenno Bosmuxaer Bompoc,
YTO MOXHO CKa3aTh O pelleHMsAX NpH LEJNbX 3HAYCHMsIX napamerpa riaagkoctd (a = 0
wm o = 1). U3BecTHO, 4TO yTBepXKieHuWe, MOJOOHOE YKA3AHHHKIM Bblllle, HEBEPHO AJS
npocrpancts C™ () n anusorponnkix npocrpascrs Junumma C™ ().

Mui nonyuaem paspemnMoCTh NEPBOH KpaeBolt 381841 B @HW3OTPONHAIX IIPOCTPAHCTBAX
Surmynna Hp, (), m > 3, KOTOpHe SBJIAITCA AHAJIOrAMH AHH3OTPONHBIX MPOCTPAHCTB
lenbaepa C™°()) AAA UeNBIX 3HAYEHMSX MOKA3aTeNs INIAJKOCTH M IOJYYalOTCH M3
onpenenenus: mpocTpanct Jiummmmna C™~11(()) 3amenofi B ompeseneHnm passocTel
NEpBOrO NOpAKA HA pa3HoCTH Broporo, cMm. [3]. Jlannme samaum u Kosdduumenrth
YP&BHEHHs INpPEZNOJATalOTCA MPHHANLJIEKAUWMMA COOTBETCTBYIOUIMM [POCTPAHCTBAM
Burmynga. O6nacts Q Moxer GHThL HENMIMHIPHYECKON M HeorpaHudeHHo#t, ee "Gokopas"
rpaHuNa — U3 Kiaacca 3urMmynaa H,, B MoxeT 6bITh HEKOMIAKTHOR. YCTAHABINBAETCH, YTO
NpH YeTHBIX N I/ TpHHaANEeXHOCTH pemenns X H,()) Tpebylorca momomuTennHhe
(no cpaBenmio ¢ npocrpancTBami Lesbliepa) Pa3sHOCTHEE YCIOBHS COTJIACOBAHUS MEXKIY
HABYAJILHOM, rpaHuYHO) (DYHKUMSIMHM U NPABON YACTHIO YPABHEHHSI.

Jinreparypa

[1] Jlapspxenckas O. A., ConmounmkoB B. A., Ypamsuesa H. H. JTunednme u
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{2] Bagepko E. A. //JudPepeny. ypasnenus. 1992. T. 28. N 1. C.17-23.
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On a singularity condition for solutions of ordinary differential equations.
Kon’kov. A. A. (Moscow)
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We consider the problem
wl™ = (-1)"f(r)g(w) r>aq, 1)

(-1)'w®r) >0 foralrela,0),i=0,...,m—-1, 2)

of order m > 2, where g : (0,00) — (0,00) is a continuous function and f : [a, 00) — [0, 00)
belongs to the space L;,c([a, 00)), a > 0.
The capacity cap; .,,(€?) of a bounded measurable set © C [a, 00) is defined by

o ri 1/m
capy,(Q) =inf ) (/ (€-ri))™! Xn(f)f(&)df) ,

=1

where xgq is the characteristic function of  and the infimum in the left-hand side is taken

over all increasing sequences of real numbers r;, i =0,1,2,..., such that 79 = a and
lim r; = oo.
100

For an arbitrary measurable set 2 C [a, 00), we put
capy () = rll)n;o capy (2N a, 7).

Theorem 1. Let capy,,([a, 00)) = 0o and, moreover,

o0
/ g5 ™0t/ dt < oo
1

for some real number 8 > 1, where

go(t) = (t/llf;l,i;e)g'
Then any solution of problem (1), (2) is identically equal to zero in a neighborhood of infinity.
Bibliography
{1] I T. Kiguradze, T. A. Chanturiya. Asymptotic properties of solutions of nonau-
tonomous ordinary differential equations, Kluwer, Dordrecht 1993.
{2] I. T. Kiguradze, G.G. Kvinikadze. On strongly increasing solutions of nonlinear or-
dinary differential equations, Ann. Mat. Pure Appl. 130 (1982), 67-87.
[3] A. A. Kon'kov. On non-extendable solutions of ordinary differential equations, J.
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PEJIAKCAIIVIOHHHBIE KOJIEBAHUSI CUHI'YJISIPHOYI CUCTEMHI B R®
Kononenko L. I. (Hosocubupck, Hucrutyr matemaTuxu um. C. JI. Cobonepa CO PAH)

PaccmatpuBaercst CHHTYJSIPHO BO3MYLIEHHAS cucTemMa OBBIKHOBEHHBIX
nuddepeHUaTbHBIX yPaBHEHHUIH

& = fi(z1, 22,9, 6),
i'2 = f2(zly121y15)9
ey = g(z1, 72,9, 8),
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rae T1,T2,y € R; € — Majblii NONOXKUTeNbHBIR Mapamerp; f1, f2,g — AOCTATOYHO TiIaaKue
GyHKIMYM IO BCEeM MEPEMEHHEBIM; &1, 2,y ~— NPOU3BOJHEIE 110 BPEMEHH.

IMpuBefeHLl JOCTATOYHBIC YCJOBHS CYUIECTBOBAHMS DeJIaKCAlHOHHBIX Konebauu# B
JanHo#t cucteme [1].

JIns CyIIeCTBOBAHUS DEJAKCAIMOHHBIX KojebaHu#l JOCTATOYHO, 4TOBbI BHLINOIHATHCH
ceAyOlHe YCIOBHS:

1) MeaseHHas TOBEPXHOCTH ¢(Z1, 2,Y,0) = 0 cocTouT U3 Tpex JHUCTOB:

9(z1,22,9,0) = (¥ — w1(z1,22)) (U — w221, 22))(y = p3(T1,72)),

rae ¢; : R?->R,
pi € C(R?), i=1,2,3, pa(x1,22) < w2(1,22) <
< p1(z1,22);
2) amcTel y = @1(T1,%2), ¥ = @3(Z1,22) — ycrofumBbie, a ¥ = 2(21,T2) —
HEYCTON4HBBIN;

3} B wiockocTH (T1,T3) CyImeCTBYeT NHBAPHAHTHAS TPUTATMBAIOLIAA NPAMAast, KOTOPas
TPaHCBEpCAJbHO IepecekaeT OOIMyI0 YacTh MPOEKNMH yCTOWYMBBIX JIMCTOB HA INIOCKOCTD
(z 1 .’E2).

Pabora suinosnena npn noguepxke POOU (npoext 05-01-00302).
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Mansie kosebanus cTparuUIMpOBaHHON XKHUAKOCTH
Konauesckmit H. [I., IIserxos [I. O. (r. Cumgpepono.s)

W3yuaercs 3a7a4a 0 MaJIbIX ABUXKEHHAX X HOPMAJbHBIX KoJieGaHUsIX CHCTEMBI COCTOsILIEN
U3 JBYX TSKENbIX HECMEIIMBAIOWUXCA CTPAaTUUUMPOBAHHBIX KUAKOCTeH, YaCTHYHO
3AMOJHSAOIMX HENOABIXKHEIA cocyh. Ilpu 3TOM HYXKHAS JKMAKOCTh CHUTAETCs BSI3KOH, a
BEPXHASA — HIEAJIbHON.

IlpoBegeHO MOCTpOeHHMEe, KOTOpOe MO3BOJISET  IOJYYUTh  aHAJOr  W3BECTHOTO
OpPTOrOHAJILHOIO pa3jiodkeHns Befina, npocrpaHcTsa BeKTOP-OYHKUMA CyMMHPYeMBIX
¢ KBaJpaToM mo O06JaCcTH, NPHUCIOCOGTEHHOTO K MCCIEAOBAHHMIO [JAaHHOM 3a7add.
IlyTeM NOpOEKTHPOBAHUS ypaBHEHMH JBH)KEHUS Ha COOTBETCTBYIOLIHE OPTOTOHAJILHBIE
MOAIPOCTPAHCTBA M BBEAEHMS BCIOMOraTeNbHLIX KpaeBbIX 3aJad H HX ONepaTopoB
HavaJIbHO-KpaeBas 3a/ada, ONMCHIBAIOAs Malble JBUXKEHHs JAHHOH THPOJMHAMHUYECKOM
CHCTeMBl, IPOBOAMTCA K 3anade Koum:

TY 1 Ay= 1), W0 =, 0<<T =" € L),

ReA > 0,

B HEKOTOPOM TujibbepToBoM npocrpaHcTse H.
Brisicusiercst, 9T0 omepaTop A SB/AETC AKKDETHBHBIM, HO HE3AMKHYTBIM. 3aMBIKast
omepaTop A ¥ HCMONb3Ys M3BECTHblE TEOPEMbl O paspemuMocTd 3ajauu Komm ps
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abCTPaKTHO NapabonuvecKuX ypaBHEHMi, yAaeTcs NOKa3aTh TeopeMy O CYIIECTBOBAHUH M
€IHHCTBEHHOCTU CHJILHOTO PelIeHHsT UCXOAHON HavallbHO-KpaeBol 3a1aiu.

JIjist COOTBETCTBYIOUIEH CIIEKTPAJbHON 3alla4d YCTAHOBJIEHO, YTO BECh CIEKTD 33J1a4h
JIEXXUT B IPABOHM 3aMKHYTOH IOJIYIIJIOCKOCTH. CrekTp JiexKalliiil BHE OTPe3Ka [—iNoyz, iNoyz]
(Np,2 — MaKCHMAaJIbHOE 3HAYEHUEe YACTOTHI IUIABYECTH A5 WeaTbHOM JKUAKOCTH) COCTOUT
13 cOBCTBEHHBIX 3HAYEHNMI KOHeYHOH KpaTHOCTH. HenmpephbiBHBL CIIEKTP COOTBETCTBYIOUIEr0
OMepaTOPHOro Ny4YKa COBIAJAET C OTPE3KOM MHUMOH ocH [—iNo,«_y,iNg,g}. VYeraHOBIIEHO,
YTO TOYKAMH CCYNIEHHA CIEKTPa MOTYT OBITL TOJBKO TOUKH OTpPE3Ka [~iN0,2,iN0,2] U
6eckoneunocTh. CymiecTByeT TpU BeTBM COOGCTBEHHBIX 3HAYEHHH C MPeAETbHBIMU TOYKAMH
Ha GeckoseurocTH. OIH8 BeTBb JOKAIW30BAHA Y JeHCTBUTEILHON MOJIOKUTEIBHON MOIyOCH
u ase y MHnMofl. Ilonydyenbl acHMITOTHYECKHE opMysbl A ITUX BeTBeil COOCTBEHHBIX
3Ha4eHuH.

O cymmupyemoctu Koaddunuentos Pypee dbyHKnun U3 060611eHHBIX
npocrpaHcTB Jlopenna
Kopezhanova A. N. Nursultanov E. D. (Eppasufickuif HaUHOHaIbHbIA YHHBEDCHTET UM.
JLH.I'ymunesa, AcraHa)

B pabote u3syuaercs cyMmupyeMocTh kosbduuuentos dypwe ¢ = {c,(f)} no cucreme
{¢n} Pynxuun u3 Becosoro npocrpancTsa Jlopesua.

OpTOHOPMHPOBaHHAH cucrema orpaHuyeHHas B COBOKYITHOCTH, ecan
lon(®) < M,te€[0,1],n € N.

Iycrs f nepuopudeckas byHKIMs ¢ MepuomoM 1 i uHTerpupyemas Ha [0, 1].

e = calf) = /0 FOypn(@dt,n € Z

6yayT ee kosbpuupentamu Oypobe no cucteme $ = {pn}o_ ;.
Teopema 1. ITyems 0 < § < 00 u nyems A Heompuyameavias GYHKYUR Ko [0,00).
Ecau cywecmeyem & > 0, ydoeaemeopaiowas Ycrourw: Me)t~¢ aearemca eospucmarouseti

dynxyud, /\(t)t’(%_‘s) aeasemea ybuearowets Gynryudi, moada

(i (EAm)° %)B < ( / 1 (f*u)u (%))ﬂ f})z :

n=1

20e {ct}° nsanemca nesospacmarweli nepecmanosxoll nocredosamessHocmy {[cn'|};';:°_oo
u f*(t) seasemca pasrousmepumoti no | f(t)| u nesospacmarowet gynxyued.

B cayuae § < 00, @ = {ez"ik’ }-TpuroHoMerpudeckas CHCTEMA, yTBEPXKEHHE IOKA3AHO
B pabore Ilepcona J1.E.[1]

Teopema 2. ITycms 0 < B < 00 u NYcmMd A HEOMPUUAMEALHAR Pynxyus na [0,00).
Ecau cywecmeyem § > 0, y0oeaemeopaowas ycaoeuo: Mt)t™® sospacmarnwan dynruus u
M)t ybusarowan yweyus. Tozda

(S d) <o([ (roo()8)"

n=1

2de 6 = 1|30 ) ()]

Korga A(t) = t7 Becopast gyHkuus, TO Teopema 2 Opula A0Ka3ana B pabore|[2].
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The periodic magnetic Schridinger operators: spectral gaps and tunneling
effect
Kordyukov Yu.A. (Institute of Mathematics RAS, Ufa, Russia)

Let M be a noncompact oriented manifold of dimension n > 2 equipped with a properly
discontinuous action of a finitely generated, discrete group I' such that M/T is compact.
Suppose that H!(M,R) = 0. Let g be a I-invariant Riemannian metric and B a real-valued
T-invariant closed 2-form on M such that B = dA for some real-valued 1-form A on M.

Consider a Schrédinger operator with magnetic potential A:

H" = (ihd + A)*(ihd + A)

(here h > 0 is a semiclassical parameter, which is assumed to be small).

For any z € M, denote by B(z) the anti-symmetric linear operator on the tangent
space T, M associated with the 2-form B. Consider the function Tr* B on M defined as
Tr*(B(z)) = 3 T((B*(2) - B(2)]"/?).

Put by = min{Tr*(B(z)) : z € M}.

Theorem 1 Assume that there exist a (connected) fundamental domain F and a constant
€0 > 0 such that Tr+ (B(z)) > by + €o for any x € OF. Then, for any natural N, there exists
ho > 0 such that, for any h € (0, ho), the spectrum of H" in the interval [0, h(b + €0)] has
at least N gaps.

We also obtain more precise statements on the existence of spectral gaps for H” in
several cases when the magnetic field vanishes in a regular way at some points. The proofs
are based on the study of the tunneling effect for the corresponding quantum particle.

This is a joint work with B. Helffer.

K 3anade acuMnroTndeckoll crabunusaimu no npasolt yactu
Kornev A. A. (Mex.-mat. MI'Y um. M.B. JIomonocosa)

Jlns oneparopa S, AeficTByiomero B 6aHAXOBOM MpocTpaHcTBe H, 3aJAHHKEIX TOYEK Zo,
ao € H n KOHeuHOMepHOro nognpocTpancTsa £ C H paccMaTpHBaeTcs 3aJa4a TIOCTPOSHUS
Takoro HaGopa nonpasok f; € F, 1 = 1,2,.. ., uro Tpaektopuu {S*(zp)} u {ai+1 = S(a;)+ fi}
ACHMIITOTHYECKH COMIKAIOTCA. Pemenue pamnoft 3amaun OpMYIMPYETCH B TEPMHHAX
NpHGIIHIXEHHOr0 NMPOEKTHPOBAHNA TOYEK a; BAOMbL NOANPOCTPSHCTBA F HA JIOKAJBHOE
ycroitunBoe MHOTOOGpa3He

W—(S, O) = {mo €0:3Imiy; € 0,miy = S(m,'),‘i =0,1,2, ..},

onpeJiesieHHoe B HekoTopo# okpectroctn O TpaekTopuu {z;}.

IMpeanarajoTc YHCJIEHHEIE AJITOPUTMEl DelIEHWsl AAHHOA 3a0aul TNIDH HAJIMYHH
Pa3jIMYHOIrO TUNa OrpaHUYeHul Ha MHOXeCTBO J, NPUBOASATCSA Pe3y/bTATH PacyeToB JJId
ypasrenus tuna Yade — Hudanta.
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Teopus ¢bynkuuonanbuo-gud¢epeHMaNbLHBIX yPABHEHNH B 4aCTHBIX
POM3BOAHBIX U IPo6JeMbl MOAeINpPOBaKNA GHOIOrHYECKHX NIPOLECCOB
Koponesa H.M. (MockoBckn#t rocyAapcTBeHHBI HHCTHTYT 3JIEKTDOHHKH H MaTEeMaTHKH
(TexHuuecknit yHUBEDCHTET))

CoBpeMeHHOe COCTOSHUE UCCJIeOBaHMH B 061aCTH THHAMUMKY GHOIOTHYECKHX IIPOIIECCOB
106y 1aeT uccienoBaTesell IPHBIEKATh HEe TOJBKO HOBelflune MOAXOAbl, CBA3aHHEIE C MX
MOJEJMPOBAHHEM, HO I TIO-HOBOMY 1€PEOCMBICIIMBATE HCXORHBIE 6a30Bble IOCTAHOBKH 33134
¢ yueToM GoJiee TOHKUX ¥ AeTAJIbHBIX (GAKTOB, MOSABIAIONIXCS HA STale SKCNepHMEeHTANbHBIX
OMBITOB.

CI10XKHOCTD N0BEIeHNs! GHONOTHYECKUX FIPOLECCOB, H3GEITOK HEJOCTOBEPHOI alpHOPHOI
nEGOpMANMY HApALy C HENOCTATOYHBIM KOJIMMECTBOM JAHHBIX O CYIIECTBEHHBIX,
ONpefeNSIOHX ~XAPAKTED OMHAMHMKE KOMIIOHEHTAX COCTOSIHMS — PacCMaTpuBaeMoi
IMHAMMYECKON CHCTeMbl BBIHYK/A€T HCCefoBaTeNell He TONBKO HEONPaBJAHHO YNPOMATH
MAaTEeMaTHIECKYIO MOJIENb, HO ¥ MHOIHe "(akTrl", yTBepxaennsi IPUHAMATH HHTYUTHBHO, Ha
Bepy, 663 TEOPETUIECKOro OBOCHOBAHMSI, He TOBOPS Y2Ke O CTPOTHX J0Ka3aTelbCTBaxX. JTOMY
crocoBeTByeT U cama pupofa 6uosoruyecknx npobneM. He Tak npocro, HanpuMep, cAenaTh
mar oT npocrefimett auddysnoHHOR MOAETH TUIA "XMUHHK-XKePTBa"K NPOCTPAHCTBEHHO-
BPEMEHHOMY 2HAJIOTY € y4eTOM NPEeAbICTOPHE M O4eBUAHBIX (PaKTOPOB HEONPEAENEHHOCTH.

B 110KJ1a,ie paccMaTPHBaeTCs Kiace (yHKIHOHAILHO- AU pepeHnInalbHEIX yPaBHeHUH B
YACTHBIX IPOU3BOAHHIX H JaeTcs 0BOCHOBaHNE UCTIONb30BaHUsA 1eMenToB Teopun ®Y 1t
MOZE/INPOBAHAS NPOLECcca HecTenugHUIecKolt KIeTOYHON 3al|Thl PeCIMPAaTOPHOTO TPaKTa
NpH WHraJIAIHOHHOM BO3JEHCTBHY HENATOreHHBIX MEKPOOPraHW3MOB.

Pabora mnommepkmBaercs Poccufickum ¢orgoM yHIaMEeHTAIbHBIX HCCIeJOBAHUH
(rpant Ne 06-01-00356).

O xoHcTaHTe B HepaBeHcTBe Ppuapuxca
Koposnesa 0. O. (r. Mocksa)

PaccmorpuM obmacts @ C R™ ¢ raaaxo#t rpanuneft. Ilyctes € — manwifi napamerp.
IpeanonaraeM, 4To B Ciiydyae . = 2 JjIMHA TPAHALE! O — eXUHUYHAS, IPH STOM

sQ=rjur;, Ti={Jr% Ts=UTs:
i i

Th =0, 4T3 =00, 36 =0 (fg) €= 0,

rae I'§; u ['§; gepenyorcs. B MHOTOMEpHOM CJIy4ae TeOMeTPUECKHEe KOHCTPYKIHH CXOXH.
Mgt cauraeM, yro 0Q = S UT, I’ npuHaasiexur IENepIIoOCKOCTH Iy = Oul =T{UTs.
O603Ha4YMM W OTPAHMYEHHYIO 06/1aCTh HA IHUIIEPJIOCKOCTH :z:,. 0, co,:wpx(augyxo Hayaso

XOOpAMHAT. Be3 orpaHnyeHus oéumoc'm, weK K={%: —— <z < 2, i=1,...,n-1},
T = (&,2,). TycTh we 370 o6nacts {£ : £ € w}. OBoznauM yepes T ueﬂoqucneﬂnbxe CABHTH
W, H8 CUNEPINIOCKOCTH B I; Hanpmeuun i=1,...,n—1 Hakonen, I§ ={z:5% € T}nr.

B muoromeproM ciy4ae §(e) = o(e"?) (e — O)
VIMeeT MecTo Criefyioliee YTBEPXKIACHHE:
Teopema.
Ins uw € HY(Q,T) cnpapeaiuBo cieyomee HepaBeHCTB0 Ppuapuxca:

/u2 dz < K, / Vul®*dz, K.= Ko+ ¢(e),
a K}
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(<]
rone K, siBAsleTcs KOHCTaHTOM B HepapeHcTBe Dpujapuxca anst Gyskuuit us H H),

2
T.6 He 3aBHCUT OT Majoro napamerpa, a (&) ~ (Tl_:—ﬂ) , e n o= 2, H

1 . L 1
o0 ~ (e 25pe )} o (H20) )+ (2282 > 2 w0,

IUIOIAAb eQMHHIHOM N-MepHO chepH , a ¢, = Cap w — rapMOHUYecKast EMKOCTb o6acTi
w.

T'panuynas 3ajaya Ajisl ypaBHeHHMs YeTBEPTOro NOPSAKA COCTABHOIO TUMA
Kopsrox B. H., Kornonessko O. A. (MM HAH Benapycu, BI'Y)

Jyst hYHKIM U HE3aBHCUMBIX NEPEMEHHBIX & = (zoy.-- ,Zpn) n+1 - MEPHOTO eBKAHAOBA.
TIPOCTPAHCTBa R+! paccMaTpuBaeTcs JuHelHoe auddepeHuHaIbHOE ypaBHEHHE
o %
Lu= 2= + (b — a?) 5 Au— a?b? A% + A®u = f(z), (1)
ozg 0z

rae nocrosHubie b2 > a? > 0, onepatop Jlamaca A = Y& | §2/9z2,

ABy = Z a®*(x)D%u,
|ef<3

a = (op,...,an) — MyIsTHHHIEKC, onepatop muddepenuuposanus D = (Dp...Dp),
D%y = 81*ly/dz5° ... 828, la| = ag + ... + an, a®(x), f(x) - 3azannse dynxmum.
Ypasuenue (1) 3amaerca B ummuHzpmdeckoit obmactu Q = (0,T) x . T'panuna
90 cocroutr w3 HuKHero ocHopamusi §Yg = {xr € 0Q|zy = 0}, sepxuero ocmoBanus
Qr = {x € 09}z = T} u Goxopoit nosepxuocru [' = {x € Y0 < zo < T}, xoropas
ABJAETCS KyCOUHO [VIAJIKOMN.
Ha umxnem ocHoBanuu y 3a/1aHbl YCIOBUS

du 8%u
’ ! n
U|zo=0 = @(x’), &' € R", — =0, — =0 2
|.‘Bo 90( )w ’ 8130 20=0 ) 617(2) 20=0 ) ( )
a BepXHEeM OCHOBaHHH (7 — yClIOBHE
6%u
2 =0, (3)
61‘0 zo=T
Ha GokoBoit noeepxnoctu I' ~ yenosust
8%u
Ulr = —5 = 4
| ov?lr @)
rie v = (Vp,...,Vn) — EIHHMYHBIl BEKTOp BHEUIHeH#l OTHOCHTENBHO () HOPMAH K

runepnosepxHocTy .

B moaxonamux (yHKUMOHAILHBIX [IPOCTPAHCTBAX NPH HEKOTOPBLIX OTPAaHHYEHHSAX HA
JaHHDIC [OKA3AHO CYLICCTBOBAHME M eIMHCTBEHHOCTh CHJIBHOTO peluenns 3ajaun (1)-
(4). JoxazareqbcTBO INPOBEJEHO METOAOM 3JHEPreTHYECKUX HEPaBeHCTB W OMNepaTopoB
OCpeIHEHUS ¢ TIepeMEHHBIM IIAr0M, HCIIOb3Ys MeTob! PyHKIMOHAIbHOTO aHAJIA33.
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O dbynkunu Tpuna 3agaun Jupuxiie Ajis HOAMIapMOHMYECKMX ypaBHEHUN B
mape
Koshanov B. D. (Llentp ¢usuro-marematnyecknx uccaenopanutt MOH PK, r.Anmarsi )

B nannoi#l pabore B ABHOM Bize noctpoesa byHnknust I'prna 3anaun Iupuxne B mape 1514
MOJIMrapMOHHYECKUX YPABHEHNH NPOCTPAHCTBE MPOM3BOJIbHOM pasmepHocTH. B wacTHOCTH,
HOJIyd4eHsl SBHOE TPEACTABJEHHE pelleHusi 3ajayn Jlupuxse 1yt GHrapMOHEECKOro
yPABHEHHsT, KOTOPOE HMeET BaXKHOE MECTO B TEOPHH YNIPYTOCTH.

Hocranoska 3agaun. Tpebyerca HaliTH peweHHe cilenyoweit sasaun Jupuxre B
obaactu Q5 = {z : ||z]j < §} C R" {n - HaTypa/bHOe TMCIO, § —~ NONOKHUTEIBHOE 9HCI0) ¢
rpannneit S5 = 8 = {z: ||z|| = ¢}

AZu(z) = f(=), (1)
%i,.u =0, 1=0,1,2,...,m—1, (2)

i
T llal=8

0

T
e ng = |—— - HOpMaJb K (s B Touke z, A — oneparop Jlamiaca.
T

Hcnons3ys CBOHCTB CHMMETPHYHOCTH  (GYHIAMEHTAILHOIO —pElleHMsl [OKa3aHa
cleAyromas:

Teopema. A) B ciyuae Hewerroro n ynxknus I'puna sagaun Jupuxae (1) - (2)
IpeacTaBUMA B BHIE:

Ggm‘n(l',y) = Eme(m:y) - g;m,n(mv y) - Zggm,n(wv y)v
k=2

rae
52m,n(1"7 y) = 62"1,71[‘7" - y|2m—n

§

gémyn(z,y) = (2m —n)(2m — 2 —n)...2m — 2k + 4 — n) Comn’

gém,n(zvy) = C2m,n {

2m—2k+2—-n 2 k-1 9 k—1
2 2 I (R TV N OO
62(1:—1)
-m, =2,...,m
1 1

Cmn = Dz em—n)@m—1) —n)-(2—n) m"

B) YrBeprxaenne A) ocTaercs CIIPABEITHBBIM [PH 9ETHBIX N, €CTH 2m < n.
C) Korna n uerHoe u 2m 2 n, To ¢pynuxnusa I'pnna 3anaqn Jupuxae (1)-(2) npeacraBuma B
BHzE:

m
sz’"(x, y) = 52m,n(xv y) - g%m,n(z7 y) - Zgﬁm_n(z, y)v
k=2

re
Eamun(T,y) = Cam,nlT — ylzm_n Injz —yl,
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Y 52

2m—-n
1 - y’ _ _
me,n(zvy) C2m,n U F; xr |y|2 ] ln|:c yl,

gé’m'n(m, y) =(2m-n)2m—2-n)..2m — 2k + 4 —n) camn-
Y
¥e- |

(-7 05 ey

k=2,..,m,
(_l)n/z—l
L(m)T(m —n/2+1) - 22m—1gn/2°

q2m=2k+2-n

Y
x—Wéz ‘ln|z -yl

Comn =

Meroanka HacTosimeld paboThl MO3BosIAET CTpOMTh GyHKuuio I'puna  pas
[OJINTaPMOHNYECKHX YPABHEHMH He TOJbKO U Wapa, HO AJS MOJYHJIOCKOCTH ¥ JAPYTHX
kaHOHM4ecKux obnacTsax (cM. [3],[4]). OTmernm, 9To siBHOE npeacraBnenue dyukuun ['puna
3agaun HeifmMaHa A/ HEOZHOPOZHOIO MOJMTAPMOHHYECKOIO YD&BHEHHHA B KOMILIEKCHON
TUIOCKOCTH BII€pBbI€ IpUBeNeHb! (CM. [5]).

Pabora soinosnnena B coasroperse ¢ T.IIL.KannMeHoBsiM.
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IIpuMeHenne yHHBEPCAJBHBIX UTEPALMOHHLIX MIPOUECCOB K HEKOTOPHIM 3azavyaM
MeXaHUKHK
Komenes A.H. (Cankr-Ilerep6yprckuii rocyaapCTBeHHBIN YHUBEPCHTET)

Jist  [0BOJABHO IIMPOKOTO KJAacca KpaeBblX 3aJ84 HEJIMHEWHON  MeXaHWKH
paccMaTpUBaIOTCS YHHBEPCAJIbHbIE HTEPALMOHHBIE IPOLECCH], NPEIJIOXKEHHbIE aBTOPOM.
OHu XapaKTepHBl TE€M, YTO CXOUATCH, HaUHHAasi C JIIOGOro HAYaJILHOrO MPHOIMIKEHMsI, He
TOJIBKO B 3HEPreTHYECKOM INPOCTPAHCTBE, HO MHOTAA M B IVIAAKMX HOpMax. B nmoknanme
HU3Y4alOTCH METOAbl, B KOTODHIX CBSI3YIOIIMH HTEPAlMOHHbIA ONEpaTOp MOXeT ObITh
puibpan  pasnuuHbiMu  cniocobamm  {onepatop Jlamnaca, oneparop Jlame, omepartop
TEIIONPOBOAHOCTH). B YaCTHOCTH, W3 CXOAMMOCTH MTEPALMOHHBIX IIPOLIECCOB HMHOTAA
BBITEKaeT CyIUECTBOBAHME [VIAKMX PEIIeHUll pacCMaTpUBAaEMbIX KPAeBbIX 3a1a4. [1oaHOCTBIO
pesyabTarel 6ynyT onyGuukopansl B Havase 2008 roga B Bbimycke >xypHada "Becrhmk
CII6I'Y", nocesimieHHoM crosieTuio co ausa poxaenus C.I. Muxsuna.
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HekoTopeie BONIPOCH! 8KYCTHKH IIOPHCTLIX CPeA
Kocmonempstackuit 1. A., Illamaes A. C. (r. Mocksa)

B 1okjale PACCMATPMBAIOTCS CIIEKTPAJbHbIe CBOMCTBA TpeX YCPEAHEHHEIX 3a1a4
MEXAHHKH CHJIBLHOHEOQHODOJHHIX cped: mnpobiemnl "gmsoitsolt nopucroctu", mpobnems
KoneBanusi cMecH (MUKCTYpHI) ABYX BSISKMX CKHMaeMBIX XKHAKOCTelt u Kosebanns cpelsl,
cocrosimell M3 YIPYroro Kapkaca u Bsskoit cinabocxumaemofi sxuaxocru. Ilomyuenst
PESYIBTATE! O CTPYKTYpE CHEKTPa W HAMYUA TAK HA3BIBAEMBIX "CIIEKTPaIbHBIX NaKyH"BO
BCex Tpex ciy4dasx.

Taxoke paccMaTpHBaeTcsi Bompoc o (opMyIMpoBke TeopeM o GmusocTu pemenuii B
ciygae Masiex KoneGanuit cpenpl "ynpyruft KapKac-CKuMaeMasi XKUIKOCTh "B KJIACCHYECKHUX
byHKIMOHANLHEIX TIPOCTPAHCTBAX, TO eCTh 6€3 MCIOIb30BaHNs NOHATHS AByXMaciITabHON
CXOAMMOCTH.

JIpo6ubie nurerpasisl Pumana — Jluysmuis u S, , npocrpanctsa Cremanosa
Kocrun A. B. (r. Boponex)

B coorsercreun c [2], obosnaunm gepes Sp,[0,00),1 < p < 00, WK COKPAIIEHHO, Yepes
Sy, COBOKYNHOCTb BCEX H3MepHMBIX Ha [0, 00) byHKImM, A1 KOTOPbIX

o(s+1) 1/p
liss = sup [/ If(t)i”dt] <o
@

3€[0,00) (s)
roe ¢(s) — HeyOmiBaowas JOCTATOYHO INIAIKAS HEOrpaHMueHHas QYHKUMS, TAKas “TO
¢(0) =0u ¢"(s) < 0.
B STHX NPOCTPAHCTBAX DPACCMATPHMBAETCS MHTEerpan ApoGHoro mnopsaxka Pumana —
Jluysunns Ha noayocu t € [0, 00)

(J2.f) (&) = ﬁ‘a—) ]0 (t—5)*'f(s)ds,  (a>0)

rae I'(a)— ramma—bynxuns diiepa.

O603naunM uepes V., knaccel Gyskuuit 1(t), obnajaonmx ceayomuMy CBOACTBaMIL:
P'(t) > 0, 9(t) > 0 ansa vy > 0 BHINONHACTCS HEPABEHCTBO t7(t) < My’ (t), roe koHCcTaHTA
M or t He 38BHCHT.

Cioza oTHocsiTesi, HanpuMep, dbyrkuun Brma Y(t) = (1 + t)"e“’"“, P(t) = ete
n>0,w>0,a>0).

Ecm ¢y € ¥y u ¢ € ¥,, To ux amueiiHasn KOMOUHAIMA C IOAOKHTEJBHBIMH
kosbdunuenramu raxxe u3 V..

Kpome Toro, e ¢ € ¥, u ¢ € ¥y, TO U HX CYNEpNO3NLAH gy = () u
P21 = P2(31) Taxke npunagexar V..

Teopema. Ecii dbynkmus ¢ € ® taxas, uro (1 + ¢~!(t) € ¥,, rae v = max(a - 3,0
u a > 0, To oneparophi Apo6HOro uuTerpuposaHus PuMana-Jinysnnns J§ HenpephHiBHLL B
npocrpascteax Sy, (p > 1).

wtTt!

JInreparypa
[1] Camkop C. T, Knnbac A. A., Mapuues 0. . Hnmezpaaw u npouseodnsie dpobrozo
NOPAKG U HEKOMOPBIE UL NPUAOHCEHUR Munck: Hayxa u Texunka, 1987, 688 c.
[2] Kocrun B. A. Hepasencmea 0an mopm npouseodumwz & npocmpancmeas Ly, Mar.
3aMeTkH, T.6, N4 (1969), c.463 — 473.
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AHanu3 BeTBJIEHUS PABHOBECHBIX KOHduUrypaun HeonnopoaHoit 6anxkn
Kocrun [I. B. (r. Boporex)

Hokaan nocBemeH cxeMe aHanu3a Gucdypkanui paBHOBeCHBIX KoHbwuryparuit cnabo
HEOMHOPOAHOM ympyro# 6ajxkM Ha YNPYroM OCHOBAHMUM, B YCJIOBHSX J[ABYXMOAOBOTO
BEIpOXKJeHMs. PellleHne aHaJOTHYHON 3a784u B ClIy4ae OfHOpomHoht Gajiku paHee Gol10
nano B.M. Hapuuckum u I0.1. Canpouosbim [1]. Tlepexog k caydato HeonHOopoaHol Gajiku
norpeboBaj nepecTpolikn B HccienoBaTenbckol cxeme B.M. lapmuckoro m FO.U. Can-
pOHOBA, B OCHOBE KOTOPOH JIEXKAJIO YCJIOBHE MOCTOSHCTBA NMAPH COOCTBEHHBIX (DYHKIMH
e1, e, BTOpOro auddepennyuana (B Hyte) byHKUMOHATA HEPrUM. B ciiyuae HEOAHOPOAHON
6asIKp 9TO YCJIOBHE Hapyiaercss M, 6osee TOro, OHO He JomyckaeT OpsiMoro obobireHus.
B npennaraeMoff cxeMe yClIOBHE TOCTOAHHBIX COGCTBEHHBIX (BYHKIMI 3aMEHEHO YCJIOBHEM
CYUIECTBOBaHIsS Maphl IVIAJKHX BEKTOPHBIX TOJNeH €),€p, JMHelHass 060049Ka KOTOPBIX
HHBApPUAHTHA OTHOCHTEABHO BTOporo audpepenumana B Hyre. Hammume takoft napst
AOCTATOYHO AJISI MOCTPOEHMs [VIABHOW YACTH KJIOYeBON (YHKIMU M, KaK CIEACTBHE, s
[IPOBEJEHNS aHANU3a BEeTBJICHUS PABHOBECHBIX KOHMUrypauut Ganku.

B moctpoennu TpebyeMmoif mapsl BEKTOPHBIX MOJiel BEeAyUIYIO POJib ChIFPaja B3ATast
n3 monorpaduu B.II. Macnosa {2] $hopmyna opTOroHaJILHOTO HpOEKTOpa (Ha JMHERHYO
0601104Ky €3, €2).

Jlureparypa

{1] Hapuucknit B.M., Canpounos FO.M. Juexpumuranmmsie MHOHCECTNBE U PACKAGTDL
budypuupyrowuz pewenuts Gpedzorvmoenx ypasuenuti // CoBpeMeHHAs MaTeMaTHKa U e
npunoxerust. — Touwnucu. 2003. T.7. — C.72-86.

[2] Macso B.IL. Acumnmomunecxue memodvi u meopus eoamyuenut. — M.: Hayka.
1988. - 312 c.

S — Becosble npocrpaHcTBa CrenaHoBa U npeo6pasosanue Jlamnaca
Kocruu B. A. (r. Boponex)

O6osnagnm vepes Sy ,[0,00),1 < p < 00, WK, COKPAILEHHO, Yepe3 Sy, COBOKYITHOCTE
Bcex m3MepuMbix Ha [0,00) dyHKUMI, 415 KOTOPBIX

Ifils,., = sup < 00,
sel0,00)[[550 1oy 1wa] 7
rae ¢(s) — HeyOblBaloliasi JOCTATOYHO [JlaJKas HEOrpaHUYEHHAS (PYHKUMSA, TaKas, 4TO
p(0)=0mu¢"(s) <0.

TpocrpancTBa Sy, npH @(x) = t, SABJISTIOTCH KJIACCHYECKMMH NpocTpaHcTBamu B.B.
Crenanosa. 31ec MBI paccMarpuBaeM () = M (w > 0), e Spy = Spu
IIpocrpancTBa S1,,, ABASIOTCA PACIIMPEHHEM KJIACCHUECKOM ayreOpbl dyHKuumit, pacTymux
He 6blcTpee 3KenonenThl. Cripaseinba TeopeMa o6 obpaleHun npeobpasosanns Jlamaca.

Teopema. Ecin f € Sy, u F(p) = [ e P f(t)dt (p = v + i) — ee npeobpazosanue
Jlamnaca, To mpun ¥ > w

v+i€
£ = im e [ HA(VADF(R)p = lmy(T()1)(0)
Y

B TOM CMBICJIE, YTO

L [[£(¢) ~ (T(T)/)(O)s,,., =0
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H_i(2) = 7‘; f:’ e (" +20p) gg byHKIHS DpMUTA C IEPBEIM OTPHIATEILHBIM
MHIEKCOM, HOPMHPOBaHHa Tak, yro H_;(0) = 1.
JIureparypa
(1] Kocrun B. A. Hepasencmea dan nopm npouseodnuz 6 npocmpancmeax Ly, Mar.
3aMeTKH, T.6, Ned (1969), ¢.463 — 473.

O6 0coOBIX TOYKAX HA IOBEPXHOCTH, CONMPSKEHHON C BHHTOBON MOBEPXHOCTLIO
anreGpougHOroe TMOA.
Kopanesa M. U. (r. Boponex)

Tema coobiuenus cBsizana ¢ 00bACHEHHEM MEXaHM3Ma 0BPA3OBAHUA JTUHHH 0COBBIX TOUEK
(nmuuit HersIaOKOCTH) Ha NOBEPXHOCTH, FE€OMETPUHYECKH COMPSKEHHOH C CHMMETPHYHOM
anrebpoKIHON BMHTOBOM HOBEpXHOCTHIO. OCHOBY 06CYXIaeMBIX B IOKJIaJE DE3YJbTaTOB
COCTaBJs€T TEOpPEMa O TOM, YTO OAHONapaMeTpudeckas JedopMauus CUMMETPUIHON
BHHTOBOI TNoBepxHOCTH (ApaMeTp — JMAMETD TONEPEeYHOro Ce4eHMsi) NPHBOIUT, B
HEKOTOPBIX eCTECTBEHHbIX YCIOBUAX, K Ou(ypKalin perpecCuBHLIX TOYeK (TOUEK BO3BPATA)
Ha 8HAJNTHYECKH COMpPsKEHHOM MOBEPXHOCTM mO Tumy "nacToukus xsocr" [1], Te.
6udypKaiys pPErpecCUBHBIX TOYEK WIeHTH4YHA Oudypramun Touek (g, q;,Q2) Ha
JIHCKPUMHHATHOR NoBepxHOCTH mojuHoMa f = t4 4+ apt? + oyt + @y, COOTBETCTBYIOMIKX
3—KpaTHHIM KOPHSIM IIOINHOMA f.

Ilapa BHHTOBEIX IOBepXHOCTEH —  Ba)KHEMIIMHA  KOHCTDYKTMBHBIK  3JIEMEHT
TypboBuHTOBOrO Hacoca. I'epMeTHYHOCTL HAcoca, €ro KHHeMaTH4YyecKue U Mp.
XapaKTEPUCTHKU ONpEeJEsIOTC] [E€OMETPUYECKUMH CBOMCTBAMH IIONEPEYHHIX CeueHni
puaTOB [2],[3]. MHHMManbHOCTH 3830pOB MeEXAY BHHTAMM W CHMMETPHYHOCTb CXEMBI
CHJIOBBIX HArpy30K IMO3BOJIAIOT Hacocy paboTaThb yCTOWYMBO B Pa3sHOOODA3HBIX peXHMax.
ObecneueHne MUHHMAJBHOCTH 3230pOB — BadkKHefimas 3ajaya B KoHcTpyupoBanun TH,
U3BECTHAS B JINTEPATYPE KaK 337248 ONTHMHM3AIUHM INECTEPEHHATOro 3alelUIeHHs [apsl
BHHTOB.

IloBepxHOCTh BHMHTA 3aJaeTCs "BMHTOBRIM BpailleHHeM" 3apaHee 33JaHHOFO
npoduis NONEpPEeYHOro CeYeHUss — 3aMKHYTOrO IUIOCKOrO KOHTypa (IVIAAKOro, KYCOYHO
rA8JKOro M T.IL), ONpPEJENseMOro NOCPEICTBOM IePHOAWYECKHX NPOMUAbHBIX GYHKIHI
r = r(s), ¢ = ¢(s) (B moAAPHBIX KOOPAMHATAX), YAOBJETBOPSIOWINX YCIOBHAM
r(s) = r(s+27) u ¢(s+ 2w) = ¢(s) + 2r. B moxsane paccMoTpeH NMpodMIL B
BHUJIe HEOCOB0H KOMIAKTHOM JIMHHK YPOBHS OAHOPOJHOTO NOJIMHOMA OT ABYX NE€PEMEHHBIX C
TIOBOPOTHOH cuMMmeTpueit.

Pabore! Buinonsena coMectHo ¢ KocrunpiMm B. A. n CanponossiM 10. 1.

JIureparypa

[1} Apnomsz B.M.,, Bapuesko AH., Tyce#in-3aze CM. Ocobennocmu
Juddeperyupyemus omobpadsicenuti. Kaaccuuxoyus KpUMUNECKUT MONEK, KGYCTMUK
u 6oanoewx dponmos. M.: Hayka. 1982. 304 c¢. [2] IIsik O.A., Xapuronos E.C., Eroposa
I1.B. Cydoswe sunmoswe nacocw. - JI.: CyaocTpoenne, 1969. — 196 ¢.  [3] Bamoxos C. I,
Koctun B. A., Canporos 10. U., CemenoB C. M. Onmumusayus wecmepenamuis
sauenaenuti 6unmosnT noseprrocmeti. — Boponex: BopI'V. 2005. - 177 c.
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On the sets of boundedness of solutions to degenerate fourth-order equations
with strengtheningly monotone principal parts, absorpition and L! - data
Kovalevsky A.A. (Ist.Appl.Math.Mech., NAS of Ukraine),

Nicolosi F. (University of Catania, Italy)

We consider the Dirichlet problem for a class of degenerate non linear elliptic fourth-
order equations with strengtheningly monotone principal parts, absorbing lower-order terms
and L!-right-hand sides. We establish existence of solution of the given problem bounded
on the sets where the behaviour of the data of the problem and involves weighted functions
is regular enough.

V6piBanue penienuii ncepaoanddepeHINANLHEIX IMITHYECKMX ypaBHeHUl B
HeorpaHW4eRHbIX obJlacTax
Koxesnukosa JI. M. (r. Crepiuramax)

B meorpanmuenno#t obmactu @ C Rpy1 = {F = (z,y) | r € R,
¥y =W1,¥2---,¥n) € Ry}, He nexameit 8 nomynpocrpatctse Buga {(z,y) € Rny1 | 2 <71},
PACCMATDUBAETCH yPaBHEHHE

Lu= Y (1) DiTP(a5(y)T"Diu) = 2, yEQ. M
a,Bes

® — sumeRtHbIl HenpepbIBHEH (YHKIHOHAJ ¢ OrpaHWYeHHBIM HocutesneM. Kommmexcubie
ncesgonuddepenimanpube _onepatopet T, T  onpemensioTCs  CONPSKEHHBIMHU
cumponamu  A%(z,z), A (x,2), coorBercTBenHo. KoMIUlekcHO3HauHble DYHKUUM
A%(z,2), @ = (i,0) € S yaosuersopsioT crepyomuM ycaosusaM. Iycrs D(z), z € Ry —
JeflcTBHTENbHAS HeOTPHIATeIbHAS HerpephiBHas GYHKUHA Takas, yro D(z) # 0 ana z # 0.
Cywectsyer uucio V(@) € [0, 1- %] Takoe, 4To npu HeKoropoM A > 0 u z € R, Takux, 4ro
D(z) > 1, ana n.e. ¢ € R cnpaseanuss HepasenctBa | A%(z,2z) |< ADY @)(z). Cymecrayer
ancno p(@) € [0, 00) Takoe, uTo npu HekoTopom A > 0 u z € R, Takux, uro D(z) < 1, ana
n.5. € R cnpaseausnl Hepaenctsa | A%(z,z) |< ADH®(z). Heiicreurenshble GyHKImn
a55(Y), @, 3 € S UBMEPUMBI M YHOBJIETBOPSIOT HEKOTOPbIM yCJIOBMSIM MAJIOCTH.

PaccmarpuBaloTcs  ofofmientble  pewieHuss ypapHenust (1) B knacce yHKuui,
COOTBETCTBYyOLIEM oAHopoaHok 3aaade Jupuxie. HccnenyeTcs 3aBUCHMOCTD TIOBEIEHUA Ha
6eCKOHEYHOCTH pelneHds ypapHenus (1) oT reomerpus HeorpaHuueHHON 00J1aCTH.

HeorpaHuMueHHYI0 BO3DACTAIOWLYIO IIOCJEAOBATEILHOCTh  IIOJIOXKUTENbLHBIX — YHCeN
{zN}$—o HA30BEM A-TIOC/IEJOBATENBHOCTHIO, €C/H CymecTsyerT 4uciao 6 > 0 Taxoe, 4TO
ClpaBe/l/IUBLE HEPABEHCTBA “

1

S S _
B(z 1 — zy)2Ral = Mz, TN+1)

= inf { J2v(g) | 9(3) € CE (@), / Pdy =1},

IN+1
QN

rae
szn@)= [ (DsoP+1Dtgl) dydor

EN+1
QN

160



+ / D?(2)|Fy_z(g}|*dzdz, N =0, 00,
Q:Z-FI

p[""’] pasHo p* miu p? mpu p < 1 wim p > 1, COOTBETCTBEHHO, g — lieJIoe HeOTpHLATeIbHOE
9HCII0, £ — HAaTypaJlbHOE YMCIo, ¢ < k.

Teopema. [Tycmv das obaacmu Q cywecmeyem A-nocaedosamenvrocmod {Tn}N—g-
Toeda cywecmsyrom noaoscumervrsie nocmoatnsie k, M maxue, wmo dan pewenus u(y)
ypasnenua (1) npu ecex N > 2 cnpasedausa ouenxa

J® (u) < Mexp(~kN). @)

Tlokasano, 4ro ans obnacTelf ¢ HeperyJIApHBIM [OBeJEHMEM TPaHULbl OlLeHKa (2)
apasercst Goee TOYHOM, yeM oneHka, ycranosieHHass O.A. Ouseiinuk, ['A. Uocudbsu B
pabore [1] jIs SMAMNTHYECKOro YPABHEHMs BTOPOro IOpsifKa. B ciydyae JUIUNTHYECKOro
YPaBHEHHs] BTOPOTO MOpsKa ISl HEKOTOPOro KJAacca CHMMETPHYHBIX ofacrell JOKa3aHa
TOYHOCTB OLEHKH (2).

JlurepaTtypa

{1] Oumnettnux O.A., Uocudwsn T.A. O nosedenuu na beckomennocmu peusenuti
JANUNTRUNECKUT YpasHenull 6Mmopozo NopAdKa 6 0BAGCTNAL ¢ HEKOMNAKMHOU zpanuued
// Mar. ¢6. 1980. T. 112, Ne 4. C. 588—610.

Coincidence of the continuous and discrete p—adic wavelet transforms
Kozyrev S.V. (Steklov Mathematical Institute)

We show that translations and dilations of a p-adic wavelet

x (p7'z) Q(lzlp)

coincides (up to the multiplication by some root of one) with a vector from the known basis
of discrete p-adic wavelets. In this sense the continuous p—adic wavelet transform coincides
with the discrete p—adic wavelet transform.

The p-adic multiresolution approximation is introduced and relation with the real mul-
tiresolution approximation is described.

Markovian Fields in Frame of Noncommutative Probability and Fourier
Transform of their Distributions
Kpekpassi M. (Moscow)

We start with a natural number k € {1,2,3...} (fixed), an arbitrary real vector space
Sy, with such space Sj of linear functionals on So which generate a measurable space
(S, By = 0(80; S)) with countably-generated o-algebra By (for example, Sj is a separa-
ble dual to a real normed space Sy and By is Borel), and with arbitrary measure v defined
on By taking values in an algebra A of all ny x na matrices (ny = 1,2,...) with complex
coefficients. :
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We shall denote Sp41 = (Sp)¥ , el = (S (n =0,1,2,...), and B, = o(Sn; SL),
Fy =v, Foy1 = NF, k0 are measures, F,, : B, — A, where

NII,k,;:(Al X...XAk) = /
Axdzi

. / fu(z2;dz)
A3z

fulz;dzy) - / fulz3; d2zg)-

Az323

and for any measure u : B — A defined on a translation-invariant o-algebra B of a real
vector space S, f,(z;A) =m(A-=z), (z€ S, A€ B).

F), can be regarded as a distribution of (an analogue of) a Markov type n-temporal
stochastic field with non-commutative transition functions.

Theorem. Let n € N and let a function y : {1,2,...,k}® — S’ define a linear functional
L, on real vector space

S 2k} = (5 {1,2, ..., k)" — S} =

= (Sn-1)f = {z:jma(o-,j) € SUA-HTTY
by formula L, (z) = Zje{l,z‘...,k}" y;(x;) where y; = y(j) and z; = z(j) for any multi-index

je{1,2,..,k}*.
Then
- 1 1 1 Ju J2 In
Fo(L,) = H H H 3 Z Z ...... Zy(imin-l,-'- ,i2,41)
Jn=kjn_1=k  Jn=k in=lip_1=1 i1=1

This construction is motivated by the fact that the case n = 1 corresponds to Markov
type chains with non-commutative transition functions (cf. [1], where these functions are
commutative but complex-valued, hence non-probabilistic, see also [2] on another approach
to this complex-valued case), which approximate matrix-valued Maslov-Poisson type mea-
sure giving solution to the Dirac electron equation [3] as well as analogous complex-valued
measures are giving solution to the Schroedinger electron equation [1] and to the stochastic
Schroedinger-Belavkin equation {2].
References

{1] Maslov V.P.: Complex Markov Chains and Feynman Path Integral for Non-linear
Equations. — Moskow: Nauka, 1976.

[2] Smolyanov O.G.: Stochastic Schroedinger-Belavkin equation and related Kolmogorov
and Lindblad equations.// Vestnik of Moscow Univ., ser. 1: mathematics, mechanics. 1998.
No 4. 19-24.

[3] Shamarov N.N.: Functional integral with countably additive measure representing
solutions of the Dirac equation.// Trudy Mosk. Matem. Ob., 2005, v.66., 263-276.

O HeOGXOAMMBIX M JOCTATOYHBIX YCJIOBHSX Pa3spelIMMOCTH IIepBO#l KpaeBoit
3a/laun OJisl JUBEPreHTHOrO YpaBHEeHMs
Kpacroropcknit A. M. (r. Mocksa)
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Iycrs ofmacte G C C, 1 < p < oo OnpesemuM yHKIHOHATBHOE
mnpocrpancTeo W w »0{(G) xax monoiHenue npocTpaHcTBa GUHUTHBIX GECKOHETHO IV KUX
KOMILIEKCHOAHAHLIX byuxkmutt D(G) = C§°(G) no HopMme lu”W,’,,o(G) IVull, ()2 e

o~ e~ L

Vu{g%,g—:}, u mpocrpancreo W, 1(G) = (W},,O(G)) . O6o3naunM cuMBosioM N sIpo
omeparopa V B npocrpaHcTBe Lp(G). Taxkum obpasom, N = C, eciu mesG < oo, u
N = 0, ecin mesGoo. Ilyers Ly(G)/N o3navaer daxrop-npocrpanctso L,(G) no ero
nognpocTpaHcTsy N, HaJe/IAEMOe ¢axrop-HOpMOit [[ul| L(G)/N infeen [Ju + cf L)

v Cumsomamu Op(G), Op(G), Hp(G) obo3HadmM, COOTBETCTBEHHO, MOMIPOCTPAHCTBA
AHAJIMTUYECKUX, SHTHAHAJMTUYECKUX (T.e. KOMIUIEKCHO-CONPSUKEHHBIX C AHAJMTHYECKHMH)
M rapMOHHYECKHX (KOMILIEKCHO3HauHbx) byHkunlt B obmactu G dynkuuit. Kak o6eramo,
GyeM Ha3BIBATH FADMOHMYECKHE (DYHKIMH U ¥ U CONPSKEHHBIMHU, €C/TH OHU Y/IOBJIETBOPSIOT
B obnactu G cucreme ypapHerutt Komu-Pumana g;‘ g;, g—;‘ = —g;.

Teopema. Crenyioune yTEEPKACHUS IKBHBAJIEHTHBL:

a) ana npoussonsHo#t ¢ymxumm u € Lp(G) cnpasemmmeo Hepasencrso LBB
(MTaaprxenckot-Babymku-Bpern)

lull, v < My ”v““(w-‘(c:)) ’

rae KoHcraHTa M; > 0 He 3aBUCHT OT PYHKUHH U;

b) npocrpanctso Op(G) + Oy(G) samxuyro B Ly(G);

€) JUIS CONPSDKEHHBIX rapMoHMYeckux dysknuh u € H,(G), v € H,(G) cupasenmuso
HepaBeHCTBO Xapau-JIuTTibLBy 8

ol )~ < M2llulip,yn »

rae koHcraura Ms > 0 e 3aBucut oT GyHKUMH U, V.

Kakx wmsBecTHO, yTBepKIeHHE a) eCcTh HeoOXOAHMOE M JOCTATOYHOE YCJIOBHE
pa3spemiMMOoCT# NepBO#t KpaeBoft 3ajadm Juisi ypasHeHus divu. = f B npocTpaHcTBe

~ 2
(W;’.O(G)) 9 p’ = ‘_,;Ll
Ionyyennas Teopema obobuaer pesymbrar Xorana u ITefina (cM. [1}) Ha cayvait p # 2
u obsacreit G ¢ HerslaakuMu rpaHunamu. Jloka3aHHas 3KBUBAJIEHTHOCTHL HepaseHcrB LBB
u Xapau-JInTibBysia H03BO/IAET NOMONHETD U3BECTHbIE PE3YJIBTATH O HX CHPABEAJMBOCTH.
JInreparypa
[1] Horgan C. O., Payne L. E. On inegualities of Korn, Friedrichs and Babuska-Aziz //
Arch. Ration. Mech. Anal. Vol. 82, 1983, P. 165-179.

Structure of the solution space of PDEs
Krasnov Y. (Bar-Ilan University)

A symmetry operators approach to the raising the order of the exponential polynomial
solutions to linear PDEs is proposed. A procedure of a construction of general solutions for
some classes of partial differential equations (PDEs) will be present.

We touch upon an “operator analytic function theory” as the solution of a frequent classes
of the PDEs of, when its symmetry operators forms vast enough space.

As an example we discuss a possibilities of an algebraic operations lead in the subspaces
of the solution space of PDEs.
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In particular, necessary and sufficient conditions are given for a quadratic polynomial
to be a divisor of a nonzero harmonic polynomial in R™.

ANropUTMBI NOCTPOEHNUS ONTHMAJIBHBIX TPAeKTOPHMi B Moaensx
3IKOHOMUYECKOT'O POCTa
Krasovskii A. A. Tarasyev A. M. (r. Exatepuu6ypr)

Jna 3amaud ONTHMAJBHOIO YNPABJIEHUS ¢ GECKOHEYHEIM TOPH3OHTOM pa3paboTaHbl
QITOPUTMBl MOCTPOEHHS ONTHMAJIbLHBIX TPAEKTOpHH. AKTYaJbHOCTh TakMX 3ajad
MOTHBUPYeTCs MOJE/ISIMH SKOHOMHYECKOro pocTa. PaccMarpuBaercs MOENb ¢ BOTHYTHIMA
TIPOU3BOACTBEHHBIMU (YHKIUMSIMH. YIPaBIdiolfie NapaMeTphl HHTEPIPETHPYIOTCH Kak
uHBecTHIUM. B KauecTse YHKIMOHANA ONTMMH3ALMM BHIGMDASTCH HHTErDANbHBIA
NOKa3aTeslb JUCKOHTHPOBAHHOTO HHIEKca NoTpebieHuss Ha OGeCKOHEYHOM TOPH30HTE.
B paMkax DnpuHIMNA MaKCHMyMa IIOHTDACHHA [OJY49eHbl JOCTATOYHBIE YCJIOBHA
ONTHUMAJBHOCTH TPaeKTOpH#t pocTa [JJist CHCTeM C BOTHYTHIMH FAMMJILTOHMAHAMH.
ITpoBeneno HccenoBaHHMe KadeCTBEHHRIX CBOMCTB cOOTBeTCTByomeR IaMuaproHOBOM
CHCTEMBI: CyIIECTBOBAHHE M eIMHCTBEHHOCTE YCTAHOBUBILETOCS COCTOSIHUSL, XapaKTepUCTHKA
cBOMCTB COGCTBEHHBLIX 4MCeS M COOCTBEHHBIX BEKTOPOB JIMHeapH3oBaHHON cucrembl. Ha
OCHOBE 3TOr0 MCC/IE[OBaHMs pa3paloTaHbl BBHIYMC/IATEIBHBIE AJITOPHTMBI IIOCTPOEHUS
ONTHMAJBHBIX TPAEKTOPHH, CXOAANMXCA K YCTAHOBHBIIEMyCsS COCTOsSHMIO. Monens
KanubpoBaHa Ha SKOHOMETDHYECKHMX JaHHBIX Ais skoHomuku CIIA. KomubiorTephble
9KCIEPHMEHTH! [TOKA3bIBAIOT, WTO MOJENb 8JEeKBATHO OIMCHIBAET IIPOMOPLMH OCHOBHBIX
KOHOMMYECKHX (PAKTOPOB M TPEHIbI ONTHMAJIBHOTO POCTA.

Discrete analog of Novikov-Veselov hierarchy and charcterization of Prym
varieties.
Krichever

We prove that Prym varieties are characterized geometrically by the existence of a
symmetric pair of quadrisecant planes of the Kummer. We also show that Prym varieties are
characterized by certain (new) theta-functional equations satisfied on the theta divisor. For
the we construct and study a difference-differential analog of the Novikov-Veselov hierarchy.

SIsHoe pemenne auddepennuansHoro ypasuenus Iofina
Kpyrsos B.E. (Oneccknit HanHOHa/IHBI YHABEPCHTET)

Pemenne ypaprenns oftHa B OKpeCTHOCTH Hy/eBOH TOYKH HINETCH B BHIE CTELEHHOrO
psapa. Ilonyuensr dopmyssl mis ko3hpuLHEHTOB 3TOr0 psAfa, YTO NO3BOJIHIO BLIACHUTH
HEKOTOphle ACHMIITOTHYECKMe CBOMACTBa OOILEro 4jeHa 3TOrO Psifa M MONYIHTh GHOpMYyTy
peienns ypasuenus [ofina. OHa COCTONT U3 ABYX rHNEpreoMeTpHyecKnX GyHKIuM B ofHON
HOBOIt crienmanbHON HYHKIHH, MPECTABIEHHBIX B BH/E CTENEHHBIX PHAAOB, & TAKXKe — U3
OCTATOYHBIX WIEHOB 3THX PAAOB.
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Helmholtz equation in domains bounded by closed curves and open arcs
Krutitskii P.A. (MSU)

Boundary value problems for the Helmholtz equation are studied in planar domains
bounded by closed curves and open arcs. Either Dirichlet or Neumann bondary condition
is specified on the whole boundary (i.e. on both closed curves and open arcs). Theorems on
existence and uniqueness of a classical solution are proved. The integral representation for
a solution in the form of potentials is obtained. Each boundary value problem is reduced
to the uniquely solvable Fredholm equation of the 2-nd kind and index zero for the density
in potentials. Dirichlet and Neumann problems for the propagative Helmholtz equation are
studied for exterior domain [5-8}, while problems for dissipative Helmholtz equation [1-4]
are studied in both interior and exterior domains. Problems in domains bounded by closed
curves and problems in the exterior of open arcs in a plane are particular cases of our
problems. ‘
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On grazing bifurcation of vibro-impact systems
Kryzhevich S. G. (Saint-Petersburg)

The grazing bifurcation has been first described by A.Nordmark. It appears in a vibro-
impact system provided the impact velocity of a periodic solution vanishes as the parameter
changes. For different examples of vibro-impact systems the chaotic behavior of solutions
in the neighborhood of grazing has been established numerically. The main target of this
report is to show analytically how the "Smale horseshoes" may appear in the neighborhood
of grazing.

Let 0 € U C R? be the domain, J = [0, 2*]. Consider the function f(t, z,y, ) of the class
CY(R x U x J — R). Suppose that f(t,z,y,u) = f(t +T,z,y, ). Consider the mechanical
system, described by the equation & = f(t,z,, 4), which can be reduced to the system

z=y; §=Fftzym,

which is defined for & > 0. Define fo(t, 1) = f(¢,0,0, ). Let the following impact conditions
take place. ]

A. Let 2(t) = (z(t),y(t)) be the solution. If z(tg) = 0, then y(to + 0) = —ry(to —0),
where r € (0, 1].

B. If z(to — 0) = 0, folto, 1) < 0, and t; be such that fo(t,w)] <0 for all t € I = [to, t1].
then z(t)|; = 0.
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Denote z = (z,y), the obtained vibro-impact system by (1) and the solution of the
system (1) with initial data 2(tp) = 2o and a fixed value of the parameter u by z(t, to, 2o, u).
Consider the Poincaré mapping defined by the formula F, g(20) = 2(T(p)— 640, -8, z0, 1)

Theorem 1. Let there exists a continuous family of T - periodic solutions

ot ) = (pa(t,p) py(tp)  (Be€J)
of the system (1), satisfying following properties.
1L p(t,u)eUforallpeJ, tel0,T)

2. Every function o (t,u) has exactly N + 1 zeroes 7o(),...,7n(p) on the segment
[0,7).

3. The velocities yx (1) = oy (T (1) + 0, 1)) are such that yo(p) > 0 for ¢ > 0, yo(0) =0,
Fo(16(0),0) > 0; yx{p) > 0, forall pe J, k=1,...,N.

4. Denote (32 Z;Z) = ”,giir%H DF, o(¢(~0, 1)). Suppose that a1z # 0, a11 + a2z # 0.

Then there exist such values pg > 0 and g > 0, that for any p € (0, uo), 6 € (0,60) there
is a compact set K = K, g, invariant to the respect of the mapping Fi, and such that the
following conditions are satisfied.

I. The mapping F,f,ol K,., has infinitely many periodic points.
II. The periodic points of the mapping Fig are dense in K, 9.

IT1. There is such a point p, € K, ¢, whose orbit {Fi’},(p‘,,g) :n € Z} is dense in K, 4.

Parametrix for hyperbolic systems with multiplicity of order higher or equal to
three
Kucherenko V. V. Kryvko A. (Instituto Politecnico Nacional - ESFM, Mexico)

Consider a linear real symmetric hyperbolic system of the form

o du
= w— A — = t .
Bu= g + 3 A () oo = 1) M
The parametrix is constructed under the following conditions. Let z' = (¢,z),

N = {(z',&) | detQ(z',€') = 0} be the characteristic set of the symbol @ (z’,¢’) of sys-
tem ((1)) and £ := {(z’,¢') € N:dimKerQ («',¢') > 1}. The set ¥ is called the set of
multiplicity and suppose X # @. Suppose det Q (z',¢') = H;?:l (Aj + 7). Denote by X; the
projection of ¥ onto ]R:',"z’l. Evidently, ; is the set of points (z/,£) at which some two
roots coincide, i.e. Am (z',€) = A (2',€) . Suppose that £; N R ! is a compact set. Suppose

that ¥; is a C°°—manifold outside the points £ = 0. Let A (z’,{) be the eigenvalue of
multiplicity 7 of the matrix symbol A (x',g) = E;=1 A; (z') &;, and suppose that there

exist r eigenvectors e; (zl,g) ,j =1,...,7, corresponding to A\ (m',é) in Rif'zl\):l. Suppose
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that A\, € SI(RZ"'“) and e; € S° (R2"+1) for j = 1,...,r. Now, let Az, A3 € S‘(Rii‘;‘) be
other eigenvalues of the symbol, such that
Mlz, = dals, = Aol M # Aoy A # day Ao # A in RZINT, 2)

Let er41,er+2 be the unique eigenvectors corresponding to the eigenvalues Az, A3 in
Rz"“\El Suppose that

0 (m2n+1) . €r+1 — €r42 2n+1
ers1reryz € 8 (mz,,6 ) T e s (m rt ) 3)
€r41 — €r42 :
_ 0, 4
v vl M @
and
{/\1,)\2}121 ‘;é 0’ {A11A3}121 % 0’ {AZ»A?}}‘YA # 0. (5)

We assume that the symbol A(z,£) does not have any other eigenvalues different from
A2, A3 and coincident with A; on the set Xy. Suppose that other eigenvalues A4, ..., Ax of the

symbol A (z',g) do not change their multiplicity and belong to So(Rif'Zl). Also suppose

that eigenvectors er43,...,€, corresponding to this eigenvalues belong to S I(Rif"gl).

UccneaoBanne KBa3uepuogU4YecKuXx peumeHundt cucrem auddepeHuBanbHbIX
ypaBHeHHMHl myTeM mepexoAa K MHOrONEPHOAMYECKHM CHCTEMAM
Kynoxymuesa A.A., Caprabanos 2K.A. (1. Akrobe)

B nmoknanme wuccienyercss 3alada O CYHIECTBOBAHHH MNEPHOJMYECKOTO PpeIIeHHs
HeUHEeHHON CHCTEMB! 10 MHOrOMepHOMY BpeMeHH (T,t) € R X R™ Buga

D,z = A(o)z + F(1,t,0,z) (1)

¢ oneparopoMm D, = 8y + Z a;0;, rae 0; = at , (7 = T,m), (1,a1, ..., @) — MOCTORHHBIK
i=1
BeKkTop. BexTop-dyHkiuio ¢ = ¢ — a7 Ha30BeM XapaKTepUCTHKOl oneparopa Dg.
Iycts n X n-marpuua A(o) um 3asaunsas n-sekrop-dbynkuus F(7,t,0,z) obaazaior
CBOMCTBAMH MEPUOAMYHOCTH U [JIAJKOCTH BHAA

Ao + kw) = A(o) € CV(R™), (2)

F(r +0(0),t + kw, 0 + kw,z) = F(r,t,0,7) € CGLY(Rx R x R* x R3)  (3)

T,t,0,2
s Bcex k € Z™, rae 6(0) — NOJOXKUTENBHO onpeleleHHasi w-NEePHOJUYECKas U
HenpepbisHo auddepennupyemas dynkuus, npadem 0(0) = wp,wr, ..., Wm — PAIMOHAILHO
HeconsmepuMbie noctosHuse, RA = {x € R™| |z| < A = const > 0}.

TIpeanonoxuM, 49TO JAefiCTBUTENbHbIE M MHHMbIC YacTH BCEX COBCTBEHHBIX
smavennit \;(0) = @aj(0) + iBilo), (j = T,n) marpmumt A(c) obnapator
CBOMCTBAME 3HAKOONPEIeEHHOCTH, PAa3JIeJIEHHOCTH, W-NePHOMUTHOCTH, HENPephIBHON
auddepennupyeMocT ¥ HeKpUTHYHOCTH. ClleflOBATEILHO, ONHOPOZHAA  CHCTEMA,
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coorpercTyomas cucreme (1), ne umeer (0(0),w,w)-nepuomuyecKux pemieHnit, Kpome
TPUBHAJILHOTO.
Torza cucreMa (1) yAOB/IETBOPSET HHTErPAILHOMY YpaBHeHHIO THia Bonsreppa

(r+6(c),t)
2(r,t,0) = / K(7,0,ho)F(ho, h, 0, 3(ho, h, @))ds, (4)
(r,0)

rae K(r,0,8) = [X Y7 + 8(0),0) — X~ }(r,0)]"1X~1(s,0) - anpo, unTerpupoBaHue
NPOBOAHTCA BIO/Ib XaPAKTEPUCTHKH hg = $, h = o + as oneparopa D,.
Urak, 3aga4a O NepHOAMYECKHX DeIieHHsX cucTeMbl (1) cBemach K PeLIGHHIO

HHTerpajibHoro ypasHenust (4) B mnpocTpancTBe MHOronepuogumueckux ¢yukumit. las
(t+6(o),t)
aroro onpeznenum oneparop (Tz)(r, t, o) = [ K(r,0,ho)F(ho, h,0,2(ho, h,0))ds n
(r.0)
YCTAaHABIUBAEM, YTO ONEPATOP MMeEET €IMHCTBEHHYIO HEIO/IBHXXHYIO TOUKY B IPOCTPAHCTBe

HeIPEPbIBHBIX, PABHOMEPHO OrPaHU4eHHbIX, (6(0), w, w)-nepuoauyecknx n-BeKTop-QyHKIAN
z(1,t,0) ¢ Hopmoti |[z|| = sup |z(T,t, o), rae | - | — 3HAK eBKINAOBONH METPHKH.

Teopema. Ilpun Bumonnesun yciosuit (2), (3) ¥ OTCYTCTBMM NEPHOAMYECKOTO
PeIeHUs] COOTBETCTBYIOMEH OMHOPONHON CHCTEMBI, KpOMe HyseBoro cucrema (1) momyckaer
emuscTBerHoe (0(0), w, w)-nepuonuyecKoe peleHne.

Pe3ysbTaT 0 CylLieCTBOBAHHM KBA3UIIEPUOINYECKONO PEILEHUS] CHCTEMBI, NIOYYeHHON U3
(1) npn nepexofe Ha XapakTepUCTHKY omepaTtopa D,, cleayeT W3 TeopeMmHl npu t = aT.

AcuMmnroruyeckoe peileHe MMCKpEeTHBIX 3aaY4 ONITHMaJIbHOTO ynpaxmelmxl

Kypuna I'A. , Hekpacosa H.B. (BIVITA)

Paccma'rpuna}orca caeayoue Tpy THIa JUCKPETHBIX 38434 ONTHMAaJIbHOIO YIIpaBJICHUA
C MaJlhiM NapaMeTpoM:

L J0) = T FelyB),ex(h), u(k) — i,

YUk +1) = Su(u(h), (), 00,

ok + 1) = gh(y(),ex(R), u(k), k=TT,

(0) = UN), =(0) = 2(N),

2. J.(6) = PN+, Py, 2(k), () — min,
k-4 1) = fulaR), 2(8), (k)

ek + 1) = (k) 2R u(k), k= 0N =T,

¥(0) =1°, 2(0) = 2(N),

!PaBora uacThuno mognepKana rpantami POOU: 06-01-00296, 05-06-80237.
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3. Je(u) = lﬁ:o F(z(k)) + ¢ :201 Gi(z(k), u(k)) — m&n,

z(k +1) = fi(z(k)) + e2gx(z(k), u(k)), k =0, N — 1, 2(0) = 2°,

rne y(k), (k) € R" z2(k) € R™ , u(k) € R", uncno maros N ¢uKcHpOBaHoO,
€ > 0 - wmanuit napamerp. Qyukumu Fi, Gk, fk, gr UPHHUMAIOT 3HaYeHHS B
COOTBETCTBYIOUMX MPOCTPAHCTBAX K MPEIINOIATAIOTCS JOCTATOYHOE YUC/IO pa3 HEMPEPLIBHO
AnddepenupyeMpIMH 110 CBOMM APryMEHTaM.

His 3ana4 1-3 1OCTPOEHO ACHMITOTHYECKOE PAa3jiOKeHHe pelleHHs B BHAE pHAIAOB
N0 LEJbIM HEOTPHUIATEbHLIM CTEHEHSIM MaJIoro IlapaMeTrpa, MAOKa3aHa OXHO3ZHAYHAS
pas3peniuMoCTb BO3MYLUEHHON 38/84H B OKPECTHOCTH HYJIEBOTO NpHOIMIMKeHUs JJ1s
yTpaB/ieHNd, MOJIyYeHbl OLEHKH GAN30CTH MPHOIMIKEHHOTO aCHMOTOTUYECKOTO PeIIeHHMs K
TOYHOMY PeLIEHHIO 38/184H I10 YIPABJIEHHIO, TPAEKTOPHH U (DYHKINOHATY, & TAKXKE JOKA3aHO
HEBO3PACTaHHE 3HAYEHMI] MMHHMU3HPYEeMOro (YHKIMOHAIA C KaXKJbIM IOC/IEAY oMM
ACHMITOTUYECKHM NPUBIHIKEHHEM ONTHMAJBLHOTO YIIPABJIEHUS.

Hoselit noaxos Kk MaTeMaTH4eCKOMY MOJE/JMPOBAHUIO Ipolecca
BBICOKOCKOPOCTHOrO YIPYTOMJIACTH4eCKOro AedOpMUpOBaHus
Kypoxtun B. T. (Mockoscknit I'ocynapcrsennstt Texauvecku#t Yuusepcurer
um.H.D.Baymana)

Pe3synbTaThl SKCHEPUMEHTOB NOKA3blBAIOT HAaJM4Me BUXDEBLIX IBMKEHHA B 30HE
KOHTaKTa, 00pasylomyXcs IPH COYJapeHMH MeAHBIX O6pa3sloB NpM OTHOCHTENILHBIX
CKOpOCTSIX coydapeHuss or 200m/cek mo 500M/ cex. DTH JaHHBIE NOXTBEPXKAAIOT
runoTesy, chOpMyIMPOBAHHYIO aBTOPOM O INOSIBJIEHHMH BHXpe# B TIPOLECCe UMIIYIbCHOTO
MepOpMUPOBaHHS U AeJal0T aKTYAJIbHHEIM IOCTPOEHHE MAaTEeMaKTHYeCKON MOJENH AaHHOIO
nponecca. ABTOpDOM OTMeYalioChb TakiKe OOJIBIIIOE CXOACTBO (DEHOMEeHa BOSHUKHOBEHUS!
Buxpefl NpM BHICOKOCKODOCTHOM YJAape C sIBJ€HHEM TypOyJIeHTHOCTH, OMNHCAHHBIM
A H.Konmoroposbim. Takofi noaxon BeféT K OTKa3y OT AeTePMUHU3Ma, CBOHCTBEHHOrO
MexaHHKe gedopMupyeMoro TBEpHOro Tesna. IIpUXOOMTCH TakXKe OTKa3aThCs OT
NIPeJICTABIEHNs] BEKTOpA NEPEMEIEHHs B BUAE HENPEPHIBHON BeKTOP-PYHKLNM BpeMeHU
1 HayanbHbX JaHHeIX. Cienys E.OposaHy ,aBTop npeinaraer OTKa3aThCsl OT YpaBHEHHsI
COCTOSIHUA B BHAY YHKUMH HampsDKeHHs OT JeOPMAallMi.MMEeCTO TaKoro ypPaBHEHHS
NpenaraeTcs HCNONb30BaTh 3aBHCHMOCTh CKOpocTH Jedopmanuy, norjomaeMoil B
nponecce aedopMupoBannsi.[TosToMy HavaabHoe YCIOBHE B MATEMATHHECKOA NOCTAHOBKE
3a/Ia4H JOTMYHee 331aBaTh KAK HEKOTOPYIO M3BECTHYIO (DYHKINIO IHEPTHH, BhLAENseMON B
30HE KOHTaKTa B3aMMOZENCTBYIOIIMX Tes, OT BpeMeHH. I1onoGHbil MOAXOL MCIONB30BAJICS
JLU. CenoBuiM npy pelieHuH 3a1a4d O CHIbHOM B3phiBe. B paborax A.H. Konmoroposa u
JL.I. Jlanjay OTMEYEHO,4YTO YHEPrHsi QUCCHIIALMA NpPH TYPOYJEHTHOCTH NpPONOPIMOHATILHA
KO3((pHLMEHTY BASKOCTH >KHIKOCTH.A IDH INOCTPOEHHMH MOJEIH YIPYTOMIACTHYECKOTO
JebopMHPOBaHHsT TIpELJIaraeTcsi BBECTH KpPOMe NapaMeTpa,aHaJOrMYHOro Koadbduimenry
BSI3KOCTH, BTOpO#l IiapaMeTp, XapaKTepU3YIOmul [JUCCHIIAUMIO SHEPrMH B CBS3M C
TpaHcdopMmaiuell KPUCTAIHYECKO peléTKH.

HTepauuoHHOe pellleHHe CMeLIaHHBIX TMOpHMAHBIX cxeM MKD asas
BapHALMOHHBIX HEPABEHCTB
Jlanuu A.B.
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PaccMaTpUBAIOTCH BAPHMAIMOHHBIE HEPABEHCTBA C JIMHEMHEIM MJIM KBaSHJIMHEHHBIM
OCHOBHBIM uchbepeHIHaIBLHEIM ONePATOPOM BTOPOTO MOPSJKa W OTPAHMYEHHSIME Ha
pellleHne BHYTPM WIM Ha rpanune obaacTd. KiacCHYecKMMH IpUMEPaMH TaKuX
BAPUALMOHHBIX HEPABEHCTB CJIy’KAT 38,848 O NPENATCTBHY M 3a1a4a CUHBODUHM.

Hanee paccMaTpusaem 38181y CHELOPUHH C JHHEHHEIM OCHOBHEIM ONEPATOPOM: HatTH
u€ K ={ue€ H(Q) :u(z) =0nalp, u(z) >0 ralc}

/a(x)VuV(q —u)dz > /f(q ~u)dz Vg€ K. (1)
0 Q

3zeck 2 C R? ~ MuOrOyronsHas o6nacts, 0 =Tp ULy UTg, mesTp > 0.

Iyers Q = Q; Uy, QN2 = 0,0, Ny = . Crponm KoHPOPMHEIE TPHAHTYISIMH
Q, 9aCTHYHO COIIacOBaHHbIE Ha .

Ucnonb3ys cMelaHHyo rubpuanyo dopMymupoBKy 3agaun (1) M KOHedHble 3TeMEeHTH
[epBOro NOpsAKa, HojyyaeM cMellanHylo rubpunnyio cxemy MKD, anrebpanueckas dopma
KOTOpOif uMeeT BUI

M BT GT\ (v 0 0’
B 0 o f(aj+| O |=2(-f], (2)
G 0 0/ \X -C(N) 0

rne M = diag(M;, My), B = diag(By, By), G = diag(G1, G2). MHOro3Ha4HEI! MAKCUMAJILHO
mouoTouHbiH ontepaTop C' = Cy + s, rae Cp “oTBevaer” 3a OAHOCTOPOHHME OTPAaHUYEHHUS HA
¢, B 10 Bpemsa Kak Cy —~ 33 yCJIOBHs “HenmpepuIBHOCTH penrenus Ha I,

3asnaua (2) umeer equHcTBEHHOE pemeHue (T, Ta, &1, Uz, A1, Az)-

TTocae MCKIIOYEHUs NepeMeRHbIX Tk, Uk, k = 1,2 u3 (2) nosyyaeM KOHIEHCHPOBAHHYIO

CHCTEMY _ _
PX+C() 33, (3)

€ CHMMETPHYHOIt U NOJIOXKHUTEJILHO onpeaeneHHoN Marpuueit P.

JIas pemenust (3) Hcnonb3yeM MeTOJ PACIIEILUIEHHS, CXOXMMOCTh KOTOPOro o6ocHOBaHa
H pelnaercs BONPOC BbIGOPa ONTHMAJBHBIX HTEPALMOHHOro mapaMerpa 7. Peamusauus
UTEPAIMOHHOrO METOAA COCTOWUT B pelIeHHH IPOCTOrO HeMMHEHHOro BKIIOYEHHUS M 3aJa4u
C JINHEHHBIM CeJ;IOBBIM ONEpPaTOpOM

M BT GT
B 0 (1) , E — epuHH4YHas MaTpUUA.
G 0 - ;E

YcaoBus OTCYTCTBUA MNIOGANBHBIX MOJIOYKUTENBHBIX PELISHUH IIMITHIECKHUX
HepaBeHCTB B RY nyna obmeit npaso#t yactu
Jlanres T'U.  (Poccuiickuit rocynapcTserHst counababli yHusepedteT, Mocksa)

[Mycrs na Gyrkuusx u(z), z € RY, N > 2, onpeanesen quddepeHIanbHbLi onepaTop
A ¢ vacTHRIMH TIPOM3BOMIBIMU. 3ajlada o6 OTCYTCTBUH INIODAJIBHBIX HEOTPHIATENbHBIX
pewiennii nepaperctsa Ay > 4P nUpuBjeKaeT BHUMAHHC MHOTMX HCCJIeJoBaTeNel.
3HAYHTE/IbHOE pa3BuTHE 3Ta TEOPHs NoJy4duiaa B Mosorpabuu 3. MuTniuepn H
C.H. Iloxoxaesa (Tpyamt MUAH, 1.234, 2001). Ecrecrsenno uckarb o06oGuienus mis
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nepapercTB Buma Au > f(u). Ilpeanonoxum, uro ¢ynkuus f(u) uMmeer pasnudHbie
acuMOTOTMKM npu v — +0 m u — +oo. Bonee TouHO, BBegeM GyHKUMIO
fowy={wr: u<1; ur: u>1}.

Teopema 1. Iycmo f(u) > cfo(u) ¢ nexomopotli nocmoannot ¢ > 0. Hepasencmeo
~Au > f(u) 6 RN ne umeem 2n06arvnms nososcumensious pewenut, ecaupy < N/(N—2).
IIpu smom cmenenv p; moorcem Bumd A06BM NUCAOM.

YTBepaAeHne NMOKA3bIBAET, YTO CYIECTBEHHON SIBISETCS TOJbKO CTENeHb Py, KOTOpast
xapaxkTepusyer nosegenve ¢yunkuuu f(u) npu v — +0. Crenenp p; ponu He urpaer.
TomyepkHeM, uTo OOe CTEMEHHM Py M P; MOTYT OHITH OTPHLATENBHBIMH 4nciIaMmu. s
bynxmmu f(u) = uP(a® + u9)~! ycnoBus oTCYTCTBUS TIOGATBHBIX PElIeHHMH HepaBeHCTBa
—Au > f(u) moxHo npeacrasuts B Buge: p < N/(N —2); ¢ > 0.

Teopema 1 momyckaer pacupenne Ha Gosee ofiue npasbie YacTd Buga f(z, u). I'chu
Jisl BceX AocraTodHo Gonpmmx R — oo Ha MHoxectBe R < |z| < 2R cnpaBenamsbi
cootHowenns: f(z,u) > colz|™uP°, ecmm u — +0, u f(z,u) > ¢|z|* uP?, ecn u — +00.
HepasenctBo —Au > f(z,u) He HMeeT rJIOBGaJbHLIX TOJOXKHTCABHLIX PeHIeHull, eciu
o > -2, 00 > =2, pp £ (N + a)/(N —2), p1 € R. Hanpumep, misa pyHkuun
f(z,u) = |z|*uP({z|P+u?) " upn p,q > 0, a, 8 > 0 npuBeIeHHbIe BbIllIe YCIOBUS IPHHHMAIOT
Tako Bu: . — B> -2, p< (N+a—-8)/(N—-2),¢>0.

AHanornyHEle Pe3yNbTaTHl CHPABEIJIMBLL Ui KBA3WINMHeNHBIX JuddepeHnnaibHbIX
oneparopoB B AUBEPreHTHOM (opme.

Feynman diagrams and topological conformal field theories
Lazarev A. (Paris)

The relationship between operadic algebras and various moduli spaces goes back to
Kontsevich’s seminal papers {4] and [5] where graph homology was also introduced.

Kontsevich proposed two constructions producing classes in the ribbon graph complex.
The first, ‘direct’ construction, has as the input, a Z/2-graded A-algebra with an invariant
scalar product. The output is a collection of homology classes in the ribbon graph complex
(or a corresponding collection of cohomology classes in the moduli spaces of Riemann sur-
faces with marked points). This construction has now been well-understood from various
standpoints, see, e.g. {3], [1].

The other, ‘dual’ construction starts with a differential graded contractible Frobenius
with an odd scalar product and gives rise to a collection of cohomology classes in the ribbon
graph complex. By pairing the direct and the dual construction it is possible to prove the
non-triviality of both; this leads to the so-called matrix integrals.

The dual construction was motivated by the combinatorics of Feynman graphs in the
quantum Chern-Simons theory. The purpose of this talk, which is joint work with J. Chuang,
is to give a conceptual and general formulation of Kontsevich’s ‘dual construction’ from
the point of view of modular operads (cf. [2]) or, equivalently, topological conformal field
theories. We introduce the notion of a ‘dual Feynman transform’ FY(O) for a differential
graded modular operad O. It turns out that that FV(0O) is itself a modular operad. Moreover,
the vacuum part of F¥(O) (which corresponds to graphs without legs) is indeed k-dual to
/. O) while the parts corresponding to graphs with legs are contractible, in marked contrast
with F(O).

Furthermore, the algebras over FV(Q) are precisely O-algebras supplied with a contract-
ing homotopy. Applying this construction to the modular operad OTFT whose algebras are
(noncommutative) Frobenius algebras we recover Kontsevich’s dual construction. In fact we
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find that its original formulation needs to be modified in order for it to produce cohomol-
ogy classes. This can be done in several ways. One should either impose a rather stringent
condition on the Frobenius algebra or modify the ribbon graph complex by allowing one
to contract certain (or all) loops. That corresponds to compactifying the moduli space of
metric ribbon graphs and the dual construction in fact produces cohomology classes on these
compactifications.

We also introduce a certain generalization of the dual Feynman transform for a modular
operad O whose algebras are O-algebras supplied with a decomposition into a direct sum of
its homology and the contractible part. Note that the de Rham algebra on a smooth manifold
has such a structure as follows from Hodge theory. This suggests a possible application to
Chern-Simons theory on general manifolds.
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O6 oxnoit xpaesoit 3anave AN Pa3sHONOPAAKOBLIX auddepesuranbHbIX
ypaBHeHu#t Ha reoMeTpu4eckoMm rpade
Jlazape K. II. (Boporexckutt rocynusepcuret, r. Boponex)

HOycts T - reomerpudeckuit rpap B R® (em. [1]), J(T), 6T » V(T') - mHoxecTBa
BHYTPEHHUX, TPaHM4HbIX u Beex epuH, E = {v,...,7,} - MHOXecTBo pefep, IV -
obbeaunenne Toyex Beex pebep u3 E, E(a) - mHOXecTBo pebep u3 E, mpuMbIKaioumux
k BepuuHe a. Ilycrs MHOXecTBO pebep E pa3buro Ha aBa moaMHoXecTBa F; u Eo,
obpasyromux noarpadst I'y u I'; u samanbl Heorpunarensase dynknun p € C%(I'%) u
q € C}(I'%) takue, uto mf - p(z) >0, mf g{z) > 0up(z) =0naly.

Bpegem ,rmd)cl)epemmaﬂbﬂoe Bpra)KeHne l(u), Hmelomee sun —(g(z)v’) na T m
(p(z)u")" — (g(z)u') ma 'Y, u paccMoTpuM Kpaesyio 3aa4y

Wu)=f, feC(Y), (1

Uy (@) = uy (@) =0, 1, v € E(a), i<j, acJ(), (2)

(pyul)(a) =0, ~e€ Ei(a), a€ V(D) (3)

S @ - 3 ()@ =0, acJ(D), (4)
YEE1(a) YEE(a) v

uy{a) =0, € E(a), a€dl. (5)

Teopema 1. ITyemsv nodzpag A obpasosan snoscecmeom movex mex pebep us I't, na
xomopuz g(z) =0, u J(A) =0
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Tozda pasmepnocmv npocmpancmea pewenull o0dnopodnoli 3a0aNU  PAGHA MUCAY
xomnonenm ceaznocmu mrodcecmnea I'\ A, ne npumwmxarowuz x Or.

Teopema 2. Caedyrousie Yea08UR IKGUBAAEHMHDL.

19 s 0dnopodrozo ypasnenus ¢ yeaosusamu (2)-(4) evnoinen npunyun mMaxcumyma.

20 3adava (1)-(5) neevipoorcdena.

3% pagp T' ne umeem womnonenm muoocecnsa [\ A, rne npumviarowuz x 0T

Ilns HeBHIDOXKIEHHOM 3azaud TocTpoeHa ¢yHKuus ['puHa, w ycraHoBieHa ee
CHMMETPHYHOCTb, HENPEPLIBHOCTD, HEOTPULATEILHOCTb.

Jlureparypa

1. Moxkopuwiit ¥O.B., Tleukun O.M., IIpsaues B.JI., Boposckux A.B., Jlazapes K.II.,
Ila6pos C.A. Jufdepernyuasvhoe ypasnernus na zeomempuseckuz zpagox // M.
QUBMATIIUT, 2003. - 272c. - ISBN 5-9221-0425-X.

O npeoGpasosannu ypasHennii HaBbe-CToKCa K yII0BBIM NepeMeHHBIM
Jlebenes B. W., Kopannmnu A. A. (r. Mocksa)

HBBeCTHO, YTO IpH TypﬁyﬂeHTHOM TE€YE€HUH MPOIIECCHI NIEPEHOCA SHEPTUH U JUCCHITALMH
CHJIBHO pa3HeceHH 1o MmaciuTabaM. s ypasuenuit Habbe-CTokca B CymiecTByIolmeM BiJe,
Korja B KadeCTBe II€PEMEHHBbIX BbICTYINAIOT KOMIIOHEHTBI CKODOCTH, TaKO€ pa3lelieHue
IIPOBECTH HE IIPEACTABJISAETCA BO3MOXHBIM ¥3-3a HX PaBHONPDaBHOTO BXOXKICHHSA B
ypaBaenus. Ygobuo mnpeoGpasoBath ypaBHennst Hasbe-CTokca TakuM 00pa3oM, 4TOOBI
B HHX BXOOWJIHM HCKOMBIE BeJIMYMHBI, HMEKOLIMEe pa3Hbie XapaxKTepHbie MaciiTabbl
HX u3MeHeHu#l. B goknaze npmeoaaTcs mnpeobpa3osanust ypabhennit Haswe-Crokca
I BASKOM HEC)KUMAEMOM JKMIKOCTH OTHOCHTENbHO HOBBIX BeJMYMH, Ppa3JIMYHBIX
no MmacmrabaM u3MeHenus. Jljusi TAKOrO0 BHIOH3MEHEHHS BOCHOJB3YEMCS TEM, 4TO
3HEpPrusi IOTOKA, KOTOpas B OCHOBHOM ONpeJefdeTcs MOAYNeM CKOPOCTH, MeHseTCs
OTHOCHUTEJIbHO CJ'I&GO, a Juccunauis B OCHOBHOM OIIPENENAECTCHA U3MEHEHHEM HB.]'{BB,BJ'.[GHHH
CKOpPOCTH JBHXKeHMst XuakocTw. OO6O3HAMMM uepe3 4 MOIY/Jb CKOpPocTH V', depes
8 u ¢ — pmsa yrna Diutepa mnpu __l;lpeoﬁpaaonaﬂuu JIEKapTOBON CHCTEMBI KOODIMHAT.
SameHss MCKOMBle mNepemeHHme: V = wue,e = (sinfcosy,sindsing,cosf), rae
u=u(z,y,2,t),0 = 0z,y, 2,t), ¢ = p(,¥, 2,t), nomy4um HoByio opmy ypasHennit Hapbe-
CToXca N ypaBHeHUs HEPa3PEIBHOCTH OTHOCHTENIBHO NEPEeMEeHHRIX U, §, .

Oxka3anoch, 4YTO B YpPaBHEHMH IS %% OTCYTCTBYIOT II€pBble IIPOM3BOIHEIE IO

NPOCTPRHCTBY OT %, & B YPABHEHHSX s %—f H %% CO/IEPXATCA BHIPOXKIAIOLINECH Ha
IPAHMIAX NPUIMNAHUS 0BIACTH HeNMHeNHbIE JJUINNTHYECKHE ONEPATOPE BTOPOrO HOPSAJIKA.
B cBSI3u ¢ 3TMM BO3HHKJIM 38J@4H O NOCTAHOBKE KpaeBbIX YCIOBMI aisi ymkmmit 6 u
. Onst npeo6pa3oBaHHEIX ypaBHEHMN IOMYYeHB KAYECTBEHHO NMPABH/bHbBIE NpeJebHbIE
pellleHns 38Ja4M TeHYeHNA XHAKOCTH B Tpybe (3aaa4a [yaselina) ans ciydas naMEHapHOTO
¥ Pa3sBUTOro TypOyJAeHTHOrO peXKMMOB TEYeHHSI.

PaGoTa BHINOAHEHA TpH MoafAepxke rpanta POOU 05-01-00582 u nporpaMMbi
PAH "Teopermueckne npobnembl coBpemenHolf MartemaTnku”(npoext "Onrumuszanus
BBHIYHCIINTENLHBEIX AJITOPUTMOB DEIIEHAs 3889 MaTeMaTHIecKol dpusuxu").

MoHogpoMus N H3OMOHOAPOMHbIE AedopMalMy MHOTOMEPHBIX ¢ yKcoBBIX

cucreM
Jlexcun B.II. (KI'TIH, KonomHa)
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PaccmarpuBaercs cnenuasbHbIN K1acC MHTErPUPYEMBIX JTHHENHEI! DYKCOBBIX CHCTEM HA
KOMIIJIEKCHbIX JIMHefHbIX npocrpaHcrBax C". CHCTeMBI M3 9TOr0 KJIacca ONpPeAeIsSIOTCs Mo
KOHEYHOMY HaBopy HeKoJIMHeapHbIX BekTopos R = {a,...,a,} C C", nopoxkaaoumx C™

u uMmetor caenyowutt sun d¥(z) = (Zaen &(%%ﬂ)‘ll(z), rae z = (21,...,2,) € C",

By, a € R sBasiorcs nuHelHbIME oneparopamu Ha C" paHra oJuH WM ABa ¥ HE3aBUCAT
OT [EPEMEHHBIX 21,...,2n (ux Oynem HaswBaTL KO3dduIUeHTAMH (YKCOBOR CHCTEMBI).
3meck (@, z) ecTh CTAHAAPTHOE SPMUTOBO NPOU3BEJEHHE BEKTODOB JIHHENHOE IO BTOPOMY
aprymenty. @yuknust ¥ npunvmaer suauenus B C*. [Tpusogurcs onucanue npejacrasieHnit
MOHOAPOMHH OmpefeleHHbIX (YKCOBBIX cucTeM. OBCYKOAIOTCH pa3MYHbIE BAPUAHTHI
MOCTAHOBKM 3aJaun o6 u30oMoHoApoMuofi medopMauuy Takux cucreM. Ecim mcxompas
cucTeMa M, CleJOBATENbHO, €€ MOHOAPOMMSA IVIAJKO 3aBHUCAT OT HEKOTOPHIX [IAPAMETPOB,
MaTpUIAM MOHOAPOMUN PA3DEINAeTCs [IAAKO UIMEHSTHCS B 38BUCHMOCTH OT IIapAMETPOB
JedopMaimy, HO IPH COXPAHEHHH THUMa TNpeACTaBjieHWs.. Hampumep, NpeacTaBieHue
MOHOIPOMMH CHCTEMBI MOXKeT ObITb IpeicTaBaeHneM Bypay u npu nedopMannu cucreMsl
OHO ocTaéTcsi MpeAcTaBleHHtv Bypay, oaHako mapaMeTp mpeicTasneHuss Bypay Tenepn
OKa3eIBaloTCH (byHKLHel oT napaMerpoB nedopManmu H, BooOlle IOBOPS, H3MEHSETCH
opu  gmedopmauuu. JIoka3aHO, UTO B KJIACCe ONMCAHHBIX BbIlIe (YKCOBBIX CHCTEM
¢ KodpbULUEHTAMH paHra ONMH He CYIUECTBYeT HETPUBHAJILHBIX H3OMOHOJPOUHLIX
AedbopManMit, TO eCTh AedOpMalni OTIMYHEIX OT YMHOMKEHHSI BCEX IADAMETPOB CHCTEMBI Ha
obuimit CKaJIAPHBEIN MHOXKHTEb, 3aBUCAIUAN OT napamerpos gedopmauuu. Pabora seaercs
TpU COReHMCTBUM TpaHTa MNpe3uieHTa Poccuu mommepKkm Beqyumx Hayuubeix wkon HIII-
6849.2006.1.

Crnucok Jureparypsbl
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[3] A.P.VESELOV, On geometry of a special class of solutions to generalized WDVV
equations. in "Intagrability: Seiberg-Witten and Whithem equations"(Edinburg
1998), Gordon and Breach, Amsterdam 2000, 125-136.

ToMoKIMHKYeCKasT AMHAMUKA
LIECTHMEPHBIX FAMUIBTOHOBBIX CHCTEM.
Jlepman. JI. M. (r. Huxuntt Hosropon)

B nmoknane obcyxaaerca auHaMMKa 6-MepHO! raMHIIBTOHOBOH CHCTEMBI B OKPECTHOCTH
FOMOKJIMHHYECKON TpaeKTopuu K ocoboit Touke. s cucremsl ¢ ramunbTonnanom H nmeer
[IeCTh TUNOB HEBLIPOXKJEHHBIX OCOBBIX TOYEK, IATh M3 KOTOPBIX (ceano, cemto-Gokyc,
CeJI0-CeJIO-IEHTD, CeAJIo-POKYC-UEHTP, CeAJIO-LEeHTP-LEeHTP) AOMYCKAIOT CYLIECTBOBAHUE
TOMOKJIHHHYIECKHX TpaeKTopuil. [omokIMHH4eckas DMHAMWKa B Cllydae ceijla M CelyIo-
doxyca aHajormyHa 4-MepHOMY Ciydaio. B 9aCTHOCTH, 2-3/UTHNTHYECKHX MEPUONMYECKUX
TpaeKTOpHIl 311eCh HeT.
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B caydae cemno-uenTpa n cenno-oKyc-neHTpa ecTh obumlt pesyasrar (em. [1]):
OpH HEKOTOPHIX YCJOBHSX OOWIEr0 INOJOXKEHWsl KaXKJas JISMyHOBCKasl NepUHOoJuYecKast
TpaexTOpus (OHM 3ANOJHSIOT ABYMEpHOe HEHTPAlbHOe MHoroobpasue [uist p) uMeeT 4
TPaHCBepCAJIbHBIE TOMOKJIHMHHYeCKHe Tpaekropuu. OfHAKO, B Clydae CEIJIO-IEHTpa, H3-
33 HAJIMYMSA TVI008JIbHOTO LEHTPALHOTO 4-MEPHOrO MHOro0o0pasus, CTPYKTYpa aHAJIOTHYHA
OKPECTHOCTH NeTAH B 4-MepHoM ciy4dae (Kombuosa-Jlepman, Grotta Ragazzo). B wacrHocry,
3/1eCh TAKXKE HET 2-3JITUMITHYECKUX NEPUOSUUECKUX TPAaeKTOpHit.

B ciyuae ceano-poKyc-IEHTPa CHUTYauUdsi 3HAa4ATeJbHO Gorade, B YaCTHOCTH,
CHpaBe/UTUBa CJIeAYIOmast

Teopema 1. CymecTByeT NOCieJOBATENHHOCTD HENEPECEKAIOIMXCS HHTEpBAJoB [,
3HaueHWHl TaMWJIbTOHHAHA, crpemsmasica K FH(p), Iuisi 3HaueHHMH B KOTOPHIX CHCTEMa
C TOMOKJ/IMEMYECKON TpaeKTopuelt K ceiio-pOKyc-LEHTPY Ha COOTBETCTBYIOMIEM YPOBHE
raMHJILTOHMAHA MMEET 2 SJUIMITHYIECKYIO [IePHOANYECKYIO TPAeKTOPHIO.

B cayyae rOMOKJIMHHYECKON TPAEKTODMM K CEJIO-LEHTD-LEHTPY (Kopa3mepHOCcTh 4)
CIIpaBe/UTMB Pe3yJ/IbTaT, AHATOTUYHEH [2]

Teopema 2. IIpu HEKOTOPOM yCNOBUM OGIIETO MOJOXKEHUsS Ha 4-MEPHOM IIEHTPAILHOM
MHOroo6pasny TOYKH P CYLIECTBYeT MHOXKECTBO HHBADHAHTHBIX 2-TOPOB NOJIOXKHTEIBLHOM
Mephl, JUTS KOTOPOTO KaXKAbl} MHBAPHAHTHLIA TOP UMEET He MeHee BOCbMH TPaHCBEPCAJILHLIX
TFOMOKJIHHAYECKUX TPAEKTOPHA.

Aprop 6naropapur POOU 3a dunancosyo nosiepxky (rpantel 07-01-00715a, 07-01-
005664, 06-01-72023-MHTHa)
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MpHoroToyeuHble NOJyperyjisipHble Kpaepble 3aJa4u
Jlecunix A. A. (r. Mocksa)

PaccMaTpuBaeTCs CIeAYIOWAass MHOTOTOYeuHas KpaeBast 3aJa4a JJIsi OOBIKHOBEHHOTO
audpepeHpanbHOr0 ypaBHeHUs

(y, \) = 4™ + pr(2, My + -+ pa(z, Ay = 0, (1)
Uj(y, /\) = E Zajk,()\)y(k‘l)(h,) =0, i=1...,n, (2)
k=1 1=0

e ps(z,A) = Yo oPus(Z)AY, Dus(z) € C°°[0,1], pes(z) = comst,s = 1,...,m,
Prn # 0, ajm()) - momasomm, 0 = hy < hp < -+ < hy = 1 B
cyyae JByXTOwewHOM Kpaepoft 3aaauMm m = 1 B pabore [4] ompeneneno mnomsaTHe
peryaspHocTd. [eficTBysl aHATOrMYHBIM METOAOM, MOXKHO OFIPEAEINTh PEryIsSPHOCTb STOR
3aa4# B TPABOM M JIEBOK MOJYNJIOCKOCTSAX. PerylsipHOCTL ONpeAenseTcs B TepMHMHAX
HepaBEHCTBA HYJII0 HEKOTOPHIX OHpejesuTesel, KOTOpPHe SBHO BLIMMCHIBAIOTCS 4Yepe3 Hy/H
XapaKTEPUCTHYECKOTO ONpeeauTens i KoahdUUMeHTs! ajki(A).

Takxe, B [4] no mByxrodeunoli KpaepoH 3ajiaue Obi1 TIOCTPOEH ONeEPATOP,
nuHeapu3yomui 3Ty 3ajady. Meron [4] mpumenserca Ge3 cyilecTBEeHHBIX M3MEHEHMH K
MHoroToueuroi 3anage (1), (2), u crpoutcs omeparop H, B mpocrpancTee Wy, & cV,
nuneapHu3yomui 3axavy (1), (2).

OcroBHOH! pe3ynbTaT paboThl COAEPKUTCA B CeyIOImel TeopeMe.
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Teopema 1. Onepatop H, (oneparop —H, ) nopoxkgaer Co-NIONYTPyNIy TOTAA K TONLKO
Torza, Koraa 3aaaya (1), (2) perysnsipna B npaso#t (1eBot) NOMYIIOCKOCTH.

Cnencreue 1. Oneparop H, nopoxgaer Co-rpynmy Torza M TOJIbKO TOrNE, KOLAA
3agaya (1), (2) perynspna.

Kpaepas 3amaua Buga (1), (2) u onepatop Buma M, BOZHMKAIOT B TEOPHH
dynxumonansHo-qudPepeHIMATbHEIX  YPaBHEHMY, a  pe3y/IbTaThl, IMOJyYeHHbE B
JaHHOW pafoTe, MCIONB3YIOTCH [Uisi IOJMYYEHHs] OLEHOK pelleHHH IIMPOKOrO KJaccs,
bynxuuonansro-uddepennanbupx ypabuenuit. Kpome Toro, Teopema 1 wcnonbsyercs
7S 0Ka3aTeNbCTBA TeOpeM YCTOMYHBOCTM B TeOPHM Yylpabienus. Hanpumep, mis
CYWIECTBEHHOTO ~ycuienuss pesyapTaroB paGor [1,[2],{3]. Pa6ora sbimonmmena mox
pykosozacrBoM npod. A.A.Illkanukosa.
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Teopema Kanroposnua n 060cHOBaHne aCMMITOTHKHU peLIeHMit
nuddepeHNaTbHBIX YPAaBHEHMI 2-ro nopsiaka ¢ 60JbuMu
BLICOKOYaCTOTHBIMH CJIATA€MbIMH
Jlesenmram B. B. (r. Pocros-Ha-ZloHy)

B  moknane paccMaTpuBaercs 3aJada O [EPHOAMYECKHX DEMIEHUSAX CHCTEMBI
OOBIKHOBEHHBIX G DepeHIHaNbHBIX ypaBHEHUH 2-T0 IOPSJAKA C BBICOKOYACTOTHBIMHU
cjlaraeMbIMM, CPeAM KOTOPBIX HMEIOTCSI NPONOPUMOHalbHhE dacroTe. IlocTpoeHa
yepeaHeHHas (NpesesbHAs) 3a7a4a M [OJIHAS ACUMITOTHKA [EPHOAUYECKOTO pelIeHHst
BO3MymIeHHOl (Mcxoauo#t) 3amaun. C nomompio Teopembr JI.B. KanrtopoBuuya 06
onepaTopHOM BapHaHTe Merofa HbloToHa ocylecTBIeHb 060CHOBaHUE METOMA yCpedHEeHUs
U OUEHKH NOIPEelIHOCTell MOCTPOeHHBIX acHMNTOTHK. Mcciienosan Bonpoc o6 ycTolumBoCTH
(n HeycTofYMBOCTM) NEPHORMYECKOrO peIEHMA HCXOAHOH 3ajaqn. heKTHBHOCTD
MOJIyYE€HHOTO Pe3yJIbTATa NMPOAEMOHCTPUPOBAHA Ha KJIACCHYECKOM NPUMEDE TEPEBEPHYTOrO
MasITHUKA ¢ BUGPUDYIOIHM TIOJBECOM.

Pa6ota Bbmonnena npu yacTuuHol ¢hunaHCOBON nognepxke PODU (rpant Ne 06-01-
00287-a).

¥Oxkubtit Hayuuslt uentp PAH

On weak coercivity in the Sobolev spaces WI’,(]R")
Limansky D. V. (Donetsk, Ukraine)
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Let 1 := (l1,...,ln) € N, @ := (q,...,an) € Z%, |a : l| := an/ly + -+ + an/ln,
Dj:= —i8/8z;, D := (Dy,...,Dy,), D* = D{' ... Da~. Let P(z, D) be differential operator
of the form

P(z,D)= Y an(z)D*, @ €C, c€R" (1)
x| <1
and let P!(z, D) := 2 loctj=1 8a(z)D* be its l-principal part.

Definition 1. An operator P(z, D) of form (1) is said to be l-quasielliptic if P'(z,£) # 0
whenever (z,£) € R™ x (R™\ {0}).

‘We ¥escribe all vectors [ such that there exist [-quasielliptic systems.

Definition 2.[2] An operator P(D) of form (1) is said to be weakly coercive in the
(anisotropic) Sobolev space W;(IR"), 1 < p < o0, if and only if the estimate

> 1D fllLomn) < CillP(z, D)flp + Coll {1l (2)

|a:t|<1

holds with constants C;,Cy > 0 not depending on f € C§°(R™).

De Leeuw and Mirkil [1] proved that an operator P{D) with constant coefficients of
order I > 2 in n > 3 variables is weakly coercive in the isotropic Sobolev space W (R")
(ie,ifl =1, =--- =1l,) if and only if P(D) is and elliptic operator. A generalization of
this criterion to the anisotropic Sobolev space W (R™) has been obtained in [2].

We will discuss another generalization of the de Leeuw and Mirkil criterion for operators
P(z, D) with variable coefficients. The proof is essentially based on topological reasonings.

We also describe wide classes of weakly coercive in W’ (R") operators that are not
l-quasielliptic for almost all vectors [. '

This is a joint talk with Mark Malamud based on [3].
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[1] De Leeuw K., Mirkil H. fllinois J.Math., 8, 1964, 112-124.

[2] Limanskii D.V., Malamud M.M. DAN, 397, 2004, No.4, 453-458.
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Boundary stabilization of the wave equations by means of a rotated multiplier
. method
Jean-Pierre Lohéac (Ecole centrale de Lyon, Institut Camille-Jordan)

The rotated multipliers method is performed in the case of the boundary stabilization of
the wave equation by means of a (linear or non-linear) Neumann feedback. This method leads
to new geometrical cases concerning the “active” part of the boundary where the feedback
is applied. Due to mixed boundary conditions, these cases generate singularities. Under a
simple geometrical condition concerning the orientation of boundary, we obtain stabilization
results. '

: References

[1] Bey, R., Lohéac, J.-P., Moussaoui, M., it Singularities of the solution of a mixed
problem for a general second order elliptic equation and boundary stabilization of the wave
equation, 1999 J. Math. pures et appli., 78, 1043-1067.

{2] Komornik, V., Zuazua, E., 1990, A direct method for the boundary stabilization of the
wave equation, 1990, J. Math. pures et appl., 69, 33-54.

[3] Osses, A., 2001, A rotated multiplier applied to the controllability of waves, elasticity
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IIpeobpazopanune Illypa gns 0606wenno# pynkumn Kapareomopm B Touke
2 €D
Jonymanckas E. B. (r. Boponex)

Hccnenosanue nogaepxano rpanroM POOH 05-01-00203-a.

Oynkuus f HasbiBaercs obobuiennolt dbynkuuett Kapareonopn, ectn ona MepoMopdHa

B OTKpHLITOM eauHuH4HOM kpyre D u sgpo Ky = %ﬂ MMeeT KOHEYHOE YHCJIO
OTPHLATEIbHBIX KBEAPATOB.

B pabore (cM. [1]) 6bui0 onpeneneno nmpeobpasosanue Ilypa 1ns o606menno dyHKimy
Hepannnuna B Touke 2; € C,. O6obuennan dbynkuns Kapareonopu cssana ¢ 0606imenHoMN
dynxnueit HepannueHb ¢ NOMOLIBIO ApoGHO-MHERHOro Npeo6pa3oBaHus apryMenTa. M
onpenensem npeotpasoBanne Illypa ans o6oGenno#t ¢yukuun Kapareogopua B Touke
z1 € D.

Jlureparypa
[1] D.Alpay, A.Dijksma, and H.Langer, J;— unitary factorization and the Schur algo-
rithm for Nevanlinna functions in an indefinite setting, to appear in Lin. Algebra Appl.

T'pynnosoii nogxon B quHaMuKe CIVIOIIHON cpeant
Jykanxu#t A.M.

B noknane pasbupaercst NOAXOA K IOCTPOEHUIO DelleHuH ypaBHEHHH MaTeMaTHYecKol
¢bu3nky, OCHOBaHHBIA Ha IOTPY’KEHUH KOHGUIYPAUMOHHOIO MPOCTPAHCTBA OMUCHLIBAEMOTO
¢usuyeckoro o6beKTa B HeKOTOPYO GeckoneunoMepHyio rpynity JIu-@peme G ¢ Mogeabio Ha
GOPHOJIOrHYECKOM NPOCTPAHCTBE, OTOXKIECTBIAEMbIM ¢ ee anrebpoit Jlu g. [Ipeanonaraercs,
4yro B aiarebpe JIu g uMeercs ckajsipHOe NPOU3BEJEHHE, KOTOPOE MHAYLMPYET Ha Tpylne
JIu G neBo-(Mu MpaBo-) MHBAPHAHTHYIO METPUKY B 3aBHCHMOCTH OT (PH3UHECKOrO CMBICTIA
3aja4n. [eofe3uyeckue 9TOH METPHKH SIBJISIOTCS PelleHUsIMK ypaBHeHult Ditnepa na rpynme
JIn G.

B repmunBax amrebpst Jlu g u koanrebpsl HOPMYINDYIOTCA AOCTATOYHLIE YCIOBHSA
NPOOJI2KEHUS pelienufl ypasHeHu Ditepa Ha GeCKOHEYHOCTb BO BPEMEHH.

Janee B 10K1a,4€ pacCMaTPUBAIOTCH ypaBHeHus itiepa Ha rpynne auddeoMopdbusMos,
COXpaHAIOWMUX 3JIEeMeHT o0beMa OpPHEHTHPOBBHHOIO pHMaHOBa MHoroobpasus M,
ABJIAIOWIEroCst 00/acTbi0 TEYeHHs WIealbHOR HecKHMaeMol >XuMAKocTH. B Kauecrpe
M moxer BeicTynars b0 KOMHaKTHOE MHOrooGpasme ¢ kpaem, ambo R", B mocneanem
caydae PpacCMaTpHUBAIOTCSt BEKTOPHbie T0is, OblcTpo yObiBamoline Ha OECKOHEYHOCTH.
Beperca pasioxenue B HEKOTOPOM OpTOroHanbHoM 6asmce {ex} C g mons cxkopocreit
ut = ¥, uler mpeannuolt HecxkmMaeMOM KUAKOCTH U Ui Ko3bdHIEHTOB ul. crpostrest
OLIEHKH IIPON3BOAHBIX 110 BpeMeHN. CTapTys OT OLIEHOK JyIst ypaBHeHUM Diyiepa, IoaydaoTcs
aHaJIOrMYHbIE OLIEHKU U IS BA3KON HeCXKUMaeMOH >XXUJIKOCTH (pemermﬁ ypaBHenuit Hapbe-
Croxkca).

Kparunie paast @ypre-Yomua B npocrpancrsax Jlopenua
Jykomcknit C. @. (r. Capatos)
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Mycrs ¥(t) - dynkuus Jlopenua, T.e. HOIOKHTeNbHAS, YObBAOLAL, BBIIYKIad Ha (0,1)
¢yHKUHS Takas, 4TO fol Eﬁﬁ < 00 {1 £ p < 00). Onpeaesnm npocTpancrsa Jlopenua

Aup(0,1)9) = {f e LOV* Wflon= ([ (Lay' " oo} .

PaccMOTPHM BOMpPOCH CXOXMMOCTH KpaTHBIX panoB @ypbe-Yomma B NPOCTPaHCTBAX
Jloperua Ay p([0,1)%) ¢ nononHMTENBHBIM YCAOBHEM ¥(t?) < Cy(t). Taxue npocrpancTBa
JlopeHila ABASIOTCS NMPOMEXKYTOUHBIMU Mexay Ly ([0, 1)) u Loo([0, 1)%). Mbl pokaskem, 9to
JUTS TIPSIMOYTOJTBHEIX Y8CTHYHBIX CYMM

Sn(f’ X) = Sn;,na,...,nd(fy X)
d-kparsoro paga ®ypve-Yormma bysxmuu f € Ay ([0, 1)¢) cnpaBeanHBO HEPABEHCTBO

ISn(az, < Clfliag.y

P(z) = (log %)d—l /: 1I"—itzdt.

IMony4ueHHas OIEHKA ABJIAETCA TOYHON B TOM CMBICTE, UTO IUIA moboit dynxknuu at) | 0
mpu t — 0 cymecrsyer dynxmus f € Ay ([0, 1)4) Taxasi, ITO HOPMHI ||Sn(f)|]/\w.”
HEOrpaHU4eHbl I KyOHHEeCKHX CyMM.

rae

IIpeoBpasopanne Pagona paauansHeIX PYHKUME ¥ Oeparopei npeoGpa3zoBanus
Ilyaccona u Conuua
JIaxos JL.H. (Boponexckas Troc.TEXHOJIOTHYECKast AKaeMHs)

[Ipeobpazosanue Pagona R[] npucnocobneno ansa GyHKunl MHOTHX NEPEMEHHBIX, HO,
KaK OKA3AJIOCH, A1 PAJMalibHbIX (BYHKIMI ero MOXKHO PACCMATPUBATE Kak npeobpasopanue
Pagona-Kunpuszosa (cm. [1]) K, [-] ¢ naexcom ¥ = n— 1. IIpu sroM umeer mMecTo Gopmyia

R[f(|zD)(6; ) = |Zn| Kn-1[f](P),

rae |En] — nnomans cdepst enuHudHOro panuyca 8 R", a nepeMenHie z,§, U p CBA3aHH
ypasrenneM miockoetu (B R") (z,€) =p, || = 1.

JLast npeoBpasosanus Pagona-Kunpusnosa dbynxnuit oaHON nepeMeHHol Cripaseiusbl
bopMyia npescTaBIeHus Yepes cos-npeobpasosanue Pypbe 1 npeobpazosanue lankest

Ky|f1(p) = FH,[f)(p)-

OpHako cynepnosurus npeobpasosanuit @ypbe n Tanxens (nmpuMeHAeMBIX K YEeTHBIM
byrkuusm), ussecTbl (cM.[2]) u HasmBarorcs onepaTopamu npeobpazosanust Conuna M
ITyaccona, COOTBETCTBEHHO

S,=F. H,, T,=H,F.

O6o3sauuM uepes Sy mommpocTpaHcrBo mpocrpancrsa JLIIIBapua, cocrosiiee u3
ueTHBIX yHkuuit. Ommpasch Ha HCCeJOBaHMA paboOThI [2], momyuaem ciexyromui
Pe3y/IbTaT.

Teopena. Iyers f € Sy. Ameror Mecto crenyiomue hopmyst.

179



R[f(jzD)(p) = {Zn| Sn-a[f(r)];
Moy R{f(J2))] = |Znl f(lz]);

2 2
Bl i[f(eDle) = D[R], LRI = IZal San[BI(), e B
CUHTYJsipHBIH quddepennnanbuniil onepatop Beccenag B = d#"r; + ":l dir.

JInreparypa
1. Kunpusios W.A., JIsxos JI.H. O npeo6pazosanusx ®ypee, ypbe-Beccens u Panona.
// AH. 1998. Tom 360. N 2, ¢/157-160.
2. Katpaxos B.B. Oneparopm mnpeobpasosanus n ncesnoanddepeHnuaIbHEe

oneparopsl. CMZK. 1980 . XXI, N 1, c. 86-97.

IIpoeknyoHHO-pa3HOCTHBIE CXEMBI 71l HECTAIIMOHAPHOI'O ypPABHEHHs C
BBIPOXKAAIOUIMMCS 3JUITMNTUYECKAM OlIePATOPOM YeTBePTOro MOpsIKA
Jlamko A. . (r. Kasans)

PaccmatpuBaroTcsi  NDOGKUMOHHBIE ¥ IPOGKNMOHHO-DA3HOCTHHIE  CXeMb ISt
napaGo/iriecknx M rUnepbOIMYecKMX yPABHEBHH C BBHIPOXKJAIONIMMCH  OIHOMEPHBIM
OIepaTOPOM  4YeTBepTOro mnopsaaka. CHauana CTPOSITCH NOJYAUCKDETHBIE CXEMBI C
auckperusaimeit no MK snnnmraaeckoit yactn. CxeMsl CTPOSTCS C yYeTOM BBLIEJIEHUS
0cOGEHHOCTH, CBS3AHHON ¢ BHIPOXAeHNeM ko3 dUunpenTa. DTo NO3BOIAET 0Ly T OLEHKH
NOTPEIIHOCTH, AJEeKBATHbIE DEryJsApHOMY ciydalo. Jlus mosydYeHHO# NOMYyAMCKPETHOMN
CXeMbl MPEAJIaraerTcsi pasHOCTHAsi CXeMa C JMCKpeTH3auuell BPEMEHHOH IepeMeHHOH.
TonyyeHnast NPOEKUHOHHO-PA3HOCTHAS CXEM& MCCHEAYETCsl C MOMOIBI0O KDUTepHEB
YCTORYHMBOCTH onepaTopHO-pa3HocTHEIX cxem A.A. Camapckoro, A.B. I'ynnna. Mcexomubie
3afadu opMyaupyiorcss B aberpaktHoM (bopMme, UTO TIO3BOISIET HCCIENOBATDH BOTIPOCHI
Pa3pemuMocTi Ha ocHose obiiux Teopem 2K.-JI. JIuonca. IlpuseneHs oueHkn cxopocTw
CXOZUMOCTH.

O xJylaccax cyImeCTBOBaHMA M €JNHCTBEHHOCTH HEOTPAHMYEHHBIX SHTPOMMIHBIX
petennit 3anauu Komm auis kpasnimneliHoro ypasneHns nepBoro nopsiaka
JInicyxo II. B. (HoBroposicku# rocyAapCTBERH I yHHBEPCHTET)

Pacemorpum sanaqy Komm ans1 kpasummueitHoro ypapHenust nepsoro nopsxa
uy +dive p(u) =0, u(0,z) = uo(z) € L2 (R"), §))]

rae ¢ = (¢1,-..,¢0) € CY(R), u = u(t,z), (t,z) € Iy = (0,7) x R". M3pectno,
4o npu up(z) € L®°(R") samaua (1) umeer eamucTBeHHOe orpanmYeHHOe 0GOGLIEHHOE
suTponufioe pemenne (0.3.p.) pemenne B cmsicne C.H.Kpyxxosa [1]. Okasanocs (oM.
[2,3]), uTo B Knacce MOKANBHO OrPAHMYEHHBIX 0.3.D. HapyMIaloTCs KIOYeBhle CBONCTBA
CYMIECTBOBAHMH H eQMHCTBEHHOCTH 0.3.p. B pafore [3] mafinemm Kiacch KoppexTHoCTH
3agaun Komm B ciyuae creneHHOro orpanwdenns Ha pocT BeKTOpa NOTOKa. B macrosmett
paBore paccMoTpen Gonee ofmuit ciyvait KOs BeKTOp TMOTOKA YAOBJETBOPSET YCJIOBHIO
¢’ (w)] < Clul*'10P |u}, |u}> 1, > 1. Onpexenny xaacc

Bas = { uo(z) € LZ(R™) [3C > 0 juo(z)| < Clz|=T ™ [a], |a| > 1},
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Bayg = { u(z,t) € LS, (T7), | 3C(t) € LS(Ry) : Ju(t,z)} <
CH)lz|=7 Int5s [z, fzi> 1},

Teopema. [Tycmv ug(z) € BY 5. Tozda 0.5.p. u(t, ) € Bog 30davu (1) eduncmeento
u cywecmeyem 6 nexomopom caoe Ilp. ITpu amom, ecau

ess lim Juo(2)||z| =5 Ina°T |z} = 0,
|z|~+00

Mo MoxcKo nososicums T = 400,
JIurepatypa
[1] Kpyxxos C.H. Mamemam. Cbopnux. 1970. T. 81. N 2. C. 228-255.
[2] Topuuxuit A.XO., ITanos EXO. Tpydw MHPAH um. B.A.Cmexaocsa. 2002. T. 236.
C. 120-133.
[3] Tlanos E.IO. @yndamenmarvras u npuraadnas mamemamuxa. 2006. T. 12. N5.
C. 175-188.

Continuous maps of dendrites with positive topological entropy
Makhrova E. N. (N. Novgorod)

Dendrite is a locally connected continuum without arcs homeomorphic to a circle.

In [1] it is shown that continuous maps of dendrites with zero topological entropy admit
the existence of homoclinic points.

In the report the sufficient conditions of positiveness of topological entropy in terms of
homoclinic points for continuous maps of dendrites is represented. It is shown that such
conditions is not necessary.

References

{1] Efremova L. S., Makhrova E. N. On Homoclinic Points of Piecewise Monotone Map-
pings of Dendrites. Progr. in Nonlin. Science. Proc. of the Intern. Conf. dedicated to the
100th Anniversary of A.A.Andronov. Nizhny Novgorod. Russia. July 2-6. 2001. V.1.Math.
Probl. of Nonlin. Dynamics. Nizhny Novgorod. 2002. pp. 225 — 228.

06 onHOM KJacce 3a4ay yHpaBjeHUs I JUHeNHbIX aGCcTpaKTHBIX
dyHukumoHasbHO- AP D epeHITHATBHBIX CUCTEM
Maxcumos B.I1. (TlepMckuit rocysapcTBeHHEH YHHBEDCHTET)

JluneHHBIM abCTPAKTHEIM  (DYHKIMOHANBHO-IMbpepeHMaIbHEIM  ypaBHeHneM [1]

HA3LIBAETCH yPaBHEHHE
' Lz = f, ’ 1

rae £ : D — B - nunelinnilt orpanuyensniit oneparop, D u B - 6aHaxoBbl NPOCTPAHCTBA,
npuyeM npocrpaHcTBo D m3oMopdro npsMomy npomssenenuto B x R". Ilpeanonaraercs,
41O orepaTop £ HETEPOB HHIEKCA T H CYIIECTBYET TaKoH JIMHEe!HbI! OTPaHUHUEHHbIN BEKTOD-
dyuxuponan r = [ry,...,7n] 1 D — R™ ¢ TUHe{iHO He3aBUCHMBIMH KOMIOHEHTAMH T, ..., T'n,
4TO Kpaesas 3a1a4a LT = f,rT = ¢ OJHO3HAYHO Da3peIunmMa JJIst oObIX feBua€R"
PaccMaTpuBaeTcs 3aJa4a yNpaBJIeHUus :

Lz=Fu+f, ro=a, g="4 @)
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rjie ynpasjenue u NPHHALIEKUT ruasbeproBy npocrpancrsy H, F : H — B - nunefinbit
orpaHHyeHHsI onepatop, ¢ : D — RN - numeitHulll orpaHHYeHHEIN BeKTOD-hYHKIHOHAT,
3aJaoumuil ieab ynpaBieHus.

B joknase popMyanpyroTCs HeOOXOMUMbIE M JOCTATOYHBbIE YCJIOBHSL Pa3pelIuMOCTH
3aja4n (2), NPUBOASTCA NpHMephl 3a4a4 yNPaBieHUs s cucTeM AucbdepeHInaIbHbIX
YPaBHeHuit ¢ nocaeAeCTBHEM, CUHIYASPHBIX 1 AMIYIbCHBIX CHCTEM, KOTOPHIE MOTYT OLITh
3amicansl B Buge (2), 0 06CyKAAI0TCA BO3MOXKHOCTH 3(hheKTHBHOTO MCCIEHOBAHMS TAKHX
3a/1a4 C HCMOJIb30BAHNEM COBPEMEHHBIX KOMIbIOTEPHBIX TEXHOJOTHi.

JInteparypa

1. Asbeses H.B., Makcamos B.IL, Paxmaryinuna JL.O. Dnementnl cospemeHHON
TeopiH byHKUHOHAIBHO-AubepeHInaIbHBIX ypaBHeHnit. Meroas! u npuiaoxenus. M.: M-
T KOMOBIOTEpH. ucci., 2002.

O auHaAMHUYEeCKOM BOCCTaHOBJEHHMM IpaBod yactn auddepenuuaIbubIX
BKJIFOYEHMH
Maxkcnmor B. H. (r. Exarepun6ypr)

PaccmaTtpuBaercs  3aflaua  yCTOWYMBOIO  BOCCTAHOBJIGHHMsSI HEWU3BECTHOIO  BXOZa
OMHAMHAYECKOH cucTeMbl, onucriBaeMolt auddepeHunanbHbBIM BKIIOYEHHEM

&(t) + A(z(t)) 3 Bu(t) + f(¢), teT =[to,d),

B ruwibsbeproBom npocrpanctee H. 3gece A: H — H — MaxCHMaJbHO MOHOTOHHOE
MuorosHayHoe Bkimiodenue, f(-) € Lo(T;H) — 3ananHas ¢yskums, B — nusefnbit
HempepbiBHEIA oneparop. Pemenne Bxkmouenns z(-) = z(-to,Zo,u(-)) 3aBECHT oOT
MeHSoLerocss BO BpeMeHHM BxomHoro Bozgedictsus u(-). Kax Bxox wu(:), Tak u
TpaekTopust z(-) HeW3BecTHHI. B xome pasBuTMs npomecca wusMepsiiorcs (asoBble
cocrosinug  z(t). DTH u3MepeHusi, BOOGE TIOBOPS, HETOYHBI. J3ajada COCTOMT B
KOHCTPYMPOB&HHH aJICOPUTMa TNPUOIMKEHHOTO BOCCTAHOBJIEHHS BXOfa, O0GNamalomwero
CBOMCTBAMHM JAMHAMHYHOCTH M ycToftumBocTn. OmnucaHHasi 3afada BKJIAIbIBAETCS B
npobieMaTHKy oOpaTHBIX 3aJa4 JUHAMHMKM YOpaBiaseMbix cucreM. IIpencraBisiembie
B HacTOsilel# JOKJaje AArOPHTMBI ONMPAIOTCS HA KOHCTDPYKLUMHM TEODHM YCTOWYHBOIO
JNHAMMYECKOr0 OOpallleHnsi, OCHOBAHHBIC HA COEAMHEHMH METONOB TEOPHUH HEKOPPEKTHEHIX
33484 ¥ TEOPHMH NO3UIUOHHOrO ynpasiennus. CyTh NpeaJaraeMoli METOOUKA COCTOUT B TOM,
YTO AJTrOPHTM BOCCTAHOBJIEHUSA MpEJCTAB/IACTCSA B BUJE AJIrOPHTMA YyHNPABJIEHHs HEKOTOPOR
BCIIOMOTATEeJILHON THHAMHYeCKON cucTeMol, Mosiesbio. Takolt airopuT™, BEIXOZOM KOTOPOTO
CJIYKHT, B Y4CTHOCTH, DEAIM3ALUsI YIIPAB/IEHHS B MOJEIH, IO CBOEMY OIIPELIENICHHIO ABIISIeTCS
AuHAMIYecKUM. YTIPABIEHNE B MOAEIH aJANITHPYETCA K PE3ybTaTaM TeKyIux HabmomeHnit
TaKUM 00pa30M, YTO €r0 pPeaM3alis BO BpEeMeHH NPUGIMKaeT HEN3BECTHBIN BXOA.

PaGora Bhinonnena npu <unancosot mnoaaepxke POOU (npoexr 06-01-00359),
Ilporpammer  nopgmepxkku GyHaaMeHTaNbHLIX uccnenoanuft Ilpesuauyma PAH 22

“IIponeccnl ynpasaenusi”, u IlporpaMMbl TOAZEpXXKH BeAyIUHMX HaydHbIX wKoa Poccuu
7581.2006.1.

Perturbations of singular difference equations which create horseshoes
Malkin M.I. (Nizhny Novgorod State University, Russia)
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Chaotic properties for solutions of difference equations ®x(¥n,Unt+1s---+Yns+m) = 0,
n € Z, of order m with parameter )\ are studied. We consider two cases when the non-
perturbed operator &3, depends either on a single or two variables respectively. More precise-
ly, in the first case one has ®5,(yo, . . ., ¥m) = @(yn), where IV is an integer with0 < N <m
and @ a piecewise C!-function; and in the second case, ®x,(yo,---,¥m) = Y(yn,yrr) with
0 < N < M < m and a piecewise C2-function .

We show for the first case that if @ has k simple zeros then for A close enough to Ao, the
difference equation has, among its solutions, a k-horseshoe, i.e., the full shift on & symbols.
Moreover, we show that these horseshoes change continuously in the uniform topology as
X varies near \g (see [1]). For the second case we show that if the function (z,y) has a
branch y = f(z) with positive topological entropy hop(f), then the topological entropy of
the shift map on the set of solutions ®x(Yn,Ynt1;---»Un+m) = 0 for A close enough to Ag,
is bounded below by the constant arbitrarily close to hop(f)/(M — N).

As applications, we establish the horseshoe structure in families of generalized high
dimensional Hénon-like maps and of Arneodo-Coullet-Tresser maps near their anti-integrable
limits. Next applications are discrete versions for several partial differential equations of
evolution type in the form of lattice dynamical systems. For discrete versions of Kolmogorov-
Petrovsky-Piskunov equation, of Huxley equation, of Frenkel-Kontorowa model and of two
dimensional FitzHugh-Nagumo equation with diffusion coefficient small enough, we establish
the horseshoe structure in their steady states and traveling waves.

The research was supported by RFBR. (grants 05-01-00501, 05-01-00558) and by Presi-
dent Program for supporting leading scientific schools (grant 9686.2006.1).
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[1] Li M.-C., Malkin M. 1. Topological horseshoes for perturbations of singular difference

equations. Nonlinearity.- 2006. v.19. p.795-811.

Cucrembt Yusema u gecdpopmanum
Maunbnes A. 5. (r. Yeproronoska)

Mu paccmaTpuBaeM JedopMauuy CUCTEM YH3eMa, BKIIOHAIOIIHe BHICIIHE IPOU3BOIIbIE
MapaMeTpoB TOYHBIX 7-Gha3HbIX pelleHult ucxomHolt cucreMbl. IIpu 9TOM mHOKA3aHO,
YTO MOC/TE NpPaBAIbHOM HEPEHOPMHPOBKH [aPAMETPOB IVIABHOTO NPHOMIDKEHHS MOXHO
BBIUCATHL IOJHYIO CHCTEMY, OMMCHIBAIOUIYIO SBOJIOLHIO MENJIEHHO NPOMOAY/IMPOBAHHBIX
m-pasHBIX pelleHuH W BKJIOYAIOMYI0 BCe BLICIIHE IPOU3BOJAHBIE KX NAPaMeTPOB.
IIpogedopMupOBaHHbIE CHCTEMBI HUMEIOT BHJ, OECKOHEYHBIX DA3JIOKEHMH M0 BBICIIHM
[POCTPAHCTBEHHBIM NPOM3IBOAHLIM TapaMerpos (pasnoxenue Jybposuna - »Kanra), gro
COOTBETCTBYET DA3NIOKEHHI0 10 Majoll mucmepcuu. IlokasaHo, 4TO MCXoAHas CUCTEMA
OJHO3HAYHO ONMpEeAEJAET IPH 3TOM Kjacc nedopManyy cucreMbl YH3eMa ¢ TOYHOCTBIO A0
npeobpa3oBaHnit TPUBUAILHOCTH B cMbicie JyGposnna - 2Kanra.

OGo6IIeHHBIe KAHOHWYECKUE NpeACTaBlieHUs CySrapMoHuydecKuX byHknmui
Mamorau K. I (r. Cymsbr)

Cybrapmonnueckass 8 C, = {z : Qz > 0} byHKuMa v Ha3bIBaeTCH HCTUHHO
cy6rapmonmeckolt, ecu limsupe, 5,,,v(2) < 0 ana moboro wuena t € R (em. [1]).
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Iycrs ¥ — Hekoropas dynxuus pocta. Kiacc mcrunHo cybrapmonudeckux YHKUuA B
C,, POCT KOTOPHIX He NpeBmlmaeT 7, o6o3xauum uepes JS(v). Ilycts A — HexoTopas
Mepa, cocpenioTouenHas B C4. B [2] mokasaHo, 4To Mepa A sBjsieTcs NONHOR Mepoi
bynknu v € JS(y) TOraa M TONBKO TOTAR, KOTAS OH& SBJAETCH 7Y-JOMYCTHMOH.
Honoxum ply] = oo, ecmu mna Beex p € N liminf,oy(r)r™? > 0, n
p[y] = min {p : p € N,liminf, o ¥(r)r~P = 0} B nporusnom ciyuee. [na k € N oboanaunm

1 sin ke 1 / sinkyp
Si(rik,A) = — —dA —_—
+(Ti ’ ) nk /./[)+(ro,r) Tkgc d (C) + ﬂkTgk /_—C+(0,m) S‘C T dA(C):

! (e - L// M Cf = Tt
S+(T) kvA) - 7rk7‘k C+(0,r) g( dA(C)? C =T€ i)

rae ro > 0 — dbukcupopantoe 9uci0. Js Mephl A ONPENETMM 4nCIa {ox} paBencTBamu:
ag = —S4(re;k), 1 < k < ply] < oo (rze rx 3aBucur OT ), ax = —limjeo S4(rs k),
k > ply] (r; — oo npu j — 00). Kosdbuunerrramu Pypbe Meprr ) Ha3bIBalOTCH DYHKIUH

c(r \) = rk{ak + S+(r;k)} -8, (r;k), keN.

Ecin mepa A smasercs +-gonycTumolt, To cymectsyer (cm. [2]) eaumcrennas
cybrapmonmdeckas dbynkuus vy € JS(v), rakas, uro 1) xospduuuentsl Pypre byuxuun
vy coBmaaaioT ¢ Koadduuuenramn Oypbe MepH A, 2) nonsas Mepa GYHKUMH U) paBHE A,
3) vA(0) = 0. PyHKIUs v) HA3BIBAETCS KAHOHMYeCKOH yHKImeH Mepbl A

Teopema. Ilycte dynkmust v € JS(7), A - €& nonnas mepa. TorAa CHpaBeasiMBO

npesCTaBiIeHne
v(2) = va(2) + Sf(2), 1)

rue f(z) - uenas BewecTsenHas dysxuua, Sf(2) € JS(7).

Ilpencrasnenue (1) Ha3biBaercd o6OOWIEHHBIM KAHOHHYECKMM NpPeJCTaBICHNEM
cy6rapmonmueckoit bpynkuun v. SameruM, yTo ecu ¥(r) = rP("), rae p(r) — yrounéHubill
NopsiioK B eMucie ByTpy, To npeacTapnenue (1) coBnasaet ¢ mpescTasiennem Hepanuunsi
cy6rapMOHH4€ECKO! (PYHKIUH KOHEYHOTO NOPSMKa.

JIureparypa

[1] Tpuumn A. @. Henpepwenocmv U GCUMMOMUNECKGR  HENPEPHEHOCTID
cybeapmonunécxux Pynweyul // Mamem. fusuxa, anaaus, zeom. - 1994. - T 1, ¥@2.
- C. 193 - 215.

[2] Mamorun K. I. Padu Pypoe u -cybzapmonuneckue GYnryuu KOHENNO20 Y-MUNG 6
noaynaocxocmu // Mamem. c6.. - 2001. - T. 192, M6. - C. 51— 70.

TeopeMbl CyIIECTBOBAHNS "B 1eJIOM" I ypaBHeHM HEKOTOPHIX MHOrOMEPHLIX
moneielt psaskolt cxumaeMoli HeHbIOTOHOBCKON YXHUIAKOCTH
Mamontos A. E. (r. Hoocubupck)

YpaBHEHHS ABIKECHHS BASKHX ©KMMBEMBIX XHJKOCTe] UMEIOT BRI

9p

d(pu)
ot ot

+ div(pu) =0, ——= + div(pu ® u) = divP; + of; (1)

rae p — IUIOTHOCTb, U — CKOPOCTb, f — 3ajaHHble cuibl, P, — Tewsop HanpsikeHn#,
div geficTByer mo IpOCTPAHCTBEHHBIM HepeMeHHmM X € R™, a t — Bpema. Bubop
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onpenensiouiero ypasnerus (OVY), csaspiBaiomiero P, ¢ p 1 u, onpejenser MOIeIH
passimunbix cpen. OBocHoBaHHE MATEMATHYECKON KOPPEKTHOCTH "B pejgoM"momenu (1)
SABNISIETCA TPyAHOH 3anayvell; s n > 1 oHa Oblna "ocBoeHa"HeZaBHO Giaromapst ycMiIHaM
Takux MaTemarukos, kax P.L.Lions, A.B.Kaxuxos, B.A.Bairant, E.Feireisl, u ap. 9tn
pe3yIbTATE KAacaluch MOJe/IH JMHENHON BA3KOCTH, cooTseTcTBylowell OY Buaa

P, = (=p(p) + A(p)divu)l + 2uD, (2)

rne D = Sym(V ® u) — Tensop ckopocrelt aedopmauuit. 3HaUMTEJbHEIA HHTEDPEC
KaKk ¢ MaTeMATHYECKON, TaK W C NPHKJIBAHON TOYKM 3pEHUA IPEACTABIAIOT TaKXKe
MOJie/Ii  HEeHbIOTOHOBCKHX J>KHAKocTeH, B Kotopbix OY (2) 3aMeHsiercss Ha HesHHeliHbIe
no u. B noknane no#aer peyb O HECKOAbKHX PE3YJLTATAX &BTOPA, KACAIOUIMXCH TEOpeM
CYUIECTBOBAHMS B LeJIOM (MO BPEMEHH M BXOAHKIM JaHHLIM) pellleHn)t 3a3aMu

plt=o = po; pult=0 = wo; ulpn =0

auist cuctemsl (1) ¢ pasnaasivu OV, onucbiBaromell ABHXeHAE B OrpaHU4eHHON obnacTu
HEHBIOTOHOBCKHX XXHJKOCTeH HeckobKux TunoB. Cpean Hux paccmorpeso OY

D
o {1(3). e
mobot m3 P, D=0

— MHOro3Ha4YHas QYHKUHS, YTO COOTBETCTBYET XuaKocTu Bunrama (He Texyuielt ipy MaJIbix
HAIIPSDKEHUAX ), [Ae P — orpaHu4eHHasi BbIMyKJiasi 061aCTb B IPOCTPAHCTBE CHMMETPHYHbIX
Ten3opoB, T — TeH3opHOe none co 3HadenusmMu B 0P, a Py — TeHsop HanpsoxeHuit
"o06brunoi" (CTOKCOBOM) KUAKOCTH. DTH Pe3y/AbTATH OCHOBAHHI, B YaCTHOCTH, Ha aHaIH3e
CBONCTB ypaBHEHHs TepeHoca, Bxogsuiero B cucremy (1), B mpoctpancrax Opauda [1], n
Ha 3KcTpanosanau JubdepeHIuaIbHRX ONepaTOPOB B 3THX IPOCTpaHcTBax [2].
i JInreparypa
[1] Kaxnxos A. B., Mamonros A. E. Cub. mam. orcypn., 1998, 39(4).
[2] Mamonros A. E. Cub. mam. srcypn., 2006, 47(1,4).

KBanToBaHue nosepxHocTell oTpuIaTeNbHOE pa3sMepHOCTH
Macsos B.II. (MockoBcku# rocysapcTBeHHbI yHHBEPCHTET)

B nepasnelt pabore "Tlonsitne pa3MepnocTs B reomerpun u ajrebpe’ H0.M.Manun
PACCMATPHBAET, B HACTHOCTH, B NOBEPXHOCTH OTPMUATENbLHON (ILIpOYHOA) pasMEpHOCTH.
Ksanropanue nosepxHOCTel ALIPOYHON PA3MEPHOCTH NPUBOAUT K HOBBIM HEOXKHJAHHHIM
ABJIGHMSAM, KOTOpbI€ NPOSABNSAIOTCA B KOHKPETHBIX PeajibHhIX 333a48X.

Vpasuenue Bioprepca Ha pMaHOBBIX MHOT006pa3uaAX
Mauxkesuy C. E.

VYpasuenne Bioprepca — 3T0 ypasHeHHe B YacCTHbIX NPOH3BOAHEIX Ha (YHKIMIO
f:Rx X — X. Ilpocrefmnit papuant 3roro ypassenus ans X = R! nmeer Bu:

af(t,z) Of(t,z) _
o

5 Af(t, ).

+i(t,2) 3
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Ypasrenue Broprepca ns koekTopsoro nonst f : R x M — TY(M) na MHOrooBpasmun
MOXKHO ONPEAEUTh TaK:

o7 1

rie (f,Vf) = f;Vif. Ananormuso MOXHO onpejennTh ypasHenme Bioprepca Ha
MHOrooOpasuu JUisi BEKTOPHOIO mojs. 3allaHHOe TaKuM o6pa3’oM ypaBHEHHE OIIpe/IeIeHO
KOPPEKTHO.

Xopomio ussecTna TpascdopMauus Koyma-Xonda (cm. [1]) f(t,z) = —Q%;'—Il Ju(t,z),
f: R x R — R, cBa3nIBalolliee ypaBHeHne Broprepca 1 ypaBHeHMe TeIONpOBOAHOCTH. Jjist
ypaBHenHe Broprepca Ha MHOrooGpa3ni BO3MOXKHO aHAJIOIMYHOE ITpeo6pa3oBaHKe, TOIbKO
COOTBETCTBYIOIEe ypaBHeHHe 1 u(t, ) yxke He GyaeT ypaBHEHHEM TEMIONPOBOAHOCTH. DTO
CBSI38HO C T€M, YTO KOMMYTATOP KOBAPHAHTHOM HPOU3BOJHOK U JIAIUIACHAHA OT CKAJIADHOM
bysKuMN Ha MHOrOOGPa3UH He PaBEH HYJIIO, & BBIDAYKAETCA Yepe3 TeH30p Puwuum.

Ocuopnasa Teopema. Ilycrs M — rnagkoe pUMBHOBO MHOrooOpa3Me INOCTOSHHOM
KPHBU3HEI CO CKAJISIDHBIM TeH30poM RF = r . Id (wm 4ro TOXe camoe — TeH3Op
Puwan nponopuuonanen merpuke). Iycrs u(t,z) — melicTBuTenbHO3HAYRAs DYHKIUS Ha
MHOroo6pasuu M, ABJIAIOIASICH PEIICHAEM ypaBHEeHUs:

Bu 1 1 scal(z)
[ e R

Inu - u, 1)

ans seex T € M, t > 0 ¢ HavaabubiM ycobueM u(0, z) = uo(z). 3zech scal(z) — ckansipras
KPUBU3HA, N — Pa3MepHOCTb MHOroobpasusa M, scal(z) = r-n — cnen rensopa Pudun.

¢
Torpa v(t,z) = — %;—? ABJIAETCS pellleHleM ypaBHeHUsI Bioprepca ¢ HAYalbHBIM YCIOBHEM

v(0,z) = v(x) = ~ L.
JIureparypa

[1] Belopolskaya Ya.l. Smooth diffusion mesuares and their transformations, Preprint
SFB 256, 1999.

[2] Oy6posun B.A., Houkos C.IL., ®omenko A.T. Cospemennan zeomempun. Memodv.
u npusosicenun. T. 1: Teomerpus mosepxHocrelt, rpynn npeobpazoBanuit u nonett. — M.:
Sauropuan YPCC, Hobpocser, 2001, crp. 71—73.

Sanaua Kommn s riceBaonapaGoiMyecKux cucTeM
Matseesa . H. (r. HoBocubupck)

B pafore paccmaTpuBaercss 3ajada Komm s OZHOrO  KJacca  CHCTeM
JubbepeHIMATBHBIX  YPABHEHMH, HE pa3pEIIEHHBIX OTHOCHTEIbHO IPOM3BOJHOK IO
BpeMeHH

AoDiu+ A (Dy)u = f(t, ),

rae Ay — BHIpOXKJAeHHAs 4ucioBas Matpuua, A(D,;) — Marpuunsit auddepennnaibubIit
orepatop no £ = (Z1,...,%n). DTOT Kiace Gbl BBeLeH B KHure [1] M Ha3bIBaeTCA KAACCOM
ceBAOnapaboIUIecKuX CUCTEM.

3agaya Komn u cMemaHHble KpaeBhle 3aJaYyu B R,TII IS TICeBIONAPabOInIecKHX
cucreM paccMaTpuBamuck B [1], M ans sTux 3amad GbUIM  JIOKA3aHBI TEOPEMBI O
Pa3peuUIMMOCTH B BECOBBIX COGOJIEBCKUX IPOCTPAHCTBAX LV}W ¢ IKCHOHEHUUATHLHLIM BECOM
€~ 7. XapakTepHoil 0COBEHHOCTHIO ITHX TEOPEM ABJIAETCH TOT (DAKT, YTO PA3PEUIMMOCTh
KpPaeBBIX 3a/1a4 YCTAHABINBAETICA HE EO BCEH IUKaJIe MPOCTPAHCTB Wéml < p < oo
B GospummnCTBe Cly4yaeB BOSHMKAIOT OIPAHMYEHMS HA [OKA3aTelb CyMMHDYEMOCTH BHJa
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p > p°, rge umuciao p* > 1 3aBMCHT OT MOPAJKA CHCTEMbI M Pa3MEPHOCTH N. B cayuae,
Korga p < p*, JJA pa3peniMMOCTH Ha JaHHbIe HeOGXOOMMO HAK/IaAbIBATD JOTOIHHTICILHEIE
TpeGOBANAS THIIA YCIOBUHA OPTOrOHAJLHOCTH HEKOTOPBIM MOJIHHOMAM. OTnMeTunm, 9TO TaKas
CUTyalusi #BISTCS THNMYHON B TEODHH KDaeBbIX 387a4 AJs yPABHEHMH M CHCTeM, He
pAzpeIeHHEIX OTHOCHTENIBHO CTapliell IPOM3BOAHON (CM., HAaNpuMep, {1, 2).

B Hacrosme#t pabore Hcchemyercs paspemmmocTb 3ajaun Komm B crenuasbHBIX
BECOBBIX CODOIEBCKUX ITPOCTPAHCTBAX W,ﬂm‘,, BBEIEHHBIX B [3], C 9KCIIOHEHIHAILHBIM BECOM
110 t ¥ CTeNeHHbIMA Becamu 110 z. JIpoCTpaHCTBa TAKOro THIA OKa3biBaloTest 6osee ynoGHBIMMT
[pH JOKa3aTelbCTBE CYLIECTBOBAHMS DELIEHHN ypaBHEHHt M CHCTEM, HE Pa3perieHHBIX
OTHOCHTEIBHO cTapnie npousBoaHolt (cM., Hanpuwmep, [1, 4, 5]), Tpu 5ToM, KakK NOKA3BIBAIOT
HpUMEDHI, IPH COOTBETCTBYIOUIEM BbIGOpe CTENEHHOIrO Beca MOTYT MMETh MECTO TEOPEMbI O
Ge3ycToBHOM Pa3sPEIIMMOCTH KPAeBhIX 3a/1a4 BO Beelf Ikate mpoctpancTs W) . ,, 1 < p < oo

PaGora BmnosHeHa npM  ¢uHaHcoBoff  mommepxkke  Poccmiickoro  donIa
dynnaMenTanenbix uccaegosaunit (Ne 07-01-00529) n Cubupckoro otaenenus Poccufickoit
aKaJeMHH HayK (MHTerpanMOHHBIH npoekT Ne 2.2).

JIureparypa

{1] Oemumerxo I'. B., Yenmenckuit C. B. Ypaswenus u cucmems, ne paspewennvie
omunocumenvro cmapuweti npoussodnoti. Hosocubupek: Hayunas knnra, 1998.

[2] Matseesa M. Y. Heobxodumvie u docmamonvie YCA06UA PASPEWUMOCTIU KPAESHLT
3aday dan cucmem ne muna Kowu - Kosasesexot // Cub. xxypH. uraycrp. mar. 2001. T. 4,
Ne 2. C. 184-204.

13] Hemugenko T. B. 3adava Kowwu dan ypasnenull u cucmem coboaescrozo muna / /
Kpaesble 3a7a4mM Juis ypaBHEHMH ¢ 4acTHBIMH npom3poaseivMu. Hosocubupek: Hn-T
marematuku AH CCCP. Cu6. otg-une, 1986. C. 69-84.

[4] Matveeva . 1. On a class of boundary value problems for systems of Sobolev type //
J. Anal. Appl. 2005. Vol. 3, N¢ 2. P. 129-150.

[5] Marseesa M. U. O paspewumocmu 3sadavu Kowwu Oan ncesdonapaborumecku
cucmem 6 eecoews coboaescxur npocmpancmear // B ku.: Hexknaccmueckue ypaBHEHHs
maTemaTnueckoll dusnku. Hosocubupck, Uncruryr maremarnxku CO PAH, 2005. C. 177-
185.

06 uHTepnoOAAUMM KyONUeCKMMH MHOrOWIEHAMH Ha TPEYroJbHMUKe
Martseesa 10.B. (r. Capatos)

Iycrs T = (A;AzA3) - 3aMKHYTHIf HEBBIPOXKIEHHBIN TPEYTONbHHK Ha INIOCKOCTH,
bynkuus f € C4T), eir - eauHWYHble BEKTOPHI, KOJUIMHEADHBIE CTOPOHAM ;4,—,4,:
rpeyronbauka T. CTpouM nmosmsoM @ CTeNeHy TPH C JefcTBUTeTbHEIME Ko3dduineHTaMu,
unTeproaupyonuit GYHKIMIO f BMeCTe C ee IPOW3BOAHBIMM IO Hampasjenuio cropor T’ B
pepmunax A;,i = 1,3, 1 yIOBJIETBOPAIOLUI yCIOBUIO

FQA) _ f(A)

dej20e13  Beinfers’

B pabore (cm. [1]) Takoe ycnosme Gepercs B BepimmHe cpenHero MM HauGosblero
[0 BeJMYMHE YIJIa TPEYTONbHNKA M MOJyYeHb! OLEHKH aNNMPOKCHMALMM BCEX 4YACTHBIX
IPOK3BOIHBIX JI0 TPETHEro NOPAAKA BKIIOUATEILHO B TEPMUHAX CHHYCa HaubOIbIIero yria.
Ma! MOSYYHM ONEHKHM NOTPEMIHOCTH ISl MPOM3BOAHBIX (YHKIMH IO HAMPABIEHHAM 10
TpPeThEro MOpsKa BKIIOYATENBHO, He 3aBUCAIIME SIBHO OT M€OMETPHH TPEyrOIbHUKA. Hnst
TIOCTPOEHHOTO Bbilfe TIOJIMHOMA () CTIpaBe/yIHBa CIeIyIolas TeopeMa.
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Teopema. ITycmv dynryua f(x) onpedesena na mpeyzonvruxe T u umeem na Hem
HENPEPBEHDIE UACTIHYIE NPOUIBOOHYIE 00 YETBEPMO20 NOPAIKAE exMONUMEAsHo, d - Juamemp

& f(x)
11 9a12 903 Haid |
Oej' 0ey? Jey? e
Tozda cywecmeyem eduncmeennuli unmepnosyuonnst nosurom Q(X), u cnpasediuen

HEPpABGEHCTEA
"R -1

k n—k
det,0el3

’

max
0<i;<4.3 ij=4 €T

<CMud*™™, 1<n<8, 0<k<n,

JIureparypa
{1] Bafinakosa H.B. "06 odnom cnocobe pmumosoti uUNMEPNOAAYUUY MHOZOMAEHAMU
mpemuoeti cmenent na mpeyzoavruxe”, Tpynbr UHcTHTYTA MaTeMaTuRu u MexanuKu. Teopust
dyukuuit: C6. nay4. tpymos. ExarepunGypr: ¥YpO PAH, 11:2 (2005), 47-52.

MHuoromepHble CHCTEMBI CUNUCIEHUSA
Makcnmenko H. E. (r. Canxr-Ilerep6ypr)

B pauHOft pafoTe HCCIEJOBaH BONPOC O DPA3IOXEHHH Jo0oro d-MEpHOrO BEKTOpa
N0 CTeNeHSM MATPHIBI PACTSDKEHHd, TO €CThb LEJOYMCJIEHHON wmarpuusl M pasmepa
d x d, Tako#f, uTO Bce ee COBCTBEHHBIE YHCAA MO MOAYTIO GoJblie eIMHMIBL Takoe
Pa3iIOXKeHNe MOXKHO PacCMATPHBATH KAX MHOTOMEPHYIO CHCTEMY CUHCIIEHUS, [1€ OCHOBAHHEM
ABJI€TCS MaTPHIA, a HUPpPaMH — BEKTOPBL. IlomoOGHBIE CHCTEMBI CUHCNEHHMsI MOTYT 6bITh
HCIIOIb30BaHEl B obpaborke n3obpaxkenuit. Tak B yHusepcurere Eotvos Lorand Universi-
ty (Berrpust) MeTOZOM KOMIIBIOTEDHOrO nepebopa GBI NOCTPOEHBI CHCTEMBbI CYMCJIEHUS
BILIOTB JI0 12 pa3MepHOCTH JJISi MATPHN, MOAYJ]b ONpeNeNUTENsT KOTOPhIX paBeH ABYM (CM.
http://szdg.lpds.sztaki.hu/szdg/desc_numsys__ed.php).

Hamu rnpefjioxkeH KOHCTPYKTHUBHBIH METOZ Pa3/IOXKEHHs! LEJOYHCIIEHHBIX BEKTOPOB IO
CTEeHsAM MATPHIbl PACTAXKEHUsT, JOKa3aHO CYILeCTBOBAHKE PA3JI0XKEHHs IPOU3BOJIBHOIO d-
MepHoro BekTopa. IIycTb 3aech ¥ fajtee, M — MaTpHLa pacTsKeHHs.

Jlemma. Muoxectso H(M) := Z* N M[0,1)¢ moxwo B3sTh B Kavecrse M-mudp (1o
€CTh BEKTOPOB, YYACTBYIOIIAX B PA3JIOKEHUM).

Kosuuectso M-undbp paBHO Moymo . onpefemureiss wmarpuust M (em.,
Hanpumep, [1]). HazoBem BekTOp 23, /718 KOTOPOTO BBINOJHEHO COOTHOMIEHUE
20 = MTzg + M"™ Ys,_y + ... + Msy + sy, TA€ S0,...,8r—1 € H(M), 3anuknusaomum
BEKTOpPOM MaTpuisi M AJMHEL 7.

N
Teopema 1. Jns moboro x € Z¢ cymecTyer npencrasaeane z = MVt z+ S M ks,
k=0
rne N € N, sq,...,sy € H(M), a Bexrop zg € Z¢ mbo 3anukauBaomuit, 6o HyseBo.
IIpexcraBiieHne eQMHCTBEHHO, €CJH IIPU PA3JIOXKEHUM OyIeM OCTAHABIMBATLCH Ha IIEPBOM
3aUMKJIHBAOIIEM.
oo
Teopema 2. Ilycrs BekTOp 29 — 3auukamBaowMi aaunsl r. Torna —zp = 3. M ‘lyl,
=1
TAE YI = Yrkan = Sny 1 = 0,...,7 — 1, k € Z% U 06paTHO, €C/Ti LeIOUHCIEHHbI! BEKTOD 2
o
HpeJCTaBUM B BuAe 2 = 3. M ™'y, y; € H(M), To nubo z HyneBol BEKTOD, MO0 BEKTOP —2

3a0UKJIMBAIONIU.
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00
Teopema 3. JTrobolt Bekop © € R? npeacrasum B Buge = = MVt + Y MYy,
1==N

y1 € H(M), rae N € N, zp aubo 3anukiusaomuit, 1160 HyaeBoi.
Jlureparypa
[1] Wojtaszczyk P. A mathematical introduction to wavelets. London Math. Soc. Student
texts 87. 1997.

BumopansHble fudypKaluyu MojioyKeHnii paBHOBECHSI B NOTEHUMAIBHBIX
cHCTEeMaX C CUMMeTpueil
Maiinpi6aes A.A. Cedipansan A.II. (Hucrutyt mexannku MI'Y umenn M.B. Jlomonocosa)

Uccnenyrorcss Oudypkauuy [OJOXKEHHH DABHOBECHS [IOTEHIMAJbHBIX CHCTEM C
CHMMETDPUSAMH, XAPAKTEPU3YIOIIMXCA JByMs JIAHE#HO He3aBUCHMBIMH (POPMaMM TOTEPH
yero#tuuBoctt  (6umonanbubie Ondypkamuu). Passura ofmas Teopus GUMOARIBHBIX
budyprauyii B IOTEHUMANBHBIX CHUCTeMax ¢ cuMmMeTpusmu. [laercs kiraccuduxanust
6udypkaumil ¥ IepecTpoeK NPU U3MEHEHHH NIaPaMeTPOB CHCTEMBI. B KadecTBe NPUIOKEHHH
pPAcCMOTPEH TNPUMED YIPYILOro COCTABHOTO CTEPXKHS, IOTePs YCTONYUBOCTH KOTOPOTO
IPOUCXOMT IO HECUMMETPHIHOH opme.

Hekoropeie anddepernupanbiblie TOXXAECTBA M X IPIMEHEHUe
Merpa6os A. I (MHCTHATYT BBIYHCIHTEIbHON MaTeMaTHKH H MaTeMaTHYECKOH reobu3nKy

CO PAH (Hosocubupck))

INonyyen pan auddepeHUMATLHBIX TOMCAECTB 2-TO M 3-r0 HOPAJKA, CBA3BIBAIONINX
nannacual Au = Ugz + Uyy TPOH3BONbHON rmanko# GyHKIMM u(T,y), MOMYIDb e rpaieHTa
u Benuanny arctg (uy/uz).

Ocnoenoe mooicdecmeo. l'chrb uw(z,y) € C*D), D — nexoropas obnacty,
=2 2 +u? =|gradul?, %, J, k — opret no ocam 2, y, 2. Toraa
de{ — grad u = grad ( lng) + rot {arctg k}

Ciredemeue 1. Jas moboi u(z,y) € C*(D)

Au= %{u,a%: + u,,%} Ing— {uvt% - u,%}arctg:—:

Caedemeue 2. Jns mo6ot u(z,y) € C3(D)
Alnyful +uf = (uz%)z+(uy%g)y=diVQ_, (1
Aarctg%—z- = (uy%)z - (uI—Ag—u)y = —(rot Q - k),

div {% grad g — Augrad u} = 2{ul, — Uzzlyy}.
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Toxaecrso (1) nomydeno B crarbe aBropa B Jokinanax PAH, 2004, 7. 395, Ne 2. Janunie
TOXKAecTBa YNOGHO TPUMEHATh K JIMHEMHBIM U HeJNHENHBIM YDaBHEHHSM, COAEPXKAIINM
soipaskerust Au, uZ + u2, u2, — uzzu,,, HANDHMep, K ypaBHEHUAM SMKOHANA, BOJHOBBIM,
HeaJIbHON KUIKOCTH Ais (pyHKnuuu Toka, Momxa — Amnepa u ap.

Homogenized models for filtration processes and acoustic wave propagation in
elastic porous media
Meirmanov A.M. (Belgorod State University, Russia)

We consider a problem of a joint motion of a deformable solid, perforated by a system of
channels (pores) and a fluid occupying a porous space. In dimensionless variables differential
equations of the problem for the dimensionless displacement vector w® of the continuum
medium have a form:

2 wE £
arr T = 2 (xa(x B) + (1= X)axDlz, W) - (¢ + 7)) + 4,

¢ =—x"af =, w°, T+ (1-x")ap+. W =0.

In this model the characteristic function of the porous space x°, coefficient
p° = psxt + ps(1 — x°) and a dimensionless vector F(x,t) of distributed mass forces are
known functions. Dimensionless parameters «; (i = 7,v,...) depend on the small parameter
€ = l/L, where | is a characteristic size of pores and L is a characteristic size of the entire
porous body. Although the problem is linear, it is very hard to tackle due to the fact that its
main differential equations involve non-smooth oscillatory coefficients, both big and small,
under the differentiation operators. We suggest the rigorous justification for homogeniza-
tion procedures as ¢ tends to zero, while the porous body is geometrically periodic. As the
results we derive Biot’s equations of poroelasticity, or system, consisting of non-isotropic
Lamé’s equations for the solid component and acoustic equations for the liquid component,
equations of viscoelasticity, or decoupled system consisting of Darcy’s system of filtration or
acoustic equations for the liquid component {first approximation) and non-isotropic Lamé’s
equations for the solid component (second approximation) or different type of acoustic equa-
tions for the solid and liquid components, depending on ratios between physical parameters.
The proofs are based on Nguetseng’s two-scale convergence method of homogenization in
periodic structures.

MsHuoroo6pasus Bere, acconmupoBaHHbIE C KJIACCHYECKMMH CUCTEMaMMi KOpHelt
Memepaxos B.B. (KosomeHckHIl rocyapCTBeHHbIH NEAArOTHYECKHH HHCTHTYT)

IIycts R — npuBejeHHAs W HEMPUBOIAMMAS CHCTEMA KOPHe#l B D-MEDHOM BEIIeCTBEHHOM
BEKTOPHOM MpocTpaHcTBe V, Ry — MHOXKEeCTBO NMPOCThIX KOpHe#, a Ry — mosnoxutensHas
cucrema KopHell. I'pynmoft Beftng W(R) cucrembr R HasbiBaeTCs TPYNNa, NOPOXKJEHHAs
OTPaXKeHMsAMH OTHOCHTENbHO KOpHell 310l cucrembl. BymeM cuurarh npocrpancrso V
eBKJIMIOBBIM CO CTAHIADTHBIM CcKajApHbiM npoussefenueM ( | ). Torma orpaxkenue s,
OTHOCHTEJILHO BEKTOpa ¢ oTobpaxaeT x € V' B BeKTOp

(z]a)

ST = —2—«

(ala)
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Jna xaxxuo#t cuCTeMbl KODHEH MOXHO MOCTPOMTb €MHCTBEHHYIO Giiuuelnyio dbopmy
Fg(z,y) [3] na V, xoTOpas uHBapHaHTHA OTHOCHTENEHO JAeHCTBUA & — W2, § — WY PPYIILL
W(R) u ynoBneTBopsier cllefyioleMy YCIOBHIO

FR(zfy) = Z FR(x,a)FR(a,y).
a€R

Mycrs |R| = N — uuncno xophe#t B cucreme R, CVY — kommnyexcHoe npoCTpaHCTBO,
accouunposanHoe ¢ R. Yepes { un, o € R} obosnaunm xoopaunars B CV, ynopanouennsie
OTHOCHTENBHO NOpsAIKa, BEIOpaHHoro B R.

B paBore [1} ana xaxno# npuBeseHHOM, HENPUBOAUMON CHCTEMBI KOPHEH MOCTPOEHBI
YHUBepCaJibHble ofiepaTophl JyHKaa

F(y,a)kq
ZF(7,a)3r—+Z ke,

— U~
a€ER &

rpe ko, — HEOTPHLRTEIbHOE LieJIoe YHCII0, 3aBUCSLIAA TONbKO OT JJMHEI KOPHS Q.

Ilpu noaxomsmem orobpaxenmn mpocrparcrsa VB CVN  noaywaiorcs
AnddepeHInaNbHO-PA3HOCTHbIE ONEPATOPLI, CONpPSXKEHHbIE OGLIYHBIM onlepaTopam JLyHKIA,
cBONCTBA KOTODPHIX onucaHbl B [2]. OZHO M3 3THX CBONCTB yTBEPXKAAET, CyMMa KBAJpPAaTOB
oneparopos JlyHkna siBnsercs onepaTopoM Jlamiaca.

Jlns yHuBepcaJbHEIX orrepaTopoB JIyHK1a 9TO CBOMCTBO nepectaer GbITh BEPHLIM.

Onpegenenue. Anrebpandeckoe noamuoroobpasue npocrparncrea CV, onpenenennoe

YPaBHEHHAMH
T (CY R
a.BER, (ua - U—a)(uﬂ - u—ﬁ)

a
8o 8g=w

roe w € W(R), nasbiBaercst MHoroo6pasuem Bere ans cucrems! R.
Ha mHoroo6pasuu Bere (1 TObKO Ha HeM) BBINOHSIETCS PABEHCTBO

) Vi=-Hg,

YER

rae He — "ynusepcanbunit" ramunpronnan tana Casepnenna [1].

B noknaze Ans KAacCHYECKHX CHcTeM kopHe# (tuma Ap-i, By, Cn,Dn) Oyayr
NpeACTABIEHB B ABHOM BHJIE yPABHEHHs, ONpeesoue MHoroobpasus Bere, Boiunciena
nx pasmepHocrs. Takxe 6yaer mokasaHo, 4ro B ciydae B, u C, MHorooGpasmne Bere
SIBJISIETCS 1IOJMHOXECTBOM IIEPECEYEHNUs] YIbTParunepOooINIecKHX IOBEPHOCTEN.

Jluteparypa

|1] Golubeva V.A. Leksin V.P. Heisenberg-Weyl operator algebras associated to the
models of Calogero-Sutherland type and isomorphism of rational and trigonometric models
// J. Math. Sci., 98, no 3 (2000), 291-318.

[2] Dunkl C.F. Differential-difference operators associated to reflection groups // Trans.
Amer. Math. Soc., 311, no 1 (1989), 167-183.

[3] BypGaku H. I'pynnsi 1 anrebpst JIu. Ipynnsr Kokerepa u cuctemer Turca. I'pynmsl,
nopoxaeHHble orpaxkennsmu. Cucremst xopreii. M.: Mup, 1972.

[4] Xamdpuc Ix. Beenenue B Teopuio anreSp JIu n ux npeacrasnenntt / Ilepes. ¢ anra.
B.P. ®penkuna. M.: MUHMO, 2003.

[5] Cepp K.-II. Anre6pst Jlu 1 rpyunst Jlu / Ilepes. ¢ anrmuiickoro # ¢paHLy3cKOro
A.B. Boabiackoro. M.: Mup, 1969.
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K uccnenobanuio ycToii4MBOCTH IBMXKEHUS ONOPLI LIACCH JIETATEILHOrO
anmnapara ¢ y4JeTOM YacCTOTHBIX XapaKTEepPUCTHK Aemndepa
Merpuxun B. C. (HUW IIMK HHT'Y um. H.H. Jlobauesckoro)

Ha sTane npoexTupoBanusi ImaccH jeraTenbHbIX annapatos (JIA) mapsay ¢ pacyeramu
AMOPTH3ALIMH, MPOYHOCTH, Pecypca M T.I. NPOM3BOIATCS DacyeThl AeMIHUPYOMAX K
JKECTKOCTHBIX IIADAMeTPOB ONOPbl M KOJEC C HCHONb3oBaHHeM muddepeHIManbHbIX
ypasuenu#t (YY) Gosbwod pasmeproctd. Ilo pe3ynbTaTaM pacuyeToB AMHAMHYECKHUX
xapaktepuctuk (IX) omopel u komec JIA mna npejnoTBpamieHMs MWIUMME OMOpPhI JIA
oberaro 0bopyayoTest gemrdepom. B GoNbIIMHCTBE U3BECTHBIX MATEMATHYECKHUX MOENSIX
XapaKTePHCTHKA JeMIdepa ONUCHBAETCS B BHe JUHeHHOMH, 1160 KBaapaTudHoil GyHKuuit,
KOTJla KaK M3BECTHO OHH IIPEJCTABIAIOT COOON CyIUECTBEHHO HenuHelHble dyukiuy. B
paboTe NpHBEAeHa HOBas MaTeMATHYECKas MOJENb JJs pacdeTa YCTOHYHBOCTH KAMEHUS
Kojlec omopel maccu JIA ¢ geMndepoM ¢ y4YeTOM SKCHEPUMEHTAIBHO HaliJIeHHBIX
HeJIMHEHEIX YaCTOTHEIX XapakTepucTuk JeMindepa. O6CyKAAI0TCA pe3ybTATE YUCIEHHOrO
U AHAJMTHYECKOrO MHCCJIEJAOBAHHA YCTOMYMBOCTH IBHIKEHHsI ONODHI INACCH JIETATCILHOIO
annapaTa ¢ yJeToM H 6e3 yueTa IKCIEPHMEHTAJIBbHO HAMJEHHBIX HEHHEHHBIX YAaCTOTHBIX
XapaKTepHCTHK Jemicdepa. B pesyinraTe NpUBOAATCS HOBblE METOAMKH U OJXOJbI PACYeTa
3beKTHBHBIX 3HadYeHHl JeMIbUPYIOMIMX U KECTKOCTHBIX XapaKTCDHCTHK jAeMiidepa
LIAMMA.

O cyumecTBOBaHMM NpPelEIbHBIX 3HAYEHUH Ha rpaHMLE HPOM3BOAHBIX
MNOJUrapMOHKUYECKOil PyHKUMH B 11ape
Muxaitnos B.IL

YcTaHOBjIeHB! TeopeMbl CyIIECTBOBAHHMA IMpPeJelbHbIX 3HAYEHWH Ha TIpaHule B
rubOeproBoft mKane CoBOJEBCKMX IPOCTPAHCTB y MOJMTAPMOHMYECKOH B  Iuape
{lz] < 1} ¢ R" dbynkuun u ed npoussomuex. Haiinennl ycnosusi, obecredupaloluiye
CymecTBoBaHHe IIpeaesbHbIX 3HAYEeHNk Y OAHUX IIPDOM3BOAHBIX B 3aBHCHMOCTH OT
CYUICCTBOBaHUsl Npeae/ibHbIX 3HAYEHU Yy Apyrux 1npou3BOIHBIX.

Pabora Beinondena npu duHancosoll nopgepxke POOU (rpant N 04-01-00377) u
rpanTa npesugenta PO (HII - 6705.2006.1).

Spectra of singular periodic differential operators of even order
Mikhailets V., Molyboga V. (Kyiv)

The point spectra of the form-sums
S4(V):=D™™ iV(z), meN

in the Hilbert space L3(0, 1) are studied. It is assumed that periodic (D) and semiperiodic
(D-) operators Dy : u+ ~iu’ and V(z) be a 1-periodic complex-valued distribution in the
Sobolev spaces H;.7*, o € [0,1).

The following questions are investigated:
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e Precise non-asymptotic and asymptotic formulae for the eigenvalues;

o Extension of the Marchenko — Ostrovsky theorem for the case m = 1, —a € No on
considered values of parameters m and o;

o Sharp estimates of lengths of the gaps (7,) in continuous spectrum of self-adjoint
Schrodinger operator on the line with periodic potential V(z);

o Necessary and sufficient conditions on V (z) under which either (7,) € loo or (ya) € co.

Some results of the talk are published in the papers {1-6].
References
v {1] Molyboga V. Estimates for periodic eigenvalues of the differential operator
(~1)™d3m/dx?®™ + V with V — distribution // Meth. Funct. Anal. and Top. - 2003. -
9, Ne2. - P. 163 - 178.

[2] Mikhailets V., Molyboga V. Singular eigenvalues problems on the circle // Meth.
Func. Anal. and Top. — 2004. - 10, Ne 3. — P. 44 - 53.

[3] Mikhailets V., Molyboga V. Uniform estimates for the semiperiodic eigenvalues of
the singular differential operators // Meth. Func. Anal. and Top. — 2004. - 10, Ned. - P. 30
- 57.

[4] Mikhailets V., Molyboga V. The spectral problems over the classes of periodic distri-
butions (Ukrainian). — Preprint. — Kyiv, 2004. — 46 pp.

[5] Mikhailets V., Molyboga V. Perturbation of periodic and semiperiodic operators by
the Schwartz distribution (Russian) // Reports of NAS of Ukraine. - 2006. - 7. — P. 26 — 31

[6] Mikhailets V., Molyboga V. Gap estimates of the spectrum of a periodic Schrodinger
operator with a distribution as potential (in preparation).

Towards classification of integrable systems
Mikhailov A.V., Novikov V.S., Wang J.P. (University of Leeds, Leeds, UK, )

Inspired by the success of the global classification of integrable evolutionary equations
[1], we developed and applied the symbolic method to homogeneous systems of two (and
more) equations of odd order (n =2k +1,k=1,2,...)

uy = Mt + Fi(%n-1,Vn-1,. ., %)
Ve = AgUn + F2(Un—1,Un-1y. -, % V)

We have studied conditions for the existence of infinite hierarchies of symmetries. We
formulate necessary and sufficient conditions for the existence of approzimate symmetries
(c.f. [2]). These conditions impose constraints on possible spectra (dispersion laws) of the
linearised systems. In the case of the above system of two equations the most interesting
spectra are given by

X _ (149"
M 1+q*
where . s
g=¢et, n=1,3"79mod 10
or

xi

g=e%, n=1,579mod 12
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We have classified integrable homogeneous systems of two variables of order 3 of the KdV
type. We also have found a few new examples of integrable systems of order 5, such as

U = 15u5 + 30ujup — 30ugv — 45uzv; — 35uyvp — 10uv3 — 6u?u; + 6ulv; + 1202 ul + 12uvvy,
v = 3v5 —~ 10uus — 15u1u2 + 10vvs + 25v,v2 — 6u?u, + 6uvy + 12uvu; — 12v%;.

We extended the theory to the systems of 3 dependent variables and found a new inte-
grable system of the form

ug = ug + (10 + 2v5)vow + (10 — 2v/B)vwz — uuy + 182(1 — VB)vdw + 152(1 + VE)wu?,
v

=1(~7-3VB)vs + (3 + VB)ugw + (6 + 2vB)urwy + (5 + vB)uwy — §(uuyw + vPuy)
+2(5+ 3VB)v?u1—, §(5 + 3VE) (v1w? + vwwy) — FvBuwtw + (5 + 3vB)uud,

= 1(=7+3vB)ws + (3 — VB)ugv + (6 — 2VB)uyv1 + (5 — VB)uvs — §(uugw + vwy)—
3(_5 3v5)(vo1w + vPwi) + 8(5 3\/_)1U wy + l6(5 3vE)ur® 332\/_u1)w

References
[1] Sanders J.A., Wang J.P On the integrability of homogeneous scalar evolution equa-
tions, J. Diff. Equations, 147, 410-34.
[2] Mikhailov A.V., Novikov V.S. Perturbative symmetry approach, J. Phys, A: Math.
Gen, 35, 4775-4790.

Wave and Schrédinger operators on the half line. Connection of the dynamical
and spectral data
Mikhaylov V. S. (Fairbanks AK, USA)

We established the representation of the Weyl function for the Schrodinger operator
H = —82 + g(z) on the half line:

m(—k?) = —k + /0 ” e ko(t) dt, )

where for ¢ € L1(R4), ¢ € Loo(R+), ¢ € loo(L1(R4)) the integral converges absolutely in
the certain domain of k. Here r(t) is a response function for the following initial boundary
value problem

u (z,t) — uzz(z, t) + g(z)u(z,t) =0, 2>0,0<t<T, @
U(I, 0) = ut(xvo) =0, U(O, t) = f(t), f € LQ(OrT)

Representation ((1)) allows us to establish the correspondence between the A—amplitude
(see [3], [4]) and the response function (see [1]): A(t) = —2r(2t). We offered a linear Volterra
type equation which can be used for the calculation of A—amplitude.

A(z,y) = q(z) — /ou (/vz A(u,v)du) g(x —v)dv; z,y>0. 3)

then
Aa) = Ale, a). (4)

For the case ¢ € Ly, 10c(R.+) such that the operator H is a limit point case at infinity, we
derive the analog of ((1)) with the error term. This together with the arguments of Boundary
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Control theory (see [1]) leads to the another proof of the local Borg-Marchenko theorem (see

13, [4]).
References
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Annals of Mathematics, 150 (1999), 1029-1057.

[4] Fritz Gesztesy, Barry Simon A new approach to inverse spectral theory, II. General
real potential and the connection to the spectral measure. Ann. of Math. (2) 152 (2000), no.
2, 593-643.

OcHam@HHast cxeMa KaK IIOJIHBI# TONOJIOTHYEeCKHI MHBApUAHT HpocTefinnx
Herpy6buIx auddeomopduamon ceprr S?
Munrpsikosa T. M. (r. Haxauit Hosropox)

B pabore paccmaTtpuBaercsa kiaace ® coxpaHsommx opueHTaumo JuddeomopdusmMon
f € Diffr(S?), r > 5, sanannbix Ha cepe S? ¥ yAOBIETBOPSAIONINX CELYIONUM YCTOBUAM:
1) nebayxpaoumee MHOXKecTBO 2(f) COCTOMT M3 IUECTH HEMOABHMIKHBIX TMIEP6ONUYCCKIX
TOYEK: TPeX CTOKOB W], W, W3; OAHOTO MCTOYHHKA Q M IBYX CEIeN 01, Og; 2) MHOXKECTBO
W*#(o1)NW*(03) He MyCTO K COCTOUT U3 KOHEYHOrO YHCIA OPOUT, CPEAH KOTOPHIX B TOIHOCTH
ofna opbuTA OJHOCTOPOHHErO KACAHUS.

Cornacro pabore [3], Cl-oxpecrrocts soboro auddeomopdusma f € P mnepecexaer
KOHTHHYYM KJIaCCOB TOIOJIOTMYECKON CONPSIXKEHHOCTH ¥ I1aPAMETPOM, OIHCHIBAIOLLAM
OKPECTHOCTD, SIBJISIETCH CJIeAyIoliee OTHoweHue: c(f) = %, rae p(oy) — coberTBennoe
snauenne D f(o1), Gonbiee equuuust u A(02) — cobersennoe 3nadenne D f(o;), MeHbuICe
equuuIpl. B obmeM ciyudae, aia auddeomopdusmos f, f1 € @ pasencrso ¢(f) = c(f)
ABJISAETCS JIMIOL HEOOXOMUMBIM YCI0BHEM TONOJIOTUIECKON CONPSDKEHHOCTH, HO He SIBIASIETCS
JOCTATOYHBIM, B CHJIy BO3MOXHOLO DA3/IMYMsi [€OMETPUYECKOR CTPYKTYPHI NEpecevdeHust
MHBAPMAHTHBIX MHOCOOOPA3ui CeIJIOBHIX TOYEK.

Hna audbdeomopdusmos kinacca P HalleH NOMHBIN TOMOJOrHYECKHA HHBAPHAHT
(ocHameHnass cxema), cogepxamuit napamerp c(f) ¥ pas’nMyAOWMi [EOMETPHIO
epeceyenHns.

[1] Melo W. Moduli of stability of two-dimensional diffeomorphisms. Topology, v. 19,
1980, 9 - 21.

[2] Melo W., Strien S. J. Diffeomorphisms on surfaces with a finite namber of moduli.
Ergod. Th. and Dynam. Sys., v. 7, 1987, 415 - 462.

[3] Palis J. A differentiable invariant of topological conjugacies and moduli of stability.
Asterisque, v. 51, 1978, 335 - 346.

On a version of the directional derivative problem
Moiseev T.E.
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CymecTBoBaHue cOGCTBEHHBIX 3HAYEHM B 3aja4e 0 AN3NEKTPUYECKUX
BOJIHOBOJAX
Moxkertues B.C. (Ka3saHckult yHUBEpCHTET)

CymecTBylor s coGCTBEHHbe  BOJIHBI B MAaTeMaTHYeCKOl  MOAenH
-Au = A+ ¢j)u, z € Q;, UQ; = R, rae (—c;)— AMSIEXTPUYECKAs NOCTOSHHAA B
cioe §2;, pemenus u;{x) (B cmoe ;) MOMXKHBL GBITE COCTHIKOBAHBI Ha OOLMX IPaHHlax
cioeB Tax, ytobel u{z) — 0 mpu |z| — +oo? IIpu Takoit mocTaHOBKE BOSHUKAET CJOXKHAS
npo6ieMa COCTHIKOBKH, He FOBOPS O CYILIECTBOBaHNN cOOCTBEHHBIX 3Hadenuit. [Ipennaraercs
pacemoTpeTs 3agady —Au = {A + c(z))u, z € R*, v € L*(R™), B xotopott ¢(z) = ¢; npu
z € Q;. Toraa npo6GieMa COCTHIKOBKM PEIIAETCS ABTOMATHYECKH, H Ce/yeT BECTH pedb O
CyIecTBOBaHUN cobCcTBeHHbIX 3Hadennli. Uaywaercs Gonee obmast 3a1a4a

P(D)u = (u+g(z))u, z € R, u€ L*(R"), 1)

B KoTopoii P(i€) > 0— cumson ncepaoanddepennuaisHoro omeparopa P(D), ne
sapucsmmil o1 z, 12 = —1, P(i€) = P(—i€), npu u < 0 umeer mecto (P(i€)—p)~! € L2(R™),
ecu g — —00, T0 [p, (P(i€) — p)~2d¢ — 0, dynxuns fl£|<6(P(iE) — p)~1d¢ meorpanndena
npu mameix & U u < 0, g(x) m3amepuma, orpaHmdeHa W paBHa Hyiio BHe §). B ciyuae
P(i€) = |€]? npeanonoxenns BumonHsoTeA npH 7 < 3.

Teopema

Theorem 2 ITpu g(z) < 0 3adaua (2) ne umeem ompuyamessHor COGCMEERHHBT 3HaeNul;
6 cayvae g(z) > 0 na Q u oepanuvennocmu Q 3adava (2) umeem zoma Ovu. 00HO
ompuyamenvroe cobecmeennoe 3naMenue.

HOna (1) 3a Q cneayer B3aTh gononHeHme K §)j, O Koroporo (—c;)— HamBonvinee; B
CJIydae ero orpaHHYEHHOCTH 110 TeOpeMe CYIIeCTBYeT COOCTBEHHOE 3HAYEHHE , I KOTOPOro
min(—c¢;) < A < max(—c;).

Transition from the network of the thin fibers to the quantum graph
Molchanov Stanislav (University of North Carolina at Charlotte)

The talk will contain the review of our recent results with Prof. B. Vainberg on the
asymptotical analysis for ¢ — 0 of the wave and heat equations in the network (2, of the
cylindrical waveguides (or optical fibers) of the thickness €. We impose on 92, the boundary
conditions (BC). In the optical applications the most interesting are the Dirichlet BC, the
case of the high conductivity of 8Q,. The domain 2, approaches (if € — 0) to the 1D object:
quantum graph I'. The vertices of I' correspond to the junctions of network Q. and the edges
are the axis of the cylinders.

The most interesting problem here is the form of the gluing condition (GC) in the vertices
of T for the "limiting"wave or heat equations on I'. These symplectic GC depend on the
scattering properties of the individual junctions (spider-like domains) and are typically not
the Kirchhoff’s ones.

The spectral analysis of the Laplacian ¢2A in £, and the study of associated asymp-
totic problems for the evolution equations are based on the ideas of the scattering theory,
averaging, diffusion processes (in the case of the heat equations) etc.
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On the well posedness of an initial boundary value problem for linear isotropic
elasticity
Morando A. (Brescia, Italy)

We give an L2-well posedness result concerning an initial boundary value problem (ibvp)
for the system of linear isotropic elasticity in two or three space dimensions, under the
uniform Kreiss-Lopatinskii condition (cf. [4], [5]). The well posedness is achieved providing
explicitly an everywhere smooth non degenerate dissipative Kreiss symmetrizer of the ibvp
(cf. [2]). Because of the characteristic boundary and the lack of a technical assumption
given by Ohkubo [6] (cf. also [1]), the key point in the construction consists of building the
symbolic symmetrizer near some special “boundary points”. It is worthwhile noticing that in
dimension three the analysis of Majda-Osher [3] does not apply to the elasticity system.
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O 6udypKanusaxX Pe30HAHCOB B yPABHEHHSAX C HEMOHOTOHHBIM BpalleHueM.
Moposos A. [I. (r. Huxunit HoBropox)

PaccmarpuBaloTcsl raJKHe TaMHIBTOHOBBI MEDHOJMYECKHE IO BPEMEHH CHCTEMHI,
6iM3kMe K  JBYMepHBIM aBTOHOMHBIM  HHTerpupyeMsiM. Ilpeamosaraercss, 4TO
HEeBO3MYIUEHHAst CHCTeMa HeJHHeliHasi H HMeeT siyeliKy, BaMOJHEHHYIO 3aMKHYTBIMH
¢azoBbiMu KpuBbIMH. Ilpearnonaraercs TakXKe, YTO 3aBHCUMOCTb Y4CTOTHI W JABHXKEHHUS
[0 38MKHYTHIM ()a30BbIM KDHBBIM OT. AeficTBus | sIBIseTCS HEMOHOTOMHON dyHKIpe# ¢
0COGEHHOCTBIO KOHEYHOro nopsaaka j > 1 npu HekotopoM Ip. Yposens I = Iy Ha3biBaeTcs
BLIPOXKIEHHBIM ypOBHeM. Yposens | = I, HasbiBaeTcH pesoHaHCHBIM, ecn w(lpg) = (¢/p)v,
Cjie ¥ — 4aCTOTa BO3MYLIEHHS, P, ¢ € Z. YPOBEHb HA3bIBAETCS BHIPOXKAEHHBIM PE30HAHCHEIM,
ecin Ipg = Ip. Hcnone3sys ycpemseHHYIO cHCTeMY, yCTaHOBJIeHb! Gudypxanuu, ca3anHble
C mepecTpoMKaMH B OKPECTHOCTH BHLIDOXKAEHHOTO pe3oHaHca. Ilokazano, 4TO B ciydae
HU31Iero Nopsiika BhpoxKZeHust (§ = 2) aTH Gudypkauum CBsS3aHBI C NEPeCTPONKAMM
cemaparpuc u OudypKanusMH BHIDOXJEHHBIX COCTOofHME pasHoBecusi (6udypkanun
CTAruBaHuA NeTens cenapartpuc). Jas j > 2 Hapsaay ¢ 6udypkaluaMi IieTeslb BO3MOXEH
apyro#t Tun Gudypkaiuil, cBszaHHb ¢ GudyprauusiMu “BHXpeBhIX map”’. Jlokazano, 4TO
IJist j = 2 BUXpeBble Hapbl OTCYTCTBYIOT. s j > 2 npuBefeH NpuMep ypaBHEHWs, Ui
koToporo y orobpaxkenns [lyaHkape CyIecTBYiOT BUXPEBbIE NAPbI.
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ITpuBeseH npuMep CHMIJIEKTMYECKOO OTOOPa)KeHHMsI LWIMHAPA C HEMOHOTOHHBIM
BpauenueM (j = 2), B KOTOPOM BO3MOXKHBI 00a Tuna 6udypxauuit: "nerens”’ u "BUXPEBHIX
map”.

Pab6ora nonaepxxana rpanramu POOU, N06-01-00270 u HILI, N29685.2001.1.

Maurer-Cartan forms for symmetry pseudo-groups and coverings of differential
equations
Morozov O.1. (Moscow)

The aim of my talk is to reveal a relationship between two important constructions
in geometry of differential equations: Lie symmetry pseudo-groups and coverings (or zero-
curvature representations, or Lax pairs, or Wahlquist-Estabrook prolongation structures). I
demonstrate that the known coverings for Liouville’s equation, the Boyer-Finley equation,
and the Khokhlov-Zabolotskaya equation can be defined by invariant combinations of the
Maurer-Cartan forms of their symmetry pseudo-groups. Also, I apply Cartan’s method of
equivalence to find new covering equations for the modified Khokhlov-Zabolotskaya equation
and a two-dimensional deformation of the generalized Hunter-Saxton equation.

Sharp norm bounds on variation of spectral subspaces
Motovilov A.K. (Joint Institute for Nuclear Research, Dubna, Russia)

‘We establish several optimal bounds on variation of spectral subspaces of a self-adjoint
operator under off-diagonal perturbations. In particular, we obtain an a priori sharp norm
estimate on variation of the spectral subspace associated with a part of the spectrum whose
convex hull does not intersect the remainder of the spectrum. This bound makes sense of
a new, already a priori, tan © Theorem. Furthermore, we extend the Davis-Kahan tan 20
Theorem to the case of some unbounded perturbations. We also obtain sharp norm estimates
on solutions to the associated Riccati equations.

The report is based on joint work with A.V. Selin.

06 orpaHM4YeHHbIX peleHusaX JuHelHbIx auddepeHunaNbHBIX YpaBHeHMH
Myxamanues 3. M. (BoI'TY)

PaccMorpuM 3aiady O CyINeCTBOBAHHM OTPAHMYEHHOTO peileHust AuddepeHnuatbHoro
ypaBHeHns: B popme

Jz(t) = z(t) — z(0) + /A(r)z(r)dr =g(t), t=>0. (1)
0

rae A(t) - HenpepniBHasA, He OBA3aTENLHO OrpaHMYEHHAS] HA TOJIYOCH, MaTpUIa-QyHKIHS.
Ilpeanonoxkum, 4YTo HempepnBHHE CKauapHole Gynkmun a(t) m B(t) yaosiaerBoOpsIOT

B(t)
yerosusm ||A()|| < a(t), [ a(r)dr = 1. IHyems C = C[0,00) - npocTpancTBO
t

HeNpephLIBHEIX M OrPaHMYEeHHbIX H& MHONYOCH BeKTOp-(byHKIM ¢ paBHOMepHON HOpPMOfi
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II.ll, a CVg = CVp[0,0) npocTpaHCTBO, COCTOsAIiee M3 HENPEPBIBHBIX BEeKTOP-(QyHKUMA
9(t),9(0) = 0,z xoropu [lglls = suP,z0 Max<agan la(s) — 9(8)] < co.

Teopema 1. Hnmezpaavnodi onepamop J deticmeyem u3 npocmpancmea C 6
npocmpancmeo CVg u mnenpepween. Ypasnenue (1) paspewumo 6 mpocmpancmse C
Oan mobot eexmop-dynxyuu g € CVz moeda v moavko moeda, %02ds 3adata 06
02PAHUNEHHOM DEUEHUU UNME2paIbHo20 ypaeHenus (1) donycxaem anpuopnyro ouenxy:
llzll < M(l|Jzllg + |=(0)), ze€C.

PacemorpuM Matpuna-dynkuuo A(s,t) = A(t + s/a(t))/a(t) n ckansnyo dynkmuo
a(s,t) = a(t + s/a(t))/a(t) nBYx mnepemenunix (s,t) ¢ o6nacTbio onpeneIeHUs
t>0,a(t)t+s>0.

Jlemma. Iycms a(t)t — oo npu t — oo u limsup,_,, maxyj<r a(s,t) < oo, VI > 0.
Tozda dan moboti nocaedosamesvrociu by, CYUECTIBYIOM NOONOCAEI08AMENLHOCS Ty, U
0ZPAHUNENHAR, UIMEPUMAA Ha Kadicdom ompeaxe mampuya-gynxuua A(s) maxue, wmo

lim [ A(r,ty,)dr = [ A(r)dr 2)
fo [ |

PABHOMEDHO 1A KAHCOOM OmpesKe. ~

Yepes H(A,a) o6o3HauuM MHOXKeCTBO Bcex MaTpuua-GyHkumit A(t) , onpezeneHHbIX
paBeHCcTBOM (2), korja ty npoGeraer BCeBO3MOXKHbBIE NOC/EI0BATEIbHOCTH, CTPEMSIIIICECT K
6eCKOHEYHOCTH NpH & — 00.

Teopema 2. MHycmv ewnoanenve ycaoeus semmov. Ypasnenue (1) paspewumo 6
npocmpancmee C dan aoboti eexmop-gynxyuu g € CVz mozde u moavko mozda, xozda
cemeticmeo odnopodnn ypaswenuts y' + A(t)y = 0, A € H(A,a) ne umeem nenyresniz
02PARUNENNBT KA Bcell OCU pewenul.

Elliptic boundary-value problems in refined scale of function spaces
Murach. A. (Kyiv)

The talk deals with applications of some spaces of generalized smoothness to the theory
of elliptic boundary-value problems (EBVPs). We consider the special Hilbert scale of the
isotropic spaces of Hérmander—Volevich-Paneyakh

H®Y .= Hz(-)'tp((')), (5) = (1 + |€l2)1/2,

parametrized by means two parameters. The first parameter is a real number, but the second
one is a slowly varying at +oo function in the Karamata’s sense. In particular it is possible
that the standard function

o(t) = (logt)™ (loglog?)™ ... (log. . .logt)™,
{ri,r2,...,rn} CR, neN.

This scale is refined with respect to a scale of the Sobolev spaces {H*} = {H*1}.

The following main questions are studied:

o interpolation with functional parameter and the refined scale;
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¢ local refined regularity of the solution of EBVP;

e refined a priori estimates of the solution of EBVP;

e Fredholm property of EBVP in the refined scale;

o semihomogeneous EBVPs in the complete two-sided refined scale;
¢ EBVPs with a parameter.

The results of the talk are obtained jointly with V. Mikhailets and are published in [1-3].
References

[1] Mikhailets V. A., Murach A. A. Refined scales of spaces and elliptic boundary-value
problems. I, II, IIT // Ukr. Math. J. 58 (2006), ¥ 2, 244 — 26%; Ne 3, 398 - 417; 59 (2007),
M5, 679 - 701. '

[2] Mikhailets. V. A., Murach A. A. An elliptic operator with homogeneous regular bound-
ary conditions in two-sided refined scale of spaces // Ukr. Mpth. Bull. 3 (2006), ¥ 4, 547
- 580.

[3] Mikhailets V. A., Murach A. A. Regular elliptic boundary-value problem for homoge-
neous equation in two-sided refined scale of spaces // Ukr. Math. J. 58 (2006), M 11, 1536
- 1555.

OueHKH CIIeKTPa OLHOro KJiacca runepbo/iM4ecKux onepaTopos B
HeorpannyeHHoit o6sacTi ¢ pactymumy U KoJebmomumuca Koaddunuenramu
Mypart6exos M.B. (Tapasckuit uictutyT MeXAyHADOIHOrO Ka3aXCKO-TYPELIKOIo
yHusepcutera uM A.Slcan)

.

H3pecTHo, WTO A1 3/UIMITHYECKAX OlIEPATOPOB ACHMITOTHYECKOE PpacnpeiesieHue
co6CTBeRHBIX 3HaYeHUl B CIyyae HeorpaHuieHHON o6macTi ¢ K03 dUIUeHTaMH pacTyILUMI
Ha 6EeCKOHEYHOCTH MCCJIEJOBAHO JOCTATOYHO MOJMHO. B TOXe BpeMst jy1s runepboMyecKux
OTEepaTOPOB ITHM BOIIPOCAM MOCBSILIEHO rOpa3zio MeHbIne paboT.

Ha C§5,(Q) pacemorpum snddepennpuabHbil onepaTop runepboIMIecKoro THia

Lo = ugz — uyy + a(y)us + c(y)u,

rae
Q={(z,y): -7t <z <™ ~00< y< o},

C&%(9) - wmmoxkecTBO, cocrosmiee 3 GeckoHewHo audibepeHIMpyeMBIX bynkuu,
YOBJIETBOPSIONHX yca0BusaM: u{—00,Y) = u(00,¥), uz(—00,y) = uz(co,y) n duHHTHEIX
110 nIepeMeHHoN y.

Teopema 1.[Tycms ewnoaneno yeaosue i): la(y)| = o > 0, |c(y)] = & > 0. Tozda
onepamop L + AE npu docmamowno orvwuz A > 0 nenpepweno obpamum.

Teopema 2.[Tycmb ewnoaneno ycaosue i). Tozda pesosveenma onepamopa L
KOMTIGXMHG Mo2da U MoavKo mozda, x02da dar ar0bozo w > 0

y+w
lim / c(t)dt = oo.

{y]—o0
v

Beezem caeayiomyio dynaxkmuo N(A) = Y 1 xonuyectso s 6oapmmx A > 0, rae sg -

=1
s-uncna onepatopa L~1.
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Teopema 3.[Tycmov ewnosnero yeaosue i). Tozda cnpasedausa oyenxa

rlz:xmmm@eR@uwsawﬁﬁgng

n=-—o0

Z Ymes (veR: Ki(y) <cia )

4

v+4
2de Q(y) =inf %:d“sz / [n2+ina(z)+c(z)|2dz ,
. 4
y+4
K (y)=inf cli : % (Ina(z)] + c(z))dz p, ¢>0.
v—4

Panee Takoro Bufa (yHKUMM BlepBhle, Clyuae /UIMNTHYECKHX OIEPATOPOB, GbLIM
BBeZeHH B pabore [1].
ITpnmep.

Lot = Ugg — Uyy + (e["sin2(ea:p exp exp 2°) + 2) ug + (|z]sin’(exp exp exp 27) + 1) u.
JInreparypa

1. Oren6aes M.O. Ouenxu cnexmpa onepamopa IlImypma-Jluysuirs. //Aima-Ara,
Ioinisim. 1990r., 191 c.

2. Mypat6ekos M.B. // Ouddepenumanpurie ypasnenus, 1991r., 1.27, Nel6, ¢.2127-
2137c

3. Mypar6exos M.B., AxmerkanoB M.A.//MatemaTuaeckuit xypras. Anmarni. 2005,
1.5, M2, ¢58-67.

* - AnrebpHl T - U3MEPUMBIX ONEPaTOPOB
Myparos M.A. (Taspuueckntt Hannonanpnsit Yuusepcurer, Cumcpeponosns)

Ilyerb M - nonykoHeunas anrebpa ¢on HefiMana, feficTsyomas B ruianbbeproBoM
npocrpanctee H, P(M) - pemerka Bcex oprompoekTopoB u3 M, S(M) x-amrebpa
H3MEepPHMMBEIX ONepaTopoB, mpucoeauHeHHelx K M, Tr(M) MHOXKeCTBO BCEX TOUHBIX
HOPMAJIbHKIX TIOJIYKOHEYHHIX ciiefos Ha M u 7 € Tr(M).

3amkuyTHi# Juneltanit onepatop T ¢ obnacrvio onpenenenus D(T) C H, na3uBaercs
T-UIMEPUMBM OmHOCUMeAvHO anzebpw Pon Hetimana M, ecnu TnM, D(T)nM w ana
s06oro & > 0 cymecTByeT Tako#t npoektop P € P(M), uro P(H) ¢ D(T) n 7(P*) < e.

O603naunm yepes S(M,T) MHOXKECTBO BCeX T- M3MEPHMBIX ONEPATOPOB.

$lcno, uro

Mc (| sMnc |J SM,7)cSM).
T€Tr(M) T€Tr(M)
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Teopema 1. 1) Eciu M - daktop Tvna I, To

M= () SMr= |J SM,71)=5M).
TE€Tr(M) TeTr(M)

2)Ecnu M - ¢akrop tuna I, To

M# () SMry= |J S,1)=S5M).
T€Tr(M) T€Tr(M)

Ilpumep. Ilycts M - xommyraTuBHas anrebpa ¢on Heiimana, apnsiomasca C* -
NpOM3BeAeHIHEM KOHTHHYAJIbHOIO YHC/a 9K3eMILIApoB anrebps! ¢pon Helimana Lo ([0, 1], m)
BCEX OTPAHMYEHHBIX M3MEPHMBIX KOMIVIEKCHBIX (DYHKLMM, 3aiaHHbIM Ha orpeske [0,1] ¢
JmHeitHoit Mepoit Jlebera m. Torma ) S(M, 1) # S(M).
T€Tr(M)

Teopema 2. 1) Ilycte 71,72 € Tr(M),. Crnenyompe ycnoBusi SKBUBAJICHTHBL:

(i) S(A'I1 Tl) - S(M7 T2);

(ii) P(M,n)={PePM): i(P) <00} C{P e P(M): 1(P) < oo} = P(M,T).

2) Ona 7€ Tr(M) chepyioulue ycJOBUs SKBHBAJICHTHEL:

() S(M)=5(M,7);

(ti) P(M,7)={P € P(M): P - koHeuHbI}l N1POEKTOP}.

On asymptotic closeness of solutions of differential and differential-difference
parabolic equations
Muravnik A.B. (Voronezh, Russia)

The Cauchy problem with a bounded continuous initial-value function is considered for the
differential-difference equation

du bl
i Liapyu % Au + Zzaﬁu(wh cos Tie1, Ti + bij, Tiga, o Ty t), (1)
=1 j=1

where m; are natural, while a;; and b;; are real.
The main result presented is as follows:

If the operator gz — L is parabolic, then the solutions of the above Cauchy problem for

Eq. (1) and of (% - L)u = 0 (with the same initial-value function) are asymptotically

-t aij
closed with the weight e & J'E‘ J, where L stands for the differential operator obtained
from L, ) by replacing of all its nonlocal terms by their Taylor expansions up to the second-
order terms (i.e., the order of the equation).
Note that the weighted solution of the Cauchy problem for Eq. (1) is asymptotically
closed to the solution of the Cauchy problem for a differential parabolic equation different

from (% - L)u =0 (see [1]).

References
[1] A. B. Muravnik, On the asymptotics of the solution of the Cauchy problem for some
differential-difference parabolic equations, Differ. Equ., 41 (2005), No 4, 570-581.
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O cnekTpe Bo3MyIlennit apoBHbIX creneHelf guddepeHnMaILHBIX ONEpPaToOpoB
Myptazun X. X. (r. Yopa)

B [%(N) usyuaercs onepatop L = Lo + V, rae Lo u V Geckoneunble MaTpHIb],
Ly = diag{k"}2,, v = 1, V cummerpuueckas Lo-xomnaktnas marpuua. Torma L
camoconpsixen, D(L) = D(Lo) = {u = (ux), € A(N) | (k"ux)i2, € (3(N)}. Ormerny,
9ro omepaTop L YHHTADHO IKBHBANEHTEH BO3MYIUEHMIO IpOOHOIt cTencHu omeparopa
Hou(z) = —u"(z), ©(0) = u(x) = 0, sanannoro B L2[0, 7.

Oneparop L uMeer muckpeTHuit ciekTp. Mmbl uccienyeM acMMOTOTHKY CIEKTpa
u dopmynst caegos. CopmynupyeM Ppe3y/IbTaThl, OTHOCANIMECS K CAy4al 7 = 1,
(Ver,em) = bk—m, be = by, THe €x = (Okm)io=, - Gasmucuble BekTOpHl B I?(N).
Myers {A,}S2; mocieR0BaTEMLHOCTL COBCTBEHHBIX UMCeN OnlepaTopa L, NpoHyMepoBaHHast
B TOpsiIKe POCTa 1 ¢ yueToM KpaTHocTell. ChopMyanpyeM OfUH U3 OCHOBHBIX Pe3yJIbTATOB
HAIIMX MCCeN0BaHUM.

Teopema. Ilycts v = 1, Zk|bk[2 < oo0. Torma A\, = n + by + pn, TAe 1pH
n >> 1 pipg1 < wn < 0, Y, lpel < oo, npnyem cmpasennusa ¢opmyia ciela

Yoomiln+bo— ] = PO Ibl|2~

Pabora BhinosHeHo npu nogaepxkke rpanta POOU 05-01-00515a.

Iouru nepuoguyeckue KojebGaHus B cUCTEMax C MeJJIEHHO MEHSIOUMUCH
napaMeTpaMu
Mysagapos C. M. (Cubaticknit HECTHTYT Bamkupckoro rocyAapcTBeHHOrO YHHBEDCHTETS, )

B noxnane usydaercss HeMMHeRHas CHCTEMa
2’ = A(\)z +a(z, \),x € R, ) € R,

rae A()\) KpajpaTHas MaTpMIa, 3aBUSIAS OT MapameTpa A, a HelnHeltHOCTDb a{z,A) -
yaosnersopsier ycaosuio a{z, A) = o|z|), |z| — 0.

TIpeanonaraercsi, 4YTO 3HAYEHHE Ao NApaMeTpa sABJIAETCH TOUKOM 6udypranuu AHIPOHO-
pa-Xonda, IpH 3TOM HapaMeTp A MEHAETCs 110 IePHOANIECKOMY 3aKOHY X = X +£p(t), rme
& > 0 mansiii napamerp. ITokaszano, yro 6udypkanus Anaponosa-Xonda npeobpasyercst B
6udypKanmio NouTH nepHoandeckux xonebanuit. OnpesnesneHbl aCHMTOTHYECKHE dopMyIBE
[N BOSHMKAIOIMX KojeGaHmi, a Tak)e HCCIeJoBaHA MX ycToftumsocTh. B kauecrse
APWIOXKEHHS PACCMOTPEHO KJIaccuieckoe ypasrenue Ban-nep-Ilons.

IMTousiTve 3amaca yCTONYMBOCTH PaBHOBECHON KOHCEpBATHBHOM CHCTEMEI
Mbiuknc A J., ©@uanmonos A.M.

3amacoM ycTOHYUBOCTH  (IIOTEHIMATHHBIM 6apbepoM) KOHCEDBATHBHOH CHCTEMBI,
Haxo#silefici B HM30JMPOBAHHOM COCTOSIHHM YCTONIHBOrO DaBHOBECHs, MBI Ha3EIBACM
HauGoJblllee 3HAUEHHWE KHMHETHYECKOH 3Hepruu, mocjie coobIIEHHe KOTOpofi cHcTeMe OHa
BO3BPAIAETCS, TIPH BKJIIOYEHHN K&K YTOAHO MAajof AMCCHNIAIMM SHEPrHH, B HCXOIHOE
COCTOSIHME NIPY HEOTPAHUYEHHOM BO3PACTAHMM BpeMmeHH. B JloKiae NPUBOASTCS NPUMEPDI
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noacyera 3amnaca yCTOﬁ'-IP[BOCTPI AJisi KOHKPETHBIX MEXaHUYECKUX CUCTEM, PACCMAaTpPHUBAIOTCA
COOTBETCTBYIOIINE YHCJIEHHbBIE METOObI.

06 ognowm cpotlicTBe nuddhepeHIMANILHOrO ypasBHeHust Ha rpade
Mycragpokyros P. (TamKukckult rocysapCTBeHHBI! HAIHOHAIBHBIN YHHBEPCHTET)

TTycrb [-cBsi3ubHl reomerpuyeckutt rpad B R3, cocrosmutt us pebep v; (i = 1,n) u
muoxectso J(I') BHyTpenHux Bepiuns. MHoXXecTBO rpaHnaHBIX BepukH rpada I' obosnauum
gepe3 OT'. O6bennHenne BHyTpeHHEX TO4eK pebep v; obo3HaquM 4epe3 R(I'), a MHOMXKeCTBO
HOMepoB pebep, coaepKamux BepIMHy a 06o3HauuM 4epes I(a).

Iog muddepenunanbubiM  ypaBHenneM Ha rpad ' Mel  OymeM nNoHMMATb
nudgepenunanbioro ypasuenns Ha R([)

N

(p(x)y ) —(q(x)y) = f(z) (v
B COBOKYIIHOCTH C YCJIOBUSIMM COTJIAcOBaHUs B Bepiuunax a € J(T'):

y'@=0, Y [(w) -] (@+0) +pla)y(@ = 0. (@)
i€l(a)

HAns ypaBHeHus Ha rpacde Mbl OyAeM paccMaTpHBaTh KDaeBylo 3aJady, 3aJaBasf B
rpaHuuHbIX BepumHax b € 90 ycnosust

y®) - a®) [ey') —ay ] ©-0) =0, BOW (-0 +otW B)=0. (3

Haunee Bciony npeanonaraercs, 4ro 3aj4a4a (1) — (3) siBasiercss HEBLIPOXK IEHHOM.

Teopema. IIycmo f(z) = 0 ene nexomopozo nodepaga Ty, cocmorwezo ua yenowxy
pebep v, = (aj—1,a;) (i = T,k), 20e ap, ar npunadaescam wmmoscecmsy OT, a
ay, «.., Gk—1 — muooiceemey J(I').

Toz20a sadaua (1) ~ (3) na I' ceodumes x 3adave na To, 20e ycaosue cozaacosanust 60
enympennuz sepwunat a;(i =1,k — 1) umeem eéud

[0y -] @+0) - [0v") - 0] (a5 = 0) + pifaidy(e) = Y pias)ylaz) =0,
J#i

Taxoe CBE€llIeHNEe OKa3blBaeTCd OYeHb y,ILO6HbIM, Hanpumep, IIpA aHaJIn3e CIEKTPaJIbHBIX
CBOMCTB COOTBETCTBYOLIEH 3alaum Ha rpade, y KOTOpol npaBast YaCTh COCPEIOTOYEHA UILE
Ha HEKOTOpO#t yacTu rpada.

Haszpanne.
Haumos A.H. (BoI'TY)

PaccmaTpuBaeTCss  BONPOC O  CYLIECTBOBAHMH  HECTRIMOHAPHBIX  OIPAHWYEHHBIX
TPaeKTOpUil y aBTOHOMHON CHCTEMBI

2 =(z—a)™(z - b)™2(z ~ c)™s, 1)
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rne z = x + iy € C, C - KoMIUleKCHasi ILUIOCKOCTb, Q,b,C - NONApHO pa3M4Hble
KOMILJIEKCHbIE YMCJa, TMj,TMg,M3 - HATypaJibHEle HMCia. JlaHHBI BONPOC NPEACTABSAET
HHTEpeC OPU MCCIeTOBAHNU YCTIOBUIT CYLIECTBOBAHHS IEPHOANYECKHUX PEIIeHNH] JIIsT CHCTEeM
puga W' = Qpm(w,w') + f(t,w,w'), w € C, rae Q, - OTHOPOAHBI! MHOTOYJIEH CTENEHH TN,
f - menpepsiBHOE oTOOpaxkenue n3 R X C? B C, nepuoanyeckoe 10 ¢ # yJOBJETBODSIOLIEE
yenosuso (Jwi| + |wa}) "™ f (¢, w1, w2)] = 0 mpu |un| + jwe| — oo

Hnst so6oro petLIeHust z(t) CHCTEMBI 1) HMeeM:
(d/dt)V(2(t)) = 0, (d/dt)U(=(t)) = (d/d=z)F((t)|?,  rae
F(Q) = J§(s = a)™ (s = b)™2(s — c)™ds, V(¢) = Im(F(()), U(C) = Re(F(()). Orciona,
B cuIy o6muX CBOKCTB TpaeKkTopmMit aBTOHOMHEIX cHcTeM Ha miockocts (M. [1]), cnexyer,
410 y cucrembl (1) MoxkeT cymecTBoBaTh He Gojiee ABYX HECTAMOHAPHBIX OrPAHMYEHHBIX
TPaeKTOpHil, W TAKMX TDAeKTOpHil BOBCE HE CYIIECTBYET, €CJIH TONAPHO DPAa3IMYHbBI
V(a),V(b),V(c). losTomy mocraTouHo paccMoTpers ABa ciaydas: V(a) = V(b)) = V(c) n
V(a) = V(b) # V(o).

Teopema 1. Jas cucmemw (1) 6 cayvae V(a) = V(b) = V(c) cywecmeyrom dse
HECTRAYUOHADHBIE O2PaHUNEHHbe mpaexmopuu, ¢ 6 caywae V(a) = V(b)) # V(c) npu
GHITOANENUL YCAOBUR

Vie) # V(1 - p)a+pb) Yuelol] 2
CYWECTNEYEM POBHO 00HE HECTNAUUOHAPHAR 02PAHUNEHHAR TRPAERMODUA.

B ofmeM ciayyae W3 CyIECTBOBAHMS POBHO OZHON HECTAILMOHADHON OrpaHMYEHHOU
TPaeKTOPUH HE CJIeAyeT BHIOAHeHue ycuosus (2). Cnpasennusea crneayolas Teopema.

Teopema 2. ITycmo my = ma = mg = 1, a = 0, b = exp(iy), V(b) = 0, V{c) # 0.
Tozda sin(4p) # 0, ¢ = 0,5exp(ip) + Aexp(—i3p), A - eewecmeennoe, u y cucmemv
(1) cyweceyem poeno 00na HECTRAUUOHADHAR 0ZDAHUNENHAA MPAEKTOPUR MOALKO 6 MOM
cayuae, xo2da 4\ > ko, 20e ky - HOUMENDWUT NOACKHCUMEALHBIT KOPEHD YDABHENUA

sin(12¢)k? — 6sin(4p)k + 3sin(4y) = 0.

Jlutepatypa
[1] Herposekuit UL.I. Jexyuu no meopuu o6mwxnosennus JudPepenyuaionua ypaerenul.
M., 1984.

The Dirichlet problem to critical semilinear Schrédinger equation
Nazarov A.I , Demyanov A.V. (St.-Petersburg State University)

‘We consider the embedding theorem

IVollp.0

Ao = Vel
’ vEWL(\{0} me—lv”p;,n

> 0; (1)

here ?CR®, n>2, 1<p<oo, OSUSmin{l,%}, p“,:;gf;—p.
Since p} is the limit embedding exponent, the embedding (1) is not compact, and the

problem of existence of a minimizer to the problem (1) is nontrivial.
Remark. Under suitable normalization the minimizer of (1) is a positive solution of the
Dirichlet problem to the nonlinear Schrédinger equation
uPe—1

._.AP'U, = —————‘zl(l_a)p;

in @ ulan =0. (2)
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If p = n then the power of |z| in (2) does not depend on ¢ and equals n.

For p < n and 0 € Q the infimum in (1) is never attained if the complement of § is not
negligible. The case 0 € 99 is more complicated.

In [1] the existence of minimizer in (1) and, therefore, the solvability of the problem (2)
was proved for 0 < o < min{1, 2} if Q is a cone. The survey [2] contains some results for {2
being a "perturbed" cone.

We prove the attainability of the infimum in (1) for p = 2 in a bounded domain . The
boundary is assumed to be average concave at zero, with some additional regular behaviour
conditions. Our requirements are considerably weakened, compared with {3}, where this
problem was investigated for n > 3.

This work was supported by grant NSh 8336.2006.1 and by RFFR grant 05-01-01063.
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[2] A.L Nazarov, Dirichlet and Neumann problems to critical Emden—Fowler type equa-
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Asymptotics of eigenvalues and eigenfunctions under the boundary
concentration of heavy masses
Nazarov Serguei’ A. (Institute of Mechanical Engineering Problems, St Petersburg)

In the rectangle Q = (0, H) x (0, 1) the spectral Dirichlet problem is considered for the
equation
—Au(e, z) = Me)(1 + e~ ™p(e " z)ule, z),

while A(¢) denotes a spectral parameter, ¢ = N~! a small geometrical parameter, m > 0
the heaviness exponent and p the function which vanishes everywhere except for the family
of the sets wp(e) = {x : (Nz1 —n, Nz2) € w} where it is equal to 1. By w, a domain in the
semi-strip IT = (0,1) x (0,+00) is understood and n =0,...,N — 1.

The asymptotic behavior of the eigenvalues Ag(€) is to be described with the help of
several limit problems in the domains  and II. In dependence on distribution of their
eigenvalues, there appear several asymptotic ansétze for the eigenvalues and eigenfunctions,
for example, in the case m = 2

)\k‘j(i) =/\k+5ﬂj + ..,

A @) =A%t VEM;+...,

where Ag, u; and A, M are eigenvalues of certain differential and algebraic spectral prob-
lems which will be listed during the talk. The asymptotic formulas for the eigenvalues and
eigenfunctions are justified with different and adequate merit of precision.
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The results are obtained in cooperation with Prof. Dr. M.-E. Pérez (Santander, Spain)

The research of the special subset of Hilbert space for the nonvoid content
Nazyrova R. R. (r.Kasaus)

Theorem 1. Let there is the set T = [§|7 = (21,22,..),2; > 0,V = 1,2,..] C L,
for the each point ¥ = (21,Z2,...) of which the structure Z;’;l zi(e; — Blnz;), lo;] £ &

Vj = 1,2,.., 8 > 0, presents the absolute convergent progression. Let for the each point
¥ = (z1, T2, ...} of the set I there are correct equations

el
ZIJ' = Mo,
i=1

o0

Zaijz'j = i,

=1

where a;; >0, m >0, 7 >0,i=1,...m, j= 1,2, .... The set I isn’t empty and at least
includes the points by the coordinates

o 11
L= th————,
K ;kqs(pk)p;

or the points by the coordinates

i 1 1
n= ;tkw(rk) g

where px > 1,Vk =1,..,m, and

re > 1,Vk=1,..,m, and

tx >0,YVk=1,..,m, and
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YucaeHnoi#i aHaiu3 aGCcoNIOTHON M KOHBEKTHBHOH yCTORYMBOCTH JIaMMHAPHBIX
TeYyeHUH B KaHajgax
Heuenypenxko FO. M. (r. Mocksa), Botiko A. B. (r. HoBocubupck)

Jluneitupie wactu u', v, w', p’ BO3MyHIeHHH KOMIOHEHT CKOPOCTH M JaBJieHMs AJA
Tedenust ¥ = 0, v = 0, w = W Bsaskoft mecxkumaeMolt XKUAKOCTH B GECKOHEYHOM KaHajle
{(z,y,2): (z,y) € E, —00 < 2 < 00} MOCTOAHHOIO CEYeHHs ¥ C KYCOYHO MIKOM rpaHuLelt
YAOBJIETBOPSIOT CJIEYIOUMM JIMHeapu3oBaHHBIM ypasHenusiMm Haspe-Crokca:

ou' ou oy o' o' op

el huthell it I el 28— /

ot "Wt s A O F+Wa T3y A
o' ow , oW , ow'  8p’ 1 . ou' v  Ouw _
W+"é?“+”5y””+waz+az ReAw_OY 3x+3y+82 =0

C HYJIEBBIMM TPaHHUYHBIMHM YCJIOBHAMH I u', v/, w' Ha CTeHKaX KaHaJja.
OcobbIt MHTEPEC MPEICTABIAIOT 3834H 00 a6COMOTHON U KOHBEKTUBHON YCTORYMBOCTH
[1], KoTOpBbIE COCTOST B UCCNEAOBAHHU CBOMCTB PELICHUH ABYX CJEAYIOLIUX BUIOB:

u _ullelaz v'v”e“"‘, w _w//elaz p//p//eiaz

rJie ¢ 33aHHAS BEIeCTBEHHAsS KOHCTaHTa, a u'’, v”, w”, p” bynkuuu z, y # t, He 3aBucsLIUE
or 2, H

u/u///exwt, U — Umelwt’ ,w __ w///eiwt p// _pmeiwt

rJe w 3aJaHHas BeEIeCTBEeHHAs KOHCT&HTa a w”’, v, w”, p” d)ym(mm % Yy U Z, HE
3aBucsuwe or t. [Ipeanonaraercs, 4yto u” = v = w” 0 u u =v" = w" = 0 npu
(z,y) € 0%.

JaHHbl JOKJIa] MOCBALIEH NOCTAHOBKE, OGOCHOBAHHIO M YMCIEHHOMY HCCIEJOBAHMIO
OTBE€YAIOWHX 3TUM peleHusM 3agad Kourn. Oco60e BHUMaHHE YJOEadAeTCsA PeayKUHUsM,
TIO3BOJIAIOIUUM CYIICCTBCHHO yMEHBIIUTH a.nre6panqecxyfo Pa3MEPHOCTb COOTBETCTBYIOIUX
3a/a4, roJIy4€HHbIX 110CJie JUCKPETH3aUUH 110 IPOCTPAHCT BEHHBIM IIEPEeMEHHbIM. B xauecTse
WITIOCTPALMK paccMarTpuBaercst Tedenue [lyaseiiia B KaHaJle NPAMOYTONbHOTO CEYEHHS.

JIutepatypa

{1] P. J. Schmid, D. S. Henningson Stability and transition in shear flows. Berlin:

Springer, 2000.

Moving Internal Layers in the Singular Perturbed Integro-Parabolic
Reaction-Diffusion- Advection Equations?
Nefedov N.N. , Nikitin A.G. (Moscow State University),
Recke L. (Humboldt-Universitit zu Berlin) :

Mathematical problems concerning reaction-advection-diffusion equations describe many
important practical applications in chemical kinetics, synergetics, astrophysics, biology, etc.
Recently there is an increasing interest to more complicated models, which include the effects
of feedback or non-local interaction. These models are represented by integro-differential
equations. In this work we consider the initial boundary value problem

2 This work was partially supported by RFBR-DFG grant N06-01-04004 and the program of
cooperation of the Moscow State University and the Humboldt University of Berlin.
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b
- /g(u(x,t,s),u(s,t.e),z,s,e) ds=0, a<z<b, (1)
a

g—g(a,t,s) =0, %(b,t,s) =0, u(z,0,e)=1(z,c) (2)
and investigate the existence of moving internal layer solutions(e > 0 is a small parameter).

The corresponding stationary boundary value problem for the case A = 0 was considered
in [1]. Our results develop and extend methods proposed in {1] and [2] to a new more
complicated class of problems.

The reduced equation is a integral. Following to the investigation in {1], in order to
describe internal layer solution we introduce a family of discontinuous solutions of this
integral equation. We show that, under some assumptions, problem (1), (2) has moving
internal layer solution which is close to the some discontinuous solutions of this family when
the small parameter ¢ tends to zero.

References

{1] Nefedov N.N. and Nikitin A.G., Elaboration of the Asymptotic Method of Differential
Inequalities for Step-Like Solutions to Singularly Perturbed Integro-Differential Equations,
Zh. Vychisl. Mat. Mat. Fiz., 2001. vol. 41. no. 7. pp. 1057-1066.

[2] Nefedov N.N., Radziunas M., Schneider K.R., Vasil’eva A.B., Change of the Type
of Contrast Structures in Parabolic Neumann Problems, Zh. Vychisl. Mat. Mat. Fiz., 2005.
vol. 45. no. 1. pp. 41-55.

O kpuTepusax npumenuMoctu reopem Yepuosa u Tporrepa
Hexmonos A. 0. (r. Mocksa)

Teopemoit Yeprona ({1] , [2]) nasbiBaloT crenyouiee yTBepXKaeHue:

ITyemas F — omo6paoicenue u3 [0,00) 6 npocmpancmeo HENPEPHIBHHLE AUNETRBLT ONEPAMOPOE
L(X) 6 6Ganazosom npocmpancmee X manoe, wmo F(0) = L|F({#)] < exp (at) dan
nexomopozo o € R. ITyemv D — cywecmeennan obaacmo onpedesenus O0an zenepamopa
C noayepynnu exp (tC) u ozpanuenue F'(0) na D coenadaem c ozpanuveruem C na D.
Tozda F(t/n)* — exp (tC) npu n — 00 6 cuavholi OnepamopHoli MONOAOZUYU PLEHOMEPHO
omnocumeavro t € [0,T] dan xaorcdozo T > 0.

B peaibHbIX 33Jadax 4acTO HEsiCHO, CyLNecTByeT Jju Taxo#t remeparop C, nnst
koToporo o6macTs onpeaenesus F/(0) Gyner cymecTsexHOH 06J1aCTBIO H, CNIEAOBATENBHO,
BLIENpUBEASHHAS TeopeMa HEMOCPEACTBEHHO He MOXeT ObITh HCHOIb30BaHa A
JIOKA3ATEIBCTBA CyMIeCTBOBAHMA Tpeaena nociexosatenbuoctu {F(t/n)"}, mpu n — oo
B Kakol-mub0 TONOJOTHM M He MPOSCHSAET BOIPOC CYIIECTBOBAHUS PeElleHMA 3a4a4H
Komu ypasmenns i = F/(0)z. B paHHO#t cTaTbe MOKa3bIBAIOTCA YTBEPXKAECHUH,
JIAIOIHe eCTeCTBEHHbIE KPUTEPHH, KOIa 061acTh onpeaeeHus F/(0) 6ymet cymecTBeHHON
06JIaCTBIO AJisi HEKOTOporo renepatopa C, a Takyke pacCMaTpUBAlOTCS Pa3jIMdHble Apyrue
BOMpPOCH!, CBSI3aHHBIE C ITOH npobnemaruxoit. Kak oo u3 CEACTBUI IIOJIYyYEeHHBIX
pe3y/IbTaToB B paboTe BHIBONMTCA KPUTEPHH, KOLZa CyMMa CEHepaTopoB NOMyrpyImm
ByLeT Tak)Ke TeHepaTOpOM HeKoTopolt momyrpynnsl. Takke pe3ysbTaThl CTATBU MOCYT
GbITh UCIONB30BAHKI IS HOKA3ATENLCTBA CYUIECTBOBAHMH PelleHHs GeCKOHeYHOMEPHOTo
ypasnenus LlIpénuHrepa u npeiCTaBieHHs ITOrO pelieHHs B BUIe QeitnMaHOBCKHX
HHTErpaJioB.
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Jluteparypa
[1] Chernov P. R. J. Funct. Anal. 84, 238 (1968).
{2] Davies E. B. One-Parameter Semigroups, St. John’s College, Ozford, England (1980).

Effective transmission conditions for reaction-diffusion processes in domains
separated by an interface
Maria Neuss-Radu, , Willi Jager (University of Heidelberg, Germany)

‘We present multiscale methods appropriate for the homogenization of processes in do-
mains containing thin heterogeneous layers. Our model problem consists of a nonlinear
reaction-diffusion system defined in such a domain, and properly scaled in the layer region.
Both the period of the heterogeneities and the thickness of the layer are of order ¢. By
performing an asymptotic analysis with respect to the scale parameter ¢ we derive an effec-
tive model which consists in the reaction-diffusion equations on two domains separated by
an interface together with appropriate transmission conditions across this interface. These
conditions are determined by solving local problems on the standard periodicity cell in the
layer.

Our asymptotic analysis is based on weak and strong two-scale convergence results
for sequences of functions defined on thin heterogeneous layers. For the derivation of the
transmission conditions, we develop a new method based on test functions of boundary-
layer type.

Multiscale simulation of diffusion and absorption in chloroplasts
Neuss N. (University Karlsruhe, Germany)

Protein translocation is a necessary biological process in cells structured by compart-
ments. As a model for a protein translocation process we consider the chloroplasts of plant
cells. Chloroplasts have an own genome, but not all proteins needed for example in pho-
tosynthesis are produced inside the chloroplast. A large set of such proteins still has to be
imported into the thylakoids (where the actual photosynthesis is taking place) from the
cytoplasm of the plant cell. In this contribution, we model this translocation process by
diffusion through a complex medium with absorption occurring at the boundary of a com-
plex inlay. The direct numerical simulation of is then demanding because of the intricate
structure of the boundary. As a remedy, we present a homogenization approach where we
replace nonlinear absorption at the boundary of the porous structure by a nonlinear sink
term. We will estimate the modelling error numerically, and also demonstrate the validity
of these estimates by numerical experiments.

O cyLIeCTBOBaHMH pellleHHMil KpaesbIx 3a4a4 A (p, q)-HeauHeHHbIX
SNJIANTHYECKNX YPaBHEHNH
Hexunckas U.B. (Cauxr-Ilerepbyprekuit rocyAapCTBeHHBI! YHHBEDCHTET)
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Paccmarpusaercst kiace (p,q)-HEIHHERHBIX WITUITHIECKAX yPaBHEHHH

n

Zd_i—,'ai(x’uz) =b(m,u), (1)

i=1

B orpaHudeHHo#t obmactu Q2 C R", n > 2, c¢ mocratoyHo rnaaxo# rpanmuel  Of.

Dynxuun a;, b cuuTaeM JOCTATOYHO MIaJKUMH U NPEANIOIAraeM BhINOIHEHHBIMH C/EAYIOLIUE
YCIIOBHS:

Eia“we) > v (L4 )P AP,

i,j=1
Zl uawuuﬂmP
1,j=1
2<p<y,
Zr~@m<maﬂmP
ij=1

as E,AER", rme v, p, 4 — NOJIOXKUTENbHbBIE IOCTOSHHBIE,
Jnst ypasrenns (1) usydaerca kpaepas 3aja4a Jupuxie

u(@) = ¢(z), ze€oQ,

1 Kpaesas 3agada Heltmana

du
57—;(:3) +¥(z,u) =0, z€dQ,

ou
rde —— - KOHOpMaJsibHas mpousBogHad Ha Of).  Jasi kaxiao# U3 KpaeBhiX 3334

0
ycraﬂasx;ﬁsamcx JOMyCTHMBlE OTPaHUYeHMs H& ¢ — p o rpanuny obnacru 2, npm
KOTOPBIX MOXKHO JOKA3aTh TEOPEMY CYILIECTBOBAHHUSA raakux pewenult. IIpn sToM Haubosee
TPY[AHBIM 3TAIOM SIBJISIETCS HOMYYEHHEe ANPUOPHON OUEHKM MaKCHUMyMa MOAYJS IpaiHeHTa
pelieHnst B IPUrPAHMIHEIX MOA06aacTAX 0BMACTH PACCMOTPEHHUSL.

PaGora noaaep>kana rpanramu HIII 8336.2006.1 u POPU 05-01-01063.

JIureparypa

[1] U.B. Hexunckan, Ouenxa na zporuye obaacmu zpaduenma pewenus 3adavu
Jupuzae drn (p,q)-neaunetinozo ypasnenus, [IpobieMsl MATEMATHYECKOTO 8HAIN3E, BBIIL.
27, (2004), 137-150.

[2] U.B. Hexumckast, O pespewumocnu xpaeeot 3adewu O0ir (p,q)-HeAuHeUHHT
anaunmuneckus u napaborunecxus ypastenuti, [Ipo6ieMbl MATEeMaTHIECKOrO aHAIN3a, BHIIL
29, (2004), 55-69

[3] U.B. Hexunckas, Ouenxa zpaduenma pewewus sadawu Heidmana dax (p, q)-
neaunelinozo ypasnenus, [IpobreMb MaTeMaTHYeCKOro aHaym3a, Boul. 31, (2005), 47-57.

{4} U.B. Hexunckas, Ilpobaema paspewumocmu 0as (p,q)-neaunednor ypasnenutl,
ApropedeparT JHCCepTalMM HA COUCKAHHE YYeHOH CTeleHM KaHAW#ATa (PUIHKO-
MaremaTHyeckux Hayk, Canxr-Ilerep6ypr, (2006).
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On the smoothness with respect to time variable of generalized solution of the
second initial boundary value problem for strongly Schrédinger systems in
cylinders with nonsmooth base
Nguyen Manh Hung (Faculty of Mathematics, Hanoi National University of Education)

In this talk, we consider the second nonhomogeneous initial boundary value problem for
strongly Schrodinger systems in cylinders with nonsmooth base. Some results on the unique
solvability and the smoothness with respect to time variable of generalized solution of this
problem are given.

O HEeKOTOpLIX 3aJa4YaxX MACHTU(DUKAIMK B TEOPUH YNPaBIEHUS ABMXKEHHEM
Huxoasckuit M.C.

Teopuss nzenrndukauuy sABJIAETCH BaXKHOA COCTABHOM dYACTBIO COBPEMEHHON
MATEeMAaTH4eCKOH Teopuu ynpapienns. B He€ ecTecTBeHHBIM 00pas’oM BKIIOYAETCS
Teopusi HabIIOJa€MOCTH, B OCHOBE KOTOPON JieXXaT M3BecTHhle pe3ynnraThi P. Kammana.
Lenpio Teopun HAGHTH(QUKAIMM SBISETCS BOCCTAHOBJICHME HEKOTODBIX XapPAKTEPUCTHK
YIPaBJISEMOro JBHXXEHHs 110 HabIIONeHHsM, HalpUMep, TIPoeKIMyu (ha30BOro BEKTOPA.

Coobienne cocrout u3 3-x yacreii. B nepeolt wacTu mist nuseliHoR 3aga4n ynpaplieHus!
pPaCcCMATPHBAETCH BONPOC O BLIYHCJIEHHH HAYAILHOTO COCTOSIHMS YNPABASAEMOro obbeKTa H
NOCTOSIHHOTO YNIPABJIEHHSA 1O OUCKPETHBIM HabJofeHuAM npoeKuny ¢a3oBoit TpaexTopHy.
3Aer OKa3bIBAIOTCS NOJIE3HBIMH HEKOTOPLIE PE3YJbTAaThl U3 TEOPHH HEOCUHJIIALINUA pememm
nuHeMHBIX auddbepeHINalbHbIX yPaBHEHUI N-ro NopsaKa.

Bo Bropoit yacTH OnATH XKe A JIMHeRHO#t 38J2YM YNPABIEHNS PacCMATPHBAETCH
BONPOC O BbIYHC/IEHMH HAYAJbHOTO COCTOSHMA OOBEKTa M NePEeMEHHOro YIIpaBJeHHs
no Habmogennsim npoexumn Ga3osoffl  TpaeKTOpHM. 3aech NPOJO/KEHBI MPEKHUE
HCCJISIOBAHUA aBTOpa No MieasibHol# mabmonaemocTn. B wacTHOCTH, 6BIIM HMCHONB3OBAMHMLI
HEKOTOpbIe Pe3yNbTaThl U3 omepaTopHoro ucuucaenns fI. MukycuHCKOro, KOTopoe paHee
HCrnonb3oBajoch B paborax P.B. Tamkpenuaze u aBropa B Teopun AucddepeHIMambHHX
urp Ajs 3aga4 yOeraHusi IpH PAcCMOTPEHHH COOTBETCTBYIOMIMX BEKTODHBIX MHTErPAJBHBIX
ypaBHeHu#t mnepsoro posa tuna Bombrepa B cBéprkax. MHTepecHO OTMETHTB, YTO
NpH- HAHJEHHHIX YCJIOBHSIX H& IApa- MeTPH  38J84YH Uil NPHOIMIKEHHOIO HaXOXKIEHUA
HEU3BECTHOrO YNPAaBJeHUs N0 AMCKPETHHIM HaGIOJEHNSM 31€Ch OKAIHBAIOTCH NOJE3HBIMI
H3BECTHHE KOHCTPYKTHBHHIE pedyanrathl - H0.C. Ocunosa u A.B. Kpskumckoro no
oBpaTHLIM 38,184AM MATEMATHYECKON TEOPUH YIPABJIEHHS.

B Tperbelt 4acTH Pe3yNbTATH BTOPOff YACTH NPHMEHSIOTCS LIS OQHOTO KJIACCH 38484
YUpaBJieRHH C HeJIMHelHOR auHaMAKOR.

Pabora snnosnena npu dunancosolt nognepxke POOU (npoexrn 05-01-00193, 05-01-
08034-ocbu_n, 06-01-00359-a).

HccaenoBanne oAHOro YaCTHOTO CJyYas ypaBHeHus HeiuHelnoft
TENJONPOBOAHOCTH
Huxonscknit H. M.

B pabore uccaenyerca HemuRefiHOe napaGonndecKoe ypaBHEHHe

U = (U )e + (v — uo)(u — uy) (1)
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rae u = u(z,t), 0 < up < uy.
TTocTpoeHo ceMefCTBO TOYHBIX EPUOJMIECKUX peleHull ypasHenus (1), UMEIOMIX BUL,

z
u(z,t) = p(t) + g(t) 0057i , tae koadbdummentst p(t), ¢(t) ymOBIETBOPSIOT HEKOTOPOH

ABTOHOMHON JUHAMHYECKOH CHCTEME.

AHayMTHYECKOE HCCIIeI0BAHHE 3TOH CHCTEMBI I0KAa3aJ10, YTO CPEH PeleHuii 13 JaHHOTo
ceMeltCTBa CYIIECTBYIOT Kak (DYHKIMH, Pa3BuBalolldecs B peXxuMme ¢ 0DOCTpeHHEM, Tak
u penaxcupyiomme K Qony up. Bbiio ycTaHOBIEHO, 4TO MPU ONPEJETEHHBIX HAYATBHBIX
ycnommx Ha p(0), q(0) dbyuxuun p(t) 1 ¢(t) cyluiecTBYIOT B TeYeHME KOHEYHOTO IIPOMEXKYTKA
Bpemenu [0,7Tp) , npuiem 111;1 p(t)/qt)y=1.

t—Ty

Takoxe ucciemoBatach 3agada Komm mis ypasuenns (1). Cpenn HadasbHBIX QYHKIMHA
HauGosbllee BHUMaHKE BBLUIO YIEIEeHO JTOKAIM30BAHHBIM BO3MYILEHUSIM HeHyJ1eBoro hoHa Ug.
C noMompio TeopeM CPaBHEHHS M MeTOoAa NMpOGHBIX (GyHKIu GbUIA [OJIy4eHbl Pa3iuyHbe
yCJIOBUS Ha HAYaJibHOE BO3MYIEHHE, NPH KOTOPBIX COOTBETCTBYIOUIEE pELIEHHE MOJKET
Pa3BUBATLCA B PeXUME ¢ OGOCTPEHHEM WM 3aTYXaTh (T.€. MOTOYEYHO CTPEMMTECS K Ug).

YuceHHOe HCCIEA0BAHHE Y PABHEHHS! IOKA3AJIM HAJINYHE JIOKAIN3aIH HeOrPAHNYEHHBIX
pemrenuit (Taxoe e sBNenne HAGTIONAETCS AN pelueHudt ypaBHeHust up = (u’u,), +u’tl,

om (1], [2])
JIureparypa

[1].Camapckunit A.A., Tanakruonos B.A., Kypmiomos C.II., Muxaitnos A. II. Peocumo
¢ obocmperuem 8 3a6auaz dasn neaaununeunuz napa6onu«¢ec¢cuz ypasnenud. // M.: Hayka,
1987.

[2]. Kypatomos C.II., Kypkuna E.C. Cnexmp cobecmeennnz Gynsyuli aemomodesvnoti
3adavu OaR HEAUHEUNO020 YPABHEHUA MENAONPOBOTHOCTIU C UCTOY-UCTIONHUKOM. [/
KBMuM®, 2004 r. T. 44. N 9. C. 1619-1637.

{3].Galaktionov, V.A. Invariant subspaces and new explicit solutions to evolution equa-
tions with quadratic nonlinearities. // Proc. Roy. Soc. Edinburgh Sect A., 1995, N 2, 225-246.

The existence of step-type structure solutions for a class of singularly
perturbed optimal control problems 3
Ni Ming Kang (Department of Mathematics, East China Normal University Shanghai;
Division of Computational Science, E-Institute of Shanghai Universities, at SJTU)

The existences of step-type structure solutions for a class of variational problems were
discussed in [1],{2], and the asymptotic solutions are constructed. It was late 90’s last century
to begin studying the equations with the solutions of space comparison structures {3]-[5].
In those papers, it was mainly discussed the solutions with step-type structures and strike-
type structures, which is the mainstream direct to research singular perturbation recently.
In this paper, the existence of step-type structure solutions is proved, for optimal control
problems of continuous systems, under the control actions with no constraint conditions.
So it is shown that these problems have the space comparison structures. The constructive
problems of asymptotic solutions for step-type structures will be discussed separately in
other papers.

3Supported by National Science Foundation of China, grant No 10671070r. Supported in part by
E-Institutes of Shanghai Municipal Eduction Commissionr N.E03004r. Funded by Open Research
Funding Program of LGISEM; 05P.J14040
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The following optimal control problems will be discussed.
T
Ju] = / f(y,u,t)dt — min,
0 u

py' = a(y, thu + by, t),
y0,p) =9° y(Tw)=y",

where M > 0 is a small parameter, y(t),u(t),f(y, u,t) are scalar functions.

A, Suppose that f(y,u,t) is twice continuously differentiable, and a(y,t) > 0, for
0<t<T.

A, Suppose that f.z(y,u,t) >0, f2(y,u,t) for 0 <t <T.

A3 Suppose that there exist two functions § = @(t), § = ¥(t), such that

e = [ fle®),a7),t), 0<t<ty,
1) ml{nf(y,u,t_) = { FO@. A 8), to<t<T.
2) lim y@)=y¢*#e7 = lim o). ¢0) =1, UT)=y"

t—tp+
where the main value tg of transfer points of step-type structure solutions is determined
by the following equation:

Flo(to), w7 (to), to) = F(¥(to), ul™ (t0), ko),

If the above conditions are satisfied, the following main result can be obtained:
Theorem If the conditions A;-Aj are satisfied, then, for enough small value x> 0,
there exists a step-type structure solution y(t, u) for the above optimal control problems,

which satisfies: ®
; =) oe), 0<t<to,
Jmy(tu) = { W(t), to<t<T.
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(4] Bacunbesa A.B., Bytysos B.®. ACHMOTOTHY€CKHE METOAB B TEOPHH CHHIYJISPHBIX
Bo3MyeHni. -M.: Bricuias mikosa. 1990.
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VinTepnonsums ¢ MUHEMAJLHBIM 3HAUeHUEM HOPMBI onepartopa Jlamraca
Hosnxos C. H. (r. Exatepun6ypr)

Ilyere n > 2, ¢ € R®, BE(0) = {z € R™ : |z| < R} — OTKDHITHI €AMHUMHLIA IIap
panmyca R > 0 ¢ uenTpoM B HyJe, & {z(") = (zg"),xg"), c,z® )} C B%(0) - xonegnoe
a=1

MHO2KECTBO TOYEK MHTEPIIOJIALNHA.
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OnpezeiisieM Ki1acc HHTEPHOJIUPYEMBIX ABHHbIX
N
My = {z: 2= {Zj}j=l) llzllzg < 1} »

rae ||z{;y = max{|z;|: j=1,2,..., N}, u xnacc unrepnompyoumx GyHKuu
Yool2) = {f € CHBHO)CEBRO) : flpsimr =0,

f(x(’))=zs, s=1,2,...,N}.

Yepes A cTanmaprTHo 0603HaYaeTcs oneparop Jlamwiaca.
PaccMarpuBaeTcs Cieayolas BeTHYUHA!

AN(BR(0)) = sup feg,nf(z 1A fllesgop-

2EMoo o (2)
Teopema. Ecnu Touky unrepnonsuun BeiGpanst TaK, 9ro |z(8)| = R(%‘T‘-), s=1,2,...,N,
TO
N N2
G 2 < AL(BR(0) <C ok

rae C1, Cy — HEKOTOPbIE NOJIOKUTENbHEIE KOHCTaHTHI, He 3aBucsinue o N u R.

STy HccnenoBanust GbLIM BBINOIHEHH Ipn dHHaHCOBOH nopaepkke POOU (rpaur 05-
01-00949) u mporpaMMmbl IOJJEPKKH BeIyLHX HaydHbiX mxon Poccuu (mpoexr HII -
5120.2006.1).

Discrete Complex Analysis.
Novikov S.P.

Few years ago we developed discrete version of Complex Analysis on the Equilateral
Triangle Lattice in the joint work with Dynnikov. Key ideas were borrowed from the theory
of Completely Integrable Systems.

AnvrepHarupHble AyanbHble dpeliMbl ans $peiima [Tapcesans
Hoguxos C. 5. (r. Camapa)

Oycers {pi};e; — Opelim mis ruasGeprosa npocrpaucrea M. Cemedictso {9},
Ha3HIBAETCH AALMEPHAMUEHILM JyarvHoim Ppetimom 0as {pi}icr, ecnu

r= Z(x, i) @i, zeH.

i€l

WsgectHO, 4TO (OpeiiM MMeeT eOMHCTBEHHBIR aJIbTEPHATHBHBIN AyasbHblil dpefiM Torma u
TOJILKO TOr/ia, KOTZa OH siByisteTcst Ga3ucom Pucca.
@peitm {p;};.; HaswiBaeTcs Ppetmom lapcesans, ecu

=) (&pidpi, zTEH.
iel
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Teopema 1. Ecmn {p;},c; sBnserca ¢pedimom Ilapcesanss zns H, To OH HMeer
€JMHCTBEHHbI aJIbTEepHATHBHBIA Ayanbhblit petim . [TapceBans, KOTOpHI coBnajaer ¢
{0itier-

Teopema 2. Eciu {;};¢; aBnserca dpeiimom IMapcesans ans H, T0 o uMeeT GeCKOHEUHO
MHOI'O HESKBHBAJIEHTHHIX MEXIY OGO JKECTKMX aJIbTEPHATHBHBIX JyaJIbHRIX (ppelMOoB.
Onpenenenne. IocnenosaTenbHOCTb {0}, 37MeMenToB rumbbeproBa nmpocTpancTa M
Ha3biBaeTcs gipetimom 1ia H, ecnu cyiecTBylor mocrosiHuble A > 0, B > ( takue, 4T0

Allel® <Y Iz, )l < Bllzl?’, zeH.
i€l

Yucna A n B HaswiBatorces zpanuyamu @petima. Eciin Bo3amoxken BuiGop rpanun A = B, 10
dpeitM Ha3BIBAETCA HCECTIKUM.

PezonancHoe Bo36yxaeHne HeJMHENHBIX BOJIH B MHTErPHPYEMBIX CHCTeMaXx
Hosokmenos B. 0. (r. Y¢ha)

Henuneiinble BOJHBI B HHTErpUpYeMbIX MOJE/AX THUMAa ypaBHeHu#t cunyc-I'opaox
u nenunuetinoro Illpeaunrepa Moryr BO30YXIaThCs IYTEM IEPHOAMYECKOM HaKauKH
konebaHuaMH Majol aMmiauTyas. Jlis JOCTHKEHHsI KOHEYHBIX aMIUIATYJ BO30YyKIeHHBIX
BOJIH CJleJlyeT BhIOUpaTh YacTOTHI M BOJIHOBbIE YHCiIa HAKa4YKH OIM3KMMHM K COOCTBEHHBIM
4acToTaM M BOJHOBBIM 4YuciaMm. C pOCTOM aMIVIMTYAB! JOJDKHO BHIIIOJHATBCA “yCOBHE
ABTOPE30HAHCA”, TO €CThb CUHXPOHU3ALMS BOJH C NOAXOAAleR MoAynsuuell HacToT H
BOJIHOBBIX 4ucen Hakadku (cM. [1]). Jns. marerpnpyemoro ypashenus i@ + P(@) = 0,
rae P- venuelinnit nuddepeHnyaibHbIl OnepaTop Mo NMPOCTPAHCTBEHHON NepeMeHHOMH,
paccMaTpUBaeTCs BO3MYyLIEHHEe BHIA

@ + P(i) = ef(z,t), e<<1, (1)
¢ yenosHo-niepuoaudeckont ynkmmett f(z,t) = flos,...05), 0; = Kk;x — v;t, n HyNeBLIM
HayaylbHBIM yciioBieM 4(z,0) = 0. HaRgeMm ycioBMe BO3HMKHOBEHMS N-9JaCTOTHOIO
aBTOPE3OHAHCA, TO €CTh CYLIeCTBOBAHUA pewenust & = @(61,.. . 0,), TAKOrO YTO

@ =0Q), t=0("). 2

TIpr mouTH Bcex HAYANBHHIX YCJAOBMAX N-NEPHOAMYECKME BO3MYyMeHHble pemenns (1)
apasiorcs aedopMmauyell TOUHBIX N-30HHBIX pellleHHiA HeBo3MymieHHOfRt cicreMul (cM. [2]).
VIX napaMeTphl 3aBUCAT OT NEPBLIX HHTEIPAJIOB CUCTEMbI, KOTOPhIE ABJISIOTCH PYHKIHAMU
MenJeHHHX nepeMennnx X = ez, T = et u yJOBIETBOPHAIOT ypPaBHeHHAM Yu3eMa.
TH ypabHeHHS JIETKO BHIBOASTCH M3 YCPeJHEHNs NpaBuX wacTell nyTem 3aHyineHus
“cexynapHuIX” Boamymenuft. Mazopnie byHKLUY SBASIOTCS KBa3UNEPUONRYECKUMH, TIPHYEM
YACTOTH OJHO3HAYHO onpeaensiorea u3 (1edOPMUPOBAHHBIX) IEPBLIX MHTETPAJIOB.

Jnst ananu3sa ycaoBuil apTopesoHanca oGpPaTHM ONUCAHHYIO NPOLEAYPY, & HMEHHO, I/
3ananHOl feOpMalHM N-TIEPHOJUIECKOro PellleHus HalileM oTBeyalonye et mpaByio 4acTh
f. Bonee TouHO, IPEANIOIOKAM, 4TO cymecTByeT aedopmanus cucTeMmsl (1), nepesosdimas n-
NEPHOAMYECKOE PELIEHHE B M-TIEPHOJUYECKOE 38 KOHEYHLIA HHTEPBAJ MEe/JICHHOTO BpeMeH!
(t =~ O(e™1)). Tlpu sToM mpasas vacts €f, BoobIe rosops, He GyldeT Mana, Gosee Toro,
MOXET Pa3pyINThCs TAMHIbTOHOBA CTPYKTY pa cHCTeMEl, 106k H36€2KaThb ITOro, HAJIOKHM
ycnoBus YuseMma Ha MepBhe HHTErpajsi, ocymecrsasiompe aedopmauno. Toraa, cornacuo
Teopeme [2] o cymecTBoBanmy yuseMoBckux JedopMaluit ¢ 3aJaHHEIMH TPSHHYHBIMH
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YCJIOBHSIMH, TIPABBIE YACTH OCTAHYTCH MAJIBIMH, CHCTEMa OCTAHETCS BIIOJIHE MHTErPUpYeMOH
B IVIABHOM YaCTH MO £ ¥ BBIIOJHUTCS yciosue (2).
MoOXKHO T0Ka3aTh, YTO YKA3aHHAs MpOLeNypa JEeMOHCTPUDYET BCE XapaKTepHbIe

4epThl  ABTODE3OHAHCR ~  MeIJIeHHbA  3axBaT a3l M CHHXPOHM3AIUIO

COBCTBEHHBIX  4YaCTOT €  WYACTOTaMM  Hakadykd, Jlos  MmMHPOKOro  KJjacca

U3MYECKN WHTEpecHRIX cucTeM [2] 9TO OmHMCaHWe TPENCTABIAETCH &/]CKBATHEIM.
JInreparypa

(1] Friedland L., Shagalov A. G., Phys.Rev. Lett., 90, (2003) 1123 {2] Kuksin S. B,,
Fifteen years of KAM for PDE, Amer. Math. Soc. Transl. 2, (2004) 237

PaspemmMocTb B 1€J10M [J1s HEKOTOPOTO KJjlacca runepSoamaeckux
HeJuHeHHBIX ypaBHeHH
Hypapibaes H.A.

B obnactu (0,00) X RY x RN paccmarpusaercs 3ajava Komm ans kpasumunefiHOro
runepboInYecKOro ypaBHeHUs

B’ilu(t, x, ) + u(t, x, ©)Q(t, x, ¢, u(t, x, c)) = P(t,x, ¢, u(t, x, ¢)), (1)
u(O,x,c) = U'O(xf C)
anech 4 = £ +¢Vs.

Jlemma 1. Ilyers u(0,x,¢) > 0, P(t,x,c,u) > 0 mpu u > 0, Q(t, %, ¢, u(t, x,c)) < oo
npr w0 zis Beex (, %, ¢) € (0,00) x RN x RN.

JloKa3aTeNnbCTBO ~ METOZOM ~ OT  NPOTHBHOLO  MHTEIPUPYSl ~ yPaBHEHHe  BJOJIb
XapaKTepHCTHKH § = % + ¢V,. OueBUmHO Tax>Ke, 4TO YC/IOBYE NOJIOMKUTETLHOCTH
pellieEns C TIOMOUBIO NPEAEJbHOTO MEPEeXONa MOXHO 3a8MEHHTb 3aMEHMTh Ha YCJIOBHE
HEOTPHLIATE/ILHOCTH.

Jlerxo BumeTs, uTo ypaBHeHne BonbiMana

(% + c%)f(t,x, c)=

= [ ex )t x ) - St e x,e]odol, e, @
¥ POM3BOHKIE OT HETO KWHETHYECKHe YPABHEHHS, B TOM YUCie 1 AUCKPETHBIE MOAE/H [1]
) ) n
(g7 + ¢ Vdui = > wb e — viwy), ®3)
I35 kki

yzaosreTBopsioT JiemMe 1, 13 KoTOpOi! ClleyeT OUEHKA CHU3Y (HEOTPHLATENLHOCTD) PeLIeH st
cpa3sy [JIsl BCEro KJacca KBaswIuHeRHbIX ypashennit (1). Mcnonbsys uaeio A0Ka3aTelbCIBa
JleMMBl 1 MOXHO ITOJIyYHTh B HEKOTOPBIX CIIy4asfiX OFPaHMYEHHOCTb DEIIeHHs CBEpXY, M3
KOTOpO#! CIeAlyeT pa3peluMOCTh B LEJIOM.

Paccmorpum 3ana4y Koum anst onnomepHo#t auckpetHoit monean Kapiemana 12l

U + U1z = uj — U u(0,x) =ud >0
— 0
up—ug =ui-uj  w(0,2)=u; 20
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U ee N-MepHOB 0606me1me C JHAroHaJIbHBIM CTOJKHOBHUTEJ/IbHBIM OIIEPaTOPOM

1i] . d . N
(57 T Vxui = rui = 37w (wews — u?), Sou=1 4)
¢ 1Lk#i Lk#i

Torna anst ypaBHeHu#t Buga (4) cnpaseaynBo CleAyollee yTBepXKIeHHe:
Tlycrs koncranTa 0 < a Taxosa, 4To Bee ul(x) < a, Torma u;(t,x) < a s Beex t u x. U3
3TOfi AIPUOPHON OLEHKH CJIeyeT INobanbHast paspemuMocts (4).

Jlureparypa
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MaTeMaTH49ecKoe MoJeanpoBanue 6udypKaMOHHLIX 3a0a4 B cucTeme Maple
Hypos U.JI. (Huctutyr maremaruxu AH Pecnybmmxn Tamxukucran, Jymanbe)

MaTeMaTHYeCKOE MOZETUPOBAHHE YACTO TpebyeT NeTaJbHOrO U3Yy4eHHs JHHAMUYECKHUX
cucreM, cojepxammx napamerpel. Oguumu u3 HaubGolee HMHTepeCHbIX SBJIEHMH npu
H3Y4EHHH TAKMX CHCTeM [IPEeJCTABIAIOTCS pa3iuyHble OudbypKamuu, oO3HauapIye
Ka4eCTBEHHYI0 NepecTpoiKy dyHKuuonupoBanus cucreMsl. O6Hapy»enue Gudypranuu
SIBJIACTCHA OJHBIM M3 BAXKHBIX ITAIIOB MCCJIEIOBAHUS THHAMUYECKON CHCTEMBI.

B HacrosmeM JOKJaJe OCHOBHLIM OGBLEKTOM SIBISETCS JHHAMHYECKAsd CHCTEMA
ONMHCHIBAEMOM HEABTOHOMHBIM YDaBHEHHEM

¢ = f(z,t, ), 0

roe BexTop bynxuus f(z,t,)\) sBasercs rMagkod mo z u A, HenpepwiBHO# B T -
nepuoaudeckot mo t. MoxHo cautaTh, 9To cucrema (1) onpenenena npu |A — A| < 6 . Ilycr
phinonneHo yciaosue f(0,¢,A) = 0, T.e. cucrema (1) npu Bcex A HMeeT HyJeBOE DelleHHe.

3Hayense Ao NapaMeTpa A HA3LIBAIOT TOYKOH GUdYpKALMM BEIHYKIEHHBIX KoseOaHuit
cucreMmsl (1), €C/IM CyHIECTBYET MOCHENOBATENBHOCTb A, — Ao TaKasl, 4TO mpH A = Ap
ypapherie (1) umeer HenysneBoe T-TepMOIUYECKOe pelleHWe T = Zn(t), mpuiem
max; ||z, (¢)|| — 0 npr n — oo.

Yepes A(t, ) o6oznayuM Marpuiy dxobu npasofi yacT cucreMs! (1), BHIMUCIEHHYIO B
Touke = 0, T. e. A(t,A) = f.(0,¢, A). Torga cucrema (1) Moxer GbITh NPEJCTABIEHS B BUE

z' = A(t, Nz +a(z,t,\), z€R", 2)
k) t,
lim ma: M =0.
lzli—o0st<T |||
HnTepec MpeACTaBJIAET CIydall, KOTZIa MAPAMETP A B CHCTEMbI (2) MEHSeTCH 1O 3aKOHY

A= Ao + &t mau X\ = Ag + esinet. [Ipeanosaraercs, ITO BBINOJHEHO YCIOBUE OTCYTCTBUS
pesoHanca T # %, k=1,2,3,... YpaBuenue (2) npuHuMeT BUT,

z' = Alt, do + dp(t)]z + afz, t, Ao + 6(2)], (3)
3xech @(t)— nepuogndeckas Gynxuus, 6 > 0. B kavecTse npuMepa NpoBeAEHB! Pe3Y/IBTATEL
KOMIIBIOTEPHOI'0 MOJeIHpoBanus ypasuenust Bau-mep-Ilonsa u Jydbdunra mis pasmudsbix
dyuxunit o(t). Mogemuposanne cucTeMbl peanu3oBansl B cpesie Maple.
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Boundedness of integral operators in Lorentz spaces.
Nursultanov E. (Astana), Tikhonov S. (Moscow)

Let (€, F, u) be a measurable space where u is o-additive measure, § is the algebra of
the measurable sets with identity €. The distribution of a measurable function f on  is

given by
m(c, f)=u{z € Q:|f(z)] > o}

Then f*(t) =inf{o : m(o, f) <t} is the decreasing rearrangement of f.
Let 0 < p < ooand 0 < g < oo We will say that f belong to the Lorentz space
Lyo(Q, ) if for 0 < g < o0,

1= ([T 2) " <o

and for ¢ = 00
Iflz,, = sup P (1) < 0.

The following result provides the sufficient conditions for the integral operator
T1) = [ Ko f@dve

to be bounded from Lye(D,v) into L (R, p)-
Let My ={e C ©:0 < p(e) < oo}, Mo = {w C D:0 < v(w) < oo}. For e € My and

w € M, we define
//K(z,y)dv du
e w

Theorem. Let 1 < r,0,h < 00, and 1/7+1 = 1/h+1/86. If there exists v > 0 such that

7 "a)
B= /( sup F(e,w) | — < 00 if h<oo
 \u@vrws=t ¢

B= sup Fle,w) < oo if h=o0,
e€EM1, wEM:2

1 1
e,w) = Fle,w; K) == ——
F(e,w) = F( ) e

V(W) u

and
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then the integral operator T'f is bounded from Lpg(D,v) into Lg (R 1), 1 < p,q < 00, and

Tl Lps—L, < Clp,q) B.

Moreover, in the case of r = oo, 8 = 1, the condition B < oo is also necessary.

This work was supported by INTAS (05-1000008-815), the Russian Foundation for Fun-
damental Research (grant no. 06-01-00268), the Leading Scientific Schools (grant NSH-
4681.2006.1), and Scuola Normale Superiore.

Banach Lie-Poisson spaces and integrable systems
Odzijewicz A.

We introduce a category of Banach Lie-Poisson spaces and show that the category of
W*-algebras can be considered as one of its subcategories [1]. Examples and applications of
Banach Lie-Poisson spaces to infinite integrable systems will be presented. In particular we
apply the notion of Banach Lie-Poisson space to the case of semi-infinite Toda lattice [2].
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K-cy6nuddepennuans u K-reopema o cpeaseM ais oroGpaskeHHi B JIOKAJABHO
BBIMMYKJIble MPOCTPaHCTBA.
Opaos . B. , Crouaxur @. C. (r. Cumc¢pepononp)

Lens paGorsl - o6obwenue mnoustusi cyGmngpdepeHunata Ha HeBbIIYKJble H
BEKTOPHO3HAYHbIE OTOOPaYKEHHS.
Jast oroGpaxenus orpeska B BemecrBenHoe JIBIT K-cy6nuddepenunan ects npeaen

Modhld})»

h
rae K — lim 03HAYAET TONOJOrHYECKOE CTAIMBAHME MHOYKECTB IO 3HAKOM IpefeNa K HX
KOMIIAKTHOMY IlepecedeHrI0. B ciyuae BrIMyksIoro BemecTBeHHoro F onpeneneHue Jaer
0bbiuHbIl cy6auddepenuna.

Paccmorpen psig cpoiicrs K-cyGanddepeniyanos, skinoyas cybaiuTHBHOCTD, AHAJIOTH
snemmbl Caxca, semmbl Capna u N-csoiicrBa Jlysuna. DTo MO3BOAMAO MOSYYHTH AHAJIOT
oBo61LeHHON (opMyIbl KOHEYHbIX NPHpaILeHHH, HoKa3aHHOM paHee B [1].

Teopema 1. ITycts F HenpepsiBro Ha [a;b] u K-cyGnuddepennupyemo ua [a;b] \ e,
rae F(e) nmeer HyneByio ckaispuyto mepy. Ecim Ox F(z) € (z) - B, rae B 3aMkHYTO H
BBINYKIIO, ¢ > 0 1 cymmupyeMa Ha [a;b] \ e, To

Ok F(z) =K — lim (Eaﬁ“ﬁ{

—40

F(b)— F(a) € / o(z)dz - B
[a:b]\e

BriTekaromyio oTciona TeopeMy 0 cpefHeM NpHBEAEeM B pocTeiimeit dbopme.
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Teopema 2. Ecin F nenpepsisro Ha [a;b] u K-cy6anddepennupyemo Ha (a;b), To

F) - Fla) em( U BKF(x))

b—
a a<lz<b

O6cyxapatores JanabHefiue nepcnekTuBsl Teopuyt K-cy6muddepennunaos.
JInteparypa
[1} Opnos H. B. Qopmyaa xorennuz npupaweruti dax omobpasicenuti 8 undyxmuemsie
wixaave npocmparcme // MaremaTnueckas ¢usmka, ananus, reomerpusi. — 2001. - T.8. -
Ned. — C.419-439.

O6parnas 3asjaya A5 aGCTPAKTHOrO 3/UITUNTHYECKOrO yPAaBHEHUS.
Opirosckuit. 1. I. (r. Mocksa)

PaccmaTpuBaercs 3azaya onpenenenns ¢yHkuun u(t) co 3HavyeHMsAMH B GaHAXOBOM
npoctpaHcTBe X U 3neMeHTa p € X N3 CHCTEMBbl PABEHCTB

u"(t) = Au(t) + B(t)p, 0<t<T,

u(0) =0, u(T) =0,

w(7) = uo,
rae duxcuposannoe uuciao 7 € (0,T), A — nuHeHHBIA CAMOCONIpPSDKEHHBI OnEpaTrop B
npocrpaHcrse X ¢ muroTHo# obnacrsio onpegenenus D(A), B(t) — HenpepbiBHas cKajsipHasi
dbyHKuus, aneMeHt ug € X.

Teopema. I[Tycmv X — 2uavbepmoeo, onepamop A CAMOCOTPRNCEN U NOAOHCUTNEALHO
onpedesen, dynxyua B(t) seavdeposa na ompesxe [0; T}, npuvem B(t) £ 0. Tozda

1. Pewenue 3edanu eduncmeenHo mozda U MOALKO Mo20a, K020a TNONEYHHU Cnexmp
onepamopa A ne codeporcum nyaett Pynxyuu

b(A) = shVA(T ~ 1) / sh(VAs) B(s) ds+
0

1
T V/Ash(VAT)

T
+8h(VAT) f shvVX(T — s) B(s)ds |,

2. Obpammnas 3adaxa umeem peulertie Mo20a U MOALKO M020a, K020a

+00
/ [B(A)|~2d(Exuo, o) < +00,
0

20e E), - pasnoocenue edunuy onepemopa A.
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O noTeHUMAaNaxX IS BBIPOXKIAIOLIErocs NapaboM4ecKoro ypaBHeHHs B UX
IpUMeHeHHe K KPaeBbIM 3aJa4aM.
Opsiubacapos M. O. (r. Anmatsr)

PaccmarpuBaercs napaboianyeckoe ypaBHeHue BHAA
a
po(t)ue = Lzt 5-)u + Fla, ), (1)

roe L(z,t, %) — JMHeNHBI INIMOTHYeCKHN omepaTop 2-ro mnopsifika, KoadbduuueHt
po(t) 200pu 0 <t < T u p(0) = 0w 00 ¢ MOPAAKOM BHIPOXKIeHUs p < 1.

TTocrpoero dyumamentanbhoe pemedne (P.p.) G(z,t;€,7) ypasuenus (1), B3sB 3a
napaMeTpukc ¢.p. ypaBHeHHS

n
Lou= ) aij(€,7)us,z; — po(t)ur =0
i5=1

¥ uccnenosantl aucddepenuuanbunie ceoticrsa d.p. G(z,t; €, 7). lpu nomoun G(z,t;€,7)
HOCTPOEHB! 00'beMHEIE IOTEHIHATbE

Vo(z,t,7) = / ()G, :€,7) de,
Q

t

dr
V(m’t)—'h/po—@_)n/F(gﬁT)G(wvtvgvT)d‘s

¥ NIOBEPXHOCTHRIE TOTeHLHAJbL

t

o) = pj(:) S/ o6, H(7)G(z, £, 7) dSe,
t
dr
W(zit)_b/‘po(‘r) s/u(fi (T))au(£ )

rae v(£,7) — HopMass B Touke (€,T) € S,

o) = [ 55" (2)d.
h)

Jloka3aHbl OCHOBHBIE CBOWCTBA STHUX IIOTEHOMAJCB M JaHbl NDUMEHEHMA HX K
PEIIEHUIO PA3JIMYHBIX JIOKAJbHBIX U HEJOKANbHBIX KDaeBbIX 3a4ad Juisi ypasHeHus (1) B
LHJIMHAPHYECKUX M HeUMIHHAPUYECKHUX 00JIacTsX.

Sofic measures and Erd8s measures.

Oseledets V. I. (MSU)
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A sofic measure is a measure which is the image of a Markov measure under a one-block
map or clumping of a finite alhabet. Sofic measures are also called hidden Markov measures
and functions of finite Markov chains. Let 8 > 1. A §— shift is a symbolic dynamical system
that codes the map Tz = Bz(mod 1) on the unit interval. We define a 8— shift invariant
Erdés measure for hidden Markov measure. If § is a Pisot number, then we prove that g—
shift invariant Erdds measure is a sofic measure. We study ergodic properties of §— shift
invariant Erd6s measures. We consider the special case § = 2.

CunbHbBIA NPUHUMI MAKCUMYMa [J1 9JUINITHYEeCKOrO ypaBHEeHUs Ha
cTpaTuPUUMPOBAHHOM MHOX>KECTBeE.
Owenkosa C. H. (r. Bearopoxn)

Paccmorpnm  cBsisHoe MHoxecTBo @ C R™,) cocTaBieHHOe M3 KOHEYHOTO YHCIA
OTHOCHTEJILHO OTKPBITHIX BEIMYKJIBIX MHOTOIDAHHUKOB (CTPATOB), NPHMBIKAKOIINX IPYT K
ApYyTy IO TUILY CHMIUIMLHAJILHOTO KOMILIEKCA.

Boigennm B §) orkphiTOoe CBs3HOe (B TOMOJOrMM, WHAyUupoBaHHOW Ha §) uz R™)
noaMHOXecTBO {) , COCTABJIEHHOE U3 CTPATOB MHOXeCTBa ) ¥ TaKoe, 4o §g = §2.

Ha Qo onpemenserca anaior omeparopa Jlamnaca. st SToro cradaga BBOAMTCH
puBepreduust VF Ha JOCTATOYHO [VIAJKOM BEKTODHOM IIOJ€ KAK ILUIOTHOCTH €ro MOTOKa
no cnenuanbHoit (crpatuduunpoBanHolt) Mepe. 3arem mnonaraerca Au = V(Vu), rme
BHYTPEHHHH onepaTop V HMHTEPIPETHPYETCs KaK B3ATHE MPaJHeHTa QYHKIUUK U.

HnMeeT MECTO C/IeyIOLHI aHAJIOT CH/ILHOIO IPHHIMNA MAKCHMYMA.

Teopema. ocrarouno riaiaxkue QYHKLMH, SABASIOMIMECH peIUeHUEM HEpaBeHCTBA
Au > 0 Ha §p, He MOTYT UMeTh B {J) TOYEK HETPHBHAJIILHOIO JIOKAJIBHOTO MAKCUMYMa.

LokazaTenbcTBo 3T0r0 (pakTa OCHOBHIBAETCS Ha CHELYIOIEH JIeMMe.

Jlemma. Ilycrs X € Qp - Touka HeTpuBMAJbHOrO MaxcumyMma dyHkmuu u € CH(Qp).
Torpa HalayTCA CKOAbL YLOGHO Majibie AomycTumsle r > 0 Takue, 4TO

u y,
v
$-(X)
rie v — BHEIIHSS HOPMaJib.
Pabora srimosinena npn noggepxke PO®U, rpant 07-01-00299

BeckoneuHOMepHbIe JUIMNTUYECKNE KOODANMHATEI M HEKOTOPhIe CNEeKTpaJibHEIe
BOIPOCHI
Ocunos A.C. (Mocksa, HUH Cucremusix Hecnenosannit PAH)

PaccmaTpuBaeTcs [Ba MOKXOAA K ONPEAENIEHHI0 JIMNTUYECKHX Koopaunar Hxobu B
6GeckoneunomepHoit cutyaumn (cM. [1}-[2]). B nepsoM ciyuae saaunTHYECKHe KOOPAMHATHI
BeKTOpa T u3 cenapabessnoro I'mnbGeprosa npocrpasicTBa H ONpeaensioTcs Kak KOPHH
YPaBHEHHs

((A=AE) z,2) = C,

rae A - caMOCOTpSIXKEHHBbIH 10/IyOrpaHHY€EHHEI! CHU3Y ONMEpaToOp C NMPOCTHIM JUCKPETHBIM
cnextpoM, C - HKCHpPOBaHHOE TNONOXKHMTEAbHOE YHMCIO. BTOpOH TOAXON HE HCIOIb3YeT
TepMuHOsIoruu [nib6epTOBEIX MPOCTPAHCTB.
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YcTaHOBIEHO, YTO 068 N0JX0AA AONYCKAIOT €AHHYIO HHTEPIPETAIMIO B TEPMUHAX TEOPHH
OJJHOMEPHBIX BO3MYILIEHHH CAMOCONPSIKEHHBIX ONEpAaTOpoB. IIpW 3TOM NepBbI NOAXOX
COOTBETCTBYET DEryJisIpHBIM BO3MYILEHHSIM, a BTOPOH - CHHIYIApHBIM. B oboux ciyyasx
obHapyKeHa CB3b GECKOHEYHOMEPHBIX JUIMATUIECKUX KOOPAUHAT ¥ HEKOTOPBIX OGPATHBIX
CHEKTPAJIBHBIX 33784 JJIs Pa3HOCTHBIX M AM(bdepeHnuantbHbIX ONepaTopos (CBOAMUXCS
K BOCCTAHOBJIEHHIO OIEPATOpA IO ABYM CHeKTpaM ). TakikKe yCTaHOBJIEHBI TOXIECTBA,
CBSI3BIBAOIIME CIIEKTP PacCMATPHBAEMOro ONEPATOP2 M COOTBETCTBYIOIIME 3JLIMITHYECKHE
KOOPJMHATHI.

Pabora nogaepxana POOU (rpant No 05-01-00989) u rpaHTOM MOALEPKKH BELYLIMX
Hay4Hbix mkon HIII-5247.2006.1.

JInreparypa

[1] Kocriouenko A. T. Crenanos A. A. Beckonewnomeproie 5aaunmuseckue Koopounamat.
®yukn. Ananus u ero IIpunoxenus, 33, No 4, 1999, cTp. 73-78.

[2] K. L. Vaninsky, Equations of Camassa-Holm type and Jacobi ellipsoidal coordinates.
Commun. Pure Appl. Math., 58, No 9, 2005, pp. 1149-1187.

On the interplay between analytic number theory and Schrédinger type
equations
Oskolkov K.I. (Department of Mathematics, University of South Carolina, Columbia,
Steklov Mathematical Institute, Russia)

The talk will be dedicated to recent developments in the study of the interplay between
methods of analytic number theory (the circle method of Hardy — Littlewood — Vinogradov),
and partial differential equations of Schrédinger type. If for such equations the Cauchy initial
data problem is posed, with the periodic initial data functions, then the solutions exhibit
deep self-similarity properties. The scaling factors are rational exponential sums (Gauss’
sums), and the “patterns"are represented by oscillatory integrals with the polynomial phase.

References

[1] K.I. Oskolkov. The Schrédinger’s density, and the Talbot’s effect. Approximation
and Probability. Banach Center Publications, volume 72. Institute of Mathematics, Polish
Academy of Sciences. Warszawa, 2006. pp. 189 - 219.

{2] K.I. Oskolkov. The series 3.5 emmz, and a problem of Chowla. Trudy Matem-
aticheskogo Instituta imeni V.A. Steklova, 248(2005) pp- 204 — 222 (in Russian); English
translation in: Proc. Steklov Inst. Math., 248(2005), pp. 197 - 215.

{3] K.I. Oskolkov. 4 class of I.M.Vinogradov’s series and its applications in Harmonic
Analysis, — in the book Progress in Approzimation Theory, An International Prospective,
Springer Verlag 1992, pp. 353-402.

AnaunTUYecKNe ypaBHEHNS C KOMILIEKCHO3HAYHBIMU Koadhdunuentamn 8 R"
Ocnanos K.H. (Axagemus rocynapcrsentoro ynpapJenns npy Ilpesunenre Pecny6muxu
Kasaxcra#, r.Acrana)

PaccmorpuM ypaBHenue

n

Lu= Z aa (pk(z) Bu ) + g(z)u + r(a:)u = f(=), 1

k=1
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tne ¢ = (21,%2,..,2n) € R, i? = —1, px,q,7— HempepuIBHbie KOMILIEKCHOSHAHHbIE
byukwmu, f € L, = Lp(R"). Pemrennem cucremnl (1) nasoBeM ¢ynxumio 4 € Ly, ecnu
HalljeTcsl NOCJIEN0BATEILHOCTD {us}:‘;l ckonb yrogHo auddepeHuUApyeMbix u GHHATHBIX
bynxuntt, Takas, 9To |1, — ufl, — 0, || Lu, — fll, — 0 npu s — oo (] - ||,— Hopma B Ly).

Korma pr = 1, 7 = 0, g(z) = ¢(z) v p = 2 B pabore [1] mosnydeHst T.H. OUEHKH
Pa3leNMMOCTH ANs pelneHust ypasHernus (1) (a Takyke AjIsl ypaBHEHHS! BLICOKOTO TODsI/IKaA)
B BHJE

n

>

ou
P Pk(r)a—mk‘

|2 +flgulla < CIlfll. @

Ouenka (2) urpaer BaXKHyIO POJib B M3y4Y€HUH IJIQAKOCTHLIX ¥ AIIPOKCUMATHBHBLIX CBOHCTB
pewtennsi ypaBHeHust (1), NpM WCCAEHOBAHMH CTPYKTYpHl CHEKTPA COOTBETCTBYIOIIETO
Audbdepennuansaoro oneparopa. Pesynprathi {1] 6buin pacnpoctpaneds: B pabore [2) na
cay4ait p € [1,00). Bonpoc o cymmupyemocTu ¢ BecoM perienns ypasHenus (1) mpu n = 1,
pr=p=1up=2 usyyancs s [3].

B Hacrosimem goKmaje o6CyKAaeTCs 3a1a4a PacHpOCTPaHeHHs! pe3yibTaTos pabot (1],
[2] Ha cayuail koMnnexkcHbix Koagduumentos B ypasHenuu (1). B wactrocTH, nomydenst
OIEHKU pa3felIMOCTH [yl pelleHHst ypasHenus (1) B ciaydae p = 2, a xorma g = Pk
(k = 1,2, .., n)— npu Bcex p € [l,00). Haligensl mocraTousble yCIOBAS KOMOAKTHOCTH
Pe30/IbBEHTHI, 8 TAKXKe PAa3PElIMMOCTH OJHOrO HelnHeHHOro obobmenns ypasHeHns (1).

JluTepatypa

[1] Oren6aes M.// Tpyass MU AH CCCP. 1983, 1.161. C.195-217.

[2] Mypat6exos M.B., Oten6aes M.// U3s. By3oB. MaremaTuxa. 1989, Ne3. C. 44-47.

|3] Yamaitnos A.JL., Orenbaes M.// Uss. AH KasCCP. Cep. dusz.-mar. 1977, Nel. C.
36-40.

O HeCyILeCTBOBAaHMY CHUJILHOTO PEIIEHHS B LEJIOM OJHOrO KJjacca abCTpaKTHBIX
napaGonnueckux ypapHennii Tuna Hasbe - Crokca
Orenbaes M. (EBpasuitckuit HanpoHayIsHEN yHuBepcuTeT uM. JI.H. l'ymunesa, Acrana,
Kasaxcran)

TIycre H— cenepabenbhoe rHIb6epToBo mpocTpacrso U A = A* > E - jnuxefiHmit
oneparop B H (E— exunuunbiit oneparop). Ilycrs eme B(-,-)— OGwinsefiupit onepaTop
TaKol, 4To Aus Beex nap (w,u), (w,v) u3 ee 06racTH onpeneseHNst

= (1)

rae — ckajuspHoe npoussesenue B H. B npocrpancrse Lo(H,T) cyMMupyeMsIX Ha OTpe3ke
[0, T) BexTop - dynxuwmii co snauenusmMu 8 H paccmorpum 3agavy Komu

us + Au+ Blu,u) = f(8) (0 < t <T), tlemo = 0. @),

Onpeaenenue 1. Bygem rosoputb, 4To 3aa24a (2) CHIILHO pa3pelIMMa B LEJIOM, €ClIH
npu mobom f € Lo(H,T) ans pemenus u(t) sTol 3ama4u BbinosiaeHo u; + Au € Lo(H, T).

Xopoiwo u3secTHO, yTo M3 ycaosus (1) u u3 f € Lo(H,T) BhiTekaeT cnpaBeiTHBOCTh
IHEpreTHIecKol onenku, u nostomy VAu(-) € Lo(H, T).

B nokiae goxassisaercs, 9To cymectsyior A = A*, A > E u B(-, ), yaosaersopsiouit
(1), Takue, 4T0 33844 (2) ABAAETCH HE CHIILHO Pa3PEIIUMbBIM.
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D10 yTBepXKAEHNE, KOTOPOE JOKA3BIBAETCHA IOCTPOEHMEM IPHMEpA, BaXKHO, TAaK KaK B
Buse abcTpakTHOro ypasHenus (2) Moxer ObITh 3anmucaHa cucTeMa ypabHeHu#t Hasbe -
Crokca. ITocTpoeHHHH mpuMep He COBHAJaeT ¢ abCTPAKTHHIM ypaBHEHHEM, K KOTOPOMY
cBoauTca TpexmepHoe ypaBHenne Hasbe - Crokca (xoTs no psifly cBOiCTB 6JIM30K K HeMy),
[O3TOMY He pellaeT M3BECTHYIO NpobieMy O CHJILHON pa3pelnMOCTH TIOCIEAHErO B LEJIOM.
Ho, Tem He MeHee, BMecTe ¢ pesyibTaTamu pabor [1] u (2| nossossier aBTOpy AyMaTh, 4TO
npobaema o CiIbHOM paspemmocty ypasHeHnii Hasbe - CToKca B 1Ie/IOM CKOpee BCero uMeeT
OTPHLATEIBHOE PEIIEHHE.

Amnasiorsusble KOHTDIPUMEDHl NOCTPOEHBl M [  CTAIMOHADHOTO YDaBHEHM,
COOTBETCTBYIOLIEro 3aade (2).

Jlureparypa

[1] OTen6aes M., JypmaramGeros A.A., Cefirkynos E.H.// JJAH P®. 2006, T.408, Ne4.

[2] Orenbaes M. O ceoficTsax onHoro Kiracca ypasnenuii tuna Hasee - Croxca// MaTep.
mexa. Poce. - Kas. cumn. "Ypas. cmem. Tuna u poacrs. npoba. anan. u nud.". Hanpuanx -
Aupbpyc, 2004. C.140-145.

Onucanye MHTEPNONAINUOHHBIX OPOUT M ONTUMAaJibHble TEOpPeMbl BJIOXKEHMS JJisd
npocrpancts CobosieBa
Osuunnuxos B. H. (r. Boponex)

Mn paccmaTpuBaeM 3adady o6 ONTHMaJIbHBIX BIOXKeHMsiX npocrpancTs Cobonesa
WZ(Q), rme Q orpaswyennas obiacts B R™ ¢ gocraTouHo riaakoif rpamuuefi, m € N
um < n, a E - nepecTaHOBOYHO MHBAPHAHTHOE MPOCTPAHCTBO H3MEPUMEIX DyHKIuUH,
B 11€PECTAHOBOYHO HMHBApHaHTHOe IpocTpaHcTBO G. MBI CunMTaeM, YTO IPOCTPAHCTBO
Cobonesa cocrouT u3 0000wWeHHBIX GyHKIMA, BCe YacTHbie NMPOM3BOJHBIE KOTOPHIX 10
nopsiAika M npuHamexaT npocrpanctsy E. B paGorax [1], [2] Gbuta 3ameuena u
HCCTIeJ0BaHa CBA3b 3a0aud 00 OMHCAHUM TeOpEeM BJIOKEHHS C MHTepnonsuuel JuHeHHbIX
onepaTopoB, AeicTByOUMX B Napax {L1,Am/m} 1 {A1—m/n» Lo}, rne uepes A, oboznageno
npocrpancTso Jlopenna.

B pganno#t paboTe nNOKa3aHO, YTO ONHCAaHME ONTHMAJBLHBIX MEPECTAHOBOYHO
WHBAPMAHTHBIX TIPOCTPAHCTB, B KOTOphle BKiajAbBawoTCsd npocrpancrsa Cobonesa,
CBS3aHO C OMHCAHHEM MHTepNOJSUMOHHLIX OpGUT npy AeficTBHM JiMHEMHBIX OTNIEPATOPOB U3
napsl {L1,Ap/n} B 1apy {A1_m/n; Lo} B RanbHelimem Mbr GyZieM pacCMaTpHBaTh TOJMBKO
IepeCcTaHOBOYHO MHBAPHAHTHLIE NIPOCTPAHCTBA, ABJIHIOMINXCS WHTEPIOISUMOHHEIMEA MEXLY
npoctpaHcTBaMi Ly 1 Log. DTH npocTpancrsa Mbl OyieM Ha3hIBATH MHTEPNOJIALMOHHEIMU
.M. IPOCTPAHCTBAMH.

Teopema 1. Ilycte E npousBonbHOE MHTEPNOJISLMOHHOE ILH. NPOCTPAHCTBO, TOIAA
HayMeHbUlee MHTEPIOJISAINORHOE ILH. IpocTpancTBo G, Kyaa BiaoxkeHo Wi (Q), conazaer
C Orb(E,{Ll,A%} g {Al—-',?-aLoo})- '

Hanomany, uto Orb (E,{L1,An} — {Aj-m,Le}) — 310 Ur T(E), rae npoberaer
MHOKECTBO BeeX muHeftHbix onepatopos T : {Li,An} — {A1_=, Lo}

B wacTHOCTH, MBI HOJIy4aeM OHHCAHHE ONTHMAJbHBLIX BJIOXKEHHH [7is BCeX MPOCTPAHCTB
Jlopenna L, ¢ hYHKIMOHAILHBIME TADAMETDAMH.

Teopema 2. Ecau npoctpanctBo E = L,p = (L1,Leo)p,p, TA p — NPOU3BOABHAR
KBa3uBOrHyTas QyHKHns Ha orpeake [0, 1), Takas, yro Cp(t) <tw,a 1 <p< oo, TO

Orb(Lp,py {LlyA-"’:—} - {Al—%,Loo}) = (Al—'—"“;Loo)o.py
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rie (Xo, X1)o,p — KOHCTPYKIMS $lHCOHA, 0 — KBa3sMBOrHYyTad PyHKUMA
o(t) = || min(1, t/sl_%)”Lﬁ,,n

a p(t)=t/p(t), up'=p/(p-1).

Iockonbky npocTpaHcTBa SIHCOHA SIBHO ONMCHIBAIOTCH, TO MbI NMPHUXOAMM K SBHOMY
ONVCAHMIO OPGYTBHI M COOTBETCTBEHHO ONMCAHMIO HAMMEHBILEr0 UHTEPIOJIALFOHHOTO ILHU.
NPOCTPaHCTBa, comepxaitero WZ ().

Jlureparypa

[1] Cwikel M. and Pustylnik E. Sobolev type embeddings in the limiting case. J. Fourier
Anal. Appl. 1998. V. 4. 433-446.

[2] Kerman R., Pick L. Optimal Sobolev imbeddings. Forum Math. 2006. V.18, N.4. 535-
570.

IIpo6aemsr HaBbe-CToKC NpnOaKMIKeHUs ¥ MaTpU4YHbIe YpaBHeHMA
Iamuu B. B., Panxesuu E. B. (Mocksa)

Ileablo Joknaga sBisiercs uccaenosanne npobnemsl Happe-Croke npuGnmxenns
KHHETH4IeCKHX ypaBHemuii [1] B TepMuHax Tak Ha3biBaeMON mpoekuun Jemmena-Juckora
[2]. Hac 6yayr uuTepecoBaTh cBoficTe npoekimu ‘denmena-Duckora 3amaun Komm mis
MOMEHTHBIX AIMPOKCHMAUMi KWHETHYECKMX YPAaBHEHHl M TpeXJAe BCero HCCJIeJOBaHHe
npoekuun Yenmena-DHCKora [Uisi KMHeTH4YecKnx ypaBHenuit Boabumana u BonbimMana-
Maiteprnca [3,5]. Ycnosust cywmecrBoBanns mpoekinu JemMena-HcKora (HOPMYIUPYIOTCH
B TEPMHHAX pPa3pPELIMMOCTH MATPHYHBIX ypaBHeHult PukkaTH, O1s1 KOTOPBLIX HOJy4eHb
HeoBXOXMMbIe # JOCTATOYHbIE YCJIOBUS CyNIecTBOBaHHs pelenusi[4,5].
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HoBblit aHANUTHKO-YKCJIeHHEBIN MeToJ KOH(DOPMHOro 0To6paXkeHUs CJIOKHBIX
obnacteit
Iamsues A. B. (r. Mocksa)
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Ilycrs oanocssi3Hast 061aCTh ¢ HA KOMILIEKCHON ILTOCKOCTH 2 TaKOBA, YTO NPH MOMOILH
JpoGHO-JIMHENHOro OTOOpaXkeH!sl ee MOXHO Npeofpa3’oBaTh B KOHEYHyIO o6nacTb co
crpsiMysieMoii rpanniefi. TIpeanonoXuM Tak»Ke, YTO rpaHuna Jg COCTONT M3 ABYX 3BEHLEB
~ u I’ Takux, 9T0 7y B OKPECTHOCTAX TOYEK COeAMHeHus siBasercs ayroii Jlsmywosa, a I
— JKOPJAHOBa KyCOYHO-TJiafKasi KpuBasi. ByJieM roBopuTs, 4TO g yAOBNETBOPSET YCIOBUIO
(v, T) n nucats g € (7,T). Paciupesnem obnacru ¢ € (y,T') uepes ayry I' HasoBeM obnacTs
G, 1u1s1 KOTOPO#l BHIIONHAIOTCS CleAyiolue Bkmovenus: ¢ C G, v € 9G, intT’ C G, a
kOHTYp OG B HEKOTOPBIX OKPECTHOCTSX TOYeK coeuHenMs xyr v u OG \ inty npeacrasnser
coboit ayry JlsmyHosa.

ITocrponm koHdopMHOe oTobparkeHne ¢ : gg—'—glﬂl obnactn g € (v,I') Ha BepxHiO©

conf
noiymnockocrs H B npemmosioxkennn, uro orobpaxenne ® : GESH  mekoroporo

pacmupenust obnacru g uepe3 ayry I' moxer 6biTh noctpoeno sddexrusro. Ilogunnum
dyskuuio O(w) crenyomuM ycoBusm Hopmuposku: P(M) = oo, ®(N) = 0, rae
M € inty, N € (0G \ v) — HexoTopble TOUKM rpanuisl obgacty G, a HCKOMYIO
dbyskumo ¢ nogaunuM ycaosusaM (M) = oo, ¢(2) ~ ®(z), 2 — M. Orobpaxenne (z)
6yneM uckaTh B Buje npeiena mocneaosatensHoctn {pn(2)} dyHkumii, onpeaessembix
no dopmyne py(2) := P(z) + Zf:o aly [®(2)]7%; smech (semecTBennble) KO3bMUIMEHT
al¥, k = 1, N paxomarcs W3 CHCTeMbl JIMHENHBIX ypaBHEHHH E{\;I(Qk,ﬂg)alN = (O, h),
k = TN, rae Q(z) = Im[®(2)]%, h(z) = —Im®(z), a uepes (-,-) obosmaieno
ckansiproe npoussenerte B La(T'). Kosdbdunpent alf B bopmysne ana ¢y (z) onpenensercsa
W3 JIONOJIHUTEILHOTO YCIIOBHSI HODMHPOBKH OTOOpakenust ¢(z), HEOGXOAMMOrO JUIsi €ro
OZIHOBHAYHOTO onpeenenns. JJoKaszana CXoUMOCTb NOCJIEA0BATEILHOCTH YN (2) K DyHKIuuK
(2) Ha MuOXecTBe g U (inty \ {M}).

3aMeTHM, 9TO NPeJIOKEHHBIH aHAJIMTUKO—IUCIEHHBI METON OCHOBAH Ha CBEIEHHH
3aJa4d O HaXOXKJAeHMM orobpaxkaioumielt ¢yskumm k 3amave Hupuxse. B orauume ot
W3BECTHBIX MeTOmoB [l], JaHHBIX MeTon HCHONB3yeT [Jisi TAKOTO CBENEHHS! TEOPHIO
kOH(POPMHOro 0TOBpakeHusl CUHIYJIAPHO AedopmmpyeMbix obiacteit [2], a oast peureHHs
3aga4n JIMpUXJie HCIOIb3YeTCs MeTOA IPAHMIHBIX Myibstunoned [2]. Paspaboranuniit MeTos
6b1J1 NpHMeHeH K pelneHd0 3ajaun upnxiae B obiacTax ¢ y3KuMH menasmd. JucneHHsie
Pe3yJILTATH MPOAEMOHCTPHPOBANH BHICOKYIO 3¢ (eKTHBHOCTb METOZR.

Pabora Boinonnena npu dunancosoll noagepxke POOU (npoexr 07-01-00503).
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Invariant sets for differential inclusions.
Panasenko E. A. (Tambov), Tonkov E. L. (Izhevsk)

For a fixed topological dynamical system (Z,f!) and some function
F: ¥ x R® — comp(R™) we consider (for each ¢ € X) a differential inclusion

i€ F(fto,z), teR (1)
and a “convexified” differential inclusion

z € coF(f'o, ). 2
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Let the function F(f's,z) for every o € & be upper semicontinuous on z, bounded and
uniformly continuous on t € R, and such that every solution of inclusion (1) is defined for
allt > 0.

To each point w = (o, X) € = X x comp(R"™) we assign a section S(t,w) of the integral
funnel of inclusion (2) and a dynamical system ({2, g*), where g‘w = (f!o, S(¢,w)). Next, for
a given continuous function ¢ — M(o) € comp(R") we construct a set

M= {w=(0,X)€Q: X C M(o)}

and its r-neighborhood M" = {w = (0,X) € @ : X C M"(0)}, where M"(0) is an r-
neighborhood of the set M(c).

Definition. The set 9 is said to be positively invariant if g!9 C M for all ¢ > 0
invariant if ¢'9M = M, t € R, and minimal if M is invariant and does not contain a true
invariant subset.

Denote N™ = {w = (0,7) € M™ : w ¢ M}. A continuous function V : MM™ — R is called
Lyapunov function, if V{w) = 0 when w € 9t and V(w) > 0 when w € :NM".

For r > 0 and a locally Lipschitz function V : 9" — R the limit

d7( £9 _ 9
Vo(w;q) =  limsup V(£ (f79),y +h) - V(fT0,y)
(9,3,8)—(0,z,40) é

is called the generalized derivative of the function V' at the point w = (a, z) in the direction

g = (1,h) € R x R™ (or Clarke derivative). If ¢ = (1, k), then V2(w) = hmlg(x) Vo(w;q) is

called the derivative of V' with respect to inclusion (1).

Theorem 1. If there exists a Lyapunov function V : 9" — R which is locally Lipschitz
and such that V2(w) < 0 for all w € N, then the set M is positively invariant.

Theorem 2. Let 3 be a union of all omega-limit sets when ¢ changes in ¥, and let the
set M be positively invariant. Then:

1. For every point o € X the integral funnel S(¢,w) of inclusion (2), where w = (o, M (o)),
is defined for all ¢ € R, hence the sets orb(w) = {g*w : t € R} and {J orb(w) are invariant,

o€eX
and cI My C M.
2. If, in addition, for every o € T the function £ — F(o,z) is locally Lipschitz and the
set ¥ is minimal, then for each point o € ¥ there exists a- compact minimal subset in 901,
therefore for every o € ¥ there exists X (o) € comp(R"™) such that for any ¢ > 0 and 9 > 0
the set
L{e,9) = {T eR: Ir:]lg.)édist(S(t +7,w),S(t,w)) € E},

where w = (0, X(0)), is relatively dense on R, i.e. the motion ¢t — S(¢,w) is recurrent.
The work is partially supported by RFBR. (grants 04-01-00324, 07-01-00305 and 06-01-
00258).

Multl-scale modelling of blood circulation .
Panasenko G.P.

The method of asymptotic partial domain decomposition (MAPDD) {1,2] reduces the
dimension of the problem (or simplifies the problem in some other way) in the main part
of the domain keeping the initial formulation in the remaining part and prescribing the
asymptotically precise conditions on the interface of subdomains of different dimensions.
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This idea leads to the hybrid 1D-2D or 1D-3D models, where the high dimension is kept
only in the parts of small measure with respect to the initial domain. The method is applied
to the problems set in thin tubular (pipe-wise) domains simulating the blood flows in the
blood circulation system. We consider the diffusion, the Stokes and Navier-Stokes equations
in some unions of thin channels with a rigid or elastic wall, with some zones of a clot
formation. We apply a 1D reduction for the smooth parts of the channels and keep the
initial dimension in the subdomains of the singular asymptotic behaviour of the solution.
The appropriate junction conditions between the 1D and 2D (or 3D) parts will be discussed.
References
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Nonlocal problems in the theory of hyperbolic differential equations
Boris Paneah (Technion, Israel)

The local boundary problems for the general linear second order hyperbolic differential
operators P in bounded domains in the plane are studied well. As to the nonlocal problems
(even more general than boundary problems}, they remain practically unstudied, although
many diverse problems of this kind were considered successfully in connection with elliptic
and parabolic operators. In this talk we discuss two nonlocal quasiboundary problems of the
sufficiently general form for the operator P in the characteristic rectangle in the plane. In
both cases we formulate the conditions of the unique solvability of the problems, and also (for
the first time in the theory of hyperbolic differential operators - to the best of my knowledge)
the conditions of the fredholmness of the problems in question. As the examples show, the
conditions formulated are sharp: a violation of any above condition leads sometimes to the
violation of the corresponding solvability properties of the problems.

(This is join work with Peter Paneah, Technion)

Asymptotic behaviour of solutions to second order elliptic equation in a
semi-infinite cylinder
Pankratova I. L. (Narvik, Norway)

Saint-Venant and Phragmén-Lindelof principles have been widely studied in mechanical
and mathematical literature. For rigorous mathematical results we refer to [1}, [2], [3] and
[4]. The goal of the present work is to study the behaviour at infinity of solutions to the
problem
—div (a(z) Vu(z)) — b(z)Vu(z) =0, z€G,

66:,; =0, z € [0,00) x 9Q, 1)
u($)|31=0 = (1), T€Q.

Here G = [0,00) x Q is a semi-infinite cylinder in R? with the axis directed along z; and Q
is a sufficiently regular bounded domain in R¥~Y; o(z) € HY/2(Q); a(z) is a d x d matrix
and b(z) is a vector in RY, periodic on z;. We suppose that the matrix a(z) satisfies the
uniform ellipticity condition and all the coefficients of equation (1) are L*° functions.
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It turns out that the uniqueness of solution to problem (1) depends on the sign of
auxiliary constant b; which is defined in terms of the operator coefficients and the kernel of
the adjoint periodic operator. The following result holds:

Theorem 1.

1. Every bounded solution of problem (1) stabilizes to a constant at the exponential rate,
as ry — o0.

2. For any p(z) € HY/*(Q), Vk € R, there exists a bounded solution u(z) of (1) that
converges to the constant k, as ; — oo, iff b, > 0;

3. For any ¢(z) there exists unique constant !{¢) such that every bounded solution of
(1) converges to this constant, as x; — oo, iff b < 0;

This is a joint work with A. Piatnitski.
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Homogenization of a single phase flow through a porous medium in a thin layer
Pankratov L. (Kharkov)

Modeling of flow in fractured media is a subject of intensive research in many engineering
disciplines. A fissured medium is a structure consisting of a porous and permeable matrix
which is interlaced on a fine scale by a system of highly permeable fissures. The majority of
fluid transport will occur along flow paths through the fissure system, and the relative volume
and storage capacity of the porous matrix is much larger than that of the fissure system.
When the system of fissures is so well developed that the matrix is broken into individual
blocks or cells that are isolated from each other, there is consequently no flow directly from
cell to cell, but only an exchange of fluid between each cell and the surrounding fissure system.
The large-scale description will have to incorporate the two different flow mechanisms. For
some permeability ratios and some fissures width, the large-scale description is achieved by
introducing the so-called double porosity model.

More recently, fractured rock domains corresponding to the so-called Excavation Dam-
aged Zone (EDZ) received an increasing attention in connection with the behaviour of geo-
logical isolation of radioactive waste after the drilling of the wells or shafts. The geometry
of the nuclear waste depository leads to models stated in a porous domain having a singular
geometry. Mathematically this results in a double-porosity type problem defined in a thin
layer or plate.

We consider a single phase flow of a slightly compressible fluid in thin periodic fractured-
porous media made of a set of porous blocks with permeability of order (ed)2, where
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0 < € € § < 1; these porous blocks are surrounded by a system of connected fissures.
The model is described by a linear parabolic equation stated in a thin domain depending on
the parameter € such that the measure of the domain vanishes as ¢ — 0. The resulting ho-
mogenized problem is a dual-porosity type model that contains terms representing memory
effects.

The work is done in collaboration with Amaziane B. and Piatnitski A.

On strong pre-compactness property for sequences of entropy solutions to
first-order quasilinear equations.
Panov E. Yu. (Novgorod State University)

In a domain 2 C R™ we consider a first-order quasilinear equation
divyo(z, u) + P(z,u) =0, 1)

where u = u(z), z € Q; (z,u) = (p1(z,u),. . ., ¢nlz,u)). The functions p;(z, u), P(z, u) are
assumed to be Caratheodory functions, such that for each M >0 lnllgl [z, uw)| € LY, (D)
Ui

(]-] is the Euclidean norm in R" }, p > 2, |H|1231€1 f(z,u)| € L},.(2). We also suppose that
for each k € R the distribution divy(z, k) = ,u;, where px = pi + pf is a locally finite Borel
measure on (2, and u} = ax(z)dz, pf are respectively the regular and the singular parts of
this measure, ax(z) € L, ().

Recall that a function u = u(z) € L},.(Q) is a Kruzhkov entropy solution of (1} if
w(z,u) € L} (Q,R™), ¥(z,u) € L], () and for each k € R

divg [sign(u — k)(p(z,u) — @(z, k)] + sign(u — k)(ow(z) + (2, w)) — k] <O

in the sense of distributions on £, here |ui3| is a variation of the measure x3. Our main result
is the following
Theorem. Suppose that for a.e. £ €  and all £ € R®, £ # 0 the functions

n
u— £ @(@,u) = 3 &pi(x,u) are not constant on non-degenerate intervals, and um ()
i=1

be ‘a sequence of entropy solution of (1), such that for some nonnegative super-linear func-
tion ®(u) the sequence |o(z, tm)| + |¥(, Um)| + ®(um) is bounded in L}, (). Then the
sequence u,, is pre-compact in L}OC(Q).

For the prove we utilize the techniques of H-measures developed in {1].

The research was carried out under partial support of the Russian Foundation for Basic
Research (grant No. 06-01-00289) and DFG project 436 RUS 113/895/0-1.
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O cyeTHOI aAJUTHUBHOCTH LMJIMHIPHYECKNX CylIepMep
Hamonun H. M. (r. Mocksa)
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PaccMarpuBaoTess  IMJIMHAPUYECKHE  CynepMepsl B CyNepnpOCTPAaHCTBE  Hak
runs6epToBolt cymepanrebpoit A ¢ xoneunoit (Ham A) pa3MEPHOCTBIO HEYETHOrO
noxnpoctpascrea(cM. [1]). ITomydensn: RocTaTouHBIE YCIOBMS CHETHOM aJIUTHBHOCTH
PaccMaTPHBaeMbIX MEP B TEPMHHAX HEIPEPBIBHOCTH UX cyneprnpeobpasosanus Pypre.

JInteparypa
[1] Cmonsnos O. T. u ap. JAH CCCP, 1988 m.299 N4.

YucaenHoe pelienne npobiieMbl BAPHAMOHHOIO YCBOGHMS JAHHBIX
Habmonenuit nyst TpeXMepHOH 3aJa4d TEPMOTUIPOSUHAMUKY OKeaHa C
BKJ/IOYEHHEM HeJMHelHoH MoJeH BepTHKAILHOIO TerioobMeHa
Hapmysun E. H., Illyrses B. I. (r. Mocksa)

Hacrosmas paboTa cBs3aHa ¢ pa3paboOTKO# METOAOB peLIeHHs 33aJad BapHALMOHHOTO
yCBOEHHS JAHHBIX HaOJNIONEHUH B MOJENsiX AUHAMUKM OkeaHa. MbI moKaxkeMm, 4TO AJs
3ITOH IEeJIM MOXKHO BOCIO/Ib30BaThCs paspaborannoft B IBM PAH rnoGansnoff TpexmepHont
MOZEJNBIO THAPOTEPMO/MHAMUKN OKeaHa, BKIHOYaIouieli ypaBHeHNs [yl CKOPOCTH TeYeHud,
JaBleHns, TeMnepaTypsl u conenoctd (cM. [2]). TIpeanonaraercs, 4To mpollecc IepeHoca
TeIla MOXHO OIMCATh HA HEKOTODBIX BPEMEHHBIX MHTEPBAJIAX C IMOMOIIBIO KBA3UIIOKAIbHOM
Moze/H, 6asupyiomielic Ha HECTALMOHAPHOM YPaBHEHHH TeIJIONPOBOJHOCTH C HeJHHeHHbIM
kosddunuenTom Typbynentnoro temnoobmena (cm. [3],[4]). Mmenno gns stolt Moaenu
copMynEpoBana W TIOCTABIEHA 32/a4a BAPHAIMOHHOTO YCBOGHHS NAHHLIX HabnromeHui
[1],[5] ¢ menbio BocCTaHOBIEHHS HAYANBHOTO YCJIOBUA, pPa3pabOTaHbl AJITOPUTMbI ee
9HCJICHHOrO pelleHusi. Pa3paBoTaHHbIE AJIODUTMBI U TIPOrpaMMbi GBI 3aTeM BKIIOYCHBI
B I00GATBHYIO TPEXMEPHYIO MOAENb, ¢ KOTOPOA NPOBOJUIHCH YMCIEHHbIE 3KCIEPUMEHThI
Ha npuMepe akBaropuk Muauiickoro okeaHa. Unciennbie 9KCIEPUMEHTEI, IIPeJCTaB/IeHHbIE
3J1eCh, IIOATBEPXKAAIOT BO3MOXKHOCTh PELISHHs II0JIHOM 33441 IHAPOTePMOANHAMMKY OKEaHa
C BKJIIOYEHHEM OJHOMEPHOro GJI0Ka YCBOEHMS 10 BEPTUKAJIH.

B Iokjnaie paccMaTpHBAETCS MATEMaTH4ecKasi MOCTAHOBKA JJIS KBaSWIMHEHHON
MOJEJH BEPTHKAJIBHOrO TemiooGMeHa B OKeaHe, JaHa onepaTopsasi (OPMyJHPOBKa
3aJa4yd, NpUBEJEHbLI CBOMCTBA OMNEPAaTOPOB 38JauH M J0Ka3aHa €€ DaspelHMOCThb,
copMynTMpoBaHa 1 MCCIEA0BAHA 380848 00 YCBOCHUH JaHHEIX JJ1A KBAa3UJIOKAJIbHON MOJeNH,
NpHMBEJEH MeTOH TOC/HeOBAaTeNbHBIX NpubiamkeHnit ans pemenus 3agaqu. IIpeanoxensi
HTepal(MOHHble AJTOPHTMBbI /Il PEIIeHMsl JIMHEHHBIX MoA3adad, COPMYINPOBaHbI
PA3HOCTHbIE ANMpPOKCHMALMH 33]a4M BaPHALMOHHOro ycsoenus. Ilpeicrapiena meTouKa
PELIEHHs! IO/IHON 3a/1a4M THAPOTEPMOAMHAMUKI OKeaHa C BKJHOYeHHeM ofiHomepHoro 6ioxa
YCBOGHHS 10 BEPTHKAJIM, NPUBEIEHB! PE3Y/IbTATHl YHCIEHHBIX IKCIIEPUMEHTOB.

Pabora BrinonHeHa npyu ¢puHancoBoR noanepxkke POOU (npoekts: 06-01-00344, 06-01-
08055), Iporpammer Ne3 pynnamentanbubix ucciaeosannst OMH PAH, ®@onaa cogeficTsus
oreuecrBenHoit Hayke, UHTAC (npoekr YS-04-83-2818).
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Hepasencrso OpHcrelina B npoctpancrBax Opanuya
Hamxosa FO. C. (Taspuweckuit Haumonanpapnt Yuusepcuret, Cumeeponons)

Iyers p - Mepa Jlebera ma (0, +oc), S(0, +00) - IPOCTPAHCTBO HM3MEPUMBIX
na noayocu (0, +oc) byHknu#l, a8 KOTOpHIX nX (GYHKOUA Ppacrpeiestesus
ns(r) = p{t € (0, 00) : |f(t)| > 7} He paBHa ToxmecTBenHO GeckoneunocTH. O6o3nATHM
gepe3 f* - yObIBAIOILYIO NEPECTAHOBKY (DYHKIMH, 3 Yepe3 f** - MakcHMmasbHas QYHKIMS
Xapau-Jlurmisysa Gysxumn f.

st monoxkurensHoro cxatnss 1 @ Ly + Lo — L1 + Lo (T € PC), onpeaenum
oneparop

1 n-1"
Br(f) =sup=)_ T*f|.
n N
k=0
Tycrs ® - dynxuus Opmuda u Lg - cooTBercTByIoOLIee npocTpanctBo Opaynya. OyHKIMs
x ’
®)(z) =1z f q’—éﬁ du, noctpoennas 1o gyuxiuun Opiuya P(u), Takxke gBnsercs QyHKmeH
0

Opanya.
Teopema 1. Ecin f € Ly, Torna Brf € Lo u

I1Brflle < If* 2o

Tosopsir, uto onepatop T € PC ynosnersopsier yciosuto Opucreitna (O), ecim aas
mobott f € Ly + Loo 1 gnst Beex t > 0

o) L / \fldi < w{Brf > 1}

2t
{If1>t}

Teopema 2. Hycrs Lg - mpocrpancrso Opauda, onepatop T € PC yaosnersopsier
yenosuto (OI) m f € Ly + Lo Takas, uto  f*(00) = 0. Torza u3 toro, uro Brf € Le
cnenyer, uro f € Lg,.

On Operator Estimates in Homogenization
Pastukhova S.

Recently, in the theory of homogenization, one can observe an increased interest to
operator estimates for the difference between the resolvents of the original and the homog-
enized operators, which are referred to as L2-estimates. Diverse problems are treated, and
diverse approaches are used. Note that main books in homogenization contain nothing about
uniform resolvent convergence not mention about operator estimates.
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Consider the homogenization problem in the entire space RY,
u€ € HYRY), Auf+u’ = —diva®(2)Vu +u° = f, fe L*RY), (1)

where ¢ (z)=a(Z), £>0 is a small parameter, a(y) is a measurable symmetric periodic matrix
with a periodicity cell Y=[0,1)¢, {:) = [, -dy denotes a mean value over Y. Usual condition
of ellipticity and boundedness is fulfilled: A2 < a(y)é - € < A™1€2 V€ € RY,A>0. We have
the homogenized equation

ue H'RY), Aputu= —divd®Vu+u=f,

in which a° is a constant elliptic matrix, such that a%e;=(a(y)(e;+V,N?(y))),j=1,....d,
€1, ..., €q is a canonical basis in R,

N’ € Hp,(Y), diva(y)(e;+VN?)=0, (N;)=0, j=I,...d.

The solution u plays the role of zero approximation. The simplest result of homoge-
nization consists in convergence u¢ — u in L2(R9) Vf € L2(R9), which means the strong
resolvent convergence (A.+1)~! — (Ao+1)~!. We aim at uniform resolvent convergence
with the folowing estimate

[(Ae+1)" =(Ao+1) | L2—p2 < Co,

where the constant C depends only on the dimension d and the ellipticity constant . This
result can be proved by "method of first approximation"[4-9].

It is customary to regard the function v®(z)=u(z)+eN(Z) - Vu(z), N=(N',..., N%),
as the first approximation to the solution u® and the summand eN(%) - Vu(z) as
the corrector. Introduce also shifted approximation v¢(w,z)=u(z)+eN(£4+w) - Vu(z),
w€eY, and approximation with smoothed corrector 9¢(z)=u(z)+eN (%) - V(v)*(z), where
(v)*(x)= [, u(z+ew)dw is the Steklov smoothing of the solution u(z). We are going to dis-
cuss the estimates

|u —ullp2ray<CellflL2may,  Ju' =0 |1 (may<Cel| fllLacray, (2)

Hu‘( + Ew)—'vs(w,IE)”?.11(Rd)dWSC€2”f”in(R¢),

y 3
lus—2¢|| g1 (reay <Cel fllL2(ma), C=const(d, A).

At first glance it is quite unevident that v*€H 1(R9) under given suppositions. On contrary
we can readiely show that v¢(w,z)€L%(Y, HY(RY)), #(x)eH'(RY). Take note of addi-
tional parameter of integration in the last relations. It presents obviously in the first one
and implicitly in the second one. This shiftig parameter enables us to prove firstly inequality
(3); and then derive as conseqences L?- and H'-estimates (2), by properties of the Steklov
smoothing. Thus we obtain
Theorem. For the solution of scalar equation (1) estimates (2) are valid.
The same or similar result is true for different homogenization problems: elasticity system,
equations in perforated domain or non-uniformly elliptic with degenerate weight, locally pe-
riodic and reiterated homogenization, non-linear and parabolic equations. Often we lack the
property v*€H'(R9) and can prove only L-estimate (2); and H'-estimate (3);. Operator
estimates are not obtained for equations with almost periodic coefficients. In this case even
uniform convergence of resolvents is open problem.
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ITpunuun Cen-BenaHa m ABHO pellaeMasi MoeJlb TOHKON MUIMTHI IPM TOYEYHOM
HanpsKeHUH HA TPaHuie

Iasmos B.C.

ACHUMNTOTHKA IUIOTHOCTH CMIEKTPAJILHON Mephbl CHHIYJSIDHOrO ornepaTopa
IIIrypma—Jinysunns
Ilewennos A.C. , Ilonos A.FO. (MI'Y um. M.B. Jlomonocosa)

B npocrpancrse  L[0,+00)  pacemorpuM  omepatop  Lg o,  3amaBaemblit
muddepenmuambabM BoipaxkenneM y(z) = ~y"(z) + ¢(z)y(z), ¢ € (C[0,+0) — R) u
rpaunyeiM yeaoBueM y(0) cos a + y'(0) sina = 0, a € R. Ilpeanosnaraercst, Y10 MOTEHUAAT
¢ YAOBJIETBOPSET CAEAYIOLMM YCAOBHAM:

g € C[0,+00) N C?(0, +00), liT g(z) = —oo0 u npu HEKOTOPOM Zg > 0
T—+00

+00 400
J1@PI@ + @l s <00, [ lat@)Mde =0 1)

VYenosust (1) rapaHTHPYIOT HENPEPBHIBHOCTH CHeKTpa omeparopa L, o (npu mobom a) u
HENPEPLIBHOCTH Ha R IJIOTHOCTH €ro crieKTpasibHO Mepbl.

B npearoioKeHuy onpeesieHHON PeryisipHOCTH CTpeMileHus () XK —00 Ipu T — +00
Halilena acUMITOTUKa p} (A) mpu A — —oo:

z(g,A)

PgalA) VI exp(—2 / \/q(t)——)\dt).
0

- m(y/| A sina + cosa + o(1))?

CaeacrBue. Ecu g(z) = —bzP, 0 < p <2, b >0, T0

)~ (-2(3. )R

7/ sin? o Tpo\2'p) bife

@exp(~zB(3 1)|/\|0'5+1/”)7 @

p bi/e A= oo,

), A— —o0, sina #0,

P;,o()‘) ~ 2 5
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rge B — Gera-dynkuusa Ditnepa.

O paspenmmMocTu 3anauu Jupuxie Ha cTpaTudNIUPOBAHHOM MHOXKECTBE
Ienxnn O. M. (r. Bearopon)

st anasora onepaTopa Jlansiaca Ha crpaTndunupoBanroM Muoxectse 2 = (y U 08
cTaBATCH 3ada4a Jupuxile 1 ofCy:KAaeTcs ee paspemuMocTs. s caaboil ee pa3spenmMocT
TpebyeTcs, 4ToObl CcTpaTH(PUIMPOBAHHOE MHOXKECTBO O0MaaJI0 CIIeHyIonHM coiicrBoMm W-
cBsznocTd. Hyxno, urobnl nas Kaxaoro crpara ox; C §)y Hauutach Takas CBsI3Hast
IEeNOYKa CTPATOB, COEAMHHAIONIAs Ok; C HEKOTOPHIM TPAHNYHBIM CTPATOM Om; C g, 4TO
Pa3MepHOCTH JIo6oI Napbl COCEAHNX CTPATOB ITON LEMNOYKA OTIMYANUCh Ha e unuuy. Tpn
3THX YCJOBHSAX UMEET MECTO

Teopema Ecan napa (€ 8Q) W-cBsizna, 1o anst Gyskumit u3 C3(Q) npu sekoropoit
xoncradTe C BhINOJIHsIETCs: HepaBeHCTBO [lyankape

/u2 du < C/(Vu)2 dy,
Q Qo

rfe 4 cnenMajbHas "cTpaTnduuupoBanHas”mepa Ha (.

U3 osToro yTBepXKIEHHMst TOJydYaeTCsl aHalor HepaBeHCTBa [lyankape anis cJabo
muddepednupyemsix  GYHKUMA W Jajee OJyd9aeTcs  ynoMsiHyTas Bblme ciabas
Pa3pemuMocTh 3agaun Jupuxiie.

Bropasi yacTb JOKJaJa IOCBSAIIEHA KIACCHYECKON pa3pemuMOcTH 3a1add Jupuxie.
Tlpn cnenuanpHOM TreoMerpHYecKOM MpPeAROJOKeHHH (S-CBA3HOCTb)  OKa3bIBAETCs
BO3MOXKHBIM II€PEHECTH Ha Ciydal CTpaTudHUUPOBAHHOIO MHOXKECTBA U3BECTHBINI METOo]
cybrapMonudeckux dyuxiu#t [Iyankape-Tleppona.

Pafora Boinonueda npu noanepxke POOU, rpanrt 07-01-00299.

HHTerpapyeMele CHCTEMBI M TONOJOTUs N30CHEKTPAJILHBIX MHOrooGpasnit.
enckoit A. B. (r. Mocksa)

PaccMoTpuM cHMILIEKTHYecKoe MHOroobpasme (X2",w) M MHTErpupyeMmylo CHCTEMY ¢
raMuIsTOHHAaHOM H ¥ MHBOMIOTHBHBIMEH uHTerpanamu Fy = H, F,, ..., F,. Ilycts
Xr = {p € X|F\(p) = c1y...,Fa(p) = ¢n} C X nmoaMuoroobpasme ypoBHsi HHTEIPaJIOB.
Xopowo usBecTHast TeopeMa JIHyBHIIA-ApHOAbIA yTBEPXKIAET, YTO ecan Xf KOMIIAKTHO
H CBA3HO, TO 3TO TOp. TeM He MeHee, OKA3BIBAETCH, UTO B HEKOTOPBLIX BAXKHBLIX NPHMEPaX
uHTerpUpyeMsix cucreM X p KOMIIAKTHO, HO €TI0 TOTOJIOr#sl BEChbMA CI0XKHA. ITO NPOUCXOANT
O MPHYKHE TOTO, YTO B ITUX NpuMepax X COAEPIKHT TOYKH, B KOTOPHIX HIIH FaMHJIBTOHHAH
H cuHrynsipeH, Win CHMIUIEKTHYeCKas (OpMa w CHHIYISAPHAs WIM BbIPOXKJEHA, MOITOMY
Teopema JInysunna-Apuosnsaa He mpumenuma. Ecim ypasHenwe MoxkeT ObITh 3anmcaHo
B nakcopo#t ¢opme [ = [L, A}, To coorBercTBYIOmMA TOTOK ONpeJeseH Ha BCEM
noaMuoroobpazun X p, KOTOpOe SIBISETCH M30CHEKTPAIbHEIM MHOrooGpasmueM OepaTopoB
L, u Moxer ObITb yCHemlHO MCIONBL30BAH st u3ydemus romosormn Xp. IIpmmepom
MOXeT CTy>XHTb uaydenne Tomen u @puaoM TONOJOTHH H30CHEKTPATILHOIO MHOrooGpasus
sIKOOMEBHIX MaTpvy, ¢ noMompio uenodku Toapl. Hosbie pesynbraTsi xacaioTcst H3y4deHHs
TOMOJIOTMM M30CTEKTPAJBHOro MHoroobpasms My skobuesbix k X k-MaTpum ¢ HyneBoi
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JAHArOHAJIBIO ¢ MOMOLIBIO cucTeMbl Bosbreppa ¢; = %ci(c? .1 — ¢2_;). B gactrocTH, BepHa
crnenyomast Teopema [1]:
Teopema 1. a) DitrepoBa xapakrepucTuka Moy, paBHa

B,
M. = 92A+2(ol+2 _ Dit2
X(May41) ( )l T

rae Bjio umcno Bepuynmm. b) 3SkcnoHeHunanbHas mnpousBoiamas GYHKIEA paBHa
]
~ th?(22), To ectb — th?(2z) = Yo X(Mary1) 3.
JInteparypa
[1] Penskoi A. V. The Volterra system and topology of the isospectral variety of zero-
diagonal Jacobi matrices. Preprint math-ph/0701061.

The model of numerical hydrodynamic-statistical forecast of summer storm
wind and heavy rainfalls over the territory of European part of Russia and
Siberia
Perekhodtseva E. V. (Hydrometeorological Center of Russia)

Development of successful methods of forecast of storm summer winds, including squalls
and tornadoes, and heavy rainfalls that often result in human and material losses, could allow
one to take proper measures against destruction of buildings and to protect people. Well-in-
advance successful forecast (from 12h to 36h) makes possible to reduce the losses. Prediction
of these phenomena involved is a very difficult problem for synoptic till now day. The existing
graphic and calculation methods still depend on subjective decision of an operator. At the
present time in Russia there is not successful numerical forecast of the maximal speed of
wind and squalls and heavy rainfalls with quantity Q more then 15mm/12h, hence the main
tools of objective forecast are statistical methods using the dependence of the phenomena
involved on a number of atmospheric parameters (predictors). So ten years ago for the
European part of Russia was developed our numerical hydrodynamic-statistical operative
methods of forecast of these phenomena. Three yeas ago this methods were adapted for the
territory of Siberia. Statistical decisive rule of the alternative and probability forecast of
these events was obtained using the data of objective analysis. For this purpose the teaching
samples of present and absent of storm wind and heavy rainfalls were automatically arranged
that include the values of forty physically substantiated potential predictors - vector X.
Then the empirical statistical method for every phenomenon was used the diagonalization
of the mean correlation matrix R of the predictors and extraction of diagonal blocks of
strongly correlated predictors . Thus for every phenomenon the most informative predictors
were selected without loosing information, those predictors being either a representative of
each block or an independent informative predictors. The statistical decisive rules F(X) for
diagnosis and prognosis of the phenomena involved were calculated for the most informative
vector-predictor that includes the most informative and slightly dependent predictors (we
used the criterion of distance of Mahalanobis and criterion of minimum of entropy by Vapnik-
Chervonenkis ). Successful development of hydrodynamic models for short-term forecast and
improvement of 36h forecasts of pressure, temperature and others parameters allowed us
to use the prognostic fields of those models for calculation of the prognostic discriminant
functions and the values of probabilities of forecast of dangerous wind and heavy rainfalls.
The first operative baroclinic hydrodynamic model at Hydrometcenter of Russia was the
hemispherical model in difference equations by Dr. Bercovich L.V. For the forecast of the
phenomenon of the storm wind of two classes and the rainfalls of two classes involved with
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the given advance period 12, 24, 36 hours the values of the discriminant functions and
the probabilities of these phenomena were calculated using the prognostic values of this
model in the nodes of the rectangular mesh 150x150 km over the territory of European
part of Russia during ten years and over the territory of Siberia - during lasts three years.
Every summer the Communication Center of Hydrometcenter have sent the forecasts to
12, 24, 36 h ahead of the storm wind and of the heavy and catastrophic rainfalls to the
regional departments of European part of Russia. These forecasts was recommended as
successful automated forecasts (Pirsy - Obukhov criterion T=0,47-0,75) We carried out the
verification of these numerical hydrodynamic-statistical methods for the territory of Siberia.
These methods turned out successful enough too. The prediction even in advance 36h of the
summer storm wind (with velocity more than 24m/s) was sufficiently exact over the south of
the Krasnoyarskiy areal on 18.06.05, over Novosibirsk on 24.06.05, (V=37m/s) over Altay on
24.06.05 too, in Turukhansk on 4.07.05, over the South of Teimyr peninsula on 20.07.05. The
value of estimate of the warning is 86%. The error of “false alarm” is not very high, and so
the value of Pirsy-Obukhov criterion was T=0,78. Unfortunately there were not very many
stations at the territory of Siberia and numerical hydrodynamic forecast of storm wind and
heavy rainfalls was not successful, but this new numerical hydrodynamic-statistical method
was successfully, objective and automated. The forecast of summer storm wind of two classes
and heavy precipitation of two classes calculated every day two times per day for day and
for night to 12, 24, 36h advance. These methods were included into operative system ASSOI
of Hydrometeorological Center of Russia. The values of estimate of forecast of rainfalls with
quantity of precipitation Q more than 49mm/12h are successful enough too (Pirsy-Obukhov
criterion T=0,69). We submitted some examples at our report. The numerical middle-term
statistical forecast of these dangerous phenomena are we going on the production of the
hemilagrangian hydrodynamic model (Dr. Tolstykh M.A.).

OGoO61IeHHBII IPUHUMIT CXKUMAIOIAX OTOGPaArKeHU B TEOPUHU HeJMHEeHHbIX
Kosebauuit
ITepos A. H. (r. Boporex)

O606mmeHHOe MeTPHUYECKOe IPOCTPEAHCTBO — 3TO IPOCTPAHCTBO, B KOTOPOM DACCTOSIHUS
MEXJy TOYKAMH H3MEpPSIOTCH He C MOMOIIBI0 HEOTPHIATENbHBIX YHCEN, & C NOMOMILIO
BEKTOPOB (KOHEYHON DPa3sMepHOCTH) ¢ HEeOTPUUATENbHBIMM KOMIIOHEHTAMH, 8 B KadecTBe
KOHCTAHT CXKAaTHsl BHICTYNIAIOT HE HEOTPUIATEIbHbIE YHC/Ia, MeHbLIHE WY DaBHbIe eAUHHULEI,
a KBaJpaTHbIE MATPHIbI C HEOTPULATENbHBIMY 3JIEMEHTAMM, CIIEKTPAJIbHBIH PAINyC KOTOPBIX
MeHbIIe WX paBeH eauHuubl (a-MaTpuusl u b-Marpuusi). Ussecren kpurepuit Mengepa-
Korensincxoro, coriacHO KOTOPOMY CIEKTPaJibHbIH PajuyC HeOTpHLATETbHON MaTpHim!
MeHbllle eUHHIILI TOLAa H TOJBLKO TOTIA, KOTAa MOJOKUTEIbHEI [10C/Ie0BATEIbHEIE TIaBHbIE
MHHOpH MaTpuubl I — @, rne I — ecTb euHH4YHAs MATpHUA.

C nomompio OGOOIIEHHOO MNpUHUMNE CXKHMAKOMMX orobpakeHult, a TakxXe
¢ nomompto npuHnunos [Ilaynepa u TuxoHOBa nNOMyYeHBl pa3jIMyHbIE IIPU3HAKH
CyIIecTBOBaHUA (M €IMHCTBEHHOCTH) MEDHOAMYECKHX M OrPaHMYEHHBIX peIleHui Kax
)18 HeJIMHENHBIX OOBIKHOBEHHBIX JH(MGEPEHIHaNbHEIX YPaBHeHU ], TaK H JJ19 HeJMHEeHHEIX
auddbepeHuuansHO-Pa3HOCTHEIX  YPaBHEHUIt M ypaBHEHUM TeOpMM aBTOMATHMYECKOTO
peryaupoBanusi. Ilpyn monyyeHHMH 4YaCTOTHBIX IPHHIMIOB CYIECTBOBAHUS OrPDAHMYEHHBIX
pelllenuit BaXXKHYIO PONb UrpaloT HenasHue peaynbrarsl A.I. Backaxopa.

B HekoTOpHIX ciydasX yKa3aHHble BhINE TPU3HAKH TaKOBbl, YTO €CIM MAaTpHla
AMHENHON YACTH CHCTEMBI TYPBHIIEBA, TO MOy JAIOLIEECs OrPAHHYeHHOe pellenne abcomoTHO
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YCTOWYMBO — B CHJTY IPUHLIMIIA OTCYTCTBAA OIPaHHYEHHBIX pellleHnit B mpobyieme abconoTHOM
yeroitunsoctu M.A. Kpachocensckoro i A.B. Tlokposckoro.

On the first boundary value problem for parabolic systems in nonsmooth
cylindrical domains
Pham Trieu Duong (Faculty of Mathematics, Hanoi National University of Education)

This talk is devoted to the study of a class of evolutional systems in nonsmooth domain.
More concretely, we deal with the next problem

(-1)m-1 i Daye(z, t)DPu — uy = f(z,t) in Oy (1)
Ipl,lq}=0

with the Dirichlet boundary condition

&u .
W:O,]=O,...,m—1onfoo, (2)
and the initial condition
u(z,0) =0,z € Q ®3)

where 2 is a domain of conical type, e = Q x (0,00) and T = 8Q. We will obtain
the asymptotic expansion of generalized solution for (1)—(3) from weighted sobolev spaces
H™O(e=7 () near conical points. Here H™%(e", Qoo) = {u(z, t) : € "u € H™(Qe0)}.
We use the ellipticized method to bring our problem to well-known results of Kondratiev,
Mazya, Plamenievsky, Kozlov in stationary case. Some applications for simplest equations
in mathematical phisics are considered also to compare with elliptic results.
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[2] Nguyen Manh Hung, Pham Trieu Duong,On the smoothness of generalized solution
for parabolic system in domains with conical point on boundary. UMJ, V.56 (2004), N.6, pp.
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[3] Nguyen Manh Hung, Pham Trieu Duong, On the asymptotic behavior of generalized
solution of parabolic systems in neighborhood of conical point. Acta Mathematica Vietnamica,
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Homogenization of random operators with lower order terms
Piatnitski A. L. (Moscow, Russia and Narvik, Norway)

Our goal is to study the limit, as ¢ — 0, of a solution to linear parabolic PDE of the

form ot 10 out\ 1
u€ . { z
— N R —_— st 3 > .
ot 20z (a(zs) 0x>+ﬁc(5)u(t’x)' t20,zeR; (1)
u(0,z) = g(z), z€R,
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where a(-) and ¢(-) are stationary random fields,

In contrast with symmetric divergence form parabolic problems, in the presence of the
lower order terms the asymptotic behaviour of operators with random coefficients might
differ a lot from that of periodic operators. In the case of a random oscillating potential, the
range of the oscillations (the power of ¢~ in front of the potential c) should depend on the
spatial dimension. In particular, for operator with one-dimensional spatial variable we show
that the range of oscillation should be of order 71; This means that for larger powers of %
the family of solutions is not tight as ¢ — 0, while for smaller powers of % the contribution
of the potential is asymptotically negligible.

We show that under proper mixing conditions the solution u® of the equation (1) con-
verges in law to a random field

u(z,t) = E(g(z + VaB;) exp (E/R L}‘"’W(dy))),

where B. and W. are independent Brownian motions, E and LY are respectively the expec-
tation and the local time related to B., and @, € are constants.

Density and genericity of various shadowing properties
Pilyugin S. Yu. (St. Petersburg State University, Russia)

Let f be a homeomorphism (or a diffeomorphism) of a metric space (smooth closed
manifold) (M,dist). Denote by O(p, f) the trajectory of a point p in the dynamical system
generated by f.

A sequence & = {zi : k € Z} is called a d-pseudotrajectory if

dist(:ck.‘_l, f(xk)) < d, keZ.

We say that f has the shadowing property (orbital shadowing property or weak shadow-
ing property) if, for any € > 0, there exists a d > 0 such that, for any ¢ > d-pseudotrajectory
£, we can find a point p such that

dist(zx, f*(p)) <¢, k€Z 9
(respectively, "
diStH (Ev O(py f)) <¢

where disty is the Hausdorff distance, and

£ C N(e,0(p. ),

where N(a, A) is the a-neighborhood of a set A).

One can treat these properties as weak variants of stability of the structure of trajectories
of a dynamical system under small discontinuous perturbations. In this talk, we discuss some
known results and open problems concerning density and genericity of these properties with
respect to C° and C?! topologies.
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O GunnmMapaHOM paccessHMM B JBYMEpPHBIX 06jacTax
ITnaxos A. IO. (University of Aveiro, Portugal)

Paccematpusaercs 6uumaps 8 R?\ B, rae B C R? — orpasunyennoe cBI3HOE MHOMKECTBO C
KyCOYHO-IJ1anKol rpanuieli. PaccMmaTrpusalores 6uiuinapatble YacTHIB, KOTOPhIE ABIKYTCS
cBoBOJHO, 3aTeM COBEPIUAIOT OAHO WJIH HECKOJbKO OTpaXkeHu#t or OB, M HaKOHel| CHOBA
JABIKYTCA cBOGOLHO. OUKCHPYIOTC v U vT — HaYaIbHAS M KOHEYHAS CKOPOCTH YACTHLIBI,
a TaKXe 1 — BHEWHsA HOpMaJb K J(convB) B TOYKe NEPBOCO MEPeceYeHUs TPAeKTOPHM
gactuup! ¢ d(convB). Bee Tpu BekTopa — v, vt M n — eaunmunele. OnpenensieTca Mepa
vpg Ha T3 = §1 x S1 x S; s1s1 moBoro A € T, vp(A) xapakTepusyeT UMCIO YacTHL, LIa
kortoprix (v,v+,n) € A.

JanuM Tounoe onpenenenue Mepbl vg. O6o3HauuM £, v TOUKY, B KOTOPOH YacTHLa
BepBble Inepecekaer O(convB), W ee CKOpOCTb B ITOH TOYKe, a TakxKe OBGO3HAYHM
& =&5(v,8), vt = v}(v,€) Touxy, B KOTOpOH OHa BTOpOH (M mOCTENHUH) a3 NEpecexaeT
O(convB), u ee cxopoctb B srol Touke. (Touxu € u €+ moryT cosmagats.) OTo6pasxeHue
(v,8) = (v, £) orobpaxkaer HekoTOpoe mosaMHOXKECTBO MHOXecTBa S! X d(convB) Ha
Jipyroe ero TOAMHOXecTBO M coxpaHnsger mepy du(v,§) = |(v,n¢)|dvde, tme (,-) —
CKaJIfipHOe TIPOM3BENEHHe, Ny — BHEIHsIt HopMaib K O(convB) B Touke &, a dv u df —
JeGerosbl sunefinpic Mepst Ha S! u G(convB), coorpercTBenno. Kpome Toro, 3To orobpa-
JKEHHE eCTeCTBeHHbIM 06pa3oM uHAyNUpyeT Mepy vp Ha T3: mo onpegenenmo, anst 0Goro
Gopestenckoro muoxectsa A € T, vp(A4) := p ({(v,€) : (v, vE(v,), ne) € A}).

O6o3HAYUM Ty,n, Ty, n Hpoexunn (v,v*,n) — (v,n), (v,v,n) — (vF,n) n oboznauum
g orobpaxenne (v,vt,n) +— (—vy,—v,n). Jns moBOro BBIMYKJIOTO OrPAHMYEHHOrO
meoxecTBa K C R? ¢ HemycTo#f BHYTPEHHOCTHIO OGOSHAMMM Ok IOBEPXHOCTHYIO Mepy K
u oBo3saunM Mg MHOXKecTBO Mep v Ha T Takux, uro

(i) maprusanbHbe Mephl TF, v, Wﬁmu.nme:or CeAyOIMA BUI:
dr¥,v(v,n) = (v,n).. dvdok(n), dr‘ﬁ’"u(v*‘,n) = (v*,n); dvtdok(n),

rae 24 M 2_ 06O3HAYAIOT MOJOXKHUTENbHYIO M OTDHUATENBHYIO 4YacTH 4YHCIa 2,
COOTBETCTBEHHO;

(i) 7¥v = v, To ecrb Mepa U WHBADMAHTHA OTHOCHTENBHO NpPeOBPA3OBARMS
(v,vF,n) = (—v4,—v,n).
Teopema. (&) vp € Mconvs.
(b) Mwoorcecmeao mep {vg : convB = K} ecrody naommno 6 My.
B nokiane pasbsacHAETCs HIes JOKA3aTENIbCTBA TEOPEMB M IPUBOJATCS IPHMEDHL ee
TpUMEHEHHs B 331a4aX OITHMAJILHOTO a3POAUHAMUYECKOTO CONPOTHBIIEHHS.

O cneKkTpaJbHBIX CBONHCTBaX 3JLJIMNTUYECKUX 33434 B objacTax ¢
IWIMHAPUYECKMMH BEIXOZaMU Ha GEeCKOHEYHOCTh
ITnamenescknit B. A. (r. Canxr-Ilerep6ypr)

Iycre G - o06nacTs €BKAUAOBS IIPOCTPAHCTBA, COBNAJAIONIAS BHE GOJBIIOrO
mapa ¢ obbeIHHEHHEM KOHEYHOTO YHC/IA HEMEPeceKAIOMUXCs NONyNUIMHADOB. ['paHuIa
obsactn npeanojaraercst I‘JI&,I(KOﬁ. P&CCM&TpHBaeTCﬂ 061uaa JJTUNITHYECKas1 KpaeBasi
3alada, CaMOCOIpSIXKeHHas OTHOCMTEIbHO (popMyst ['puna. Koaddumments: (MemneHHo)
c*ra61mn3upyrorcst Ha GECKOHEeYHOCTH B TOM CMBICJIE, YTO Ha (t)yHKH,l/IﬂX C HOCHUTEJIAMH B
OKPECTHOCTH GeCKOHEYHOCTH B KakKOM-HUOYIb M3 yHOMSHYTHIX MOJIYIHIMHIDPOB OEPATOp
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HCXOZHON KpaeBoff 3asauM GNM30K K ONEpaTopy HEKOTOPodl ‘“mpelenpHON” 3a7a4yH B
coorBercTByONeM nuaunape. KosdguumeHTs! npeaenbHON 3394 HE 3aBHCAT OT OCEBOI
nepeMeHHOR.

Bajaua B obmactu G CONEPXKHT CHeKTpasibHblii napaMerp. Mpel paccMaTpuBaeM
COBCTBEHHBIE 3HAYEHMs, Ka)IOMY M3 KOTOPHIX OTBeYaeT x0T Obl ofgHa coGCTBEHHAs
byHKUMSA, SKCIOHEHIHMAJLHO 3aTyXalollash Ha OECKOHEYHOCTH; TaKOMY COGCTBEHHOMY
3HAYEHMIO MOXKET COOTBETCTBOBATD ellle H Apyras cobcrBentas yHxmus, He obianaomas
YKa3aHHBIM CBOACTBOM. JOKa3bIBAETCS, YTO STH COOCTBEHHbIE 3HAYEHHs CTYIIAIOTCS pPasBe
JMIb y “TIOporoBeIx” 3HaYeHuil CIIEKTPaJIbHOIO apaMerpa u Ha GeckoneunoctH. Touewnstit
criexTp BOIM3M CTYIIEHUH ONUCHIBAETCS B TEPMMHAX COBCTBEHHBIX (QYHKIHMH HENPEPHIBHOIO
criekTpa ¥ (pacnMpeHHBIX) MaTPHIL PaccesHus.

KpasusHeprernueckasn dbyunxius ans auddeomopdusmos Mopca-Cumeiina Ha
3-muorooGpasusax
Iounnxa O. B. (r. Huxuuit Hosropon)

B paboTe BBOAMTCs HOHATHe KBa3usHeprerTudeckol byskimn pisa auddeomopdusmon
Mopca-Cwmeftia, To ectb dbyHKimu JIanyHoBa, HMelomeli MUHIMaJIbHOE YUCI0 KPUTUIECKUX
touek. Crpomrcs KBa3wsneprermdeckas ¢ymxuus s audbeomopdmusma cdepst S3,
HeB1y K 1ai0lee MHOKECTBO KOTOPbIX COCTOUT M3 YeTHIPEX HEMOJBIIKHBIX THIEPOOINIEcKUX
TOYeK: OXHOIO MCTOYHHKA, OJHOTO CeAjla ¥ JBYX CTOKOB. YCTAHaBJMBAETCS B3AHMOCBHA3b
MeXIy YHCTOM KPHTHYECKMX TOYEK KBasudHepreTwdeckoit GYHKUMM H TONOJOTHEH
BJOKEHHS] CEelapaTpHC CeloBo# ToukH B S°. B 4acTHOCTH, yCTAHABJMBAETCH, 4TO
aunddbeomopdu3M U3 PACCMATPUBAEMOrO KJIacCa MMeeT SHEPreTHIecKyio dyskuuo Torma
U TOJILKO TOLIA, KOTJa CeNapaTpHChl BJIOXKEeHbl TPUBHAJILHO.
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O crnaxusaomieM audHepeHIMpoBaHBK B HEKOTOPBIX YNPYTHX 3aJavax
Ioxopasiit 0. B., Baxtuna XK. H. (r. Boporex)

3agaua 0 COGCTBEHHBIX HYACTOTAX KOJNeDAHMA JBYX3BEHHOH IAPHHPHO-COYJICHEHHOH
LIEMOYKH CTEPXKHEN onpeaenseTcs ypaBHCHUEM:

(pu"Y' = AM'u(0 < z < £,z # £), 1

rae M (z)-MonoToHHas GyHKUWs, ompejensioulas pacnpenenexus macc. Ilpeamonoxuw,
4ro B TOUKe ¢ CMBIKAHMS CTEpYKHeli HET COCPENOTOUEHHbIX Mace, T.e. M(z) HenpepbiBHA.
TlpesmonaraeTcs, 9YTO KOHUBI LemoukM Kak JmGo 3akpennentr. [Ipexmonmoxenwe o
HeNpEpHIBHOM COWJIeHEHHH, T.e. O HempephblBHOCTH pemennutt u(z) ypasuenus (1), osnauaer
ycioBue

u(€ — 0) = u(£ +0).
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DuznuecknMu coobpaskeHUAMH 06bIYHO 0BbACHAIOTCS YCJIOBUS IIAPHADA B TO4Ke §
" "
W(E-0)=u"({+0)=

OKa3bIBaeTcsi, 1 TpeThd Npou3BoaHas pynkuun u(z), obosnavalomeli gedopMaIMIo HA
[0,£] uenouku, T.e. pemenne ypashenns (1), JokHa GhHITh HempepbiBHa B TOUKe T = §.
DTa cTpaHHAS MIAJKOCTb BTOPOM M TpPEThell NPOM3BOAHBIX u(Z), HECMOTPS Ha 3aBeJOMb
pa3peiB u/(Z) B TON TOUKE, CTABAT BOMNPOC O TIPHPOJE TAKOTO CTPAHHOTO “3arjakusaHus’
0COGEHHOCTH pellleHus B TouKe T = &.

Otper cnenywouuit. YpasHenue (1) MOXHO CYMTaTh YC/IOBMEM MHHHMYMa
NOTEHIMANBHOR 3Heprum HcxomHo# uenoukn. M Torza oHO OKasbIBaeTCA C/EICTBHEM
aHaJIora HHTerpo-uddepeHIHaIbHOro ypapHenns Jitnepa

(pu")(z) = A ] ( ] udM) dr.
£ 0

Jlns ypaBHeHRI OC/EQHErO THNA PA3BHTA KaueCTBEHHAS TEODHs, BIIOJIHE aHAJIOTHYHASN
KaueCTBEHHON Teopur OOLIKHOBEHHBIX JH(bdepeHIMalbHbIX yPaBHEHHH 4YeTBEpTOro
NOPAIKa, OOBACHAIOIIAs OCUINJIIANNOHHEIE CIIEKTPAIbHLIE CBOACTBA.

KBasukjaccuyeckoe npubimxeHue JJIsi HECAMOCONPSDKEHHOMN 3agaun
IItypma-JInysnnns ¢ norennmanom g(z) = z* — a?2?
Iokotnao B. K. (MTY nm. M. B. JloMorocoBa, MexaHuKo-MaTeMaTHdeck#it cakyisrer)?

Hayuaercst ceMelcTBo AucdbepeHIHaIbHEIX ONepaToOpoB
L(e)y = iey” + (z* — a?z?)y, €>0,

neficrsyromee B mpocrpancTse Lo(R), roe € Manniit mapamerp. Tak kek ¢(z) — oo npu
2 — £00, TO CIEKTp ITOTO ONEpaTopa AUCKpeTeH npu joboM € > 0. Hamra 3agava - onucathb
XapaxTep NMoBeJleHNs! ciekTpa npu € — 0. MoxHo noKasaTs, 4T0 npH g(z) = x4, To ecTn U
a = 0, npe/eIbHEBIM MHOXKECTBOM fABJIseTcs JIyd e~ 3 ¢, ¢ € Ry. JloxasaHo, 4To npeAenbHbli
CIEKTP paccMaTpHBaeMolt 38/1a4H NOMydaeTcs MaciTabupoBanneM ¢ kosdduuuenTom a u3
peieSIbHOr0 MHOKECTBa, COOTBETCTBYIOMIErO @ = 1, TIO3TOMY BCE PE€3YJILTATH MOJY4EeHBl
ams storo ciyuas. Ilyers (em. [4]) 2Fi(p,g;r;2) - runepreomerpuyeckas yHKIUs,
onpeaensieMast PAIOM

®)x(g)xz* pgz | p(p+1)g(g+1)2*
Z e P ) R

B HameM ciydae p, ¢, T - BelleCTBEHHbIE KOHCTAHTHI, & 2z - aHAJIMTHYecKas yHKUuS,
38BHCSIIAS OT CHEKTPAJbHOro napaMerpa A. KpHTHdeckue KpHBBHIE, BJOIb KOTOPBIX
KOHIEHTPUPYETCS CIEKTDP paccMaTpHBaeMofl 3ajadd, HalleHn! B BHAE yPaBHEHHH Ha
runepreoMerpuaeckyio dyuknmo. Iycrs 21(A) = —M'—?JQT—H—% u 22(A) = —)‘—‘3@2,
pacCMOTPUM KPHBBIE

i A2Fi(=1, 32,1 (0)

Vi

“Pabora nopaepxana POOU, rpant Ne07-01-00283, i dormoM noaepKKu BEAYIMX HAYHHBIX
wkou, rpaat HIII-5247.2006.1.

= {A Re(e? ) =0}
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@ AeFi(-1,1:2 22(/\))) 0}
Vi+VA+1

2P~ 5 52(0) 2Fi(—1,3:2,5(N)
Vi-VA+1 Vi+VA+1

Cdopmynnpyem OCHOBHO pe3yJIbTaT.

Teopema. IIpemensheif crnekTpaasHb#i rpad  paccMaTpUBaeMoro cemeficTsa
onepaTopoB siBaserc OOBLEAMHEHHEM 4YacTH KPHBOH Y2, coefuusiomelt 0 c Touxoft
Ao = —0.5—10.44503..., vacTu KpHBOii v3, coeauusiomedi —1 ¢ A9, ¥ KpHBOH 71, BRIXOZSIIIIEH!
U3 Ag U CTpeMsimeitcss K aCHMITOTE MapaJljiebHON Tydy et te R4+.

PaGora seInosnseHa nog pyxkosoacrsom npod. A.A.Illkannxosa.
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Y2 = {Al Re(

73 = {A| Re(e'F X\( )) =0}

Local approximations by solutions of second order elliptic equations and
removable singularities
Pokrovskii A.V. (Institute of Mathematics of the National Academy of Sciences of
Ukraine)

Let
Lf= Z 8.0 (@0, + Y (bu@)) +Zq )oif +d(2)f
i,j=1 i=1
be a uniformly elliptic operator in divergent form with bounded and measurable real coeffi-
cients a;(z) = aji(z), bi(z), ci(z), d(z) in a bounded domain G C R" (n > 2, §; := 8/0x;,
i,j = I,n). Assume that the inequality [,(d¢ — 37, bid;i¢)dz < 0 holds for any non-
negative function ¢ € C§°(G). For a ball B(a: r) = {y eER*":|jz—y| <r} € G and
u € WH2(B(z,r)) denote by ur -~ the solution to the Dirichlet problem Lf =0 in B(z,7),
u— f € Wo*(B(z,7)).-

Let h(t) be a continious positive nondecreasing function such that for some ¢ > 0 the
function t~(*/2-1+€)h(t) is nondecreasing (t > 0). We say that a function u € W(G)ioc
belongs to the class W(L, G, h), if V(v — ur 2 r)llL(B(z,r) < Cw)h(r) ¥V B(z,r) € G. For
h(t) = t/2te, o > —1, we write W(L,G, k) = W*(L,G).

Theorem 1. A relatively closed set E C G, E # 8,G, is removable for (generalized)
solutions of the equation Lf = 0 in the class W(L, G, k) if and only if the Hausdorff measure
of E corresponding to the calibrating function g(t) := t"/2=1h(t) is zero.

In what follows we assume that b;(z) = ¢;(z) = d(z) =0in G, i =1,n.

Theorem 2. Let 0 < v < 1, {a4;(2)}};=1 C C%(G)ioe- Then WE(L,G)ioc = CH*(Gioe
for0<a<n.
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Theorem 3. Let 0 < a < v < 1, {a;5(2)}7j=1 C C*7(G)ioc. Then a relatively closed set
E C G, E #0,G, is removable for solutions of the equation Lf = 0 in the class C1*(G)ioc
if and only if E has zero Hausdor{f measure of order n — 1 + @, i.e. mes®1+°E = 0.

Theorem 4. Let 0 < a < 1, {a;(2)}7;=; C C(G). Then a relatively closed set E C G,
E # 8,G, is removable for solutions of the equation Lf = 0 in the class C*(G)ioc if and
only if mes" "2+ E = 0.

Polyadic analysis as a part of the harmonic one.
Polischook V.(St. Petersburg)

The polyadic analysis is a branch of mathematics allied with the p-adic theory.
E. Novoselov {1} made an essential contribution into this area. His theory includes topology,
arithmetic, calculus, measure theory and integration in the polyadic domain. Novoselov’s
approach for the investigation of arithmetic functions has been studied by several papers
and books.
Briefly, the notion of polyadic number can be defined by the following way.
Let C be the ring of all integer sequences with pointwise operations. A sequence is said to
be a 0-sequence if for each positive integer n almost all its elements are divisible by n. Such
sequences form an ideal Cp of the ring C stable under the shift which makes possible to
apply the shift operation to elements of the quotient-ring C/Cp. Any constant of the ring
C/Cy, i.e. any coset a stable under the shift is called a polyadic number. These numbers
form a ring denoted by P. The principal ideals G™ = {na:a € P} (n € N} form a
base of zero vicinities, defining in the ring P a Hausdorff topology o compatible with its
algebraic structure. Thus, by a polyadic number one means a finite integral adele. It can be
viewed as a limit of an integer sequence which converges p-adically for every prime p.
The most important property of the polyadic ring (P, o) is to be a compact Hausdorff space.
This makes possible to introduce a translation-invariant integration for arithmetic functions.
So, the compactification of the ring Z by means of divisibility topology o is the key idea of
Novoselov’s theory.
Our goal is to show that there are very close relations between the polyadic analysis and
the classic theory of commutative Banach algebras (cf. [2]). Namely, let A be the algebra
consisting of all complex periodic functions on Z with the uniform norm and G be the
compact space of all characters A — C with *—weak topology < induced from the dual of A.
The following proposition is proved.
Theorem. The convolution ring operations in G are compatible with v. The ring (G,7) is
algebraically and topologically isomorphic to the ring (P,0).

This means that we can identify the polyadic ring P with divisibility topology ¢ and the
ring of characters G with periodicity topology ~.

Acknowledgement. The author would like to thank the DFG (Project 436 RUS
113/809/0-1) and RFBR. (Grant 05-01-04002-NNIOa) for the financial support.
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Wupapunanrusie GL(n, R)-uurerpansl mis guddepeHnMalbHBIX CUCTEM TUNA
Hapby
Iona M. H., axonecxy O. B. (r. Kumuten)

PaccMaTpuBaeTcs NOJMHOMHAJbHAS AU depeHIMalpHas CHCTeMa

dz? . j o a :

P 7a alz®+al o o, 022" (f,0,01,02, . 0m =10 02 2), (1)
r1e K03 MUUMeHTHBIH TEH30P G, o, o, CHMMETDHYEH TI0 HIKHHM HHIEKCaM, 10 KOTOPBIM
3[ech NPOM3BOMAMTCH MOJHOE CBEPThIBAaHUE M Tpynny IenTpoadduHHEIX mpeobpa3oBaHnMit
GL(n,R) [1].

C nomoupio arebp JIu onepaTopos [2] u3y4aroTcs anrebpandecKue HHTErpasibl CHCTEMBI

(1), xorza ona npuHuMaeT By Tuna Japby {3}

i
% =alz® + ma'R(z*,2%,....2") (j,e=1,n), (2)
rae R(z!,z?, ..., z™) - onsopoausidt Muorounen (m — 1)-it crenemnu.

IMpu n = 2 u m = 2,3,4,5,6,7 ¢ nomoupo TeopeMul Jlu 06 uHTErpupyomeM
muoxutene [2,4] nocrpoens meBapuanTHele GL(2,R)- uuTerpupymomue MHOXHTEAM H
GL(2,R) unrerpansl cucremsl (2), rie ¢ NOMOIIBIO MOCTEAHAX HHTErPajioB MCCIEA0BaHbI
BOTIPOCK! TIPEJEIbHBIX HUKIIOB JUIsl THX CUCTEM.

Ilpu m = 2 un = 3,4,5, ... 10 AaHAJIOTHK CO CIy4aeM . = 2 1OJiyY€Hbl HHBAPHAHTHbIE
GL(n,R)- unrerpupytomue Muoxureau u GL(n, R)-unrerpans: ans cucrem suga (2).
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Nonexistence of nontrivial solutions for supercritical equations of mixed
elliptic-hyperbolic type
Popivanov N. (Department of Mathematics and Informatics, University of Sofia, Bulgaria)

For semi-linear partial differential equations of mixed elliptic-hyperbolic type with var-
jous boundary conditions, the nonexistence of nontrivial solutions is shown for domains
which are suitably star-shaped and for nonlinearities with supercritical growth in a suit-
able sense. The results follow from integral identities of Pohozaev type which are suitably
calibrated to an invariance with respect to anisotropic dilations in the linear part of the
equation. For the Dirichlet problem, in which the boundary condition is placed on the entire
boundary, the technique is completely analogous to the classical elliptic case as first devel-
oped by Pohozaev in the supercritical case. At critical growth, the nonexistence principle
is established by combining the dilation identity with another energy identity. For “open”
boundary value problems in which the boundary condition is placed on a proper subset of
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the boundary, sharp Hardy-Sobolev inequalities are used to control terms in the integral
identity corresponding to the lack of a boundary condition.

VnpasjeHnue nHBapuaHTamMu npeobGpasosaunit JIsnysHosa
Ilonosa C. H. (r. HxeBck)

PaccMOTPHM JIHHERHYIO YIIPaBIseMyIo CHCTeMY ¢ HabmoaTeneM
i= Az + B(th, y=C(t)z, (t,z,y,u) € RIIHm (1)

C KyCOYHO HENpPEPHIBHLIMM M OrpaHHYeHHEIMH Koddduuuenramu. Cucremy 1)
oroxaecTeasiem ¢ Tpoiikoli (A, B,C). Ynpasnenue u(-) B cucreme (1) BribepeM smHeltHbIM
o HabmogaTemo 1 = U(t)y ¢ KycOuHO HenpepLIBHON 1 orpanuyeHHoH Ha R m X r-maTpuueit
U(-). NonyyenHasi 3aMKHyTas CHCTEMa

& = (A(t) + BO)U@)C@H)z, (t,z) € R, (2)

NPUHAJJIEXXAT MHOXECTBY My, BceX TMHEAHBIX OHOPOAHBIX CHCTEM T-FO NOPSIKa C KYCOYHO
HenpepLIBHBIMM M OTrpaHuMyYeHHHIMA Ha R kosddunmentamu, cirenoBaTenbHo, VA Hee
OIpejiesieHbl BCeBO3MOXKHEIE MHBApHaHThl IpeoGpasosanuit JIanyHosa. IlycTs ¢ — HekoTOpBIH
ASIOyHOBCKMA mHBapHaHT, ((M,) — MHOXeCTBO SHadYeHm#t wnBapnanTa (. OmpenemnM
orobpaxenne ¢, : KCpr(R) — ¢(M;), KOTOpOE CTABUT B COOTBETCTBHE IPOU3BOJIBLHON
KyCOYHO HenpepblBHON M orpanHudenHo# Ha R Marpuunolt m X r-pynxkuun U(-) 3Havenne
(A + BUC) unBapuaHTa ¢ cuctems! (2).

Onpenenenne. JIATYHOBCKAH MHBADHAHT ( HA3LIBAETCA 24000ADHO YNMPAGAREMBM
omnocumeavro mpotixu (A, B,C), eciu orobpaxerne ¢, @ KCmr(R) — (My)
CIOPEKTHBHO. EC/H MHOXECTBO 3HAUeHMI JIANYHOBCKOTO HHBApUaHTa ( CONEPKUTCA B
HEKOTOPOM MeTPMIecKoM NpOCTpaHcTBe (X, p), TO ¢ HA3IBAETCH AOKGADHO YNPABAACMILM
omnocumeavro mpotixu (A, B,C) B ciyuae orkpbiroctn npu U(t) = 0 orobpakenns ¢,.

TlosyyeHs! OCTATOYHBIE YCIOBHS JIOKATbHOMN H T106aibHOMN yNPaBsieMOCTH Pa3IuIHbIX
HMHBAPHAHTOB NpeobpasoBanuli JlamyHosa.

PaboTa Bhino/HeHa npyu noanepxke POOU, npoekt Ne06-01-00258.

3anaua pacCessHMA JJ1s KBAHTOBBIX BOJHOBOAOB u rpacdoB u onepauuu B
) KBaHTOBOM KOMIIBIOTEPE
Ionos H. IO. (r. Canxr-IleTep6ypr)

PaccMOTpEHbI 33184H O JBYMEPHLIX KBAHTOBbIX BOJIHOBOZAX (M TPEXMEPHEIX KBAHTOBBIX
criosixX), CBE3aHHBIX 4epe3 Majble OTBepCcTHs. PaccMmarpusalorcs omeparopnl Jlammaca
¢ rpammdEbiMu ycrosusmu Jlupnxie u Hefimana B coorsercrByrommx obmactsax. C
HCIOJIb30BaHNeM HeCTAIMOHADHRIX METOJOB JOKA3aHa TEOpeMa CYUIeCTBOBAHMS PE3OHAHCOB
(em. 1])

Teopema 1. TIpu AOCTATOMHO MaJIOM [HaMeTpe OTBEPCTHS B OKPECTHOCTH HIKHel
I'PAHMIB] BETBH HENPEPLIBHOIO CAEKTPA JIAIJIACHARA CYLIECTBYET PE30OHAHC.

Haitnennl nepsble 4IEHbI ACHMMITOTHYECKOTO DA3JIOXKEHHS DE3OHAHCA IO AUAMeTpy
OTBEpPCTHS METOJOM COTJIACOBAHHMS ACUMITOTHYECKHX DAal/IOKeHUM DpeleHHH KPaeBbIX
3ana4. Ilposeneno ofocHoBanue acuMnToTukH. Halizena acHMNTOTHKA B Clydae HaJIMUs
BHEINIHETo 3JeKTPHYECKOro 10Js. PaccMoTpeH cilydall meproauyeckoro Habopa oTBepcrit
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cBs3u. IlokasaHo HasMume 30HBI, GIM3KOM K rpaHMLE HeIPEPHIBHOIO CIEKTpa M HailieHa
ACHMIITOTHKA KpPAeB 30HbI.

Onucan pe3oHaHCHBI 3(¢eKT Npu 3NIEKTPOHHOM TPAaHCIOpTe B ¢1ab0 CBI3aHHLIX
KBaHTOBHIX Bo/HOBoAax. [Ioka3aHa BO3MOXKHOCTB Ha OCHOBE JaHHBIX 3¢hEKTOB NONyeHust
CIIMH-IIOJIIPU30BAHHOTO 3JIEKTPOHHOro myuxa (cM. [2]) ¥ peanmzaumm ofHOKYGHTOBEIX M
ABYxKy6uTOoBHIX Onepauuit (oneparop Agamapa, CNOT, SWAP). Ilpenoxensl gBa cocoba
TPAKTOBKM KyOMTa M OIHCAHBI COOTBETCTBYIOHMIME CHCTEMBbI. TakiKe IpOAHAJM3HPOBaHA
onepalysi NPUIOTOBJIEHUS] HAYAJBHOrO COCTOSIHMSA C HCHOJIb30BAHHEM HabOpa KBaHTOBBHIX
TOYEK.

PaccmoTpena 3aaada paccessHusl Il ABYX HEPEIATHBHCTCKUX YACTHI[ Ha KBaHTOBOM
rpace ¢ 2n cBoGOAHBIMH KOHIIAMH, COEAMHEHHBIMH B Bepuinge. [Ipoanann3nposano BiusHKe
NOTeHIYala B3aUMOAEHCTBHS M TreOMeTpHYecKux Xxapaktepucruk. IlocTpoeHa dyHKIua
T'prHa COOTBTETCTBYIOLIETO raMUIbLTOHHAHA. B paMKaX CTaIlMOHAPHOM TEOPHMH pAaCCesHHs
HOCTPOEHb! BOJIHOBBIE OIIEPATOPHI ¥ MaTpuua paccesiHust. [leTaipHblll aHaJIu3 NpOBeZEeH
JUIst IOTeHIMaa B3auMomelicTeus B Buge 1/r2. O6CY:KAAIOTCA NPUIIOKEHUS K KBAHTOBLIM
BBIYUCCHHSIM.

Jlurepatypa

[1} Homnos M. 10., Tecosckast E. C. TM®. 2006. T. 146. M 3, C. 429-442.

[2] Gortinskaya L. V., Popov L. Yu., Tesovskaya E. S., Uzdin V. M. Physica E. 2007. V.
36, N 1. P. 12-16.

CTpyKTypa aTTpaKTOpa CHCTeMbl HTePUPOBaHHEIX byHKuuH
Ilopros M. M. (r. Bopouex)

PaccMoTpuM ceMeiicTBO oToGpaskeHni
FF:M-M, i=12,...,p, ()

HEKOTOPOTO HENyCTOro MHOXKecTBa M B cebs M COOTBETCTBYIOLEEe 3TON CHCTeMe
omobpasiceriue Xamyuncona:

4
Fx=|JFEx. (2)
i=1 v
Ecnu M ecTb MeTpHueckoe NPOCTPAHCTBO ¢ MeTpuKoit p(z,y), To B npocrpancTBe M Beex
HEMYCTHIX OFPAHMYEHHBIX 3aMKHYTBLIX MHOXECTB U3 M BBOAMTCS xaycaopdoBa MeTpHKa

MX,Y)=sup{p(z,Y),p(y.X): 2 € X,yeY}. (3)

Herpyauo BMIeTh, YTO eciM Kaxzoe u3 orobpaxenuft F; cemelicrsa (1) ssnsercs
CKMMAIOIMM C KOHCTAHTOM CXaTust ¢;, TO orofpaxenue XaTdnmHCOHa (2) sBjseTCH
CKHMAIOIMM B XaycnopdoBoli MeTpHKe ¢ KOHCTaHTOM cxatus ¢ = max{q1,q2,...,qp}
CrnefoBaTeNbHO CYLIECTBYET €IMHCTBEHHAs HeNoABmXHag Touka X orobpaxenus (2)
(aTTpakTOp cucTeMms! uTepupoBaHHbIX (yHKUmE (1)).

Orobpaxenne Fj, ; = F; ...F;, rie Kaxniplll ¥3 MHAEKCOB iy MOXKET NPHHUMATDH
3Ha4YeHHs OT 1 JI0 p, TaKXKe SABJIAETCH CXKUMAIOLIMM H UMEeT eAUHCTBEHHYIO HENOABIDKHYIO
TOYKY, KOTOPYIO Mbi 0G03HAYNM Yepe3 T, . i, -

Teopema. ITycTb M 10gHOE METPHUECKOE MPOCTPAHCTBO W Kaxk[oe ¥3 oToGpaxenul
cemeticrBa (1) simnsierca coxumaomuM. Torga arrpakrop X CHCTEMBI MTEPHPOBAHHBIX
dbynkuuit (1) Becerma ABaseTC KOMIAKTHBIM MHOXeCTBOM. OH COCTOMT M3 BCEBO3MOXKHBIX
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TOYEK Tj,.i, M HUX MPENEIOB; MHBIMM CJIOBAMM: KaXKIas HENOABIXKHAS TOYKA Ti,. i,
orobpaxkenust Fy, ; BXOOMT B aTTpakTop X U MHOXKECTBO TAKHX TOYEK ILIOTHO B X.
JIureparypa

[1] Kponosep P.M. @paxmasw u zaoc 6 dunamunecxur cucmemaz. Ocnosw meopu. |
P.M. Kpouosep — M.: Iloctmapker, 2000. - 352 c.

(2] Thocrepunk JLA. Kpamxuti xype dynxyuonaavnozo anaausa. / JLA. JliocTepHuk,
B.U. Cobones — M.: Bricmmas mkona, 1982. — 272 c.

[3] Bopucosuu FO.I. Beedenue s mononozuro. / ¥O.I. Bopucona, H.M. Biusnskos,
S.A. Uspaunesuy, T.H. ®omenxo — M.: Bricias mxona, 1980. — 296 c.

IIpuGmwxenHoe penrenue JBOMCTBEHHbIX 33/a4 yNpaBJjieHus ¥ Habmoaenns
JJIst BOJTHOBOI'O yPaBHEHUS
Horanos M. M. (r. Mocksa)

B [1] 6bu1 mpeoKen yCTOAYHBEIN BADHAUMOHHBIN METON NPUO/IMKEHHOIO peIeHHs
ypaBHeruit Au = f c muHeitHpIM orpannyeHHbIM onepatopoM A : H — F B runbbepToBhIxX
NPOCTPaHCTBaX. ITOT METOA MOXKHO IIPHMEHSATH B C/IyYae, KOria BMECTO TOMHBIX JaHHBIX A
u f U3BeCTHBI HEKOTOpPbIe UX Npubauxkenus A u f, obaaal0muye CXOAMMOCTBIO

[Au—Aul| -0 VueH, |f-f]—0 (1)

Amnanoruynoe yciosue ||A*v—A*v|| — 0 Vv € F JO/IKHO BBIIOJHATBCS U AJIs CONPSKEHHOTO
oneparopa A*. Kpome Toro, mpeanonaraeTcs, 4TO HCKOMOE HOPMAJIBHOE DELICHUE U
HCTOKOIIPEJCTABHMO M U3BECTEH PAJHYC T Iapa, COAEPKAIIEro JIEMEHT-UCTOYHUK U, :

u, = A*v,, floa|| € 7. (2)

Anpuopnas undopmauns Bua (2) Z0CTynHa B Ciy4ae, KOLAA CONPSUKeHHbIH onepaTop A*
KOPPEKTHO pa3peiyM:
2
A%l 2 p o, ®3)

a 3navenue nocrosuuolt p > 0 B (3) ussecrno. Torma B (2) moxno B3ars r > ||f|/u
H MCNOJIB30BATH 3TO 3HAYEHME T NP peanHsauuH aiaroputMa u3 [1]. B pamkax Tex xe
TpeGOBAHUI CTPOSITCS YCTOKUMBLIE NPUOITHMKEHHEIE DEINEHUs ¥ CONPSKEHHONO ypaBHEHMS
Av=g.

HocTaTouno xecrkue ycaosus (1)—(3) BLIMONHAIOTCA B 331a49aX TPAHHYIHOTO H 3OHHOTO
YOPaBIIEHUS POLECCAMH, OIMCHIBAEMBIMH BOJTHOBEIM YPABHEHHEM

() yse = (k(x)yz)s, O0<t<T, O0<z<l

ConpsikenHBlii OnepaTop B TAKUX 33/1a4aX CBA3aH C ABORCTBEHHBIMH 3a,1aUaMy HaG IO HH ],
a KOHCTPYKTHBHbBIE OIIEHKH KOPPEKTHOH pa3pemnMocTd Buaa (2) 06bIYHO y12eTCs IOAYIHTD
Ha BPEMEHHLIX IIPOMEXYTKaxX, NPOTSXKEHHOCTb KOTOPBIX MNPEBLINAET HEKUH MOPOTOBEIH
yposets T,. Tunuunolt cTpykTypoii nocrosiuuok p upu T > T, asaserca u = po (T — T)
co 3nayenueM o > 0. Ilpu Beibope ecTeCTBEHHBIX ANNPOKCMMAIME DA3HOCTHOrO HJIH
[IPOEKLMOHHO-Da3HOCTHOTO THIIA TpOBepKa yciloBuil (1) M aHAJIOTMYHBIX YCJIOBMH IS
CONPSIKEHHOrO ONepaTopa OBLIYHO He BBI3BIBAET NPHHIMIMANLHHIX 3aTpyaHeHull. Dosee
JeTajlbHO HEKOTOpbIe U3 NPWIOXKEHUI K 3a/]a4aM IPAHHYHOrO YIPABJIEHWA M HabMIONeHUs
JJ1S BOJTHOBOFO ypaBHEHU: PaccMOTperst B [2],[3].
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PaBora BumonHena npm  ¢unascoBolt  moadepxke  Poccmiickoro  donza
¢yHaaMeHTATBHBIX HccienoBaHuit (npoekt Ne 07-01-00416) u nporpammul “Passutie
Hay4HOTO NOTeHnuans Bhicielt mwkoik” (npoext PHIT 2.1.1.1714),

Jlurepatrypa

{1] Horanos M. M. Yemotivuents smemod peuwienus Aunetinn YpasHenuti C HEPREHOMEPHO
soamyuennvim onepamopom // Joknaaet PAH. 1999. T. 365. Ne 5. C. 596-598.

[2] HoTanos M. M. Hpubauorcennoe peusenue 3aday Jupurie-ynpasienus 048 6041068020
ypasnenus 6 xaaccar Coboaesa u deoticneenun x num saday nabarodenus // JKBM n MO.
2006. T. 46. Ne 12. C. 2191-2208.

[3] Horanos M. M. Habawoduesmocmo nepesyaspwws pewenuts sadavu Hetimana dan
60/H06020 YPABHEHUR ¢ nepementvmu xoxPduyuenmamu // Hoxknaast PAH. 2007. T. 412.
Ne 6. C. 747-752.

Spectral properties of the linear steady-state equations for viscous
compressible fluid: the three-dimensional case
Pribyl M. (Moscow, Russia)

Let (% (), T2(z), @3(x), T(z)) be the steady-state solution of the system for the viscous
compressible fluid, where %(z) = (T, (2),%(x), Us(z)) — is velocity vector field written in
Lagrange coordinates and T(z) — is the specific volume. We make the linearization of this
system on the mentioned solution and consider the following spectral problem

3
%Aui(z) +3 b (2)8s,v(@) — s =0, i = 1,2,3,divue) - (@) =0, (1)
=1

be‘(1)=—ﬁ—('w—) or, - p'(0),if i = 4, bij(z)=“ﬁw’ifi¢ja

where p € C!(0,00) is the pressure, ¢ € T = R3/2rZ3 We define the spaces
H = Ly(T) x Ly(T) x Lo(T) x HYT) and J = H*(T) x HX(T) x H*(T) x HY(T). Let
us rewrite the system (1) in abstract form (A(x, D) — AE)U(z) = 0, where A: H — H and
D(A(z, D)) = J.

Definition.A closed operator A(z,D) : H — H is called sectorial, if
there exists ¢ € (Z,m) and M > 0 thats for some a € R sector
Sap = {2 €C:0< |arg(A —a)| <, A# a} lies in resolvent set of operator A(z, D) and
l(A(z, D) - AE)™1]| £ Tf\%ﬂ for A€ Sap .

Theorem. The operator A(x, D) is sectorial and it spectrum is discret.

TIputuun aBOKCTBEHHOCTH B OOPATHLIX M HEJOKAJLHBIX 3ajadax JJis
SBOIOUMOHHEIX ypaBHeHUH B 6aHAaXOBBRIX MPOCTPAHCTBAX
Ipunenko A. H. (r. Mocksa)
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Hanbt e Touxu T, Tp € R, 0 < T < Ty < +o00, 6anaxoss! npocrpanctsa E u E*,
oneparopsr A, ®(t), A*, &*(¢).
1° O6patnas 3anaqa. Haittu napy u(t) u napamerp p € E u3 yenosuit (1)-(2)

% = Au(t) + ‘P(t)p, 0<t<Ty, u(O) = Ug (1)

w(T) =u (@)

B (1)-(2) samanst up, u; U3 COOTBETCTBYOIIUX NPOCTPAHCTB.
2° Henoxanbnas 3asaya. Halu 2(t) u napamerp p. € B, u3 yenoeu#t (3)-(4)

oaa), 0<tsT,  2(0)=p. 3)

T
/@‘(T —t)z(t)dt = g*, q €k, (4)
0

g" — HaH.

psmo#t HeoxanbHOM (110 Bpemenn) 3aadelt HasHIBaEM 38,19y HaxOxaeHud z() H3 ycIoBuH

(4)-(5) J

2 .

7 T ARO+ L), 0<it<T, (5)

f(t) - nana.

Halinennt J0cTaTOYHBIE YCIOBAS Pa3pelIMMOCTH YKABSHHBIX 38,(84.

Teopema 1. (IIpusnun AsoificTeennocTn)

ITycTs BLINO/IHEHBI COOTBETCTBYIOIIME YC/IOBAS HA BXOAHEIE JAHHbIE 38,0041 (1)-(2) v 3agaun

(3)-(4). A - orpanugennsilt oneparop,

Torza xnaccudeckas KoppekTHAS pa3pemMMOcTh obpaTHO# 3aa4n (1)-(2) sxBuBaIeHTHA K

KJIaCCHYECKO# KOPPEKTHON pPa3peluMOCTH CONPSKEHHON K Helt HENOKANLHON 10 BpeMeHH

3anaan (3)-(4).

HonoGubie pe3ynbTaThl NMOJNYYEHB! [ HEOrPAHHUEHHOTO OMepaTopa A IpH HEKOTODHIX
YCIOBHSIX Ha BXOJHbIE NaHHbIE YKA3AHHEIX 34124,

PaGora noguepxana PODU, kon npoexra 06-01-00401.

JInrepatypa
(1] Prilepko A. L, Orlovsky D. G., Vasin I. A. Methods for solving inverse problems in
mathematical physics// Marcel Dekker inc. New York - Basel, 2000, 709 p.
[2] Ipunenko A. M. Memod noayzpynn pewenus oBPamMME, HEAOKIAOHME U
nexnaccunecsur  sadan. Illpoznos-ynpassenue u npoenos-nabawdenue  360AOUUOHHBLT
ypasnenudi 1// Jupdepenyuarvhoe ypasnenus, 2005. T. 41, M 11, c. 1560 — 1571.

Ilpo6aeMa ycTORMMBOCTH PABHOBECHBIX PEIEHHHE B Or'PAHMYEHHBIX 3aQaUAX
MHOIrHX TeJT,
Ipoxonens A. H. % (Bpecrckut rocynapeTsennl TexHIdeckts yuusepcuret, Benapycs)

5Pabora Hanucana B coasTopcrse ¢ ['peGenukosnim E. A.
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BoaMyiienHoe JABMKEHHE B OKDECTHOCTH MPOM3BOJIGHOTO PABHOBECHOIO PpelleHHs
OrpaHMYEHHON 3a7aYM MHOTHX TeJl ONpefdelsieTcss TAMMILTOHOBO# CHCTEMON LIeCTH
OOLIKHOBEHHHX AupepeHIMANbHEX  ypaBHenutt, npudem yHkuns lamuistona
H sBnsterca aHanmTHuecko#i (QyHKUveH OTHOCHTENBHO KAHOHMYECKH CONPAXKEHHBIX
nepeMeRHEIX ¢;, p; (i = 1,2,3) n Moxer OBITH NPeACTaB/ICHA B BUJE PAIIOKEHAA

H=Hy+Hs3+Ha+..., 1

rae Hi - ONHODOMHEI MHOTOWNEH CTeNeHHW Kk OTHOCHTENBHO ¢;, P;. TaKHe CHCTEeMBI
BO3HMKAIOT TIPH HCCIEOBAHMM MHOMMX npobmeM Kiaccmyeckolf u meGecHOl MexaHMKM
n JocraTouHo xopomo usydennt (cM. [1]). TeM He MeHee, MpH HCCJIENOBaHHH KaxKIof
KOHKpPETHO# CHCTEME! BOSHHKEET HeoOXONMMOCTh BBIIOJIHEHHWS JOCTATOYMHO TIPOMO3BAKHX
AHAJIMTHYECKAX BHIYACTEHHH, TPeOyIOMMX UCIOIB3OBAHHH KOMITBIOTEPS W COBPEMEeHHBIX
NPOrpaMMHBIX CPEACTB. .

B Hacrosme#t pabore ofCyXIaeTcs  aJrOPUTM  IOCTPOEHUS  KAHOHMYECKOro
npeobpasosanus Bupkroda, mpusogsmero ramuabTonmaH (1) x HopmanbHo#l opme,
a TBKKE €ro NMpAKTHYeCKAs peaju3alis Ha OCHOBE CHCTEMBl KOMIBIOTEPHON anrebpsi
Mathematica [2]. B kavecTBe mpuMepa pacCMaTpPHBaeTCsl Kpyrobas OTPaHMTeHHAR 3ajaua
yernipex Tea {3] u w1 GUCCEXTOPHAILHRIX pemenuit 3Tofl 381841 AOKA3bIBAIOTCS. TEOPEMBI
06 ycroltausocty o JlanyroBy # 06 ycToluupocTH AJ1st GONBIINMHCTEA HAYAJbHBIX YCIOBHH
B IJIOCKOM H IPOCTPAHCTBEHHOM CJ/Iy4asX COOTBETCTBEHHO.

JInreparypa

[1] Mapkees A. II. YcrofiuspocTs raMHIbTOHOBRIX cucTem // Henuneltuas Mexanuka:
C6. cr. mon pea. B.M.Marpocosa, B.B.Pymsannesa, A.B.Kapanersna. — M.: @uamataut,
2001. - C. 114-130.

[2] Wolfram S. The Mathematica book. -~ Wolfram Media/Cambridge University Press,
1999.

[3] Grebenikov E. A., Gadomski L., Prokopenya A. N. Studying the stability of equilib-
rium solutions in the planar circular restricted four-body problem // Nonlinear oscillations.
- 2007. - 10(1). - P. 66-82.

AnmpoxcuMauys guaauveckumy pelipneramu.
Iporacos B.FO. (Mocksa)

ANNpOKCHMALMOHHbIE CBOACTBA KIACCHYECKHX CHCTEM BEHBJIETOB IIMPOKO M3YUAHCH B
JuTEpaType. OHH OTBEYAIOT 38 CIIOCOGHOCTh BeftBIETOB MPHOAMKATE DYHKIMU B PASTHYHBIX
(YHKIMOHA/IBHEIX TPOCTPAHCTBAX. MBI HCC/leyeM JiMa/MYeCKHe BeHBIEThl Ha IOy IPAMOH
R, = [0,+00) ¢ onepauyell JBOUTHOTO CIIOXKEHUSL.

Jlns xaxnoro z € Ry u moboro naTypanbHoro j uncia z;,2—; € {0,1} onpenensmores
xak ¢; = [27])(mod2), z-; = [2!77z](mod2). D10 — 1UDPEI ABOMUHOrO PAIIONEHHA
z. Jins npoussonsHHXx Z,Yy € R, nonarsem r @y = Z]O lz; — y;/277. B uacrnOCTH,
z&® z = 0. O6ranast Mepa Jlefera na R, HHBapHaHTHA OTHOCHTEJIBHO CHBHIOB Z — I @ a.
Bce npocrpancra LP(R4), p € [1,+00] COBIATAIT C K/IACCHIECKUMH TIPOCTPAHCTBAMIL L
Ha TOJYNPAMOH.

Cucremo#i jMajMuecKux BeliBieros Ha [, HespBaerca cucTema YHKUui
{%ir}jezkez,, @BAROmMARNCE OpTOHOPMHpoBaHHbIM 6a3ucom B L?*(R,), npnaeM
Yip(z) = 2i/2y(2ix © k) ana Beex j, k. Juagumueckwe BeHBJIETH ABJHAIOTCA
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aHajloramMu KJjaccuyecknx Belisieros JoGewn. Ilepsele npuMepsi OBLUIH  [OCTPOEHBI
B [l], monnas kiaccudukauus IuManuUecKux BeiBreToB Oblla nonydeHa B pabore
[2]. AnnpokcuMalpionHeie cBOMCTBA xapakTepuayloTcs BeauwunHoH v{y) (mopsmox
npubarKeHusi), PaBHOM CynpeMyMy TaKdX <, YTO PaccTosHHe OT JioBoH JOCTATOYHO
rnagxoll durMTHON dyHKUMKA Ao npocrpaHcTBa V; = span {y; xbkez, pasuo O(2747). Ilna
KJIACCHYECKUX BENBJIETOB, KAK W3BECTHO, NOPANOK NPUONMMKEHUS DaBeH HUCIY HYJIeBHIX
MOMEHTOB OYHKIMH Y ¥ MOXKeT OBiTh pasiuunniM. MbI nokasbiBaeM, YTO B JHAZMYIECKUM
ciy4yae OH paBeH 1 mis Bcex cucreM BefiieroB. Jna npubmkenuit dbysxuuil, riamxux
B ABoMuHOM MeTpuKe Ha Ry, HampoTHB, BCE CHCTEMHl VMEIOT NOPSUOK NPHOIMMKeHus
+oc. IMosToMy s CpaBHEHHS ANNPOKCHMALMOHHLIX CBORCTB MbI BBOAMM 60J16€ TOHKHUI
U3MepHUTeNb, TaK HasbpiBaeMuift fedext npubmmxenust. Ilosnyyens: siBHble GOpMynB A8
BhIYNCIIEHNS JedeKkTa NPHOIMIKEHUs U TAKNM OOpPA30M OXAPAKTEPU3OBAHK! JAUATUYECKUE
BeltBIIETH! ¢ HAMTYYIIHMH AMMPOKCHMAIHOHHLIMU CBOHCTBAMMY.
Jlnreparypa

[1] W.C. Lang, Fractal multiwavelets related to the Cantor dyadic group, Intern. J. Math.
and Math. Sci., 21 (1998), 307-317.
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[3] ¥0.A. @apkoB, Opmozonaavrvie GeUBAEMB € KOMNAKMHBMY HOCUTEARMU HG
£20%GAHO Komnaxmumwr abeseswz epynnar, Uss. PAH. Cep. matem. 69 (2005), No 3, 193-
220.

[4] B.IO. TIporacos, Annpoxcumayus duaduveckumy eelieiemamu, NOZaHo B Mar.
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HekoTopele npeAcTaBieHns pemieHuit BOJHOBOro ypaBHeHUs Ha
reoMeTpM4YECKOM rpade
Ipsanues B. JI., Inotos H. B. (BoponeXXcKulf rocyaapCTBEeHHbI yHHBEPCUTET)

PaccMarpuBaloTC  pa3jiMuHbE [PEJCTABIEHUS UIA  KJACCHYECKOIO  pelieHds
runepGosMueckoro (npexae Bcero, BonHoBoro) ypasHenust Ha I' x I (T — reoMeTpuueckuit
rpadp, I -~ npomexyrok u3 R), And pasnIMYHBIX KJACCOB KpPAaeBLIX YCJIOBHH U
YCIOBHM TPAaHCMMCCHM BO BHYTpPeHHMX BepmuHax I'. OcCHOBHOe BHUMAHME YIENRETCH
NpeICTABIEHUAM, KOTOPbIE BO3HHKAIOT NOCIe IPHMEHEHHUs:

1) metoma @ypre,

2) anasora ¢opmysst Janambepa (B cMbicne paforsr: Tlokopumiit 10. B., Ilpanues B. JI.,
Boposekux A. B., Hoxa. PAH, 2003, T. 388, N 1),

3) ananora dopmynnt Pumana (nonyued B pabore: Tapumn C, B., Tp. mon. yu. Boponex.
roc. yu-ta, 2004, N 2),

a TaKXKe I0csIe IPHMEeHEeHHsT OPHIHHAJILHBIX NOJXOJOB, OCHOBAHHBIX

4) Ha Metoze byuxuuu I'puna (cm. paanes B. JI., CobpeM. MaTeMaTHKa M €8 NPWIOXK.,
2006, T. 38),

5) Ha cBefenun K HABGOpY 33784 O PAaCIPOCTDAHEHNH I'DAHHYHBIX PEXKHUMOB Ha pébpax I
(cm. Tioros H. B., Ilpsigues B. JI., Bectr. Boporex. roc. yn-ra, 2006, N 2).

PaccMaTtprpaemele npelacTaBieHust 06CYXAAIOTCS, ¢ ORHOK CTOPOHBI, KAK MCTOYHHK
TIOJIydeHHsl KaueCcTBeHHON nHMpOPMaluN (IepUONHYHOCTh, KBASHIIEPHOINYIHOCTD PeLIeHul,
crabunuzanus), a ¢ APYrofl — Kaxk HCTOMHHK MOJyYeHHS KOJHuecTBennol mrdopMaimim
(BBIE/TIEHNE TEDPHOAUYECKIX COCTABAAIOMMX KBASUNEPHOIMIECKOT0 PEIeHHS) U OCHOBA st
MOCTPOEHHS HOBBIX YHCJICHHBIX CIIOCOGOB pemneHusi (HOBBIX Aaxe JJIs ciydas, xorga [ —
OTPE30K).
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Ocpenuenne nnrerpo-gud pepennuansuoro ypasnenus: Broprepca
Imennnnina H. A. (r. Mocksa)

IIpoueccel pacnpocTpaHeHust BOIH B HeJMHEMHON cpele ¢ pelakcaliueit OMMCHIBAIOTCS
crepytomum  uHTerpo-guddepeHtuaibHEM  ypaBHeHueM  (cM.  [1]) B ofmacru
Qx ={(z,9):0<z < X,—00 < y < o0}

z z z z, 0 [Y -
oG+ G0 =BG Py [ wylay)eFay 1)
C Ha49aJIbHBIM YCJIOBHEM
u(z =0,1) = o) @
U yCJIOBHEM NEPHOAUYHOCTH
u(e,y+1) = u(z,) | )

Iapamerp § mosaraercs MajnM, ypaBHeHue (1) mMeeT B KadecTBe KOI(DIUIHMEHTOB
GbICTPO ocCHWILIMpYIOUHMe GYHKIHM p, 3, @ B V. DTO YCIOXKHAET YUCIEHHOE PelleHHe 3a a4,
TaK KaK pa3Mep sSiYeHKH CeTKH AWCKPETHBIX CXeM JOJDKeH OOecleuHBaTh TOYHBIA TOACYET
3HaYenmit 6uICTPO u3MeHsOmuxcs kosdduuuentos. [Ipn yMenbennu napamerpa § pacrer
KOJIMUECTBO TOUYEK CETKH, YIaCTBYIOUMX B AJITOPHTME, a CJIefOBATENbHO, YHCICHHBIA aHAIU3
3a/109¥ 3aMeJISeTCs. U BINOJHsETCsT ¢ G0sbiuMu norpemnocTamu. [losToMy mucnone3yercs
O[iH M3 TOAXOJOB K PEIEHUI0 33784 C GBICTPO OCHMLIUPYOWUMHU KodbduuueHTaMy -
OCpeIHERuUE.

Jokazano cymecrsoBanue -~ obobmenHoro pemenusi 3agadnm (1), (2), (3).
Ilonyyena anpuopHasi OLEHKA pPa3HOCTH MABYX pelleHH ¢ pa3HbIMM HAYaJbHBIMU
bynkuuamu. loka3aHa eJUHCTBEHHOCTb pellleHMst 3ajauy. HalimeHo ocpeAHeHHOe
no & ypaBHeHme C TIOCTOSHHBIMM KoddduuueHTamu, coorsercrBylomee  (1).
JlokazaHbl CyHmIECTBOBAHHE H €IMHCTBEHHOCTb pEIUEHHS OCPEAHEHHOTO. YPaBHEeHHS.
Jloxazana 6iusocTh pewleHuit: pasHocTh peweHu#t  3amauu (1), (2), (3) =
OCpeJHEHHOM 3ajauM sBAseTcs Majoft penmummo# mopsaka 6'¢ ¢ d < L

JInreparypa
[1] Pymerko O. B., Conysin A. A. Teopemuvneckue ochoev neaunetinot axyemuwxy. [/ M.:
Hayxka, 1975.

06 ycJIOBHSIX CyleCTBOBaHUS pelleHusi KpaeBhIX 3aJa4 JuHelnoh
nuddepeHuuaILHON CUCTEMBI IPU €€ BO3MYIIEHUN.
Paxumbepanes M. M. (Hucrutyr matemaruxn MOH PK, r.Anvarsl, Kasaxcran)

P&CCM&TPHB&&TCH JInHeltHas cucreMa
&= At)z, z€R", )

rge A(t) - KyCOYHO HeNpephIBHAS M OTPAHHYEHHAS Ha IIOJyOCH MATPHYHAS (DyHKUUSL.
Wcenenyercs: paspemuMocTs kpaesolt sagaun z(0) = a, z(T) = b npu NpoM3BONBLHBLIX G
u b IS cHCTeM, KOTOpHIE SIBJIIOTCS BOSMYILEHHBIMY K AanHof. IIycrs Q,w — uenTpanbhble
nokasatemu cucreMbl (1)(cm.[1]). HMcrnonpayeM Takyio XapakTEPUCTHKY CHCTEMbI Kak
SKCIIOHEHIMATIbHASA Da3Je/IeHHOCTh nHaekca k (em.[2]).

Tlonaraem, urto cucreMa (1) ofnazaer CBOACTBOM aNIPOKCUMAIIHOHHON Pa3pelIMMOCTH
Ul IBYXTOYEYHBIX KPaeBbIX 3884 C IPOM3BOJBHBIMY HEHYJ/IEBBIMY KPAEBBIMH YCIOBUAMY,
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ec/ TIpH JTIOOBIX HEHYJIeBbIX a,b € R™ nns Beakoro € > () HallayTcs MaTpuuHas QyHKUUS
B.(t), sup ||B:(¢)| < €, u uncino T > 0 TaKue, 4TO CyLIECTBYET PelI€HHE CUCTEMBI
t>0

z = A(t)z + Be(t)z,

yaossnersopstioliee yciaosusiM £(0) = a, z(T) = b.

Teopema. Cucrema (1) o6namaer CBOHCTBOM ANIPOKCHMALMOHHON DPA3PEIMMOCTH
KpaeBoil 3aJa4M C IPOM3BOJIbHBIMHM HEHYJIEBHIMH KDAEBBIMH YCJIOBHAMM TOILA M TOJILKO
TOrAa, eCM LEHTPaJbHbIE HOKAa3aTe M cuereMbl (1) yaosnersopsior ycuosuo 2 > 0,w < 0
H 3KCHOHEHIHAJIbHAA Pa3/Ie/IeHHOCTD He BLINOJHSETCs ISl Beex k.

JInreparypa

[1) Beuos B. ®., Busorpag P. 3., I'po6man . M., Hemumuxuit B. B. Teopus
noxaszameneti JIAnYHo6a u ee NPuAOHCEHUA K meopuu ycmotinusocmu. M., 1966.

[2] Munmuommuxos B. M. //Jupdepenyuasvure ypasnenus. T 18 (1982), N 12, c.
2132-2148.

Application of weighted potential theory for large deviation results for random
matrices
Réfly J.

Empirical eigenvalue distribution of random matrices plays important role in physics
and statistics. We know the limit distribution as the matrix size goes to infinity in several
cases, for example for self-adjoint, positive semidefinite or unitary random matrices. Since
the 90’s large deviation theorems were also proven for this classes of random matrices.
The rate function for this large deviations is a weighted logarithmic energy, where the
weight functon depends on the distribution of the entries, and the limit distribution is the
corresponding equlibrium measure, so weigthted potential theory gave the possibily to find
the limit distribution for other classes of random matrices, for example for some sequences
of random contractions.

Singularities in slow-fast systems and geometric control theory from a common
viewpoint.
Remizov. A. (Porto)

The slow motion of the slow-fast system

% = F(z,y) +ef(z,y,¢), %Z— =¢e¢G(z,y) +o(e), t€ R™, y€ R", (1)
with m > 1, and n > 3, is given by the vector field
de; _ |OF|7Y/ , OF;\ dy _ o
Tit— - or <G,a—y>, E?—G((L‘,y), z——l,...,m, (2)

defined on the set S\ K, where S : F(z,y) = 0 is the slow surface of (1), K : '%fl =0is

the locus of the projection 7 : § — Y along X. Here X and Y are the spaces with variables
z and y, respectively, and triangle brackets mean the standard scalar product.
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Totally singular extremals of the affine-control system

d
= =@ +uh(@), cER" ueR, (3)
with n > 3, are the trajectories by the vector field
dr _ hon dp  Bho  hoor Ohy n nye
dt_f°+h1m Y B T T8 i 03 z € R", pe (R")", (4)

where hi,.i, = 0, fir,in)s @0d fis iy = [fiy, fir,....is], Square brackets mean the Lie

brackets. This field is defined on the set S\ K, where S : hy = hgy =0, and K : hy;0 = 0.
1t is readily seen that the vector fields (2) and (4) have the common nature, and hence

they can be considered from a common viewpoint. The construction is based on the multi-

plication the fields (2) and (4) by the denominator |g—5| and hj1g, respectively. After that we
obtain the vector fields with special property: among the germs of their components there
exist m + 1 germs (m = 1 for (4)), which generate the ideal (in the ring of smooth germs)
containing all others components. Such vector fields can be written in general form:

m+1
{1'.:”1': i=li"'1m+l7 éjzzaijviy j=lr"'?la (5)
i=1

where the local ideal T = (v1,...,Um+1). The set of the singular points of (5) is given by
equations v; = 0,...,Um41 = 0, in general case it is a smooth submanifold of codimen-
sion m + 1 in the phase space. The aim of the talk is to study the vector field (5) in the
neighborhood of the singular point.

Tlorpanuunslii cnoif rodpuposanHoit nIaCTUHBL
Pomanos M. C. (r. Mocksa)

PaccmaTpuBaercst 331244 O ABHXKEHHM 3JIEKTPOTPOBOAHON XKUIKOCTH B NOTPAHUTHOM
ci0e rOdPHPOBAHHON MJIACTHHH B NPHCYTCTBHM Marmuraoro mons. Ilycts mosepxnocTs
UIACTHHEI 3aj8eTcsi ypaBHenueM y = Fe(z), rae £ - Maumlt mapamerp, cemeitcrso Fe
PBBHOMEpPHO CXOAUTCA K Hysio put € — 0 1 F(0) =0

IIpeanonaraercs, 4TO IIBHXKEHHE JKMAKOCTH TIPOYICXOAUT B obacTH
D, :={0<z < X; y> F.()} n onmcepaerca cucreMolt

p VY
€ £ —
ug + v =0.

¢ 'PAaHUYHBIMHU YCJIOBUAMHU

{ Yye  —ufus — vugy = —s(z)(U(z) — v°) - uv’ 1)

u(0,9) = uo(y), v(z, Fe(a)) = 0, v*(2, Fe(2)) = vo(2), u'(z,y) = Ul@). ()

3aeck U(z) - cKOpPOCTb BHEIIHErO IOTOKA, s(x) - npou3BefeHue KBa/paTa HAIPSKEHHOCTH
MACHUTHOrO I0JIA Ha K03(pPHIMEHT IPOBOIUMOCTH KHIKOCTH.
PaccMaTtpuBaercsi TakKe npejleibHad 3a1a4a

{ Yy — Utz — Vly = —s(z)(U(z) —u) — v’ 3)
uz + vy, =0.
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B obnactu Dy = {0 < < X, y > 0} ¢ rpaHHYHBIMY YCTIOBHAME
u(z,0) =0, u(0,y) = uo(y), v(z,0) = vo(z), u(z,y) v U@ (4)
Jloka3aHa cllefyIomas TeopeMa O CXOAUMOCTH peIleHuH.

Teopema 1. Ecu 3aa4a (3), (4) umeer pemenue u, v, TOrAa IpH BCSKOM € 3aaa4a (1),
(2) Taxoke umeer pemenue

u(z,y) = w(z,y — Fe(2)), v°(2,9) = v(z,y - Fe(z)) + Fi(2)u(z,y - Fe(x))

(<]
npuyeM a1 moboro komnakta K C Do N D, u aas mobott Gysxuun ¢ € W, sepuo:

LTIV
u u u U
e—0 ' ¥ e—0 v
_/(@—aa¢w@—3m ‘/(ﬁ—m¢u@-%a
£— £—
DoND, DoND.

O nonyHenpephIBHOCTH CBepXy mokasarene#t JlsanyHosa HeoanopoamHoil
CHCTEMBI.
Poxxna A. @. (MockoBCcKHY rocynapCTBEHHBIH YHHBEDCHTET)

MaoxecrBo M™ (n € N) Bcex JMHeMHBIX HEOAHOPOIHBIX CHCTEM
= A(t)x + f(1), z€R", teR*=[0,+00), 1)

C XyCOYHO HeNpephiBHBIMU oneparop-pynkuuamu A, orpanumyeHabiMd Ha RY, u
HEOJHOPOAHOCTAMH f, MMEIOLINMH HEeIOJIOKUTEbHbIA MoKa3aTenb JIsnyHoBa

A = i 3 alf(0) <0,

HaJeJIUM TOIOJIOTHeEl, 3aaBacMolt cemelicTBOM HopM (Huxxe cucremy (1) oBosnayaeM uepes

(A, f)
(A4, Nlla = tSG\;g(IIA(t)II +e M |f(t)), aeR!=(0,+00).

Onmnpenenenwme 1. [1] Insa sesikoro ¢ = 0,...,7n HasoBeM i-m noxasameaem Jlanynosa
HEOAHOPOAHOM cucTembl (1) BesmumHy

. — 1
(A, f) = Llenj? sup Jim = In|| X,z (2, 0)z]],

roe A7 — MHOXeCTBO BceX i-MepHBIX acdduHHbIX nopnpocrpancrs L C R™, a X4 —
onepatop Komu cucremu (1).

Teopema 1. Crapumit noxasaresb A\, NOJyHeNpephiBeH cBepxy B Touke (4, f) € M™
TOra M TOJIBKO TOTAa, Koraa An(A,f) = »(A), rae »(A) — Bepxumit HeHTpaIbHBIN
HEOJHOPOAHEIH NOKa3aTeb [1] 0AHOPOAHOH CHCTEMBI

& = A(t)z. 2
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Teopema 2. Eciu 2(A) < x#(A), rne Q(A) — Bepxnult HeHTpaJbHbIY Noka3aTens [2]

cucremst (2), To quist moboro ¢ = 0,...,n — 1 nokasaTesb \; IO/yHENPEPLIBEH CBEPXY B
Touke (A, f) € M™ Torza u TonbKO TOrAa, Koraa A;(A4, f) = x(A).
JIurepatypa

[1] Moposos O. M. Iloxasamesu JIAnymosa HeOGHOPOOHWT AUMETNWNT cCuUCTIEM
duppepenyuarvnnz ypasnenut. Iuce. M., MT'Y, 1991. {2] Bruios B. ®., Bunorpag P. 3.,
I'pobman . M., Hempikuit B. B. Teopus noxazamesed JIanynoea u ee Npuioscenus x
sonpocam ycmotnusocmu. M.: Hayka, 1966.

O rnagKoCTH NMEPUOANYECKUX PelleHHH KBa3WINHEHHOro BOJIHOBOIO ypaBHEHUS
C OZHOPOAHBLIM 'PDAHMYHBLIM yCJIOBHEM 3-ro poja
Pynaxos H.A. (BpstHckul rocypapcrseHssit yausepcuter uM. akan. H.I. Ilerposckoro)

PaccMaTpuBaeTcs HEOJHOPOAHAS JIMHEHHAN 3a4a4a
U — Uzz = f(z,t), 0<z<m teR; (1)

u(0,t) = u(m,t) + hu(m,t) =0, wu(z,t+2m)=u(z,t), 0<z<m teR. (2

O6oznagum = [0, 7] x [0, 27], Hx(R2) = W¥(Q)- npocrpancrea Cobonesa.

Teopema 1. IIpu h > 0 u k € {0,1} ana mobo#t 2w—nepuonnyeckoit mo t dyHKUHH
f € Hy(Q) (Hp(R2) = Lo(Q)) cymecTByer eauHCTBeHHAA 27— NePHOZHYECKast HO t PyHKUHS
u € He41(Q), aBasromascs obobieHasM perreHneM 3anayn (1) — (2). Ecan f € Hy(Q), To
u € Ha(2) N Cy().

PaccMoTpuM HeMHeliHOE ypaBHEHHE

Ut — Uge = g(u) + f(z,t), O0<z<m tER. 3)

Onupasice Ha TeopeMy 1 BHIBOASITCS YTBEPXIEHHUS O IISAKOCTH 06GOBIIEHHBIX pemeHuft
3anaud (3),(2), nonyyennsix B paborax [1],[2]. Paccmorpam ypasuenue sin —Topaon

U — Ugg +8inu=0, O<z<7 teER. (4)

Cnencreuem TeopeMsl 1 u paots! (2] aBisercss creayiowas TeopeMa.

Teopema 2. Cymectsyer hy € (0,00) Taxoe, 410 npu mwobom h > hy sazaqa (4),(2)
uMeeT HeTpuBHauBHOE (u % 0) pemnenne u € Ha(Q2) N C1(RY), koTopoe 3aBucHT oT t.

OTMeTHM, YTO CYyIIECTBOBAHNE HETPHBUATILHOrO, 3ABUCALIErO OT ¢, 6ECKOHEYHO INaIKOro,
67— nepHOAMYEcKOro Mo ¢ peLieHAs ypasHeHus sin —Ioprou (4) ¢ rpaHUYHBIMHA YCIOBHAMHA
Hupuxne u(0,t) = u(r,t) = 0 caexyer us pabotet [3]. 3amerum eme, uro Teopems! 1,2
cnpaseanuBbl Aasi rpanuynsix yenosutt u(0,t) — hul(0,¢) = u(w,t) =0, teR.

JIutepatypa

[1] Pynakos U.A.//Nuddepernnansusie ypapaenns. 2003. T. 39. N 11.

[2] Pynakos H.A.//Ouddepenuuanbusie ypasuenus. 2005. T. 41. N 10.

(3] Pynakos U.A.//YMH. 1985. T. 40. B 1{241).

Confluence of the nonlinear waves in the Stefan problem with undercooling.

Rudnev V. Yu. (Moscow)
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We shall construét a smooth approximation of solutions of the Stefan problem with
undercooling

Te=Trrs  Trlpmpyy = (-1 (afi(t) + 30/7i(t)) (1)
Brllymiiy = (1R @RF(E) i=1,2

under the assumption that the motion of the free boundary is the motion of the front of
a nonlinear wave and the confluence of free boundaries is interaction of solitary nonlinear
waves. '

The smooth approximations of solutions of the Stefan problem with kinetic undercooling
constructed in this paper are approximate solutions of the phase field system

Ot — Opr = —TUs,  E(Ut = Upr) = (u —u®) /e + a/r. 2)

and they admit a weak passage to the limit as ¢ — 0. In this case, we obtain the limit
problems (and their solutions) describing the process of confluence of free boundaries. Such
approach is called the weak asymtotics method, see [1].

‘We construct the desired formulas and derive the following effects:

(a) the weak asymptotic solution is smooth for ¢t > t*, the absolute values of the free
boundaries velocities are equal to each other at the contact moment;

(b) the temperature has a negative jump at the instant and at the point of confluence of
the free boundaries, and this jump is equal to

Bllmre, = ~(ri0(t")/4) i (rfe + 750 ®

where r = r;5(t) other positions of the free boundaries till the interaction.

In particular, it follows from (a) and (b) that the velocities of the free boundaries have
jumps at the point of contact.

We note that the only example known to the authors, where the confluence of the free
boundaries is studied, is given in [2].

This paper shows that the following classification can be introduced:

(1) problems in which the confluence of free boundaries leads to disappearance of one of
the phases; .

(2) problems in which the domain occupied by one of the phases changes its connectivity,
but the number of phases remains the same.

In this paper, we consider an example precisely from the first class of problems. We
do not justify the asymptotics of the constructed solution. But this can be done based on
our constructions. It is easy to see that the main role here is played by the (not proved)
existence of the classical solution up to the moment of confluence of the free boundaries. Qur
construction of the existnece under this assumption reduced the justification to estimating
the soluton of the heat equation with the right-hand side f. admitting the estimate

fe=0p(e*), 1ne(0,1/2)

and with zero initial and boundary conditions. An analysis of the structure of this right-hand
side shows that f.-&~# as & — 0 is a linear combination of functions §(r — ;) and &(r —ry),
i = 1,2 with coefficients depending on ¢, 7, and these coefficients converge fast to zero as
T — +00.
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Hence we can conclude that for r # r; the solution of this heat equation belongs to C*®
for € > 0 and admits the estimate O(e#). In the whole domain © x {0, T], a rough analysis
based on general theorems [3] shows that the solution belongs to W5°, § > 0, and has the
estimate O(e*) in the norm of this space. In particular, the weak limit of the constructed
weak asymptotic solution is equal to the exact global solution of the heat equation in the
phase field system.

References

[1] Danilov V. G., Omel'yanov G. A. and Shelkovich V. M. Weak asymptotics method
and interaction of nonlinear waves. Amer. Math. Soc. Transl. (2) Vol. 208, 2003.

[2] Meirmanov A., Zaltzman B. Global in time solution to the Hele-Shaw problem with
a change of topology. EJAM, Vol. 13, pp. 431-447, 2002.

[3] Friedman A. Partial Differential Equations of Parabolic Type. Prentice-Hall, N.J.,
1964.

The method of difference potentials
Ryaben’kii V. S. (Keldysh. Institute of Applied Mathematics)

The difference potentials method (DPM) proposed by V.S.Ryaben’kii is intended for
modeling and numerical solution of the problems which are settled by means of partial dif-
ferential equations. For linear equations DPM combines an universality of difference schemes
and convenient boundary integral equations method of analytic function theory. The main
construction of DPM - difference potential with boundary projectors - is constructed for arbi-
trary linear difference equations on arbitrary multidimensional grids and plays for solutions
of these equations the same role as classical Cauchy-type integral for solutions of Cauchy-
Riemann system. This report contains the construction of difference potentials and the list
of problems from gas-dynamics, electric magnetism, mathematical modeling of active shield-
ing problem of acoustics solved by means of DPM. The state-of-the-art in the development
of the method as of the year 2001 can be found in monograph: “V.S. Ryaben’kii. Method
of difference potentials and its applications. Volume 30 of Springer Series in computational
Mathematics, Springer-Verlag, Berlin, 2002.”

@opmyasl naTerpuposanus dyuaknuit Beccens Jort1(2), Yak+1(2), nomyennsie ¢
INOMOIIBIO CMCTEMBI KOMIIbIOTEpHOK anreGpsai.
Psbenko A. A., A6pamos C. A. (r. Mocksa)

Hcnonb3oBaHue COBPEMEHHOM CHCTEMBI KOMIBIOTEPHOR anrebpbl NpPH  pelIeHAM
MATEMATHYECKHX 33849 YACTO OTKPHIBAET BO3MOXKHOCTh IKCIIEDUMEHT2 — IIOCTPOEHHS
TOYHBIX pelIeHMA 3a1aud JUiA HeGONbIIMX 3HadYeHMHA napamerpoB. MoxeT NOBe3TH, M
H3ydeHHe TUX PellleHH# IpUBeAEeT K Jorajke (TMnoTese) o TOM, K&K BHILVISONT DelleHHe B
Ccllyvae TPOU3BOILHEIX napameTpos. Ilocse 9TOro cucTeMa KOMIBIOTEPHON aureGpnl MOXKeET
[OMOYE TIPOBEDHTH TIOSBUBIIYIOCS rMnoTe3y. Takopa ofHA M3 KOMIBIOTEPHEIX TEXHOJIOTHH,
MONE3HBIX JJIS MATEMATHYECKUX HMCCJIeJOBAHUA.

Crenys 3To# cxeme (TEXHOJIOTHH), C MOMOMIBIO CHCTEMBI Maple apropamu Grina HatineHa
u nokasaHa eme oxa dopMyra st uurerpana dysruun Beccenst Jn{z) Ans HeUeTHLIX
HATYPAJIbHBIX T

25 rpk 2_(9i 1)
/ Ja(z)dz=—)_ NG zf’ Y )J;(z)+

k=0
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n+l

3 _ k=12 (9: _ 1)2 :
ST =L P

k=1
Orta GopMyna OTCYTCTBYyeT B HM3BECTHBIX &BTOPaM CNPABOYHUKAX IO CIELHATHHBIM
byHKIISM,

Temn ke KOMIbIOTEPHO-8/IrefpauiecKUMN CPEACTBAMM IOK83aHO, YTO JJIf 9eTHBIX
HATYPAJbHBIX 7 He CYILIeCTByeT Npe/CTaBJeHHs Kaxofi-ubo mepsoobpastoi ans J,(z) B
BHIe JuHelHON KoMbunauun Hax C(z2) dyHkuuu J,(2) ¥ ee MPOM3BOAHLIX.

W3 Beex cBenennit o dynxkunsax J,(z) npu 060cHOBaHHN CHENAHHBIX BbIlE YTBEPXKIEHNH
HCTIOJIb30BAJIOCh TOABKO TO, YTO zzad;zg + 2L + (22 - n?) senaevca ana J,(z) MUHIMATLHEIM
8HHYJIMPYIOIIMM JiMHeHHbIM AuddepennnanpusM onepatopom Hag C(z). Orciona caeayer,
YTO AHAJIOTUYHbBIE yTBEPXKIEHHs, BKIOUast GOPMYNly HHTErPUPOBAHNS, COXPAHSIIOT CHIY H
nas Yo(z).

Kpurepuit oxHoKpaTHON NONHOTHI COGCTBEHHBIX (DYHKIMN BEIPOXKAESHHOTO
KBaJpaTUYHOro My4Ka BTOPOro MNOPSIKA
Prixsios B.C. (CapaToBckuil rocyaapCTBeHHBIH yHUBEPCHTET)

Paccmotpum B nipoctpanctee L;[0, 1] my<ok onepatopos L(A)
Uy, A) =y @ + Ap1y™ + Mgy,
Us(9,2) = Uio(y, A) + Upi (9, Az} =
(@ny®(0) + Aaw2y(0) + (Bry (1) + ABo2y(1)) =0, v=1,2,

rae pj,au;,B8;; € C. Ilyere wi, wz €CTe KOPHH XapaKTEPHCTUUYCKOTO YPaBHEHHS
w? + pw + po = 0. IlpeanonoxuM, dYTO 3TH KOPHHM JIeXAT Ha ONHOK mnpsMoif,
npoxogsiuiefl 4yepe3 HAvYaso KOODAMHAT, IO pa3HBIE CTOPOHBI OT Hadajla KOOPAWHAT.
He mnapymas oOmpocTH, MOXHO C4MTaTh, 4TO we < 0 < w;. QyHJaMeHTAIbHAS

cucrema pemenunli ypasnenns l(y,A) = 0 mpu A # 0 ectb yi(x,A) = exp(hwiz),
y2(x,A) = exp(Awpz). Obosnaumm v,; == U,o(y;, A)/A, wy; = exp(=Aw;)Up1(y;,A)/A,
v,j = 1,2, u V; = [v,v5]T, Wy = [wyy,we5]T, § = 1,2. Hyers 7 = |wal/wi,
age = detW,, Wi], ase = det[V,,Wi], a5 = detW,,Vi], az = det[V,,Vi],
by = —ay/ags, co = —ag/az do = Ingey (3meck Ing ecrs BeTBh NOrapudMma,
Takasg, yro Ingl = 0}, A = {N € C : M\ = (2kmi + do)/wr, k € Z},

Y = {y(z,)) = exp(durz) + boexp(AMw1 + w2z)), A € A}. Ouesngno, A\{0} ectn
MHOXKECTBO BCeX HeHyseBbix cobcTBeHHbIx 3Havenu# (c.3.) nmyuxa L()), a MHOXecTBO
Y\{y(z,0)} ects muox)ecTBO Beex coberpennbix dynkuuit (c.¢.) mMydKa, COOTBETCTBYIOMMX
HEHYJIEBBIM C.3.

Ocuosnbre npeanonoxenus: ay # 0, ay3 # 0, a7, = a12 = 0. Ecmar Wo # 0w Wy =0
u aj7 = 0, T0 dyHkuns exp(Aw; ) ABISETCS NOpoXKAaoMWeHt fs cucTeMsl ¢.¢. mydka L(A)
upu A # 0 u, rakuM obpa3oM, BoNpoc 06 OZHOKPATHON NMOJHOTE CHCTEMBI C.¢. fBasercs
TpuBHAIBHBIM. IIpeanonoxum panee, uro Wy =0 u a3 # 0.

Teopema. Cucmema Y odnoxpammno noana e npocmpancmee Lo[0,0] (0 > 0) mozda
u moavko moada, xozda ypasnenue Asf + %QCU,-B f = 0 umeem mosvko mpusuasvHoe
pewenue 6 mnpocmpancmee Li[0,0], 2de onepamopw A,, B u Cor onpedeasromca
popmyaamu (Pynxyua f(z) cwumaemes npodossicennot wysem 30 ompesox [0,0]):

SPaGora BrmoHena npu duxancoBoll nogaepkke POOU (npoekt 06-01-00003).
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(Acf)(z) = YL o@f(x +5), (Bf)(=) = f(:2), (GGIf) = Y i flz = s), 2de
< + 1.

l,m € NU {0} maxosw, vmol <o <l+1,m<or<m

O 3AJAYE PUMAHA JIJISI CACTEMBI YPABHEHUI
JABYXKOMITOHEHTHOW, IBYX®A3HON ®UJIBTPAIIUA B
IIOPUCTHIX CPEIAX B CJIIVUAE C2KIMAEMOCTHU OBEUX ®A3
Prixos JO.I. (Mucrutyt Ipuxnannott Matemaruxu uM. M.B. Kenapima)

PaccMoTpuM cilemyiomyio cHCTeMy ypaBHEHHH, ONMCHLIBAIOLLYIO NpPOlece GUILTPALMN
JBYXKOMIIOHEHTHON CMeCH B IIOPUCTOM cpefie

9 g K 8P
; ab(c,P)+——[G(c,P)Q)=O; _EEZQ'

7] 0
(e P)+ 3. Fle P)Ql =0 oz

3mech ¢ — KOHLEHTpaHusl OAHOrO u3 KommoHedt; P — nasnenue; dbynkuust bic, P) —
obmas miorHocTh cMech; dyrxkuuu F(e, P) u G(e, P) — coorsercTBytomue notoku; K —
MPOHMIAEMOCTS Cpejsl, & — ee mopHUCTOCTD.

BoinncanHast cucreMa sBJAseTcs BLIDOXKIeHHOH mnapabonudeckolf cucTeMolt IO
OTHOIIEHHIO K HEM3BECTHBIM ¢, P (OTCyTCTBYIOT BTOpble NPOM3BOAHBIE OT ). Beaemcrsue
BBIPOXK/IEHHOCTH TaKas CHCTEMa JOIYCKAET Pas3phiBbl ¥ GYHKIUH ¢ U 06/1aJ8eT HEKOTOPBIMH
CBOMCTBAMH KBA3H/IMHEWHBIX runepbosuveckux cucreM. ITosToMy MMeeT cMBbICT M3y4aTh
3agavyy PuMasa B kjlaccH4eckoil noctanoske yis byuxuuit ¢, P.

OKa3bIBaeTcs, YTO NpPH HEKOTOPHIX, PU3MUECKH MOTHBHPOBAHHBIX, MPEXNOTOKEHUIX
006061eHHOe pelueHre 3a1a4d PuMada B AByx(asHof o6sacTH AJIS U3y4daeMON CHCTEMbI
cyuecTByeT. IIpH 9TOM KOHLEHTPAUKHK C JOIIYCKAIOT Pa3pbIBLI, KOTOPBIE PACIIPOCTPAHSIOTCS
nogo6HO TOMY, KaK 3TO IPOMCXOAUT B Ciydae rumepboiandecknx ypasreHuit. dapinenue
P uenpephiBHO, HO €ro NPOM3BOAHLIE [0 NMPOCTPAHCTBY TEPHAT Pa3pPblB Ha Pa3pbIBax
KoHLeHTpauuit ¢. KpoMe Toro, B oT/i4ue 0T NOAOGHBIX 38834 JJ1s THIIEPOONHECKUX CHCTEM,
HMeEeT MeCTO OeCKOHeYHasi CKOPOCTb PaclpOCTPaHEHHs BO3MYIUEHHH, M pelleHHe 38Ja4l
PuMana Bcer/ia CONEPKUT Pa3pbIBH KOHUEHTPALMH.

BeckoHeYHOEe MHOXKECTBO IOJHHOMHMAJIBHBIX 3aKOHOB COXPaHEHHMs B rasoBoit
AMHAMHUKE
Purnos. A. U. (r. HoBocubupck)

Poiib 33KOHOB COXpAHEHUs B MexaHuke ¥ dhusuxe obuienssectHa (1,2 u ap.]. B HacToswel
paboTe /sl CTALMOHAPHBIX TE€UEHMN ra3a NOCTPOEHB! OJHOPOLHO-AUBEPreHTHAS CHCTEMA
ypaBHeHUN Ha MJIOCKOCTH NoTeHuMana (p,v) M, KaK CleACTBHe, 3aKOHBI COXPaHEHHs Ha
mwtockoctax (@, ¥) u (z,y)

1-M?
kV¢+U¢=0, U¢~V¢=0, k=—'p—2-‘—;
(Upu+ Vo) + (Upv — Vu)y =0

Hopusua cocrout B ToM, 4To dbynkuuy U u V sBisercs moarHOMOMM JMBO MO YeTHBIM,
anbo MO HEYETHBIM CTENeHsM yIJIa HAKJIOHA BeKTopa ckopoct §, crenenu nommuoMos U u
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V npoMsBOJBHBI, HO OTJIHYAIOTCS APYT oT Apyra Ha *1. Koagdunuentamu npu crenensx
SABJISIOTCA (DYHKIMH MOAYJIS CKOPOCTH ¢, BbIMHUC/ISiEMBble Yepe3 KOHEYHOe YHCJIO KBAApaTyp
¥ BKJIOYAIOIME DS KOHCTAHT.

B ocuoBe pesynprara Jjexar gsa (axTa. Ilepsnif riacuT, 4TO KaXAOMY TOYHOMY
pemtenuio ypapHenu#t Yamurusa Ha mI0ckocTH rogorpada (z,6)

Y2+ kY, =0, @, —P: =0; ko + 122 =0;  2(g) = /sdq

OTBEdaeT CBOS OZHOPOAHO-AMBEPIEHTHAS CHCTeMa Ha TLIOCKOCTH noTeHumana [3]. Bropott -
3TO HANW4He y NPHBEAEHHOrO Bblllle ypaBHeHus Jamneruna BTOPOrO NMOPsKa, HE COBCEM
[paBUILHO UMEHYEMOro HHoTAa 06o6imeHHsIM ypaBHeHueM Tpukomu, GeCKOHEYHOTO dHCia
pelrenutt B BUAE MOJUHOMOB [0 YETHBIM WM HEYETHRIM cTemeHsM § ¢ xoadduuuenTam,
BBIPAXKAEMBIMH 4epes3 z [4].

OTMeTHM TaK>Ke, 9TO JiMHeHHble KoMOuHanuu nosnHomos U (monumuHomos V) u BriGop
KOHCTAHT MO3BOJISIIOT IOCTPOMTH TIOJTHHOMMANBLHBIA 3aKOH coxpaHeHnms Ry — Q, = 0 ¢
dbynxupamu R u Q, B TOH MM HHOM CTENEHH yOBIETBOPAIOINMY 38/JAHHBIM TPeGOBAHUIM.
U, nakomen, cienys [5] Bce ckalaHHOe BBIE NEPEHOCUTCST Ha CJIydYall ONHOMEPHBIX
HeCTAIOHADHHIX TedeHu#t. B 3TOM cayuae peyb MIET O MOJMHOMaX NO IeTHBIM HIIH
HEeYeTHBIM CTeIleHsIM CKOPOCTH U ¢ Ko3duuueHTaMy, 3aBUCAIIUMY OT JABJIEHUHA P.

PaGora BeIMOIHeHA B paMKax MmexaucnunnuHapsoro npoekta CO PAH "Axryanbhbie
npobaeMsl Teopuu byskumit 1 ruaposunamMnku” (npoext Nel117).
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ITepeMelunBaiode KOHCTPYKIUN paHra 1
Proxuxos B. B. (r. Mocksa)

ITepememupaomue npeobpa3opanns PaHra 1 HIpaloT 3aMETHYIO POJb B IPrOAMIECKOH
TEOpUH, SHBIAACH MCTOYHUKOM MHTEPECHHIX NPUMEPOB [l CIEKTPAIbHOM Teopuu
UHAMAYECKHX CHCTeM H Teopun camonprcoesunennit. T. Anamc ycraHoBa CBOACTBO
epeMeInBaHns A/ KJIACCA JIECTHHYHEIX KOHCTpyKum# (cm.[1]). Asropom mpennaraerca
HOBRLIM KJI&CC TaK HA3LIBAEMBIX MOHOTOHHEIX KOHCTPYKILMI paHra 1, JJif KOTOPHIX CBOHCTBO
NepeMeIMBaHMS yCTAHABIUBAETCA TyTeM MTepauuy Momudunuposansnoro Merofa Ajamca.

Jlureparypa
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O IIEPBOM KPAEBOI 3AJAYE /J1s1 YPABHEHUSI CMEIIAHHOI'O
THUIIA C XAPAKTEPUCTUYECKNM BLIPOXKJIEHHUEM B
IIPAMOYT'OJIBHOM OBJIACTU
Caburos K. B. Cynefimaropa A. X. (r. Crepitamak)

PaccMOTpHEM ypaBHEHHE CMELUEHHOTO THIA
Lt = Ugg + Yuyy + auy — b2u =0, (1)

rae a,b = const,b > 0, B npamoyronbHoii obnacta D = {(z,y)| 0< z < 1, —a < y < 8},
a, 8 — 3aKaHHBIe IOJIOXKUTE/ILHbIE YACTA.

Kaxk ussectro (cM. [1]), 4To mocranoBKa KpaeBbix 3aa4 A4as ypasHenus (1) B obmactu
3JIMOTHYHOCTH CYIIECTBEHHBIM 06pa3oM 3aBHCHT OT Koadduuuenta a. B cs3u ¢ sTuM
BOBHHKAIOT ClIyyad, korja a > 1,6 < 0,a=0,a =1u 0 < a < 1. B nauno#t pabore
paccMOTpeH ciyualf, korga a < 0 u pelleHa crenyomas

3anaya. ITycmv a < 0. Hatimu ¢ obaacmu D dynxyuo u(z,y), ydosaemeoparousyro
YCROBUAM:

u(z,y) € C(D)NC¥ D, UD_); (2)

Lu{z,y) =0, (r,y)eD,UD_; 3)

w0,y) =u(l,y) =0, -a<y<p; 4)

wz,B) = f(z), 0<z <L (5)

u(z,—a)=g(z), 0<z2<1; (6)

i v (uy(3,9) - du(z,y)) lim (—y)*(uy(z,9) +du(z,y)), 0<z <1, ™

2de d = const, f u g - 3adanwvie docmemouwno aaadwue Pynryuu, npuvem f(0) =

= f(1) =0, g(0) = g(1) = 0.

Ipu @ < 0 ycTaHOBIEHH KPUTEPHH €MHCTBEHHOCTH H CYNIECTBOBAHME DelIeHHs 3812491
(2) = (7) na ocHOBe CIIEKTPAJBLHOTO METOZA PEIleHHs KPaeBbIxX 3aje4 (cM. [2]).
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VYeroliuuBocTh 3#1epOBBIX 3aCTHK
Caukos FO. JI. (Uucruryr Iporpammusix Cucrem PAH, Poccust)

B 1744 r. Jleomaps ODiimep paccMOTPeN CIEYIONYIO 331a4dy O CTAllHOHAPHBIX
konurypauuax ynpyroro crepxus [1]. Jan ynpyrait crep>KeHb Ha IIOCKOCTH, Y KOTOPOTO
3aKpeIuIeshbl IIOJIOXKEHUs KOHLOB, & Tak)Xe yIJIhl HAaKJIOHa CTep)KHs Ha Kosuax. Tpebyercs
ONpeZieINTh BO3MOXKHBIE NPOMUIN CTEPIKHS NpPH 3aJaHHLIX FPAHMYHBLIX yCIoBHSAX. Ditnep
nonyumna auddepeHuuaIbtbie YPaBHEHUs JJIsi CTALMOHAPHBIX KOHMHUrypauuii CTepxHA H
ONHCAJI MX BO3MOYXKHBIE KA4ECTBEHHEIE THIE. DTH KOH(MUIypanuy Ha3bIBAIOTCH JHIEPOBLIMH
3JI8CTHKAMH.
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Bonpoc 06 ycTOHYMBOCTH 3#IEPOBbIX 3/ACTMK PACCMATPUBAJICS B JIATEpAType IO
BApHANMOHHOMY MCHMCJICHHIO U TEOPUH YIPYTOCTH, ONHAKO OO CHX MOp GbUI pelleH JIUIIL B
HEKOTOPBIX YACTHBIX CIydasx.

B zoxsiane 6yaeT onucaHO MOJHOE pemieHHe 3ajadu 00 YCTONYMBOCTH 3i4/1€pOBBIX
3MACTHK C IMOMOLIBIO METOZOB reoMerpudeckoit Teopuu ynpasienus [2]. Ilomumo 3aTof
JIOKaJIbHON 3a7a4m, GyHeT TakxKe HCCIeAOBaHa COOTBETCTBYIoLias IiioGajbHas 3a7Ja4a
ONTHMAaRbHOTO yupasieHus [3].
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Presentation of subharmonic functions in semiplanes
Nazim Sadik

A theory of subharmonic functions of finite order, in considerable to the measure, leans
against integral formulas. In this article we obtain presentations for subharmonic functions
in the upper half-plane more general growth (r), what finite order. Basic a job performance
can be formulated as follows. Let function of growth (r) such, that or function In+y(r) is
protuberant relatively Inr, or lower order of function 7(r) equal to endlessness. Then for
any just subharmonic function v of growth (r) exists unlimited great number R of positive
numbers and family uz : R € R of just subharmonic functions in upper half-plane C such,
that 1) complete measures of functions ug in a circle [2| < R coincide with the complete
measure of function v; 2) v — ug =3 0 evenly on compact disks in C,. when R — oo, R €R;
3) family of functions ur : R € bfR evenly to on R satisfies limitations on growth, i.e.
T(r,ur) < Ay(Br)/r, where A and B are constants, and T'(r,-) is description of growth.

ACHMIOTOTHMKA CIIEeKTpadbHOM dyukuuu ouneparopa IIrypma—JInysunns c
JOKAJIbHO CyMMUPyeMbIM Ha R morenuuanom
Canosuuyvas H. B.

B npocrpanctse Ly(R) paccMaTpusaeTcst caMOCONpSKEHHOe pacminpenne L oneparopa
lrypma—Jluysunas ly = —y' + ¢(z)y, noreHunan ¢ KOTOPOro SBISETCS JIOKAJbHO
cymmupyemsim na R. VccneayeTca acHMITOTUYECKOE NOBEEHRE CIEKTPAIbHON bYHKIHM
8(x,y,\) omeparopa L. Tloayuena ouemka pasHocru [8(z,y,A) — fo(z,y,A)| mpu
sin(vA(z - y))

m(z—y)
~ cnekTpayibHan (yHkuus omepatopa Lo c notennuaiom ¢(z) = 0. Ilycts cnakana

GOMBIINX 3HAYEHHSX CIEKTPAJBHOTO mapamerpa A. 3jeck Op(z,y,A) =
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MOTEHIHAJ ¢ SBJSETCS PABHOMEPHO JIOKATLHO CyMMHDYEMEIM, T. €. YIOBJIETBOPSET YCIOBUIO
z+h z+1
w(h)=sup [ Jq(t)]dt < +o0, h > 0. O6osnaunm M =sup [ |q(t)|dt.
z€R 2z z€R z

Teopema 1. Ina cnextpanbhoii dyskuun 8(z,y, \) caMOCONPSIKEHHOTO PaCIIMPEHUs
oneparopa IlITypMa—JIunyBnins ¢ paBHOMEPHO Ha R JIOKaJIbHO CYyMMHPYEMBbIM MOTEHIAAIOM
g npu ) > e8McnpasenauBo HepaseHcTBO

sup [0(z,y.A) — Oo(z.v, V)| < 3¢eM/2 4 B2
TR InA

Teopema 2. B ycnoBusix TeopeMbl 1 BepHa OLIEHKa

1

sup  |0(z,y,A) — Oo(z,y, \)| = o(_.l‘/ﬁ

), A — +o0,
lz=yl>v/

B KOTOpPO# nocTosiHHasA B cuMBose O 3aBHCUT TONBKO oT M.
Teopema 3. Eciu dyrkums w(h) yaosiersopser ycaosuio }llir% w(h) =0, To
g

sup |z, y,A) — Oo(z,y,A)] = 0, A — +oo.
z,yER

IlycTb Tenepsb ¢ yOBAETBOPSAET YCIOBHIO

1/p
Q(R,h) = sup (f Iq(t)l”dt) < 400, p 2 1,0 < h £ 2R. O6osnaunm
I€[~R,R], [Ii<h \I
My(R) = Qp(R,1).
Teopema 4. Ilycrs  Mp(R) < +oc. Torma ana  cmexkTpaJbHOM
YHKUMM — CAMOCOLPSIKEHHOTO  paciupenust omeparopa Lrypma-Jluyswins mnpu
e1OMp(R) < ) < ¢O5R*T"My(R) pne R > 6 cipaBe;uBo HEPABEHCTBO

|9(:E,’y, )‘) - 00(1“1 y)A)l < Cl

Mp(R)/2 =T
MR (M,,(R)) .

sup
l=I<R/2, lWI<R/2 PR = InA

3aecs Cy u Cy — abCoIOTHEIE IOCTOSHHEIE.
Toapobusie nokasaTenbcTsa TeopeM 1-3 mpusesets: B pabote [1].
JInreparypa
[1] Camoruuas U. B. Hoean oyena cnexmpaavnoti GyRKYUU COMOCONPAI’CERHOZO
pacwupenus 6 Lo(R) onepamopa IImypmo-JIuysusts ¢ PpaBHOMEPHO  AOKAADHO
cymmupyemvim nomenyuaiom // Judd. ypapuenns, T. 42. Ne2. C. 188-201. 2006.

O cesasu dopmya ciega Kpelina u I'ensdanga-Jlepurana
Canosrnynit B. A., , Hononsckuit B. E. (r. Mocksa)

B 1953 romy M. M. Temnang u B. M. Jlepuran (cM. [1]) ana onepatopa
IItypma-Jlnysunns ¢ norennuanoM ¢(z) ¢ HyJeBBIM CpeIHMM moiydmum opmyrty
PEryASPH30BAHHOIO ClIEaa

30 = M) = 5(a(0) +a(m),

n=0
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30€Ch [iyn, — COBCTBEHHBIE YHCIIA BO3MYIIEHHOTO ONEPATOPA, 8 A, = N2 — COBCTBeHHEIE YHCIA
HEBO3MYIIEHHOTO.

B ToMm ke 1953 rogy soimna pabora M. I. Kpe#na (cM. [2]), B koTopo#t mokasana
dopMyna ciema A CAMOCONPSKEHHOro oneparopa H U CaMOCONMPSIKEHHOTO AAEPHOIO

Bo3MyIenus: T
00

tr (B(H + T) - B(H)) = / B'(\EN) dh,

rae GyHKuMs crekTpajsHoro capura £(A) 3aBHCHT TONBKO OT mapsl oneparopos H n T,
dbysxups ®()\) TPHHAIIEKUT JOCTATOMHO IIKPOKOMY Kiaccy, cofepkamemy $(A) = A.

MBE! ocTaHOBHMCS Ha Bompoce, noctasiennom . M. easdannom B 1956 roxy (em. [3)):
YCTAHOBUTH NIPAMYIO CBsI3b HOpMyI ciesa Turna Kpefina u Tuna lensdanzns-Jlepurana. Heno
B ToM, uTo B opmyne Kpeina u3 apyx omeparopos H u H + T KOHCTpyupyeTca OOMH
sigepuntit onepatop  (H +T) — ® (H) u Jajee HAXONMTCA BBIPAXKEHHE JJIS €ro CJeja,
a B dpopmyse Tuna lenndanna-JleBuTana peub BCerna WAeT O ABYX ONEPATOPAX, HHKAKOH
SZIEPHOCTH PA3HOCTH OMNEPATOPOB He NPEIIONaraeTCs, 8 HAXOMUTCH SBHOE BhIPAKeHHe JUIs
HEKOTOPOIt YHC/IOBOM XapaKTEPUCTHKH — CYMMBI Pa3HOCTelt COOCTBEHHEIX HCeII.

Mur (cMm. [4]) Ans OUCKpeTHBIX onepaTopos mnpejiaraeM o6GobuieHne MNOHATHS
hYHKIMM CHEeKTpaJbHOTO CIBHra M CcooTBeTcTBylomee ofobmenne dopmynnt Kpeiina,
KOTOpO€ €CTeCTBEHHO BKIIoYMT B cebsi dopmyny lenndanma-Jlepurana. Mer yBuauM, 90
obcyxaaemasi cBa3b HOPMYJ ¢ OOHOM CTOPOHHI, 06/IaJaeT ONpeAeNeHHEIM EIUHCTBOM JyIf
OTIEPATOPOB € POM3BOJLHOM NPHPOROH CIIEKTPa, HO C APYTO# CTOPOHBI, €CTh CyIleCTBEHHbIE
pasuYHst B 3aBUCHMOCTH OT TOTO, SIBJISIOTCA PacCMATPHBAEMbIE ONEPATOPHl JUCKPETHBIMA
WK HeT.
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High frequency asymptotics of the symbol of the Dirichlet-to-Neumann
operator in 2D diffraction problems
Sadov S. (Memorial University of Newfoundland)

Consider the Dirichlet problem for the Helmholtz. equation ouf.side a bounded convex
domain Q ¢ R? with smooth boundary I':

Au + k?u =0, ulr = f(s), -?# — iku = o(r~'/?) as r — cc. (1)

We parametrize I' by arclength s; let L be the length of T".
Definition. Let g = 8,u be the normal derivative of the solution. The Dirichlet-to-
Neumann operator N is the map f(s) — g(s).
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Let f,. be the Fourier coefficients of the function f (considered as a 2n-periodic function
of the normalized arclength 2ws/L). The operator N as a pseudodifferential operator can
be described by the formula

00

9(8)= Y or(s,m;k) fu exp(Yins), (2

n=—oc

where or(s,n; k) is the symbo! of N. As is well known, the order of N is 1, which means
that for fixed T', k, and s there exist limn~'or(s,n; k) as n — +o0 and n — —oc0.

We study the uniform high-frequency (k — o) of the symbol.

Theorem. Let «(s) be the curvature of T'. Denote w(k,s) = k/x(s). Suppose that
n,k — 0o in such a way that n/k — const = (L/2n)t (this defines t). Then

or(s,n; k) ~ k{w™ Fy(wt) + w3 Fy(wt) + O(w™°ra(wt)} 3

Here Fy, F3, 2 are universal functions of a single variable (known exzplicitly in terms of
Airy functions).

Formula (3) reaches far beyond the well known Kirchhoff approximation; it enhances a
number of “non-reflecting boundary conditions” whose role has been increasingly appreciated
over the last 20 years.

An approach to the D-to-N operator via its symbol leads to a new fast algorithm for
numerical solution of two-dimensional high-frequency diffraction problems even if  may
not be convex. A desirable higher-dimensional generalization is not readily available due to
symbol not being well defined globally, unlike in (2); this fact prevents statements uniform
in k. An exception is periodic (grating) problems with an appropriate radiation condition.

O6 annpoKCHMAaMOHHBIX ¥ BAPHALMOHHBLIX METOAAX PeryJsipU3alyy oJHOH
HekoppekTHo# 3aaaun Komun.
Cax6aes B. 2K. (M®TH, Mockosckas o6a., r. JonronpyaHsiit)

Uesb NpOBOOUMOIO HCCJIENOBAHUS — CPABHUTh pe3YALTATHl NPUMEHEHHS MEeTONOB
JUIMNITHYECKON peryispu3aiMd M MeTOJOB MHHEMH3AUMA (DYHKIMOHANOB HEBA3KH
sagaun Komm pna ypasHenmsi llipeamsrepa, npomssomsupmii omepaTop KOTOPOro
€CTb JIHHENHBI CHMMeTpHUYHHNA oneparop B mpocrpaHctee H = Lp(R), 3amaunmit
auddepeRIanbHHM BhIPaskeHHeM BTOPOro MOPSLIKa ¢ BHIPOXKIEHHON XapaKTepHCTHIeCKoN
¢$opmoit. Buipoxkaenue onepaTopa NIPHBOAUT K HADYUIEHHIO KOPPEKTHOCTH 3a4a4u (cM. [1]).

Kak pgnsa wusyyennst ycrofiumsocTn pelenuss 3amads Komm, Tak u ¢ nenbio
onpefeUTL OGOOIIEHHOE aNNpOKCHUMATHBHOE ee pelleHHe B CJy4dae HapylleHns
YCIOBUIN KOPPEKTHOCTH, HCCJIEAYeTCs 3JIIMATHYECKas PeryisiphH3auus yYKa3aHHOM 3alayun
- [OCTeNOBATENILHOCTh KOPPEKTHHIX 3amad  Kowu, anmpoKCHMHPYIONIAS HCXOOHYIO.
UccnegosaHa CXOOMMOCTb IOCTIENOBATENLHOCTH DEIIEHUH Derylspu30BaHHBIX 3aJad.
VYcTaHOBNEHO, YTO MOCIEAOBATENbHOCTh PEIIEHHH PeryjIapH30BaHHBIX 38084 CXOAUTCH
10 HOpMe TOrJa M TOJIbKO TOrZa, KOr[a paccMaTpHBaeMasi 3allauya MMeeT eIHHCTBEHHOe
pemenue. B IpOTHBHOM Cilydae YKa3aHHAS MOC/IEN0BATEbHOCTb CXOJUTCA Cl1ab0.

Onpegenesa mnpenenvHas 3ajada Komm, pelieRmeM KOTOpoH siBisercst cyalpiit
TpefeN NOCIENOBATELHOCTH PEry/IspH30BAHHBIX ellleHul, KOTOphI Mbl HA30BEM CIIa0kIM
ANNMPOKCHMAUBHEIM pEIleHNeM MCXOMHON HEKOPPEKTHOM 38J1a4H.
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a5 mpuUMeHeHMs K HEKOPPEKTHOI 3ajave MeToja KBasupeurenuit (cM. [2]) npemcrapum
3amauy Kommn B muddepesnmansoli Han B nHTerpajibHoit hopme Kak ypasHenue Au = f B
ruabs6eproBoM npocrparcTBe H = Lo((0,T), H). Onpeaenum GyHKUMOHAN HEBS3KH 380a49H
Komwmn xax HopMy oTkioHennst J(u) = ||Au — fllx.

Onpenenensl 3HAa4YeHMst TOYHBIX HIDKHHX TrpaHedl GbyHKIHOHANA HEBASKH 3aJadu
Komu B unHTerpansHoll u B auddepennuaisuolt hopMax, yCTaHOBJIEHA €IUHCTBEHHOCTb
MUHMMH3HUPYOIIEro sneMeHTa. Jia dynkiuonana sajaun B Auddepernuansroi dbopme
onpeneNeH MUHHEMU3NDYIOUIKI S/IeMeHT, & U1 MHHUMH3UPYIOIIETO 3jIeMenTa DyHKUHMOHAIA
HeBSI3KH 33a4H B HHTETrPAJILHON (hOpMe MOJIyYeHO UHTEr pajibHOe ypaBHEeHHe.

Wrak, 3anaya Kowm uMeeT eIMHCTBEeHHOe cj1aboe alNpOKCUMATHBHOE pelleHHe, He
3aBUCALUEHH OT Bbifopa perynapu3anuy 3aaa4u. Touku MUHAMyMa OYHKIUHOHANOB HEBS3KH
no HopMe 3afauu Komn B uHTerpaisHolli B B audpdepeHiuanbHOl (HOpMaxX pPa3/IMYHbI,
npuYeM 3HadYeHHe SKCTpeMasy HYHKIMOHANA B KaxIo#i Touke npomexytka (0,T) 3aBucur
or BesmumHbl 1. AIIpokcHMaTHBHOE penteHre u* () AoCTaBsieT MUHUMYM He hyHKUHOHATY
HEBA3KM HOPMBI, HO ceMelCTBY (YHKUMOHANOB HEBSA3KHM MOJYHOPM TOHOJOTHMH cJaboit
CXONMMOCTH B NpocTpaHcTBe H.

Jlureparypa

[1] Caxbaes B. XK. O gynryuonaiazr na pewenuar 3adaxu Kowu 0az ypashenus
IIpeduneepa c eviposicdenuem wa noaynpamot. // ZKBM u M®. 2004. T. 44, N 9. C. 1654~
1673.

[2] Tuxonor A. H., Apcenun B. 5I. Memodw pewenus nexoppexmuwz 3adav. // M.:
Hayxka. 1986.

Knaccndukauus JuHeliHbIX paciinpeHnit MppanMoOHaJIbHOIo NMOBOPOTA
OKPY>KHOCTH.
Caxapos A. H. (r. Huxun#t Hosropoz)

B noknage usydaeTcss JUHAMUKA JBYMEPHBIX JIMHENHBIX PACIIKPEHHN UPPALMOHAJILHOIO
[OBOPOTA OKPY>KHOCTH

(9. 2) = (p +a(mod2n), A(p)z), ¢€S', zeR? (1)

rne A : S' — SL(2,R) - nenpepbisHOoe oToGpax<eHue, /2T - MPPALMOHAJILHOE
yucno. M3aydyeHne auHamMuku Takoro OTOGPayKeHHs! CBOAMTCH K H3YHEHHIO KOTOMOJIOCHH
koupkia A(m,p) = A{pm-1)...A(p), nopoxnaemoro (1). Jpa xouukna A(m,yp) u
B(m, ) HA3BIBAIOTCH K020MOAOZUNMBIMU, €CJIH CYILECTBYeT HeNpephIBHOE OTOBpakeHHe
U : 8§ — SL@2,R) takoe, uro U~ (p + a)A(p)U(p) = B(p), nostomy
U= pm)A(m, p)U(p) = B(m, p) ana moboro m € Z. 3amaua Ki1accuduxamyun IMHEHHBIX
pacuMpeHHH B TEpMHHAX KOLMKJIOB (POPMY/IHPYETCS TAK: ONMUCATb BCE PA3IHYHEIE KIACCHI
KOrOMOJIOrUit KOUMKJIOB NPH 38,J8HHOM Q.
Sra 3a]a4a ABAAETCH YACTHBIM CIyHaeM KaaccndUKANUH romeoMoppu3mos Topa T?

f:(p,0) = (¢ + a, fo(6))(mod2r), 2)

rae oTobpaxkeHue cyos f, SABIAAETCS COXPAHSAIOMMM OPHEHTALMIO IOMeOMOPGHH3IMOM
okpyxnoctu. Ilycte F — HekoTopoe moausaTue romMeomMopdusma f Ha makpeiTHe S' x R.
FomeomopdusM f Ha3biBeTCS pezyaspmnim, eciiu cyliecTByeT ¢ > ( Takoe, 4TO

|F2(6)—6-npl < ¢
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A1 MOBHIX ¢ 1 6. B npoTHBHOM cilydae roMeoMOpU3M HASBIBAETCH UPPE2YAADHBLM.

Hcnonp3yst 31y KiaccuduKalMIO, a TakxKe OLEHKY YUCAa MUHUMAILHBIX MHOXECTB /IS
TIPOEKTHBHBIX paciiupenuit orobpaxxenns (1) (cuM. [4]), monyuaem cnexyromue yreepxaenus

Teopema 1. F'omeomopduam (2), nopoxnaembit nuneiinnM pacmuperneM (1) He uMeer
MHHHMAJIbHBIX MHOXKECTB CO CJIOEM, FOMEOMOP(MHBIM KAHTOPOBY MHOXECTBY.

Teopema 2. Ins nuBe#HbXx paciunpenu#t suma (1) cyuecTByer, no Kpa#Heii Mepe,
JBEHA/ILIATH HESKBMBAJIEHTHBIX KJIACCOB COMPSYKEHHOCTH KOLMKJIOB.

Pabora BrinonHeHa npu gactuyHo# noaaepxkke PO®U, rpanr 05-01-00501.

JInreparypa
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CrekTpaibHoe pa3jioykeHue Ha Bcelt npsimoit pyrkuuu I'puna ans
TpexciaokHo# cpeapl Mo PYHAAMEHTAJIBLHBIM (PYHKIIHUSM HECAMOCONPS>KEHHOTO
oneparopa Illrypma-JInysuins.

Canrsixos E. I (r. Mocksa)

Teopema 1. Pemenue ypaBuenus

Z Z + % + k2 (2)u = —20(z — 2")é(x — ='), (z, z) € R?,
rae k(z) = ko npu 2 < 0, k(z) = ky mpu 0 < 2z < H, k(z) = ko npu z > H, ki ~
KOMIUVIEKCHBbIE TIoCTOsiHHBle, Rek; > 0, kf =g + jo, &1 € R 1 =0,1,2, j - muumasn
enunnna, npu Imk3(z) 2 0 dyskuus u(z, ), abcomoTHO MATErpHPYeMast Ha Beelt OcH I,
YIOBIETBOPAIONAA B TOYKaX pa3phiBa 1-ro poma dynximu k?(z) ycloBHAM CONPSIKEHHUS -
HENpPEePLIBHOCTH (PYHKIHH U ¥ €€ HOPMaJIbHON K IpaHuMLe pa3peiBa 1-ro posa kosddunuenTa
NpOU3BOAHON, IIPECTABMMO B BHAE

mlz z'|
Z/ iz w2, )i (). 1)

u(z,z) =
1=0,2

QyHKIUY Up = Yo U Uz = P2 ABJIAIOTC OTPAHHYEHHBIMA QYHKNUAMH Ha Beell OCH 2 H
YAOBNETBOPSIIOT yPaBHEHUAM

—d%u;/d2® — k*(2)u; = (4% — kP)ui, p€ RY, i=10,2. (2)

pi(n) - oInM4YHBIE OT HyJs OS€MEHTHl CNEeKTPATbHOH Mephl, NPEACTaBJIsoLIel
JAHATOHAIbHYI0 MATPHLY-(YHKIHIO.

dpi(p) = dp/ai(u)bi(p)2m,i = 0,2.

Kosdbduupents ai u b} onpesensioTes 3 paBeHcTn

b3 (W)po(z, 1) + ag()wolz, — w)Polz 1),
b3(u)a(z, 1) + af(u)ba(z, —p)p2(z, ).
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OynxkupMy Y2 M Qo FBIAIOTCH HEOrDAHMYEHHBIMM Ha BCelt NMpAMON z pelIeHHAMH
ypaBHeHu# (2).

Ipencrasnenne (1), nOHHMaeMoe B  CMBICJe TNpPENeNbHOTO MEpeXoia  IpH
a1 € 0(l = 0,1,2), umeer mecto npu k?(z) — R, < 0.

IpencraBneenne (1), noHuMaeMoe B CMBICTIE IPHHIUIA NPEAEALHOTO NOTIOUIEHHS, HMEET
MecTo Taxxe mpu k%(z) € R',e; > 0.

Ipeacrasnenue (1) cnpaseanuso npu z,z’, 2,2/ € RL.

B paGorax (cM. [1]) u (cM. [2]) nonyweHo ananorugnoe mpescTaBJeHMe AJS pelleHHs
3aJia4u A AsyxciohtHolt cpeabt. Takum o6pasoM, 06061meHs! pesynbraTst pabot (cm. [1]) u

(em. [2]).
Jluteparypa
[1] Amurpues B. U., Canreikos E. T. Yenexu mam. nayx. 1994. T. 49, No. 4 (298). C.
79-80.
{2] Canrsixos E. I. Jupdepery. ypaenenus. 2002. T. 38. No. 5. C. 687-691.

HopMmanesHas ¢opMa aBTOHOMHON cucTeMnl B okpecTHOCTH (oKyca
Camoboa B. C.

PaccmarpuBaercs 3a4a4ya JIOKAJIBHOM KOHEYHO-IJIAJKON NPUBOAMMOCTH BELIECTBEHHOU
aBTOHOMHOH CHCTeMbl ODBIKHOBEHHBIX AuddepeHIHalbEbBIX YPABHEHUN K HOPMAaJbHON
¢opme B oKpecTHOCTH 0coGOM TOuku. JJOCTATOYHO XOPOIO H3y4YeHbI CHUCTEMBI, CHEKTP
JIMHEeMHON YacTH KOTOPHIX HE [EPeCceKaeTcs ¢ MHMMOHN ocbhlo. 3aech peys mofizer o ciabo
BHIPOXKJIEHHBIX CHCTEMax, MaTpHLa JUHENHON YacTH KOTOPBIX MMeeT JABa YHCTO MHHMBIX
(conpsikeHHBIX) COGCTBEHHBIX YHC/IA, B TO BPeMs KakK Apyrue COOCTBEHHblE YHCJIA JIEXKAT
BHE MHUMOI ocH.

PaccMOTpHM BeINECTBEHHYIO aBTOHOMHYIO CHCTEMY

- d§ _
=2 =00, &

e £,Q(¢) € R n > 0; Q) — aHanmuTHdeckass YHKIMS B HEKOTOPOH
OKPECTHOCTH Havasa kKoopauaat, Q(0) = 0, matpuna A = Q'(0) umeer n cobcTBEHHBIX
YHCesl, JIXKAIMX BHE MHHMMOH OCH M TApy YHCTO MHHMbIX cOBCTBeHHBIX umcen. Hauwa
IieJib COCTOMT B ONpefeieHHH BHIA HOPMAJBHON (OPMEI TAKOH CHCTeMBl YDaBHEHHH U
BLIICHEHUH YCJIOBHIY CYIIECTBOBAHHS KOHEYHO-IVIAAKOTO HEBLIPOXAEHHOrO Npeobpa3soBaHus,
npupoasmero cucremy (1) x HopMmanbHOM (OpME B HEKOTOPOR OKDECTHOCTH Hadaja
KOODJMHAT.

B cucreme (1) umeercs AByMepHOe MHBADHMAHTHOE LEHTpajbHOE MHOroobpasue, Ha
KOTOPOM B OKDECTHOCTH OCOBON TOYKM MHTErpasibHble KpuBbe JiM60 3aMKHYTBI (ciaydail
uenrpa), aubo sBAsIOTCA cnupansimu  (cayvai ¢okyca). Hac uHTepecyloT cuCTeMEI,
uMerone GOKyC Ha HEHTPalbHOM MHOr006pasHi.

Teopema. as moforo uemoro wmcna k > 1 cymecTByeT HEBBHIPOXKIACHHOE
npeoBpasosanue Kiaacca C¥, nmpuponsmee cucreMy (1), uMeroniyo boKyC Ha HeHTPAIBHOM
MHOrooOpasny, K HOpMaJbHON ¢opMe, UMeOLENl BUA TONUHOMA IO HEBBIPOXKIEHHBIM
KOOpZmHATAM, K03 PHUIEHTAMI KOTOPOTO SBISIOTCA (yHKIUH Kaacca C°, 3aBHCSIIME OT
BBIPOXAEHHBIX KOOPAMHAT.

Jlnteparypa
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[2] Bemmukmii I. P. Iagxas 3KBHBANEHTHOCTB pOCTKOB BEKTODHBIX MOJIEH.
// @yHKUMOHAIBHEIH aHa/IM3 ¥ ero npunoxenns. 1986. T. 20, s 4. C. 1—8.

[3] CamoBon B. C. Hopmanbhas (dbopMa aBTOHOMHOM CHCTEMEI ¢ OZHAM HYJEBbIM KODHEM.
// Maremarugeckune samerxn. 2004. T. 75, sun. 5. C. 711—720.

Acumnroruyeckne conuToHoobpasHbie penienus 3anauu Koum ans cuHryaspHo
Bo3MmyineHHoro ypasHenus: Kopresera-ne ®@pu3sa.
Camottnenxo 0. H. (Knescknii HannoHasbHbL yHEBepcHTeT nmeHH Tapaca Illesuenko)

Opnum u3 GyHIAMEHTANBHBIX yPABHEHHH COBPEMEHHOH (U3HKH ABJIAETCS ypaBHEHHE
Koptesera-ae ®pusa, mpenoxentoe s 1895 rogy I.Kopreserom u k. ne Opusom aas
omMcaHusi siBNeHHs "yequsensol Bosuml", orkphitoro x.Ck.Paccenom. Kak okasamock
nos:xe, ypasHenue Koprepera-ge Opusa ONKCHIBAET He TOJILKO JJINHHBIE BOJHEI IOBEPXHOCTU
JKHAKOCTH, HO U MOZENMpPYeT psii APYrux (pU3H4ECKHX ABJIEHHY U mpoueccos. B wactHocTH,
9TO ypaBHEHHe CTaJl0O MATEMATHYECKOH OCHOBOM IJIsi Pa3BUTUs HOBOLO HANpAaBJeHHs B
MaTeMAaTHKE — MATEMATHYECKON TEOPHHU COIATOHOB, Pa3/IMYHBIE ACTIEKThI KOTOPO#H U3yJasuCh
B paboTaX TaKMX WU3BECTHBIX MaTeMaTHKoB, Kak M.Kpyckan, II.Jlakc, B.E.3axapos,
C.I1.Hosuxos, JI.[I.®angees, B.O. Mapyenxo.

Ho, ne cMmorps Ha TO, 4To ypaBHenue Kopresera-ge @pH3a MHUUMMPOBANO Pa3BHTHE
TeOpHH OGpaTHON 3aJaud pacceMBaHusi, KOTOpas IO3BOJISET [OJYYHTb TOYHbIE DEUICHHUS
Ansg MHorux AudepeHUMANbHEIX YPABHEHHN C YACTHBIMH IPOU3BOOHBIMM, 3TOT NOIXOX
He NO03BOJISIET 3aMMCATH B SBHOM BUIE DPEIEHHS NPH HAJMYMH y TAKMX yDABHEHHH
H3MEHSAWUXCsT K03bduuueHTOB. B CBA3M ¢ 9TUM [yl TAKMX ypPaBHEHMH HCIOIbL3YIOTCS
aCHMITOTHYECKHE MeToAn! [1].

B naHHOM [JOK7naje pacCMaTpPHBAIOTCS BOMPOCHI O [OCTPOEHHMH ACUMIITOTUYECKHX
pewenui 3aaauu Kowmu Buga:

gz = a2, €)u; + b(2, €)uty,

C HaAYaJBbHBIM yciioBueM
X
u(z,0,¢) = f (;) ,

rae

a’(x’ €)= iak(z)fki b(.’E,E) = i bk(:z:)ak,
k=0 k=0

byuxnun ak(z),be(z) € C®RY), k = 0,1,...; dysxkuus f(n),n € R, npusagmexur
npocrpauctBy [lIBapua; € > 0 — Majbil napamMerp.
JIureparypa
[1} Maslov V. P., Omel’yanov G. A. Geometric Asymptotics for PDE. 1. AMS, Providence
(2001).

ACHMOTOTUIECKOE MHTETPUPOBAHNE CUCTEM CHHIYJISPHO BO3MYUIEHHBIX
nuddepeHuManbHLIX ypaBHeHN ¢ BEIPOXKASHUEM
Camycenxo II. @. (r. Knes)
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B pabore pa3paboran anroput™ petenus 3anadn Komu

EB(t)(;—: = f(z,t,€), t € [0;T), (1)

(0, ) = o, 2

rae B(t) - kBagpaTHas MaTpuua n-ro nopaixa, , f(t,z,€) — n-Mepnble BeKTOP-bYHKIHH,
¢ € (0;&g] — ManbIl napaMeTp.

Ilpu 3TOM paccMOTpeH ciiydail IPOCTHIX 3JIEMEHTAPHBIX JeJIHTe el perynsapHoro myyKa
marput || fz(z,t,0)]| - AB(2) (|| f«(z,t,0)|{ - kBaapaTHas MaTpHa n-TO OpsAIKa, cTON6UAME
15) f i (III, t, 0 .
"m0
IEJIWTENsi KPATHOCTH P M OJHOTO “GecKOHeYHOro” — KpPaTHOCTH 1L — P.

AcumnToTHueckoe peienue 3aaa4u (1), (2) nocTpoeHO Npu ycI0BHM, YTO PAHT MATPHUIIBI
B(t) na orpeske [0; T] He mocTosHeH.

KOTOpOH SABJISAIOTCS = 1,n), cayqail omHOro “KOHEYHOro” 3JIEMEHTAPHOTO

Jlnteparypa
[1} Bacunresa A. B., Byrysos B. ®. Acumnmomureckue pasaosCenti peuseHull CunzyaapHo
soamywennnz ypasnenuti. — Mocksa: Hayka, 1973. - 272 c.
[2] Camonimenxo A. M., Ikwme H. M., dAxosen B. II. Jlunednwe cucmemo
dufdeperyuarvrur ypashenut ¢ sviposicdenuamu. — K.: Beima mk., 2000. - 294 c.

06 ogHOoM onepaTope 060611EHHOrO CABUra, MOPOXKACHHLIM 06LUM
npeobpa3zoBanuem Pypbe-Beccens.
Cammna E. JI. (Boponexckuit roc. TeXHHIeCKH yHHBEPCHTET)

B pabore [1] BBeaens npsmoe n ofparHoe obmee npeobpasosanne ®ypoe-Beccens,
SAJPOM KOTOPOro sBJISIIOTCH (PyHKUUH, COOTBETCTBEHHO

Ap(t) = jp(t) + z2—(ptT1) Jor1(t),  Ap(=t) = jp(t) — iﬁ Jp+1(8)-

Qyuxumio A,  YCIOBUMCS — Ha3bIBATD A-cbyﬂxu;ueﬁ' Becceast. TpaaunuonHo
npeoGpasosanue Dypbe-Becceas ocHoBaHo Ha (YHKUMSX jp, p > —1/2. Ilpn srom
TeopeMa CJIOXKeHMs 1 3TUX (PYHKLMA IPUBOIMT K 000GIIEHHOMY CABHTY

Jp() jp(y) = Tyjp(z)a TYf(t,z) =
= _____ZL 2 _ 2p
T(1/2) Fp+ 1/2) ft Va2 +y% — 2zy cos a) sin’ a da.
Teopema ciroXKeHHs AJst A-(bym(uuﬁ Beccens umeeT BuI

Ap(A2) Ap(\g) = (1 — Dl =5 (Dt Du)) T2jp(A).

Kak okazsasocsk, onepaTop

77 = (1- 304 - 30+ D) 72

YAOBJIETBOPSIET BCeM IIATH AKCHOMaM onepaTopa o6obmersoro capura ({2}, crp.17-18 ). Ero
6ynem HaswbBaTh A-0606meHHBIM caBuroM. MHTepecHo OTMETHTh, YTO €r0 COCTABJISIONIHE

DzyTx, D,TY ne ynoBneTBOPAIOT 9THM yCIIOBUAM.
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Byxmonosble 6udbypkanyu NepuoJUYecKMX BOJHOBBIX peieHuii cobosieBckoro
ypaBHeHHUs 2-T0O NopsaKa.
Canponos 0. H. (r. Boporex)

Teopuss ypaemenm#t tuma C.JI. CoBonesa (mmu, Gomee KpaTko, COBGONEBCKHX
YDaBHEHM), HAYaJI0 KOTOPOH 3aJIOKeHO B [1], pasBUBAJIach B TPYJaX MHOTLOYHMCIEHHON
[PYONB POCCHHCKHX ¥ 3apyGeXKHLIX MATeMATHKOB [2},[3}. Hoxnax nocesen 3anawe o
HEPUOTUIECKUX BOJHOBBIX PELIEHUSX HEIMHEHHOro cOBOIEBCKOTO yPABHEHHs 2-TO NOPsAKa

4 62 2
Ou 6t1; au+ﬁu~}—u3=0,

52022 ‘a5 + 012%2‘
/I KOTOPOTO HAMIEHBI YCJIOBHS 3apOXkJeHHe “MaJibiX” BOJIHOBBIX DeIleHHH B CHTYalHu
PE30HAHCHOTO B3aMMOJENCTBUS ABYX BOJHOBBIX MOI,

IIpescTapienHnbie PE3YILTATH NOJyJeHbl Ha OCHOBE (PYHKIHOHAILHO — AHAIHTHYECKOR
KOHCTpYKuuu [4], IEeHTpajJbHbIM 3BEHOM KOTOpOW SBJAETCH Nepexoy K abCTpakTHOH
3a7a4e 0 GubypKaKy KpUTHYECKUX opGuT ¢pearonsMoBa byHKIMOHANA, 061a7a101Er0
c1a60ft KpYyroBo#i CUMMeTpHelt, ¢ oceayomel penykuuett (o MoxuduIMpOBaHHON cXeme
Jlsnynopa — IlIMpara) K 3amade o GudypKanuy KPHTHIECKMX TOYeK (QYHKUMHM YeTbIpex
NepPeMeHHBIX.
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ViupapuaHTHbIE MEPbI [JIsl CHHTYJISPHO IHNepboIHtIecKnX aTTPaKTOpOB.
Cataes E. A. (O6uunckuit Toc. TexH. yHUBEPCHTET aTOMHON SHEPTETHKH)

Onpenenesne  CHHIYJIADHO  UOepOOAMMECKOro — MOTOKa  (WIM  CHHTYJISIDHO
runepGoNIIecKoro MHoXecTBa) 65110 npuBeteHo B [1] xak ofobmenne runepbonHYeCcKOro
NOTOKA Ha Cjydail, KOrda B MHOXKECTBe HeOJIyXKJaloIHX TOYEK COACPKUTCH HelOABMKHAS
touka. IToxoxee ompegenenue npuseaeso B (2], rme cooTsercTByOmMft MOTOK HA3IBAH
1IceBAOrHIepOOIHIECKHM.

TIpuBeneM OUpEeleHne CHHIYIAPHO TUTepGOIMYECKOro TOTOKA COTIACHO paboTe {1
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Onpenenenne. Ilorok ®; Ha TpexMepHOM PHMaHOBOM MHOrooGpasum M HasbiBaercs
CHHIYJISPHO TIUNepOOJIMYHBIM Ha HHBAaPDHAHTHOM MHOXECTBE A, €CJIH KacaTeJbHOE
npocrpancTBo T, M B Kaxmo#t Touke £ € A packiiafblBaeTcsi B NPAMYIO CYMMY OBYX
HHBAPHMAHTHEIX NpocTpaicTs T, M = E2* @ ES, HenpepbiBHO 3aBUCSLIUX OT T Ha A, npuyem
BHINOJIHAIOTCS CBORCTBA.

1. E’ onuomepno, ES nymepHo.

2. CymecTByIioT KOHCTSHTHI ¢; > 0, ¢ > 0, 73 > 0, 72 > 0 Takue, 4T
(a) Ecmn u € E2°, t > 0, 10 |d®;(u)| < cre™"ul;
(b) Ecmu € E2*, v e ES, t>0, 10

A2 )] _ e 42 (0)

ful [v]

3. CymecTByoT KOHCTaHTH ¢3 > 0, v3 > 0 Takue, uyT0 ecan u,v € ES, t > 0, a S(u,v)
0603HaYaeT IIOMALL NAPALIeIOrPAMMAa, IOPOXKACHHOIO BEKTOPaMH U, U, TO NPH BCeX
t > 0 BepHO HepaBEHCTBO

S(d®¢(u), dd:(v)) > cae S(u,v).

4. Bce HEMOABUXHBbIE TOUKH, JIEXKAIIYME B MHOXKeCTBE /A, THNEpOOIUYHEI,

Mp1  paccmMaTpMBaeM NOTOKM H& 7-MEPHOM pPHMAaHOBOM  MHoroobpaswnu. B
PaccMaTPHUBAEMbIX IOTOKAX NpOCTpaHcTBO EJ° nMeeT pa3MepHOCTh N — 2, a NPOCTPAHCTBO
EZ, xak u B [1}, asymepno. [Ipeanonaraercs, 94To A — aTTPaKTOp, T.€. CYLIECTBYET TAKOE
orkpriToe MHOXeCTBO U D A, uto A = My5oP:(U).

Joka3biBaercs, YTO CyWIECTBYIOT KOHEYHOE YHC/IO 3aMKHYTHIX [OJMHOXECTB
Ai,...,Ax C A (3TE MHOXeCTBa H&3LIBAIOTCS KOMIIOHEHTAMH) M HHBAPHAHTHLHIE MEpHI
{1 -« [k, COCPEZIOTOYEHHBIE Ha MHOXKECTBAX A; , TAKUE, YTO

1. Tlorox ®; Ha kaxaoM MHoxecTBe A; C MEpO} Li; SProJmieH.
2. Ilepuopmyeckue TPaeKTOPUM IJIOTHBI B MHOXeCTBaX Aj.

3. Ecmu MHOXecTBO A; He CONEPXKNT HENMOABHXKHEIX TOYEK, TO A; — rumepomndecknit
aTTPAKTOP.

4. Ha muoxecTBax A; CyIUeCTBYeT HHBApHAHTHOE CEMEHCTBO CTPOrO HEYCTOHYHBBIX
MHOrooGpas3uli, OnpefeJeHHX Ha MHOXECTBe INOJHOH Mephl (CTporo HeycToHduBOE
MHOroo6pasme TOYKM & COCTOMT M3 TAKMX TO9€K y € A, 4TO PacCTosHHe MeXAy
Toukamu P.(z), P;(y) sKcroHeHHaNIBHO yObIBAET NPH £ — —00).

b

Ecau Mepa v abcomoTHO HenpeprbiBHA OTHOCHTENBHO Meph! Jlebera nu U, To cemeticTBo
Mep

1 T
vr = TA @g(l/) dt

npu T — 0O CXONMTCS K Mepe ). pjj; C HEKOTOpHIMH Koadwuumentamu p; > 0,
Ypi=1L

6. Ecan mMHOXecTBO A; CONEPXUT HEMOABIXKHYIO TOYKY, TO MOTOK Ha Aj; ¢ Mepo# u;
ABJIAETCH NePEMELINBAIOIINM.
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Direct and inverse Sturm-Liouville problem in the scale of Sobolev spaces.
Global stability
Savchuk A. M., Shkalikov A. A. (Mocksa)

It was Borg who showed in 1946 that a potential ¢(z) € L2(0,7) is uniquely deter-
mined by two spectra {\}$° and {ux}$° of the operators Lp and Lpy generated by the
Sturm-Liouville operator L = —d?/dz? + q(z) with Dirichlet and Dirichlet-Neumann bound-
ary conditions, respectively. In 1999 the authors suggested various methods to define these
operators with distributional potentials g(z) € W, (0, 7).

Define

Prk—1 =+ =k —1/2+ aze1 P2 = V Ak = k + oz

We can define the spaces [29 (finite dimensional dilations of usual weighted I§ spaces) such
that the operator T : W¢ — If,

To = {bk}{, by = (2/7) /a(z) sinkzdz, ofz)= /q(a:) dz
0

is an isomorphism for all # > 0. The classical case g(z) € L2(0,7) corresponds to § = 1. In
the case 8 € [0,1) the potential g(z) is a distribution.

Theorem 1. Define the map F(o) = {ax}{°. Then F maps Sobolev spaces W into
[8, moreover, F: W§ — £ is a bijection, where £¢ is a subset of {ax}$° in if, such that
the interlacing condition pg41 > px holds for all ¥ > 1. In addition, F' is analytic weakly
nonlinear map, i.e F(c) = (1/2)To + ®(c), where ®(c): W — [ is a compact and analytic
map for all > 0.

Theorem 2. (on global stability). For all § > 0 the estimate

llo =&l < Cli{pr} — {Ar}tlze = Cli{ow} — {Gx}lzo
holds provided that
{ox}, {ax} €20, = {{sx} € 2| il{se}lzo <70 prke1—px 2 b},

and C = C(8,r,h). The inverse estimate also holds.

Coupling of a convection-diffusion-reaction-system and Ginzburg-Landau
equation for the Chemical Vapour Infiltration of Silicon Carbide.
Schnack E. (Karlsruhe University, Germany), Langhoff T.-A., Deltchev D.
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Materials of ceramic-matrix composites are part of modern technology, e.g. in aerospace
industry. By chemical vapour infiltration, the SiC matrix is deposited around the carbon
fibres due to complex interaction of gas-phase and transport processes. In order to optimize
the material properties it is very important to control the gas flow through the fibre bundles
to avoid pore blocking. Therefore we need a detailed mathematical model of the occurring
processes with computer simulation to get the best properties. From geometrical point of
view we have a solid domain, a gas domain and an intermediate domain as a diffuse interphase
with a mixture of gas and solid particles. Starting with the free energy F on the whole
domain Q C R3 as functional of the phase field ¢ (t,) and defining the mechanism of
the mass transport by considering the chemical reactions we obtain a PDE-system for the
deposition process. This system consists of one equation of Ginzburg-Landau-type [1] for
the phase field to describe the evolution of the diffuse interphase,

T%¢(t,z)={2A¢(t,m)—4A¢ (¢ =1), (t,@) € (0;tmax) X

with the scalar coefficient A and of a convection-diffusion-reaction-system (CDR-system)
for the vector of concentrations, ¢ (¢, ) by using mass conservation of the different chemical
species:

%c(t, x) = agas (¢) (D + C + Rgas) € (t,®) + tsotia (#) Rsotiat (2, )

(t,z) € (0; tmax) X 2,

where D, C, Rgas and Rsolia denote the appropriate operators for diffusion, convection,
gas phase reactions and surface reactions, resp. The coupling of the CDR-system and the
Ginzburg-Landau-equation is realized by the process intensities agas (¢) and oyeiia (¢) occur-
ring as weighting factors in the CDR-system. By this coupling, the influence of the diffuse
interphase on the transport mechanisms are taken into account. For the simulations, we
consider a 2D-model and track the evolving surface. The numerical algorithm implemented
uses in a first stage the finite element method and besides the finite difference method. The
numerical tests have proven stability only up to tphax = 4 h in physical time for the whole
process [2]. To stabilize the process therefore we are going nowadays to a mixed discontinuous
Galerkin method as used for Darcy flow problems [3].
References
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Local stability and existence of 2D compressible vortex sheets
Secchi P. (Brescia)

This talk regards the existence theory for the Cauchy problem for the compressible Euler
equations in two or three space dimensions. We breafly recall some previous results on local
and global smooth solutions, and then focus on the existence of piecewise smooth solutions
(that can be either shock waves, rarefaction waves, contact discontinuities or sonic waves).
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The second part of the talk is devoted to recent results, obtained in a joint work with J.F.
Coulombel (Univ. Lille 1, France), on the existence of supersonic compressible vortex sheets.
The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the
free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak
sense. Due to the failure of the uniform Lopatinskii condition, the energy estimates exhibit
losses of derivatives and we solve the nonlinear equations by a suitable Nash-Moser iteration.

T'nobanbHas Teopusi ocobeHHoCTell KOpaHra 1 M ee NPUIIOYKEHUS] B KOHTAKTHOMN
reoMeTPHUM MPOCTPAHCTBEHHBIX KPUBBLIX
Ceawrx B. I. (r. Mocksa)

Bbruncnensl  yHuBepcasibHBEIE — JIMHEHHBIE — COOTHOLUEHMST  MEXIy  3i1epoBbIMHU
XapaKTepUCTHKaMH MHOroobpa3mit MysibTHOCOGEHHOCTEH B 06pa3e yCTOMYMBOrO IJIAJKOrO
orobpaxkeHusl IJ18JKOr0 3aMKHYTOrO MHOMOOOpasUsi B HPOCTPAHCTBO HECTPOro Gosbimeit
Pa3MEPHOCTH NIPH YCJIOBHMH, YTO 3TO OTOOpaXKEHHE HMMeeT TOJbKO OCOGEHHOCTM KOpaHra
1. JIns xaxknoM u3 deThipex KOMOMHAlMit YeTHOCTeH pasMepHOCTed NpOCTpaHCTB 06pa3a
n npoobpa3a HalileHa IOJHAsI CHCTEMa TAKMX COOTHOWEHHH. AHAIOrMYHbLIE PE3yJIBTATDHI
MOJIyYeHbl IS YCTOUYHMBEIX JIeXKAHAPOBLIX OToOpaxenuit kopawra < 1. B kauecrse
MPUJIOXKEHMA MOJTydeHs! MHOroMepHble 06061enns Kiaccudeckolt dopmysnsl Boze o uncie
ONOPHBIX OKPYXKHOCT€e#l KPMBU3HBI BBITYKJIOf KPHUBOIf Ha IJIOCKOCTH U TeopeMbl Opuamana
0 YHCJEe TPOMHBIX KacaTeJbHBIX IJIOCKOCTEeR HeyILIOLaroLlefica KPUBOH B IPOCTPAHCTBE.

ACHMNTOTNKA MOBEPXHOCTHBIX BOJH HaJl NPOHHULAEMBIM 6apbepoM
CemenoB A.C. (Oneccknif HanuoransHbli yunepenrer uM. WY, Meunukona)

B pamkax juHefiHO! TeopHM BOJIH Ha BOJE CTPOMTCS ACHMITOTHKA DPEIIEHHS 3aJa4i
0 IPOXO2AEHUM BOJIH HaJ IPOHHIAEMEIM HAKJIOHHBIM GapbepoM. B snuellHOH mocTaHOBKe
He CYIIeCTBYeT peIlleHHsi B BUAE NPOTPECCUBHON BOMHBL 6€3 OTpakeHus oT JmHuu Gepera,
ecd He TpennoJiaraTh HaJlHM4YHs OCOGEHHOCTel 1O MeHbIUell Mepe JorapudMHUECKOro
xapakTepa. Ecin npeanosarare, 4TO OTpajkeHHe OTCYTCTBYET, AOJXKEH CyIMECTBOBATDH
MEXaHHU3M NOIJIONIEHUs TIOCTYNaIoeil S3Hepruy, HanpuMep, o6paTHOro riyGHHHOrO TeYeH .
Hamuyve npoHuiiaeMoro SHa B HEKOTODOM CMBICJAE OpraHusyer Taknme TedeHus. C
ucrnonb3oBanneM Meroza BKB, mocrpoeHo acmMmmToTHdeckoe NpuOIMIKEHME PELIEHHS J0
JIMHEMHBIX YJIEHOB Pa3/iOXKeHUs. YKIOH AHa-0apbepa CUNMTAETCH MAJBIM, TaK, YTO [JIMHA
Haleraomieli rapMOHUYECKON BOJHBI HAMHOTO MeHblle JJIMHBI YKJIOHA. B cooTBETCTBUM
C 9THM IpPEANOJOXKeHHeM BhIOMpaeTcss Majblfi NapaMeTp U 3ajada 00e3pa3MepuBaeTCH.
Teuernue yepe3 6aprep noguuHsiercst 3akoHy Telinopa, CKOPOCTH NPOTEKaHHs Yepe3 Gapbep
BbIOUpAeTCST MCXOAA M3 COODpaXKeHHHl aCHMMITOTUYECKONW COBMECTHMOCTH DAa3/IOZKeHUMH.
IMonyyensl opMyJBl IS aMIUINTYZ [POXOAAIMX Haj GapbepoM BojH. BrisicHeno, B
YaCTHOCTH, YTO AMIUIATYAA 3THX BOJIH YMEHBINAETCH C yBeJHYEHHEM IpPOHUIAEMOCTH.
Paccmorpena Taxke anasorMuHasi AByMepHas 3ajada B HeJHMHEHHOH IOCTAHOBKE U
onpeesieH KPUTEPHil pa3pyieHus!, WM He pa3pylueHns, Haberaowux Ha 6apbep BOJIH.
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Basic properties of the Haar system.
Semenov E. M. (Voronezh University)

A basis {z;}32, of a Banach space is called bounded complete if, for every sequence of

n 00
scalars {a;}%2, s. t. sup ” Y. aizi|| < oo, the series Y a;x; converges. A Banach functional
n |li=1 i=1

space E on [0, 1] is called rearrangement invariant (r. i.) or symmetric if it is a Banach lattice
and all equimeasurable functions have equal norms.

Theorem 1. Let E be a separable r. i. space. The following conditions are equivalent:

1. There exists a boundedly complete basis in E.

2. The Haar system forms a boundedly complete basis in E.

3. E is maximal (this means that E = E”) and E # L,.

A basis {e;}32, of a Banach space E is called strongly conditional if, for every sequence
of signs 6; = £1, there exists x € E s. t. 6;ef(2) > 0 for each i = 1,2,... and the series
oS

i=
and M. M. Popov introduced this consept (Sib. Math. J., 1987) and they proved that the
Haar system is a strongly conditional basis in L;.

Theorem 2. The Haar system forms a strongly conditional basis in a separable r. i.
space E iff ag = 0 or Bg =1 where ag and B are the Boyd indeces of E.

Joint work with K. S. Kazarian and S. N. Uksusov. Research supported in part by RFBR,
grant 05-01-00629.

2 €} (z)e; is not unconditional in E where {e]} are coordinate functionals. V. M. Kadets
1

O HeKOTOpPHIX CBOMCTBAX INIaaxux peueHuit ypasHeHun#t Diinepa u
Hasbe-Crokca
Cemenos B. H. semvi@kuzstu.ac.ru (r. Kemeposo)

H3yualorcst CBOACTBA IVIAJKAX DeIIeHHH ‘sagaun Komm ans ypaBHeHu#i Ditnepa n
Hasbe-Crokca B NPOCTPAHCTBAX Pa3sNMYHON Pa3MEPHOCTH NpPH YCJIOBHAX (UHATHOCTH M
JOCTATOYHON [I8JKOCTH HAYAJILHOIO YCJOBHS. B 4YacTHOCTH, HMEIOT MECTO ClAeAyioupe
PE3YABTATHL.

Teopema 1. Ilycth B pasmeproctr n = 2 orobpaxenna u : [0,T) x R?> — R?
P :[0,T) x R? — R siasiorcs raakumMu pemennsivMu kiaccoB C° u C? coorsercTBenHo
3agaun Komm pns ypaBHenuii Diinepa c¢ navanbHeiM yciosueM u(0,z) = ¢é(x), rae
¢ € C§. Ipennonoxum, uTo npH KaxaoM duxcuposannoM t € [0,T) sumoauswoorca
ycnoBusi: 1)Ipon3BoAHbLIE %, %t'ﬂ, i = 1,2, mpumammexar npocrpancTsy Lo(R?)
M BMECTe C YACTHBIMM TNPOM3BOAHBIMU U i,U ;U ijk, YAOBIETBOPAIT YCIOBUIO POCTa
|%v(x)| > C(a)(1 + |z))7'! ¢ nocrosumoit, 3apucamelt OT ; 2)HOPMBI FD&JHEHTOR
Vu;,VH4%, i = 1,2, B npocrpaHcTse Ly(R?) paBHOMEpHO OrpaHMYEeHBl OTHOCHTENHHO
t Ha kaxzom otpeske [0,71) C [0,7); 3)byukuma P(t,z) = o(|z|?) npu 2 — oo.
Torza umeer MecTo pasenctso: |Vurll}, ey + |Vuall}, mey = V113, g2y + V2113, (p2)-
JanHasi Teopema 0606u18eTCs C €CTECTBEHHEIMM BHAOM3MEHeHHsIMU Ha ypaBHenus: Habbe-
Crokca. JI1st IPON3BOIILHOR PA3MEPHOCTH AHAJIOTHYHBIE YTBEPXKACHHS MMEIOT MECTO VIS
MIPON3BOAHBIX V%.
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YucneHHoe uccjeA0BaHME HECTAHAAPTHBIX JUHEHHBIX AuddepeHmanbHbIX
ypaBHeHU# ¢ pa3spbiBHBIMM HAYAJILHBIMM JAHHBIMH
CepmioxoBa C.H. (O6beauHEHHEI HHCTHTYT SAEpHBIX HccaenoBanult, JdybHa)

Tonyyenst acUMOTOTHKE nNpd  6onbmMX t JUI  HECTAHAAPTHBIX  JIMHEMHBIX
nuddepennuanbhbix ypasHeHnit. Pemaercs 3agada Komu ¢ pa3sphIBHBIME HaYasIbHBIMU
nannbivu: u(z,0) = 0 npu z < 0, u(z,0) = 1, npu z > 0. [nst ypaBHenns:

U = Uzz + Uttzz

JI0OKa3aHO CYILECTBOBaHHE pelueHus: Tuna “Gpusep™

U(z,t) = % + sgnQ(:z) cos(t) + O(Vz2t), t— oo, |z} <ct™/2
Jns ypaBHeHus
Uit = Use — Uszes

JIOK&3aHO CyILECTBOBaHME OBLIMPHOM 30HBI MEZJIEHHO 3aTYXAIOLINX OCLMIIISIMMA:
1+sgn(z) sgn{z) ™

2
U(e,t) = ———— + \/mz/tsm{%—z (L +0(t™Y) + O((z/t)™*)),

mpu t — oo, |Jz] > t'*%. OBcyxaamTcs pe3ynLTATHI YHCIEHHBIX SKCIEPUMEHTOB,
NMOATBEPXKAAIOMINX  CYLIECTBOBAHME  IK30THYECKMX  ACHMNTOTHK,  IPEACKa3aHHBIX
TeopeTnyeckd. Pe3ynbTarnl HUCHEHHBIX  SKCNIEPHMEHTOB  yKa3blBalOT TaKXKe Ha
CyILEeCTBOBaHNE PellleHus THlia Opu3ep 015 ypaBHEHUS

Utt = Uzz + ibUttz + Ultzzv ]bl <2

PaccmaTpuBaeMble YpaBHEHHsI BO3HHKAIOT IIPM OCPeJHEHUM YypaBHEHHUH, OMHCBLIBAIOLIMX
BOJIHOBBIE TIPOLIECCH! B NMEPHOAMYECKHUX CAOHCTBIX Cpelax.

LP-Properties of Solutions of Differential-Equation Systems
Serebryakov V.P. (Moscow)

Consider a system of differential equations

¥ =Q(z)y 1)
on the half-axis I = [0, 00) and the adjoint system
y'=Q" =)y 2

where y = (y1(z), ..., Yn(2))7 are desired solutions, Q(z) is a quadratic matrix of order n with
elements which are real valued and Lebesgue-integrable on each segment [0, 5] (0 < b < o0)
functions. Denote by g;(z) (i = 1,...,n) functions posed on the superdiagonal of the matrix
Q(z), and let g7 (z) = — min{gi(x),0}.

Theorem. Suppose that 1 < p < co and that there exists a consequence of pairwise
disjoint open intervals Iy = (ax,bg) C I (k= 1,2,...) such that

1. all non-diagonal elements of a matrix JQ(x)J are non-negative a.e. on Up% I , where
J is a diagonal matrix of order n having only 1s and (—1)s on its superdiagonal;
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2. there exists ¢ € {1,...,n} such that at least one of series

St = a7 ~ ) [ o7 (@)t 175

k=1

v o0
S0 - a# [ (o - awlar (@) da+ 18
k=1 I

is divergent.

Then at least one of the systems (1) or (2) has a solution not belonging to the space LP(I)
of n-component vector-functions.

Tl'apmoHnveckue orobpakenus u nosis Aura-Muica
Ceprees A. I. (r. Mockga)

Wsy4yarorcss rapMOHHYECKUe 0TODPAKeHNS W3 KOMIIAKTHBIX PUMAHOBLIX [IOBEPXHOCTEH B
npoctpancTBa neresb 2G KomnaxTHbeIX rpymn Jlu G. UHTepec K TakuM 0TOGpa<keHUSM
MOTHBUPYETCsI W3BECTHBIM PE3YJLTATOM ATBU, YCTAHABJIUBAIOMIUM B3aUMHOOJAHO3HAYHOE
COOTBETCTBHE MEKAY roJIoMOpdHEbIMY chepamu B mpocTpancTBax G 1 G-WHCTAHTOHAMH Ha
npocrpancrse RY. OCHOBBIBAACH HA STOM COOTBETCTBUM, ECTECTBEHHO BBIABUHYTH TMIIOTESY,
yTo rapMonmdeckue cdepbl B G JOMXKHH oTBeyaTs G-moiasM SHra-Mumaca na R2
s u3ydyeHUss rapMOHUYECKMX cgep B mpocrtpaHcrBax nereins §2G u, Gosee oBmum
06pa3oM, TapMOHUYECKMX OTOOpaXKeHHH M3 KOMIAKTHBIX PHMaHOBBIX nopepxsocTell B QG,
MBI TTOJIb3YEeMCsl TBUCTOPHBIM NIOAXO0I0M, KOTOPBII [T03BOJISIET CBECTH 3Ty 3aJa4y K OIMHCAHHIO
[10YTH roJaoMOpdHBIX OTOOPaXKeHHIt U3 KOMIIAKTHBIX PUMAHOBBIX [IOBEPXHOCTEN B HEKOTOPHIE
daarossie pacciaoeHds Haj rpaccMabuanoM 'uns6epra—IIMuara.

O6Guue cBONWCTBa INIaBHBIX YaCTOT JIMHENRHOro ypaBHeHMs.
Ceprees H. H. (MockoBckHit rocyZapcTBeHHbIH YHHBEPCHTET)

Has gansoro n € N muoxectBo £" Bcex ypaBHeHu
¥ + a1y 4t an ()Y + an(tly =0, t€R* =[0;00),

3a7aBaeMbIX KaxKJoe CBOMM HabopoM a¢ = (ay,...,Q) OFPAHUYEHHBIX HENPEPHIBHLIX
KO3 bHUMEHTOB, HaaeluM pasnomeprott ua RY Tomosorwmeti. Onpegennm [l] 2aaenvie
wacmomaut ypashenus a € E™ ¢ noMolpio HopMya

wi(a) =  inf supv(y), wi(a)=  sup inf v(y), i=1,...,n,
LeGi(a) yeL LEG:‘“"“(G)yEL
rae Gi(a) — MHOXeECTBO i-MEPHBIX MOIIPOCTPAHCTE NPOCTPAHCTBA pemleHmit (HyleBoe

PpellleHHe BCIOAY HCKIIIOYAEM) YPaBHEHHs a, a v(Yy) — wacmoma PeleHus Y, OnpenenseMas
Kak Jrobas (IIO YMOJIYaHHIO OJlHa U Ta )KC) U3 CIeAYIOIMUX BETUYHUH: 8€prHEE UITH HUIICHEE
cpedee

P(y) = Tm =~ = lim ¥
v(y) = lim Sv(y,t) wan z(y)—tg% v t)
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or uncaa v(y,t) nysed WIN CMeH 3naka WK xophet (T.e. Hyslelf ¢ y9eTOM HX KPaTHOCTH)
peuenust y Ha untepsane (0;t). ‘

Teopema 1. TnaBubie uactoTel J06oro ypaBHeHHMsi @ € & ¢ NOCTOSHHBIMH
KO3 UIMEHTaMN Y(OBJIETBOPAIOT PaBEeHCTBAM

wi(a) = wi(a) = [ImA;(a)], i=1,...,n,

rae A;(a) — KOpDHH COOTBETCTBYIOMIErO XapaKTePUCTUIECKOIO MHOTOYW/IeHa, YIOPsiJo4eHHble
TIO HECTPOTOMY BO3PACTaHUIO MOZYJIEl MHUMBIX YacTel.

Teopema 2. I'maBHble yacTOTHI JIIOGOTO ypaBHEHHsI ¢ € £™ KOHEUHBI H YIOBJIETBOPHIOT
COOTHOIIEHUSM

wi(a) =wila), i=1,n, u wia)2wae), i=2,...,n—-1

(roe HU OQHO M3 HEPABEHCTB HeJb3sl, BOODLIE I'OBOPS, 3AMEHHTb PABEHCTBOM), a Ipu 1t < 2
BCe PA3HOBHUIHOCTH YaCTOT CPa3y BCEX €ro pellleHHfl OAUHAKOBBL

Teopema 3. Bce riaBHble 9acTOTHl, paCCMaTpHBaeMble Kak (bYHKIMI HA IPOCTPAHCTBE
E™, npu n < 2 — HEOPEPHIBHbI, & IIPH 11 > 2 — pa3pbIBHBI i JlaXke He NPUHALIEXKAT IIEPBOMY
knaccy Bapa.

JInreparypa

[1] Ceprees U. H. Onpedeserue u ce0ticmea TapaxmepucmuNeckut “acmom AuKelinozo

ypasrenud. Tp. cemunapa nm. 1. I'. Ilerposckoro, 2006, Buim. 25. C. 249—294.

Paspuisuble pemenus yHKUMoHANBHO-AU( hepeHIHaLHbIX YPaBHERM ¢
060611eHHBIM BO3AeHiCTBHEM B IIPABOM YacTH
Cecexun A.H., @erncopa FO.B. (Hucrntyr matemaruky n mMexaruky YpO PAH)

PaccMmaTpuBaercs HeluHelHas cucreMa AuddepeHINaIbHBIX yPaBHEeHHHE
#(t) = f(t,z(t), 2:) + B(t, =(1))3(t), m

roe 2y = z(s),t—7 < s <t,7>0 z € R* v(t) € R™, z(t) € R"*, v(t) — BexTOp-
byHKUMs, UMelomas Ha IPOMEXYyTKe [to, "] OrpaHuteHHyIO BapHalyio, Ipon3Bouse B (1)
[OHUMAIOTCST B 06061meHHoM cMbicae, f(t,2,2:) — HenpepbIBHBIN (DYHKUMOHA, 3aXaHHbIN
Ha [tg, 9] X R™ x BVt — 7,1}, co suadenusimu B R" (BV[t — 7,t] — 6aHaX0BO IIPOCTPAHCTBO
7. — MEpHBbIX BEKTOp-(MYHKIHI OrpaHHYeHHOH Bapwaumu), B(i,z) — HenpepeIBHasg N X m
-MaTpHUa-yHKIHS.

OcobennocTbio ypaBHenust (1) siBasiercst TO, 9TO B NPaBOH HYACTH €I'0 CONEPIKUTCH
HEKOPPEKTHas onepanys YMHOXKEHHs PasphIBHON (yHKIMH Ha 0D06LIeHHYIO.

Ilox pewennem ypashennsi (1) GygeM NOHHMATb BEKTOP-(DYHKIIMIO OTPAHITIEHHOH
BapHAllMH, ABJAIOMYIOCS NOTOYEYHBIM [IPeJIEJIOM MOCAEAOBATENBHOCTH TIALKHX perleHui
ypaBHeHuss (1), [OPOXKJEHHON  NOCAENOBATEILHOCTBIO — ABGCONIOTHO — HENPEPBLIBHBIX
bynkmuit, annpokcumupyomux yHKUMIO OorpanMdeHHofft Bapmanun v(t), ecim mpexen
[10C/IEIOBATEILHOCTH He 3aBHCHT OT cnocoba ammpoxcumanuu yHkuuu v(t). Homydeno
UHTErpalibHOE YpaBHEHHUE, ONHCHIBAIOLIEE TaK (POPMATH3OBAHHOE PelleHue.

HMccnenoBanus BLINOJHEHB! Tpu (uHaHCOBOH mnonuepxke PO@U, npoekr NeO6-01-
00445.

JInreparypa

[1] Zavalishchin S.T., Sesekin A.N. Dynamic Impulse Systems. Theory and Applications.

The Netherlands. Kluwer Academic Publishers, 1997. 268 p.
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[2] Fetisova Yu.V., Sesekin A.N. Discontinuous solutions of differential equations with
time delay. Wseas transactions on systems. Issue 5, Volume 4, 2005. P.487-492.

Partial preservation of frequencies and Floquet exponents in KAM theory

Sevryuk M.B. (Institute of Energy Problems of Chemical Physics, Moscow)

The phase space of a completely integrable Hamiltonian system with n degrees of free-
dom is foliated into invariant n-tori carrying conditionally periodic motions. If the Hessian
(with respect to the action variables) of the Hamilton function of this system nowhere van-
ishes (Kolmogorov nondegeneracy), then the tori with strongly incommensurable frequencies
w1, ... ,wn do not disappear under sufficiently small Hamiltonian perturbations but are only
slightly deformed, the motion on each perturbed torus being quasi-periodic with the same
frequencies w1, . .., wn. In this sense, one speaks of preservation of frequencies for the unper-
turbed system. It has been observed by a number of authors (S.-N. Chow, Y. Li, Y. Yi, 2002;
M. B. Sevryuk, 2006) that Kolmogorov’s nondegeneracy condition can be relaxed in such a
way that the unperturbed system will exhibit the preservation of just some subcollection of
the frequencies w;,, ...,w;,, k < n (partial preservation of frequencies). The corresponding
nondegeneracy condition is intermediate between Kolmogorov’s and Riissmann’s conditions.
One can also examine partial preservation of frequencies for lower dimensional invariant
tori whose dimension n is less than the number N of degrees of freedom (Y. Li, Y. Yi, 2005;
Zh. Liu, 2005; M. B. Sevryuk, 2006). In the talk, for lower dimensional tori, we will consider
the more general problem of partial preservation of not only the frequencies wy,...,w, but
also the Floguet exponents A1,...,An—pn (the eigenvalues of the coefficient matrix for the
variational equation along the torus). All the results can be carried over to various classes of
non-Hamiltonian dynamical systems (reversible, volume preserving, or dissipative systems).

O paspemmMocT ogHopoAHoro ypaBHeHust Bunepa-Xonga
Cru6res M.C. (Hucruryr matemarnkn um. C.J1. Cobonesa CO PAH, Hosocubrpck)

Paccmarpusaerca ognopoasoe 06o6uénHoe ypaBHerne Bunepa-Xonda
x
s@=[ Se-yFa@), =20,
—00

roe F' — pacnpegenenue sepositHocTell B R. ®ynkuus S(z) yamosaerBopsmomas 3ToMy
YPaBHEHHIO, HA3bIBAETCS P*-pewienuem YpaBHEHHH, eCJH OHA He yObIBaeT, HenpepbiBHA
cripaBa, He ofpamaercs Bcloxy B Hyab # S(z) = 0 ompu z < 0. Iycrs Xi,
k > 1, — nesaBuCUMBle Ciy4qalfilibie BEJHYMHEI C OfHMM ¥ TEM K€ DAacIpeJe/IeHHeM
F, He coCpegOTOYEHHBIM B HyJle. DTH BeJIMYHHBI NOPOXKJAIOT Ciaydalinoe 6iayxaaHue
So = 0,8 = X1+ ...+ X,, n > 1. CymecrByioT TONBKO JBa TUIla CIy4alHbIX
Gayxpanmit: 1) ocumsupyiomnit tan (S, xonebnercs ¢ BePOATHOCTBIO €IUHUIA MEXKIy
—00 M +00); 2) yxoaAuwmil THn (C BEPOATHOCTBIO emmHMma S, cTpeMuTcs Jmbo K
—oc, smbo K +o00). Haupumep, pacnpenenenve F nopoxaser ciyyaliHoe 6iy>xianue
OCHHMJLIHPYIOIIEro THIIA, eCJIM OHO CHMMETPHYHO WM eC/IM CYILECTBYeT CpejHee 3HadeHue
p = [geF(dz) n p = 0. Jdoxasano cymecTsoBaHWe P*-pelieHHs paccMaTpPUBAEMOLO
ypaBHeHHus, rie F' — pacnpezesieHHe BepOSTHOCTE! OCUMJLIMPYIOMIEro THIA. YCTAHOBJIEHbI
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aCHMNTOTHYECKHe CBOjfcTBa 3TOro pemeHus. M3sectumi#t pesyabrar @. Cnunepa o
PaspeliMMOCTH  KJIACCHYECKOrO ORHOPOAHOrO ypaBsHeHmsi Bumnepa-Xomnda oTHocHTCH K
YaCTHOMY CJlydalo, KOTJa pachpejienenne F UMeeT CHMMETPHYHYIO MIOTHOCTD.

ITorpanuyHsil cjolt Ha urie
Ilanpuna T.B. (Mucruryr npukaaiHolt MateMatuxku uM. M.B. Kennnima PAH, Mocksa)

MerogaMu- cTeleHHON reoMeTpUM H3ydYaeTcs MOTPAHUYHEIN CJIOH Ha NOJIy6ecKOHEeUHOM
MIJIe B CTAL[HOHAPDHOM IIOTOKE BA3KON >XKHAKOCTH WM a3a, HANpaBJEHHOM MapaJslebHO
urae. Mmyres acuMnToTHknm TedeHMsT B HOrpaHMYHOM CJI0€ OPH CTPEMJICHHH K
GeckoHeHOCTH BIOJIB MIVIBI. PaccMaTpuBaloTCsl [Ba BAPHAHTA TedeHMs: (&) HEC)KUMAEMOR
HeTeIUIONPOBOAHON XKUAKOCTH N (6) CKMMaeMOro TenyonpoBoAHoro rasa. IlokasbiBaercs,
YTO BApPHAHT (a) He MMeeT ACHMITOTHK DelleHHH, YJOBJETBODPSIOIMX BCEM TPAHHYHBIM
ycioBusM, a BapuaHT (6) HMeeT HECKOJILKO CeMeHCTB aCHUMITOTHK  DeeHHH,
YAOBJETBOPSIOIIUX BCEM TPAHMYHBIM YCJIOBUSAM. DTH ACHMITOTHKH BOJIM3H MIJIBI UMEIOT
CTeneHHbIe WM JorapudMuYecKne 0COGEHHOCTH.

JInrepatypa

1] A4 Bpiono, T.B. llagpuna, O6 ocecuMMeTpuyHOM OOGTEKAHMH HIJIb! BSI3KOM
HeckuMaeMolt xkuzakocteio // JJAH, 2002, T. 387, N 5, c. 589-595.

[2] A.J. Bprono, T.B. Illanpuna, OcecuMMeTpHYHBI NOrPaHMYHBI CJloK Ha urte //
JAH, 2004, T. 394, N 3, c. 298-304.

[3] A. L. Bpwono, T.B. Ilagpuna, OcecuMMeTpr4HbI TOrpaHAYHBIA c/I0# Ha Hriae //
Tpyast Mock. mat. 06-Ba, 2007, 1. 68, c. 226-290.

Momentum Type Quantum-Mechanical Equations over p-adic Fields and
Solving Feynman Formula.
Shamarov N. (Moscow)

Schroedinger and Dirac quantum-mechanical evolutional equations in momentum repre-
sentation are (inverse-) Fourier-transformed (w.r.t. space variables) corresponding classical
(i.e. expressed in coordinate representation) equations. In model cases when “exterior (elec-
tric or electromagnetic, correspondingly) potential” is “good enough” namely being Fourier
transformed Borel countably additive measure on the momentum space P,

/@) =1ip- f(t) + ux (£(2) 1)

is a form of the momentum quantum-mechanical equations where used are the following

Notations. p is a given countably additive measure defined on the Borel o-algebra of
a finite dimensional Euclidean real vector space P (interpreted as momentum space) and
taking values in an algebra M, of complex square matrices of dimensions sxs (s€N;s=1
for the classical Schroedinger equation and s = 4 for the classical Dirac equation); p is a given
continuous function (2nd order polynomial in case of classical Schroedinger equation and
linear in case of Dirac one) defined on P and taking values in a subspace of M, consisting of
Hermitean self-adjoint matrices; desired function f maps a segment of real axis (interpreted
as a time interval) into the Hilbert space Lo(P;C*) of (classes of componentwise) square
Lebesgue-integrable s-component complex vector functions on P; the convolution * of a
measure and a Lo-function on P means the distributional one.
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Theorem 1. [1][2] There is a M,-valued countably additive measure M, ; of Poisson—
Maslov [3] type on P1%4 such that for a Cauchy problem (C.p.) ((2), f(0) = fo) takes place
a Feynman formula [4] with a chronological integral:

FO@) = T—/ Myo(dz) & P47 foo) ) @

The following theorem demonstrates independence of the solving formula (2) on the
ground field of the momentum space:

Theorem 2. If in the Notations above one uses a finite-dimensional vector space over
the field of p-adic {5] “numbers” instead of the (momentum) Euclidean real space than the
Theorem 1 is also true.

Note. In the proof, the measure M, for the p-adic P can be constructed just in the
parallel way to as it was made in {1],{2] for the real momentum space P.

References

[1] Shamarov N. N. The Maslov-Poisson Measure and Feynman Formulas for the Solu-
tion of the Dirac Equation.// Fundamentalnaya i Prikladnaya Matematika, Vol. 12 (2006),
No. 6, 193-211.

[2] Shamarov N. N. Functional integral with countably additive measure representing
solutions of the Dirac equation.// Trudy Mosk. Matem. Ob., 2005, Vol.66., 263-276.

[3] Maslov V. P. Complez Markov Chains and Feynman Path Integral for Non-linear
Equations.// Moscow: Nauka, 1976.

[4] Smolyanov O. G., Weizsaecker H. v., Wittich O. Surface Integrals in Riemannian
Spaces and Feynman Formulas.// Dokl. Math., Vol. 73, No. 3, 2006, 432-436.
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KoHcTpyKTHBHAs OUEHKA BPEMEHM CYLIeCTBOBaHMS DPelLIeHM ypaBHeHUiH,
OMHCLIBAIOIUX IIOBEPXHOCTHBIE BOJHBI MACAIBLHON XKHUAKOCTH
Hlamun P. B. (r. Mocksa)

B pabore paccMaTpUBAIOTCH YPaBHEHHs, OMMCHIBAIOIIME HECTALMOHAPHOE TedeHue
HeaJIbHON JKUIKOCTH CO CBOGOAHOMN MOBEPXHOCTHIO. 3a0a4H, ONUCHIBAIOIIHE OBEPXHOCTHBIE
BOJIHBI KJeaJbHOM >KUAKOCTH, PAacCMATPHUBAJINCH MHOMMM A4BTOpaMH. B uacTtHocTH, B
3THX paboTax pa3spemmMOCTb ypaBHEHHH OblIa yCTAHOBJIEHA JIMIIL HA JOCTATOYHO MAJIOM
BPEMEHHOM HHTEPBAJL.

B Hacrosmeit pafore wmccienyercst Bompoc 06 KOHCTDYKTUBHOH OIEHKE BpPEMEHH
CYIIECTBOBAHHUS PEIeHUN ypaBHeHHll, ONUCHIBAIOIIMX AWHAMHUKY HAEAJIHbHON JXUIKOCTH CO
csoboauofi noBepxHocThio. IIpensiorkeH KOHCTPYKTUBHBI! METOZ, MO3BOJSIOWKHA MOJIy4aTh
JIOKA3aTeIbHYIO OLIEHKY BpDEMEHH CYINEeCTBOBAHUS DELICHUN STHX YPABHEHUH.

Aprop Bhpaxkaer Gmarogaprocts akazemuxy PAH B.E. 3axaposy 3a NmOCTaHOBKY
33/1a44 U NOCTOSIHHOE BHIIMaHUe K pabore.

Pabora BeinonxeHa npn ¢uxancosol nogmepxkxe rpanros HIII-7550.2006.2. m INTAS
Ref. Nr 05-1000008-8014.

Jlureparypa

[1] Olamun P. B. O cywecmsosanuu eaaadsur pewenuti ypasmenud oasenxo,
ONUCHIBAIOWUT HEYCTNAHOBUBWILECA Mmevenua udeaavhotli oswcudxkocmu co  ce0b00HOT
noseprrocmuio. [/ Hokaaasl Poccutickott akanemun Hayk, 2006, T. 406, N 5, c. 112-113.
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[2] HIamur P. B. K eonpocy 06 ouenxe 6pemenu CYwECmMeosanus petenudl Cucmems
Kowu-Kosaaescroti ¢ npumepgmu e ezudpoduramure co ce060dnoli nosepznocmvio. [/
Cospemennas Matemarika. OyHAaMeHTaNbHble Hanpasaenus. Tom 21 (2007), c. 133-148.

[3] Dlamun P. B. 06 odnom wucaenrnom memode 6 sadane o deusrcenuu udeasvrot
orcudrocmu co  ceobodnotl noeeprrocmuvlo. // CubupcKmit KypHal BBIYHCIHTENLHOM
MareMaTuky, 2006, . 9, N 4, ¢. 325-340.

K monyrnobanbsHoil paspeimnmoctu AudpdepeHMANILHBIX YPABHEHHH CO
B3BEIlEHHLIMY POU3BOAHBIMHK
Hlananun H. (Mocksa)

B orkpeitoMm MHOXxecTBe §2 - R™ paccMoTpuM ypaBHeHHMEe C OeCKOHEHHO
nudeperunpyempiMi K03 duIHeRTaMH

19
(P(z,D)u=) )  aala)D°u=f, D; = -5—, m

i Oz

(g.a)<m

rge @ = (a@1,02,...,Qy) - HEOTPUUATEJLHBI LEJIOYUCIEHHBI MYJILTHMHIEKC,
(0,0) = pgroq1 + @202 + ... + Qn0yp,~ B3BEWIEHHBI! TNOPEACK auddepenmuposanus D,
Beca gox € N, k =1,2,...,n. Ilycrs g = min; g;. Ilpeanosnoxkum, 410 {-KBa3HONHOPOIHbBIE
nopsakoB | = m,...,m — u + 1 cocraBnsumomwme py(z,§) = Z(g‘a)d aq(z) £€* momsoro

cuMBosla oneparopa P BemecrBenHosHaysbl. lonoxum A(€) = 1 + Z;-I:l 15|19, Hycrs
H () - noxanbHOe npocTpaHCTBO OGOBWSHHBIX (YHKIMH, COOTBETCTBYIOLIEE BECOBOH
bynxuun A*(€), s € R. Muoxectso p;}(0) = {(z,€) | pm(z,€) = 0, € # 0} unBapuanTHO
OTHOCHTEJIBHO CABUIOB BJIOMb BEKTOPHOTO nonst Hp,, = 3 05=u (%F;—';afj - %%T‘ij) .

Teopema 1. Ecau xomnaxm K C §) ue codepsicum npoexyuu Hu 00HOU noanol
unmezpaavnol xpusol eexmoprozo noas Hy , npumadaeocaweti mmoocecmsy prl(0),
mozda 1) mmoocecmeo N(K) = {v € E&(K) | Pv = 0} C C&K) u
ABAEMCA KOHENHOMEPHDLM NPOCTPDARCINEOM, OPMo2oharbhum 06paay PD'(Q); 2) dan wwobod
f € HE (), opmoeonasvrott ® N(K), cywecmeyem u € Hfotm"“ (Q), asamoweeca
pewenuem ypasnenud (1) 6 nexomopot oxpecmnocmu K.

B nokasaTenscTBe HCIOAB3YETCS

Teopema 2. ITycms vy - omxpuwmuidi unmepsan uHmMezpaivhol Kpueol 6exmopHozo
noas Hp,,, codeporcawjutics 6 p;;}(0) u (z,€) € v. Toada us exmwouenuti u € HY (x,€) u
P(z,D)yu € H.™ M (v) caedyem u € HY (7).

JIureparypa.

[1] H. A. Ilasasus, O paspemuMOCTM Ha KOMISKTHBIX IOAMHOXKECTBAX
AuddepeHuMaibHbIX YPABHEHHN C BeIeCTBEHHO3HAYHBIM IJIABHBIM IIYYKOM CHMBOJIOB.
Marem. ¢6., T. 197, BuIn. 2, 2006, 137-160.

*PaboTa BhIMOHEHa [IPH TOLAEPAKe Poccuiickoro (oH/a PyHIaMEHTaIbHBIX HCCleOBaHUN,
npoekt 06-01-00253.

OuneHkKHM IUIOTHOCTEH pemeHni napaboluvecKux ypaBHeHN# J1s1 GopesleBCKuX
Mep
IManomuukos C. B. (r. Mocksa )
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HUccnenyrorcsa napabonuyeckne ypaBHEHHS BUAA
L'p=0

st Gopenesckux Mep p Ha R? x (0,1). 3mech £ ~ nmapa6onuyecKuit onepaTop BTOPOro
nopsiika 3 A
Lo(x,t) := dp(z, t) + 8z, (0" (2, 1) 0, 0(x, 1)) + b'(2,t) 05, 0(x, 1),

rae BeNeTCd CyMMHMDOBAHME [0 MOBTOPSAIOLIMMCS WHEEKCAM, & MHTEpIpPETAl|s] HALIEro
ypaBHeHHs COCTOUT B crienytomeM. Ilonoxum A = (a¥); j<4, b = (b*);<qa. Ml mpemmonoraenm,
4To MaTpuua A CHMMeTpHYHA, CTPOrO ITOJIOKHMTeNbHa M orobpaxkenus z — A(z,t)
PABHOMEPHO JIUIIIHIEBbI ¢ HEKOTOPOH 0b1iell TOCTOAHHOM.

BopeneBckas mMepa u Ha R4 x (0,1) ymoBnerBopsier ypasHeHuto L*p = 0, ecnn byHKIHH
a* u b HHTerpHpyeMBI HA KaXIOM KOMIaKTHOM MuOXecTse B R? x (0, 1) oTHOCHTe/bHO 4,
npudeM a1s Kaxxaon dynxmun @ € C§°(R? x (0,1)) umeer MecTo paBeHCTBO

/ Lopdp=0.
R¥x(0,1)

Iycts V - nenpepbibHas Bospactaromas yHkuus:a Ha [0,00) u V(0) > 0.
JlokaszaTensCTBO Clenyomelt TeopeMsl M. [1].

Teopema 1. Ilycts sup |b(x,t)] < V(|z|/8) mna nourn seex z € RY, rre 6 > 1,
t€(0,1)

1A(z, )| £ v u ||A(z,t)"Y| < a. TpeanoioxkumM, 9T0 p — HEOTpUIATEbHAA Mepa C

maotHocThio ¢ Ha RY x (0,1) ymosnersopsier ypasuenuo L*u = 0. Torma cymecrsyer

TaKoe mojoxurenpHoe uncio K = K(d,a,7,6), 4T0 HenpephiBHasi Bepcus QyHKHuH Q

YZAOBJIETBOPSIET HEPABEHCTBY
t— 1
o(z,t) > g(O,s)exp{—K(l + —E“EV(|Z|)2 + m]zlz)}, 0<s<t<l, zeR%

JluTeparypa
[1] Boraues B.H., Pexnep M., Ilanomsukos C.B. Oyenxu naomuocmets cmayuonaphvz
pacnpedesenut, u nepexodnmx eepoammocmeti Judgyauonnmr npoueccos.— Teopus
gepoamm. u ee npumen. 2007, m. 52.

AcuMnToTHYecKasi yCTORYMBOCTS pelieHUuil B MepapXxudecKkoil Mozean
KJlacTepusarum. .
HTanosan. A. B. (r. Mocksa)

Jnst MojenupoBaHus KJacTepusanmuu craThsl [1] ompeaensier Hekoropoe dasosoe
NPOCTPAHCTBO COCTOfAIIEe M3 31eMeHTOB (dbusnmueckuit CMBICT KOTOPBIX 3aBHCHUT OT
npusoxenuit). CBA3HOE MHOMKECTBO 3JIEMEHTOB Ha3biBaeTcs KjacTepoM. IIpeanonaraercs,
YTO KaXKIplt K/IACTEp ONpee/seTcs €ro DaHroM 4 Maccol. DBOMOLHMA NPOHUCXOAUT 33
cuer J0BaBIEHUS HOBBIX 3JIEMEHTOB (B KajXIbllt MOMEHT BDEMEHH) H YAaJIeHUs JOCTATOYHO
6osbIMX KiacTepoB (Korja OHM Bo3HUKaIOT). OTaeNbHBIA 31eMeHT (a30BOro MpoCTPAHCTBA
nmoJIaraioT KJjacrepoM panra 1 u maccs! 1. Eciu gofaBiieHHe HOBOTO 3/1€EMEHTa IPUBEJIO K
CIMSIHUIO JBYX KJjacTepoB panra 1 u mMacest 1, TO nmoiyyuBliuiics KacTep UMeeT PaHT 2 K
Maccy 2. B ofmem ciyyae npu CIMsIHHE IBYX KJ1aCTePOB OJMHAKOBOTO paHra T M Macc mj
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U TNy NOJIy4aercs KjacTep pasra r + 1 u Maccsl my + mg. OAHAKO NPH CAMSHUH KJIACTEPOB
pa3HbIX paHroB r u R, r < R, obpasoBaBuuiica knacrep Hacneayer Goapmmit paur R, a
MaccChl O-TIPeXHEMY CKNaabiBaroTcst. IIpuBejeHHOe ONpeesieHne KIacTEPOB COOTBETCTBYET
KJacCHPUKAINY PeK.

Cornacho [1], HekoTopasi GecKOHeuHasi CHCTeMa OOLIKHOBEHHBIX JubdepeHIHaIbHbIX
ypaBHeHHHI JaeT npubamkeHHoe onucanue 3Boiouuu kKiaactepoB. Ocobpift mHTEpeC
NpPeACTABAAET I0JI0XKEHUE PABHOBECHS 3TOM CHCTEMBL.

Teopema 1. ITosoxeHne paBHOBECHS ACHMOTOTHYECKH yCTONYHBO.

PaccmaTpuBaeMasi MOJeNIb IIPECTABIAET HHTEPEC, TOCKOIABLKY B MOJOXKEHHH PAaBHOBECHS
KOJIMYECTBO KJIACTEPOB Kak (byHKIIMS OT DaHTa yGbIBAET CTereHHBIM 06Pa30oM C OKa3aTeseM
cremeny GmuskuM K equsdue. Iloxokue pacnpeliesieHdsi BOSHHKAIOT NPH HU3Y4eHHU
IPYNNUPYEMOCTH DA3JIMYHBIX BHAOB JKUBOTHBIX, HOBTODSIEMOCTH 3€MJIETPSCEHUA M IpH
HCCICNOBAHUY JAPYTHX CJOKHBIX cHcTeM. Cpei pOACTBEHHBIX MOAeJell — MOJie/i FOPSILUEro
seca (anri. forest-fire) n "ky4a necka"(anru. sand-pile).

Jlureparypa
[1] Gabrielov A., Newman W. I. and Turcotte D. L. Phys. Rev. E, V. 60, 5293-5300.

AnmnpokcuManus KJIacCoB KyCOYHO INIAAKMX DYHKIUHU NOJHHOMUAAILHBIMH
cnaaliHaMy, NOCTPOEHHBIMH HA OCHOBE CMEILUAaHHELIX PSAJOB I10 MOJHMHOMaM
Jlexxanapa n Axobu
Hlapanymusos U.HU. (Jarecranckuit Hay<nniit nentp PAH)

IycTs sz( od) obbrunoe npocrpanctso Cobonesa, cocrosiee u3 Gyukuuit f = f(z),
3aJlaHHbIX Ha [c,d], npudem mpu p = co MBL cumraem, uto f(")(z) nempepbisHa Ha [c,d].
Hasee, nyctb ¢ = a9 < a3 < - < @ = b, a = (ag,a1,...,a41), * = (r1,72,...,71),
p = (p1,p2,---»p1), tae 1 < rp — ueswte, pp, > 1 (k = 1,...,1). Yepes sz(a)
MBI 06osnauuM knacc Gykuud f = f(z), onpemeneHHbx Ha [a,b] W Takux, 4TO HIA
kaxgoro k € {1,2,...,1} fe W]*

Ly, (ak-1,0k)"

cnenyomuM obpazom. IIycrs s = (s1,82,...,81-1), tae 0 < s < min{rg, 741} Tepes

B knaccax L ( a) MbI BBIAEJIHM IOKJIACCH

r,s T
L, MBI 0603HAYMM IOAKJIACC, COCTOAINH u3 byHkun# f € [’[’ L ( a), IS KOTOPBIX
p(a) P
cymecreyor npoussoguste O (ax), fV(ar),. .., f**)(ax) npu Becex k = 1,...,l - 1. B
r,s r
YaCTHOCTH, e §; = 0 k:l.,.,l—l,roW’ = . Iyers C, ~
K ( , ) Lp(a) Lp(a) IV a
ssutunc ¢ ¢poKycaMu B ToUKax a 1 b u cymmoii nosyocelt, pasroit ¢. Yepes Ag(c, d) obo3naynm
kiace QyHKIMH, aHAIMTHYeCKUX B dnyuice Cq, NPUHHMAIOIHMX AeHCTBUTEIbHEIE 3HAYCHHUS
Ha [¢,d] n nycrs AgB(c, d) — nonknace, cocrosumit u3 dynxumit f € Ag(c, d), Ans KOTOpbIX
1f(z)l € M npu z € C,. Janee, nyctb a = ap < a1 < -+ < @ = b, a = (ag,a1,-.-,@),

q=(q1,q2,---,q), g > 0 (k =1,...,1). Yepes Aq(a) MBI 0603HAYHMM KJIace OyHKIHH
f = f(z), sanansbix Ha {a,b] u Takux yro f € Ag, (ak—1,ar) Upu Kaxaom k= 1,...,1. M

BBIJIEJIAM B KJIACCAX Aq (a) noAKnaces caenyomum obpasom. Ilycrs s = (81, 82,...,81-1),
rae 0 < s, — ueabie. Yepes Afl(a) Mbl 0603HAYMM MOAKJIACC, COCTOALMMA U3 DYHKIHHA

f € Aq(a), 1st KoTophix cymectsyior mpomssomusie f(O(ax), fM (ak), ..., F#)(ax)
npuBcex k=1,...,0 - 1.
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PazpaGoran anroput™ npubamkenusi(B TOM 4YMCle K WYHCIEHHOro) GYHKIu# u3
S

r’

M/ s

KJIaCCOB L ( a) n Aq(a) NMOJMMHOMAAJIbHBIME CILUTalfHAMH, NOCTPOEHHHIMU H& OCHOBE
P

CMEINaHHbIX PAJ0B IO NoauHOMaM Jlexannapa u kobu.

O raaaxocTyu perleHHAH KpaeBbIX 3aJa4 fAJ151 yPABHEHUsS TENJIONPOBOAHOCTH C
HErIAAKMMH Ha4yalbHbIMH (DYyHKIMAMHI
Iapun E. @. (r. Axytck)

Pafora 1oCBsINEHA MCCIIEAOBAHMIO IVIAJAKOCTH PpeLIeHWA KpaeBbiX 3alad  Jid
napaGo/MuecKHX YpaBHEeHNN ¢ HerNagKuMu Koagdunuenramu B Kanaccax lenpiepa. Takue
KpaeBble 33144 CTAJIN NpeMeToM uaydeHus c Hadaia XX Beka. OaHuM u3 mepBbIx paboT
B 3TOM HampaBieHuu 6bputn paborsi M. 2Kespe, nozxe Gbimm ony6smkoBansl Tpyasl M.A.
Jlaspentnesa, A.B. Bunanze, C.A. Tepcenosa, U.M. Ilerpymko, B.H. Monaxosa, A.H.
Koxanosa, C.I. TIsTkoBa 1 MHOTHX ApPYTHX aBTOPOB.

AKTyaJbHOCTD M3Y4€HMSI TAKMX 334849 ODOCHOBaHA MX (DU3HYECKHM IIDUMEHEHHEM B
MOZENHPOBAHMH TAKMX IPOIECCOB KaK PACIPOCTPAHEHME TeIula B HEOTHOPOAHBIX CPe’ax,
B3aMMOJENCTBUA DUIBTPAUNOHHBIX M KAHAJIOBBIX IIOTOKOB H ApYTHE.

Hacrosiaa paBoTa COCTOMT M3 ABYX 4acTelf, B KOTOPbIX PacCMaTPHBAIOTCS CleyIOLHe
3a0a4H.

IlepBast 4acTh pabOThl COLEPIKUT JIOKA3ATENBCTBO TEOPEMBI CYINECTBOBAHMA H
emuHcTBenHocTH pemtenus. Ha nomnoce IT = {(z,t) : —00 < z < +00,0 < t < T} paccMoTpuM
KDPaeBylo 3384y A/ ypaBHEHHs TellJIOIPOBOJHOCTH

Uy = @P Uz 1)
Pemenne YPaBHEHHsI (1) Gyznem HCKaTh Ha HOJIYIOJ0CaX
o+t = {II:z>0},I" = {Il:2z <0} kak pemleHnHe AByX HAYAJLHO-KPacBbIX 33]a4

NPH BHINOJHEHHH YCJIOBUH CKJICUBAHMS

u(—O,t) = u(+07 t), (2)
u.‘c(_o’ t) = u2(+01 t)!
yAOBIle’I‘BOleOmee HavyaJIbHBIM YCJIOBUAM
. ¥1 (1‘) y T> 01
@ ={ 0@ 70 ®

e ¢; € H*M(RY), ¢, € H*2(R™) (71 < 72) - 3amanHble GYHKIMM.

MeTogoM TNOTEHHWANIOB IIPOCTOTO  CJ10SL JOKA3aHa TEOPEMa  CyLIeCTBOBAHHSA
U eJMHCTBEHHOCTH pelleHdst IOCTaBJIeHHON 3ajauynm u3 mnpocrpancTsa [enbaepa
H:+Zl, 1+ (II£).

Tak>ke pacCMOTpeHbl BOIPOCHI, CBA3aHHBlE ¢ AnpQepeHIHaNbHBIMA CBOHCTBAMH
peuiennii u(z,t) 3agaun (1) - (3), B KOTOPBIX YCTaHOBJIEHA NPUHAIIEXKHOCTD ONPEAe/IEHHBIM
KJIaccaM CaMHX DElleHH$t ¥ ero HPOM3BOAHLIX B 3aBUCHMOCTH OT HAYANbHBIX (DyHKIm.

O cyuiecTBOBaHMH M €AMHCTBEHHOCTH pelleHus 3afayy Komm ais HenuHelnoN
anrebpo-audpepeHuMaAILHOK CUCTEMBI
Ilernosa A.A. (UucruryT anHamukH cucTeM H Teopud ynpasiaenns CO PAH)
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Pacemarpusaercs 3amava Komu
z(to) = zo, (1)
JJISL CUCTEMBI HEeJTMHERHEIX OObIKHOBEHHBIX qu(depeHIHaTIbHBIX YPaBHeHU I
F(t,z(t),2'(t)) =0, t€ T =(to—7,t0+7), 2

rie n-MepHas BekTop-Qyukums F(t,z,y) onpeneneHa B oTkphwiTomM mape D € RZ*H!,
z:T — R", vo — 3anannblil BekTOp M3 R", det F/9z' = 0V(t,z,z') € D.

IMonyyens: HeoGxonuMble M JOCTATOYHBIE YCJIOBHMS CYIIECTBOBAHHMA OIEPATOpA,
npeobpasyiomero cucreMy (2) NPOM3BOJBHO BHICOKOTO MHIEKCA HEPA3PELIeHHOCTH
r (0 £ r < n) x HopMasbHOMY BuAy. JJOKa3aHa JIOKAJIbHAS TEOPEMA O PA3PELIHMOCTH 33,J049H
(1), (2). Ins ananusa npuBeKaeTcs r-MpoAOKeHHas cucTeMa Fp(t, z,z, ..., z("tD) = 0,
[IOX KOTOPON MOXHO TIOHMUMATH COBOKYITHOCTH CHCTEMBI (2) M T €€ MOJHBIX MPOM3BOAHBIX
no t. IIpeanonoxeHus, B KOTOPbIX OBOCHOBBIBAIOTCS YTBEPXKIEHMS, KPOMe YCJIOBHI Ha
rnagxocTs Gyskuun F(t, z, z'), npencrasisior cobolt orpanuvenus Ha panru MaTpu Hxobu
10 nepeMerHuM 2,7, . .., ™D ana byukuun F;.

O6ocHoBaH KpuTepHil coBnajeHust AByX pewnenudt sagaum (1), (2) xmacca CT1(T).
ITokasano, 4TO B YCIOBHSIX TeOpeMBl CYHUIECTBOBAHUS pacCMaTpuBaeMas 3a7adya B
OKDECTHOCTH HAYAJIbHOM TOYKH HE MOXKET MMETb KJIACHYECKHX pelleHuit, obJIamaiomx
MeHbINEH IIaaKkoCThIO. IIoJyyeHbl YCIOBHS, NPM KOTOPBHIX 3aJava uMeeT (HKCHPOBAHHOE
KOHEJHOE YHCJIO KJIACCHYECKHX pelleHuit. B KOHEYHOM HTOre 3TOT IIOAXOA IO3BOJIHI
JIOKa3aTh TEOPEMY O CYINECTBOBAHUH W €[MHCTBEHHOCTH peweHus 3agayu (1), (2).

JIntepatrypa

[1] Yucrakos B.®@., llernosa A.A. s6pannsie riassl Teopun anrebpo-anddepeHun-

anbHbIx cucreM. — HoBocubupek: Cubupckas usgaresnsckas ¢upma PAH "Hayxa", 2003.

4- and §'-shock wave type solutions of systems of conservation laws and the
transportation and concentration processes
Shelkovich V.M. (St.-Petersburg State Architecture and Civil Engineering University,
Russia)

There are “nonclassical” situations when systems of conservation laws admit é- and 6(™-
shock type solutions. They are singular solutions such that their components may contain
the Dirac delta functions and the Dirac delta functions and their derivatives up to the order
n,n=1,2,..., respectively.

The points to be considered are, first, the definitions of §- and §’-shock type solutions;
second, the Rankine-Hugoniot conditions for them; third, their geometrical and algebraical
aspects; and fourth, solving the Cauchy problems admitting such type solutions. These
types of solutions are related with transportation and concentration processes. The results
are based on our papers {1]-{4] and show that systems of conservation laws can develop not
only Dirac measures (as in the case of §-shocks) but their derivatives as well and give a new
perspective in the theory of singular solutions to systems of conservation laws.

References

(1] S. Albeverio, V.M. Shelkovich, On the delta-shock front problem, in: “Analytical
Approaches to Multidimensional Balance Laws”, Ch. 2, (Ed. O. S. Rozanova), Nova Science
Publishers, Inc., 2005, 45-88.
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[2] V.G. Danilov, V.M. Shelkovich, Delta-shock wave type solution of hyperbolic systems
of conservation laws, Quart. Appl. Math. 63(3) (2005), 401-427.

(3] E.Yu. Panov, V.M. Shelkovich, §’-Shock waves as a new type of solutions to systems
of conservation laws, J. Differential Equations 228 (2006), 49-86.

[4] V.M. Shelkovich, The Riemann problem admitting é-, §’-shocks, and vacuum states
(the vanishing viscosity approach), J. Differential Equations 231 (2006), 459-500.

On the classical solvability of the 2D- system describing the motion of the heat
convergent generalized Newtonian fluid
Shilkin T. N.

‘We consider the system describing two-dimensional flow of the viscous heat-convergent
generalized Newtonian fluid whose viscosity depends on the strain velocity tensor as well
as on the temperature of the fluid. The heat equation in the system under consideration
includes the term which takes into account the phenomena of viscous energy dissipation.
Under certain growth (or decay) condition on the viscosity we prove existence of classical
solution for this system.

PaccMaTpuBaercs CHCTEMa, ONUCHIBAIONIAsN ABYMEDHBII1 [IOTOK BS3KO# TEIIONPOBOAALIEN
060011eHHON HBIOTOHOBCKOl JKHIKOCTH, BSI3KOCTH KOTODOM 3aBHCHT KakK OT TEH30pa
ckopocTeli gedopmauufi, TAK H OT TEMIEPATYPbl KHIOKOCTH. YpaBHEHHE TEIUIOBOIO
fasanca B paccMaTPHBAaEeMOll cucreMe BKJIOYaeT ciaraemoe, yduThiBamomee 3ddekr
BSI3KOMt JMCCHNAnMM KHHeTH4YecKol sHepruu. [Ipn HeKOTOPHIX OrpaHMYeHHsX Ha pocT (uau
yObiBaHue) BI3KOCTH JOKA3aHA CYILECTBOBAHUE IJIAAKOrO PEIIeHUs.

Kpurepun perynsipHocTH OGBIKHOBIEHHBIX AuddepeHIuaIbHbIX ONepaTopoB
E. A. Illnpsies (MI'Y um. M.B.J/Tomonocosa)

Tlyers L — onepatop, mopoxXaeHHBIA quddepeHIHANBHBIM BHIPayKEHHEM
U(y) = (=) "y ™ (@) + p2(2)y™"? + - + pal@)y, (1)

U 7 TUHEeHHO He3aBHCHMBIMHU KpaeBLIMH YCJIOBHAMHK BUIa

n-1
Usw) = Y (25,5690 + b, () =0, j=1...,n. 2
=0
Kosdbduuuentnt pj(z), j = 1,...,n, npegnosnaraiorcs cymmupyeMbiMi QYHKUMAMH Ha

orpeske [0, 1]. Cunraem, uro L gefictyer B npocrpancrse Ly(0, 1).
B 1908 roay I>x.Bupkrod Been moHsiTHe peryiaspHoro audhepeHIgaibHOTO OepaTopa
(eM. [1]) u mokasan TeopeMmy O MOMHOTE COBCTBEHHBIX DYHKUMIA PEryASPHOrO ONEPATOPA.
ITycte A; — coberpennble snaqenus oneparopa L. O6o3naunm gvepes pg, j, k= 1,...,n,
KODHM ypaBHeHHMs A; = p™, depe3 By, ;(d) — xpyru paiuyca § B p-IUIOCKOCTH C LIEHTPaMH B
TOUKAX pg, j, ¥ yepes B(§) — obbenuHerne Bcex TAKMX KPYroB N0 oGouM HHOekcaM k u j.
U3secTHO, 4TO pe3osbBeHTa L €CTh HHTErpasbHbLN OnepaTop

1
(L") f(z) = /0 G(z,6, p) f(E)dk,
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rae G(z,&, p) — anpo ['puna.
Teopema
Crienyrolnue yTBEPXKIEHNs! SKBUBAJEHTHbI.

o Onepatop L peryaspen no Bupkrody;

o npu mo6oM § > 0 BCSKH HEKPHTHYECKHT JIyd, BEIXOAANIY U3 HYJ1, BCHMITOTHYECKH
se nepecexaer Muoxkectso C\B(8), u ana seex z, £ € [0,1) u p € C\B(J) ana pynxuun
I'puua cnpaseyIHBa OUEHKA

IG(z, &, p)| < Mlp|™"*, ®3)
rze nocrosasas M = M(§) ue sasucur or x,§, g;

o HaleTcs MOCJeI0BATENLHOCTh TOUEK {pk} B ONHOM M3 CeKTOpOB MHOXecTBa (2(¢) (B
Cly4ae HEYEeTHOro M — JBe IOCIeAOBATENLHOCTH B ABYX COCEJHHMX CEKTOPAX 3TOro
MHOXECTBA), TAKast, YTO P — 0O U OUEHKa, (3) BHINOJIHEHa PH p = Pg;

o mipu JoboM € > 0 B obnacru () BBINOJIHAETCH OLEHKA
NZ—=p™7H < MipI™", ol 2 lpol, 4)
rae nocrosisHas M = M(g, po) He 3aBucurt ot p, a || - || o3navaer nopmy B Lo;

o HalizieTca MOCTIeIOBATENBHOCTb TOYeK {px} B OIHOM M3 ceKTopoB MuOKecTBa (2(¢) (B
clly4ae HEYeTHOrO 7 — [Be NOC/IeA0BATENBHOCTH B JABYX COCEQHHX CEKTOPaX 3TOro
MHOM€CTBA), TAKasi, 4TO pi — OO M OLEHKa (4) BHIIOJIHEHA TPU p = P;

e cucrteMa COBGCTBEHHbIX M npucoenuHenHbix ¢yHKuml omeparopa L ofpasyer
GeaycosrbIit 6a3uc co ckobkamu B npocrpancrse Lo, mpudyem B ckobxu obbeuHs0TCH
He 6osee ABYX COOCTBEHHBIX bYHKIHHA.

Pa6ota BhIIONHeHa Iof pykosoAcTBoM npodeccopa A. A. Illkanukosa npu noaaepxke
Poccuiickoro ¢onaa yHAaMEHTANBHBIX KecieaoBanuit, rpant Ne 07-01-00283 v porpamMmbl
"Benyume Hayunsie wkoibt", rpast Ne HIII-5247.2006.1.

Jlureparypa

[1] M. A. Haiimapk. Junetinoe dugepenyarvrse onepamopu// Mocksa, "Hayxa",
1969.

O noJIyHenpephIBHOCTH HEHTPAJIbHOIO NIOKA3aTe s HeOTPAaHMYEeHHbIX JUHeHHbIX
cucreM
Hlnpsies K.E. (Koctpomckoit 'ocyrapcTpeHHbil Yuusepcurer)

Jlns IMHeRHBIX OJHOPOIHLIX CHCTEM OOBIKHOBEHHBIX AupdepeHIHaIbHBIX ypaBHeHul
OnpejeNnseTcss HEeHTPaibHbI NokKasaTens |1) [rn.3, §4, crp. 116]. UseectHo, uyro Aans
OTPaHMYEHHBIX JHHEAHbIX CHCTEM NPOU3BOJBHON Pa3MEPHOCTH UEHTPAJIbHBIN MOKasaTelb
[OJyHeNpepHIBEH B TONONOTHHM paBHOMepHoft cxomumoctn {1] [r1.5, §13, cTp. 176] wu,
Clle1oBaTeNbHO, SBaAeTcs dbyHKIHel nepsoro Kaacca Bapa.

Vrsepxkaenne. s MHOXeCTBA HEOrPAHMYEHHBIX CUCTEM, HaJIEJIEHHOrO TOMOJIOTHeH
PABHOMEDHOM CXOZMMOCTH, LEHTpalbHbIli I0KA3aTelh He sBJAercd (yHKuMelt nepporo
Ksacca Bspa u, clieI0BATENbHO, He TOJYHeNpEPbIBEH.

Jlureparypa :

[1} Beuos B. @., Bumorpaz P. 3., I'pobman . M., Hemsruxu#t B. B. Teopus
noxazameaets JIANYHOSL U €€ NPUNONCEHUA K GOTPOCAM YCTMOTNUSOCTIU. M.,1966.
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Teopema 06 orpaHHMYeHHOCTH CMeLIaHHbIX noreHumanoB Pucca-Kunpusinosa B
aonpeneabHoOW obacTu.
Ipmxuna 3. JI. (BopoHexxckas rocylapCTBEHHAS TEXHOJIOTHYECKAS AKAAEMHS)

Myers Ri={z=(z',2"), 2'=(Z1,..,Zn); &"=(Tnt1,.,In), £1>0,...,2,>0} u
Q*tCRj;. Yepes LY(Q*), 1<p<oco, ofosmaunmM mpocTpancTso ynkmuit f rakux,
uro  f(z)(z')/? € Ly(Q%), rae v=(m,..,¥n) - MYIBTHMHAEKC, COCTOSIEH W3

n

i=

¢uxcuposannrx nonoxurenbHEx unceda, (z')Y =[] z]'. Bsemem mpocrpatcTso
1

(em. [1]) LP¥(QF), cocrosmee mu3 bynkmu#t f € L7(QF), ana  Koropsex
1/p

Ifliyv @) = J 1 f@)P + |z))P¥(z’) dz < 00, Ilie V — BEIECTBEHHOE YHCIIO.
Q+

Cmemannsiit o6o6mennsift casur umeer sug (oM. [2]):
i p(:n’r_l)
TVf(z)=n"% [] 2 Lx
e
L T
x /.../f([zl—ml]gl,...,[zn-*ym]gn,x"—y”) x
o 0

X H sin%~! B;dB,...dBx, &)

i=1

rae ans i=1,2, ... ,n ucnoneayercs oGosHayenue [T; — yilg, = /27 — 2ziyicos B + v
Cmewannvm nomenyuasom Pucca-Kunpuanosa (RK-noreHnmanom), nopoXIeHHbIM
cosuroM (1), 6yaeM Ha3bIBaTh BhIPaKeHHE

MNﬂ=/ﬂMWM“MT@,
P
—0<A<N+Pl, hl=n+.+m

PDynkuus f(z) HassiBaercs naomuocmvio cMelnansoro RK-norennnana.
Teopema 1. Ilycrs f € LY*(2), 1 < p < co. B nonpepenbroit ofnacta A < E—:—,’Jﬂ

ans cvemannsx RK-norenumanos UJ 4(z), U] o(2) 1 U}’ 4(z) npu mobrix z € R}
crpaBe/UIHBa OLIEHKA

(1 + |z, w > N+l
K3 f(2)] < Cliflligw{ (1+1a))>(n(L +]aD)¥, v/ = N+l
(1 + |z 5, v < N+l

M STH HHTETDAJIH ABAAIOTCA HENPEPHBHHIMKY GYHKIHAMH OT T € E
Jlureparypa
[1] Co6ones C. JI. Beedenue 6 meoputo xybamyprwz gopmya. // M.: Hayka, 1974. 808
c.
[2] Kunpusinos U. A. Cunzyaspnuie snsunmuvecxue 3adavu. // M.: Hayka, 1997. 199 c.
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Long-time extinction of solutions of quasilinear parabolic equations.
Shishkov Andrey E. (Institute of Appl. Math. and Mech., Donetsk, Ukraine)

We study the time vanishing properties of generalized (energy) solutions of initial-
boundary and Cauchy problem to a wide class of arbitrary order quasilinear parabolic
equations of diffusion-absorption type with the model representative

("~ u)e + (=)™ Y DE(IVyulP~' Diu)+

laj=m
+b(@)ul* =0, m>1, 1
u(0,z) = up(z) € Lq+1(RN), N >1, 0< A< min(p,q), (2)

where potential b(z) > 0 Vz € R". It is easy to check that if b(z) > by > 0 then arbi-
trary solution u of (1), (2) enjoys the following time compact support (TCS)-property:
3T = T(up) < oo such that u(x,t) = 0 V¢t > T. In [1] there was initiated the study of
TCS-property in dependence of the range of degeneration of potential b(z). Particularly, in
[2] there was proved T'CS-property in the case

w(|z))
g=p=m=1, bz) =bo(a) = exp { - 75" ®)
with arbitrary function w(s) — oo as s — o. Moreover, for w(s) = s* with arbitrary
o > 0 there was proved absence of TCS-property. From our general results for equation
(1) follows, particularly (in the case (3)), the following sufficient condition of appearence of
TCS-property:

c
/ ?% ds < 00 (Dini — like condition), VC > 0.

Joint work with Y. Belaud.
.. References
[1] Kondratiev V. A., Veron L. Asymptotic Analysis 14 (1997), 117-156.
(2] Belaud Y., Helffner B, Veron L. Ann. Inst. Henri Poincarre Anal. nonlinear 18, 1
(2001), 46-68.

ACHMMIITOTHYECKHE PA3JIOXKEHNS PElIeHN CHHIYIAPHO BO3MYIUEHHBIX CHCTEM
AuddepeHUMANBHLIX ypaBHEHUH ¢ BHIPOXKIEHMEM B TOYKe M APOGHBIM PaHIoOM
HlIxuns H. H. (r. Knes)

B pabore 06061eHs pe3y/ibTaThl aBTOpA /1S CHCTEM AuddepeHINalIbHbIX YPaBHEHU]

et % _ Az, 2(0) = 20, &

rae ¢ = z(t), Tp - n-MepHule BekTOPHl, A(t) — (n X n)-marpuua, € (0 < € < go) ~ Mabll
napametp, t € [0; L), p, g€ N, ¢ > 2.
C nomoupo noacTaHoBky ¢ = 79, cucremy (1) MOXKHO 3anucarh cieaylomuM obpasom:

E-r”“j—f = L(t)z, z(0) = xo,
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rae
L(r) = qrA(79).

THorpebyeMm, 4ToOH
L(0) = ... = L®(0) = 0, LFV(0) £ 0.

Torpa cymecTByer

1
im(r~P*VL(F)) = ——— L+ () =
11_m})( L(r)) BT 1) L (0) =K.

B pabore nokasano, uro Ha otpeske [0; ¢/é(e)] pns pemenus 3azaum (1) uMeeT MecTo
acHMNTOTHYECKas (opMya:

z(t,e) = (exp (K?) + O(e"‘”)) zo, @ > 1.

JIuTeparypa
[1] Camotinenko A. M., Ilkmas H. M., Hxosen B. II. Junetinwe cucmems
Juppepernyuarvrur ypasnenuti ¢ svposicdenuamu. — K.: Boima mk., 2000. - 294 c.

Perynsipuzaius rpaHH4YHbBIX YCJIOBMI B 0c0G0il TOUKe M OlepaTopHbIe MOAEH
Iongun FO. I (Huwkeropoackuit rocysapCTBeHHbI Nearornieckul yHHBEPCHTET)

PaccMaTpuBaioTcst cuHrysipable auddepennuanbisle Buipaxenns ltypma-JInyennns
HA MHTEpBajle, HUMeomye “DeryispHyio ocobyl0 TOYKy” B OZHOM M3 KOHLOB, M
NPEANIONAraercs, YTO JNA COOTBETCTBYIONMX TPaHMYHBIX 33784 B L2-mocraHoske
peaym3yeTcst ciydait “mpefennHofi Toukn”. B 3TOit cHTyauuu, oka3nIBaeTcs, CyMIECTBYET
peasin3alMs MHHHMAJLHOIO ONEPATOPA 3PMHUTOBBIM ONEpaTropoM S B  HEKOTOPOM
npoctpancrse Ilonrpsaruna P, koropeii mmeer mmaekcst medexra (1,1), u L*-cayuait
“npenenbHOM Touky” TpancdopMupyerca B P-ciyuait “npenessHolt okpyxHocTn”. B noknane
pelaeTcs 3aa4a O IpeCTaBICHUN KaXXI0T0 U3 CAMOCOIPSXKEHHBIX PAacUIMpeHuit oneparopa
S B P B TepMHHAX pery/ispu30BaHHBIX IPAHHYHBIX ycsuoBuit. O6cyxaaercs Takxke BOIPOC
06 anmpoOKCUMALMH TAKUX PACIIMPEHHH C MOMOUIBIO CIELMAILHOTO ceMeHCTBa peryISpHBIX
IrPaHMYHBIX 38]a4.

O nepuoaAMYECcKHX U KBa3HIEPUOAUYECKUX PELICHUSX CJIOXKHOTO THUIa JJIA
KBa3UJIHHeNHBIX BOJHOBLIX ypaBHeHuik.
Cuzopos E. A. (r. Hixunii-Hosropon)

B 3a1aue 0 nEPHOAUYECKUX DELIEHUAX ypaBHEHHH ¢ YACTHBIMH IPOH3BOJHBIME OOBIYHO
PacCMaTPHBAIOTCS PelleHMs ¢ (PMKCHPOBaHHBIM CHEKTPOM YacTOT (3aBYCALIUM OT KPAeBhIX
ycaoBuii) mo kaxkzioli mepemensolt (cM. [1}, {2]). B macrosmeit paore nccnemyrorcs
HEKOTODBIE CIIyYau CYINECTBOBAHMA KJACCUYECKUX NEPHOAMYECKUX ¥ KBa3HIEPHONUYECKHX
pelleHusl 10 HECKOIbKUM NIEPEMEHHEIM CO CIEKTPOM, 3aBUCSIMM OT APYTUX TNePeMEHHBIX:

> <] 0
l.u = § : ametmmcosy’ 24 = § : amnet(mzcosy-{»nycosz)’
=0

mn=0
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oo
u= Zameim’".
m=0
TocTpoenne ypaBHeHMH C yKa3aHHEIMM THTIAMH pemieHMH lelaercs N0 ciemyiomedt
cxeme. Ilyers f(u,z,y) = F(u,z(z,y)), rae F(u,2) - anammruueckas dbynxums (u, z),
A(z,y) = (ar(z,y),02(x,y) — BexTopHOe mnone ma maockocrd RZ. Torpa ypasHenue
F(u,2) = 0 onpeaensier pemenue ypapHeHus 1-ro nopagka

al(xv y)‘llz + a?(xly)uy = f(u) x, y):
€CJH BeKTOPHOe 1ojie A(zZ, ) oprorosansHo nomo Z(z,y) = (22, 2y).

Hpumep: F(u,2) = u(u — 2)(u — 22), z = €i*°Y, Qyukunn ux(z,y) = e*78Y k=12,
SIBJISIIOTCA PeleHMsMY 1-ro THNa 1)1 ypaBHeHHs

upTsiny + uycosy = uu — €T V)(y — 2" 5Y),
VkasaHHHas cXeMa NPHMEHHMA K HeJMHEHHEIM BOJIHOBLIM YDaBHEHHSIM: ypaBHEHHe

Uz + Uyy + u[(cosy — ycosx)? + iy cosz — (sinz — zsiny)?—
— i COs y] = u(u _ ec'(x cos y+y sin x))(u _ 2ei(z cos y+y sin a:))

HMeeT TOYHO ABa PelleHus THHa 2.
JInreparypa
[1] Babpeitxo I1. I1., Tperbsakona JI. I. Juddepenyuaavnne ypasnenus. 1991. T. 24. Ne
5. C. 815-826.
{2] Konecos A. 10., Mumenko E. ®., Posos H. X. YMH. 2000. T. 55. Ne 2. C. 95-120.

O6o6menns HepaBeHcTBa Koium — ByHAKOBCKOrO ¢ MCNOJIb30BAHHEM CPELHUX.
Curnuk C. M. (r. Bopouex)

Paccemarpusatores 0606mmeHust nHTerpaiabHOro HepabencTsa Komn — BynsikoBekoro (cm.
[1-4]) cneayromero Buzna:

b 2 b b
( / f(w)g(x)dx> < / ,(f,g)dz- / ®(f, g)dz <

b b
< / (f(2)) dz- / (9(2))? dz, (1)

KOTOpbI€ JOJIAKHEI BHIIOIHATHCA J1si HOAXOAAIIMX IPpoM3BobHbIX dynkuui f(z), g(x) npr
BbIGOpE HEKOTOPBIX HEOTPULATENbHEIX (yHKIml Py, Po.

Teopema 1. ITycts M - mpoussosbHOE HECMELEHHOE, OJHOPOAHOE, MOHOTOHHOE
(neobs3aTensio cummerpuunoe!) aberpakThoe cpemmee, M* = zy/M(z,y) (em. [3,5-7]).
Toraa cnpaseanuso obobuienye HHTerpanbHOro Hepasencrsa Komm - ByHsKoBckoro Buza

(1) npu BriGope
21(f,9) = (M(f,9))*, (S, 9) = (M*(f,9))%. (2)

TIpuBesEHHBIA Pe3yabTaT ABJIAETCA MHTerpasibHbiM 0GobuieHreM JOCTATOYHONA HaCTH
M3BECTHOM Ul AucKpeTHoro ciayudas teopemtt CDE (Kapauna — Dmuesepa - [slixuna,
cM. [2-4,10]). Takxke fFokasaHo, 4YTO OXKHAaeMblf aHazor HEeOOXOAMMOM YacTH TeopeMbl
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CDE B unTerpajJbHOM Cllyyae HeBepeH, TaK Kak aBTOPOM NOCTPOEHbI APYrHe oBOBLIeHHs
Hepasencrsa Komm — ByHsakosckoro suga (1), Ho He cBogsmmecs x suay (2) (em. [5-9]).

PaccMaTpHBAIOTCA NPUIOMKEHUS MOJIYYEHHRIX PE3yJLTATOB K OLEHKAM CHeEUHaJbHBIX

ysxumit ¥ pewennit AuddepeHIEATbHBIX YpaBHEeHHIL,
JIureparypa

[1] Xapau T, Murrnsyx I.E., Honua T Hepasencmea. — M.: AJI, 1948.

[2} Mitrinovi¢ D.S., Pegari¢ J.E., Fink A.M.Classical and new inequalities in analysis.—
Kluwer, 1993.

[3] Mitrinovi¢ D.S., Bullen P.S., Vasi¢é P.M. Means and their inegualities.—D.Reidel,
1988.

[4] Dragomir S.S. A Survey on Cauchy - Buniakowsky - Schwartz Type Discrete
Inequalities.— http://rgmia.vu.edu.au/monographs, 2003.

[5] Cutnuk C.M. Obobwernus nepaserncme Kowu — Bynaxoscxozo memodom cpednur
3HaNeHUTl U UT NPUAOKHCENUA. — TePHO3EMHBIN abMaHaX HayuHbIX Hccienosanuit. Cepus
"®ynnamenTanbHas MaTemaTuka', 2005, Ne 1(1), C. 3-42.

[6] Cataux C.M. Ymounenue unmezpaivhozo nepasencmea Kowwu — Bymaxoscxozo.
— Becrnuk Camapckoro roc. tex. ynusepcurera. Cep. "®usnko-maTemaTwdeckne Hayku",
2000, Ne 9, C. 37-45.

[7] Curauxk C.M. Hexomopwe npuaoscenus ymounenut wnepasencmea Kowu -
Bynaxoscrozo. — BecTHuk CamapcKoit rocyaapCTBEHHOM 3KOHOMHMYECKoM akaneMum, 2002,
Ne 1(8), C. 302-313.

[8] Sitnik S.M. Refinements of the Bunyakovskii—Schwartz inequalities with applications
to special functions estimates.—Conference in Mathematical Analysis and Applications in
Honour of Lars Inge Hedberg’s 60-th Birthday. Linkoping University, Sweden. June 10-15,
1996, P. 97.

[9] Cutnrux C.M. Obobwenua nepasencmea Kowu - Bynaxoeckozo 6 npocmpancmear
¢ undegpurnummnoti mempuxotl. — Tpyapl maremarudeckoro uenrpa um. H.W. Jlob6auesckoro,
Kasans, 2003, T. 19, C. 202-203.

{10} Daykin D.E., Eliezer C.J., Carlitz C. Problem 5568—Amer. Math. Monthly, 1968,
No. 75, P. 198; — Amer. Math. Monthly, 1969, No. 76, P. 98-100.

p-Adic Haar Multiresolution Analysis (p=2) and Pseudo-Differential
Operators.
Skopina M.(St. Petersburg)

A p-adic multiresolution analysis (MRA in the sequel) in Ly(Q,) with p = 2 has
been constructed. It was observed that the characteristic function ¢ of the unit disc
By = {z : |z|2 < 1} C Qg satisfies the following refinable equation

1
1 r
#(x) —;}45(51'— 5) , z€Qa.
We proved that such a refinable function generates a MRA consisting of the spaces
V= span{q&(Q—jx + a) ra € 12}, where Ip = {a =2"° (ao+a12+--~+a,_12"1) :8E€EN;
a; =0,1;7=0,1,...,s -1}, with including property V; C V;;1, j € Z. In contrast to Haar
MRA in Ly(R), it turned out that there exist infinity many different Haar orthonormal
bases in L2(Q2). The conjecture of possibility to develop multiresolution approach for the
p-adic setting was raised in {2].
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The pseudo-differential operators are closely related to p-adic wavelet bases. It is typical
that p-adic compactly supported wavelets are eigenfunctions of p-adic pseudo-differential
operators (see [1], [3]). Thus the development of wavelet theory is useful for some p-adic
problems. For a wide class of pseudo-differential operators, a necessary and sufficient con-
dition under which a 2-adic Haar wavelet function is an eigenfunction of the operator is
found.

The results are obtained jointly with V.M. Shelkovich.

References

{1] Albeverio S., Khrennikov A.Yu., Shelkovich V.M., Harmonic analysis in the p-adic
Lizorkin spaces: fractional operators, pseudo-differential equations, p-adic wavelets, Tauberi-
an theorems, Journal of Fourier Analysis and Applications, Vol. 12, Issue 4, (2006), 393—-425.

[2] Kbrennikov A.Yu., Shelkovich V.M., p-Adic multidimensional wavelets and
their application to p-adic pseudo-differential operators, (2006), Preprint at the url:
http://arxiv.org/abs/math-ph/0612049

[3] Kozyrev S.V., Wavelet analysis as a p-adic spectral analysis, Izvestia Akademii Nauk,
Seria Math. Vol. 66, no. 2 (2002), 149-158.

Kparnsle co6crBesHbie 3HavYeHus oneparopa Oppa — 3omMmepdensaa
Ckopoxonos C. JI. (r. Mocksa)

PaccmaTpusaercst Ha oTpe3ke y € [—1, 1] ypasuenue Oppa — 3oMmepdenbia

;:—R (cp“ (y) - 202 " (y) + o <p(y)) -

- (U () - /\) (w"(y) -a’ sO(y)) +U"(y) o(y) =0,

¢ ONIHOpOAHBIMH KpaeBbiMu ycnoBusmu p(+1) = ¢/(+1) = 0. 3gecs @ > 0 — 3ananHOe

BOJIHOBOE 9HC0, R > 0 — uncno Petinonbaca, U(y) — GyHKUuS CKOPOCTH OCHOBHOTO IOTOKA

XnaKocT, A ¥ ¢(y) — uckomsle coberBernble 3navenns (C3) u cobeTBerHble (DYHKIHM.
JInsi BBICOKOTOYHOTrO peEHIEHHs! 38Ja4d WCHONb3YyloTcsl npenctasiaeHns ¢(y) B BHIe

CTeIleHHbIX paanox(emm B OKPECTHOCTH I'DAHHYHBIX TOYEK Y = —1n y= 1:
o0 fe <]
o)=Y dely+ "2, o) =3 ex(1-p)**2, (1)
k=0 k=0

rae ans xoadduuenros dy = di(R,,A) n e = egx(R,q,\) nony4eHs peKyppeHTHHIE
YPSBHEHMs ¥ MCCIE0BAHA ACHMIITOTHKA KX peleHnit npu k — co.

OcyiuiecTB/fs CIIMBKY 4eThIPEX: JWHEHHO-HE3aBHCHMBIX pa3fioxeHu#t Buaa (1) B
HeKOTOpo# ¢uKcupoBaHHOH Touke Yy, € (—1,1), mogy4yaeM OCHOBHOE ypaBHEHHe AJIA
BBIYHCJICHHA CIIEKTPa A:

Wr(\) = Wr(p1, 02,903,045 A; 9.) = 0,

rae Wr ~ BpOHCKHaH pelieHuft.

Iist coryuas Tevenus Kysrra U(y) = y nerannmo uceresosansl Tpaektopun C3 A, (R)
npu m3Merenun uncna R € (0,108). Uncnenno nokasano, uro Gyskuun A, (R) umewor B
OKDECTHOCTH Y37I0BO# TOUKH A, = —i/+/3 C4eTHOE MHOXKECTBO TOYEK BeTBJIeHHs Ry BTOpOro
TIOPSZIK3, B OXpecTHOCTU KOTopbix napa C3 Ap(R) u Ap(R) umeer nosenenne

Anm(R) = £VR— R U(R) + ®(R),
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rae ¥(R) n ®(R) — perynsipabie GyHKUMM B OKPECTHOCTH TOYKU R = Ry,. IIpu nenpepriBioM
yBesmdennn uncaa R > 0 napbt C3 A\, (R) u A, (R) cHauana obpasyior npu R = Ry, apoitusie
C3 Ha MHUMOIt OCH, KOTOpHIe 3aTeM PacHajaloTcss Ha naphl npocrbix C3, CHMMETPHYHEIX
OTHOCHTEJIBHO MHHMOM OCH.

STOT mpouecc cooTBeTCTBYET Nepexosy C3 ¢ HuKHel BETBH CIEKTpa, PAaclojIoXKeHHOH
Ha MHHMO[ OTPHLIATEIbHON OCH, Ha YeThIpe APYIUX BETBH, B COBOKYIHOCTH COCTAB/SIOMIHX
OpPTpeT “CHeKTPaIbHOTO raicTyka’.

IIpuBesem 3naueHus NEPBBLIX YeTHIPeX TO4eK BeTBIeHHs Ry u asoiinbix C3 A, m(Rk).

R, = 61.9177587, A3 4 = —0.799834981:;

Ry = 65.5202291, Aq 2 = —0.388160962;
R3 =205.7777806, X¢,7 = —0.6652700897;
Ry = 214.4033834, X¢,7 = —0.647397672i.

Pafora Brmosinena npu ¢unancosoit nognepxke POOU (xoxer npoextos 07-01-00295,
07-01-00503) s IIporpammer N° 3 OMH PAH.

O60611enust onenku IBukesns A5 MHTerpaabHEIX OMEPATOPOB
Cnoym B. A. (r. Cankr-Tlerep6ypr)

Ilycrs (X,dp), (Y,d7) — u3MepuMble HpPOCTPAHCTBA C O-KOHEYHbBIMH MepaMi. Mol
H3y4yaeM JIMHefiHble MHTerpaJbHble onepaTophl Ty, : Lo(Y,d7) — Lo(X,dp), c sapom
f@)tz,v)9(y), z € X, y € Y. Bgecy t(r,y) — sOpO JMHEHHOrO OTPAHMYEHHOTO
unrerpajsHoro oneparopa T u3 Lo(Y,dr) B Ly(X,dp), f : X - C,g: Y — C — u3amepumbie
dbyuxuun. O6CyKARIOTCS YCAOBUS OrPAHMYEHHOCTH, KOMIIAKTHOCTH U OLEHKH CUHIYJISPHBIX
ancesn onepatopoB Iy Takme BONPOCEI YacTO BOSHHKAIOT B TEOPHH ONEPATOPOB H
A0CTATOYHO NOAPOGHO u3yvenst B paborax M.II1.Bupmana, M.3.Conomsxa, I.E.Kapaaxosa,
T. Baiigis u ap. B nacrosieM coobiueHud OpHBOASATCS AadbHERINME TIPOABHIKEHUS B STOM
HAIpPABJIEHHH.

B paGoTax BCcex BblIENEPEYUC/IEHHBIX ABTOPOB NPEANOJaraiach OrPaHM4YeHOCTh Sapa
t(x,y). [Ipu 3TOM CHHIYIAPHBIE YHCIA U HOpMa omepatopa T}, OUEHNMBATHCEH Hepe3 HOPMbI
dyuxmu#t f u g B noxxoasmux npocrpascrsax Jlopenua, Bkmodas crabbie Lp-Kaacchl wiu
qepe3 Hopmy dbyuxkunu (fg)(z,y) = f(z)g9(y) B yaobHom knacce usMepumbix yHKIHH
Ha npocrpaicrBe X X Y ¢ mepoit dpdr. OcHoBHast Maes COCTOMT B TOM, 4YTOOBI IpU
Jopmynuposke ycaosnit Ha dynkumio (fg){(z, y) ucnons3osars npocrpanctso X XY ¢ mepoit
dv(z,y) = [t(z,y)|*dp(z)dT(y). D10 MO3BOMAAET OTKA3ATHCA OT TPEGOBAHMS OTPAHIUEHHOCTH
aapa t(x,y) 1 paclIMPUTL 3anac paccMaTpuBaeMbix GyHkuuil f u g.

B nacrosime#t paboTe CHHTyJIspHBIE uucaa oneparopa Ty, OUEHHBAIOTCS Yepe3 HOPMY
bynxkunn (fg)(z,y) B nomxoasinem kiacce Jlopenma Ha mpocTpancTtse Z X Y ¢ Mepoi
dv(z,y). Hopma oneparopa Ty, Takyke OUEHMBAETCH B TepMHHAaX GYHKuuH f, g U Mepbl
dv. JlokasaTenbcTBa Pe3ysibTATOB OCHOBAHBLI HA HIAEAX TEOPUH WUHTEPIOJALMM JMHENHBIX
onepaTopoB. Pe3ynbraThl MMEIOT TNpHIGKeHHs K JudbepeHHuaTbHBIM - ONEepaTopaM
KBAHTOBOH MeXaHHKH.
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OcpeHeHNe SJUTMIITHYECKOro ypaBHeHus B nepcgopupopannoil obnactn npn
YTOHYEHUH OTBepCTHil B OJHOM HampaBJIeHHH.
Crynxuit A. C. (r. Canxr-ITerepGypr, Canxr-IleTep6yprcxu#t rocysapcTBeHHbIN
YHHBEPCHTET CEpPBHCA H IKOHOMMKH)

TIpou3BOAUTCA OCPEAHEHHE SIUTMITHYECKOro AnddepeHuMalbHOr0 ypapHeHus: BTOPOTo
NOpSAKA B TNPSMOYTOJNbHWKE, COAEPIKAINEM HEPABHOMEpHYK mnepdopaumio. ldeitkn
[epPHOAMYHOCTH CYXKAIOTCsi NPH YIAJEHMH OT OJHOTO U3 OCHOBAHHII NPSIMOYIOJbHUKA
n obpasylor paKTalbHYI0 CTPYKTYpy B ogHoM Hanpabnenuu. Kaxpas svefixa
NIepHOAWYHOCTH MMeEeT OTBEPCTHe, MpHdeM (opma OTBEpPCTHI HEM3MEHHA JUIs TYEeK OJIHOrO
psiia, OAHMAKO C POCTOM HOMepa psfa ¢opma orBepcruit usmensercs. Ha rpammuax
oTBepcTHit Ha3HaueHH! Kpaesnle yciosus Helimana.

Tocrpoena GopMasbHas ACHMITOTHKA DelIEHHs, B KOTOPYX BXORHMT Kak obruHbIi
aH3all TEOPMH OCDEJIHEHMsl, TAK M aH3allbl, XapaKTepHble IJA pelleHHil KpaeBhiX 3a1a4
B TOHKHX OOJacTsIX, 8 TaKXXe OJKCIIOHEHIHaJbHble NOTPaHMYHBIE CJIOH OIHCHIBAIOMIME
[OBEJICHUE DELIEHMs B OKpecTHOCTH Kpae orsepcruil. Haiimena ssnas ¢opMyna s
ocpenHenHoro audbepeHunanbHOro oepaTopa M MOJyHeHa OLEHKA Pa3sHOCTH MCTHHHOIO
¥ ACHMITOTHYECKOTO pellienuit Io HopMe npocTpaHcTsa H1.

Path integrals for solutions of partial differential equations via Feynman
formulas.
Smolyanov O. G. (Moscow)

Representations of solutions of initial value problems for some evolutionary partial dif-
ferential equations by integrals over trajectories in some space are called Feynman-Kac for-
mulas. The Feynman formulas are representations of the solutions by limits of some integrals
over Cartesian products of copies of the same space when the multiplicity of integrals tends
to infinity. In the case of the heat equation the limits of integrals coincide with integrals over
some Gaussian type measures on a set of trajectories. In the case of Schroedinger equation
the limits can be interpreted as Feynman path integrals. In the case of equations, describing
quantum analogues of Hamilton-Dirac systems (corresponding to Yang-Mills gauge fields)
the limits can be interpreted as integrals over trajectories either in a submanifold of the
phase space or in a superspace. Therefore, Feynman-Kac formulas follow from Feynman
formulas.

Feynman formulas for solutions of some Schroedinger type equations are obtained and
corresponding Feynman-Kac formulas are discussed. In particular, one considers some equa-
tions with respect to functions on domains of Riemannian manifolds, with respect to func-
tions defined on infinite dimensional manifolds, constituted by surfaces in Riemannian mani-
folds (corresponding equations are related to M-theory) and with respect to functions defined
on a submanifold of phase space (corresponding equations are related to Hamilton—Dirac
systems). Also some randomized Feynman and Feynma-Kac formulas generated by stochas-
tic Schroedinger equations {describing continuous measurements; such equations are called
also Belavkin equations) are considered.
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Canards in the modified Lotka-Volterra model
Sobolev V. (Samara State University), Konkina A. (Samara Municipal Nayanova
University), Pokrovskii A. (University College Cork)

The famous Lotka-Volterra equations play a fundamental role in the mathematical mod-
eling of various ecological and chemical systems. A new modification of these equations has
been recently suggested to model the structure of marine phage populations, who are the
most abundant biclogical entities in the biosphere.

The purpose of the paper is:

(i) to make some methodical remarks concerning this modification;

(ii) to discuss new types of canards which arise naturally in this context;

(iii) to present results of some numerical experiments.

We give a vivid examples of apparent disappearance phenomena which are typical for
laser and biological systems. It is well known that canards play an important role in the theo-
ry of mixed-mode oscillations consisting of large amplitude oscillations followed by small am-
plitude oscillations. In a sense we consider a limiting cases of mixed-mode oscillations, when
large amplitude oscillations followed by vanishingly small amplitude oscillations.

Numerical methods for shape and topology optimization
Sokolowski J. (Nancy-Warsaw)

We present a framework [1] for shape and topology optimization of systems described
by partial differential equations of elliptic type. The evolution of geometrical domain is
described by level set function given by solutions to the Hamilton-Jacobi equation. The
coefficients of the H-J equations are defined by shape gradients [2] of the shape functional
to be minimized. Since by its nature the level set function in the process of optimization
decreases the number of connected components of the geometrical domain, the asymptotic
analysis and the so-called topological derivatives [3], [4], [5] of the shape functional are
employed in order to detect the topology modifications which improve the value of the
shape functional to be minimized. Therefore, at the first stage of analysis, the existence
of an optimal shape is proved for the shape optimization problem under considerations,
at the second stage of the analysis the shape gradients and topological derivatives of the
shape functional are determined, and at the third stage of the numerical method the level
set function is found by solving the Hamilton-Jacobi equations. The numerical results for
elliptic equations and variational inequalities show that the proposed method is very efficient
and allows to find better results compared to classical boundary variations technique, or by
an application of the homogeneisation method.
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Dirichlet problem for elliptic weakly connected systems in Hardy class H ?(D)
Soldatov A. P. (Belgorod State University)

It is well known that the Dirichlet problem for linear elliptic equations (under natural
assumptions with respect to dates) is Fredholm solvable in the class C(D) of functions
continuous in a closed domain. The analogous result for elliptic weakly connected systems
on the plane is based on the theory of one- dimensional singular integral equations and so the
Fredholm solvability of this problem is proved {1] in the Holder space C* (D). In the report
this fact is established in C(D) and the Hardy class HP(D). Under additional supposition
that the characteristic equation of elliptic system has no multiple roots this effect was firstly
discovered by N.Tovmasyan [2].

1. Bitsadze A.V., Boundary value problems for second order elliptic equations, "Nauka",
Moskow, 1966.

2. Tovmasyan N.E. The Diriclet problem for principal elliptic equations in the class of
continuous functions, Spectral and evolution problems (Kromsh-2004) vol. 15, Simferapol
2005, Crimea

On the stability of rotating self-gravitating liquid.
Solonnikov V. (S.Peterburg)

We justify the principle of minimum of potential energy in the problem of stability of
uniformly rotating viscous incompressible self- gravitating liquid not subjected to capillary
forces.- The proof is based on analysis of the evolution free boundary problem for perturba-
tions of velocity and pressure of rotating liquid.

O6parnas 3aga4a onpe/elleHus Ko3dpuiuenTa sl SLTUNTHIECKOTO
ypaBHEHUS B NPAMOYTOJIbHUKE.
Couosses B. B. (r. Mocksa,)

Myete 0 < o < LI > 0,1 < 0 < ¢ - GUKCHPOBAHHBIE YHC/IA,
I={(z,y) : 0 <z <L <y < go}. B npsmoyromnbHuke IT paccMoTpuM 06paTHYIO
3a7ady onpeesenns napst Gyukuuit u(z,y), c(z) < 0 u3 ycrosuit:

—Au(ziy) = c(a:)u(m,y) + g(zvy)i ('T7 y) eIl

u(0,y) = vi(y),ull,y) = 12(¥),y € 01,2},
u(z,q) = w{z,g2) = 0,0 <z <,

ul(z,0) = x(z),z € [0,1].
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Teopema 1. (esuncrsennocru). Ilycts g,g,, € C*(T), v1,vy € Cla,q), wi(y) = 0,
vi(y) <0,y € (q1,02)0 = 1,2, g(z,9) = 0, gyy(z,y) < 0, (z,y) € TI, xots 6t onna
u3 GYHKUME g, v; He SBJISETCS TOXIECTBEHHBIM HysleM. Torma ofpaTHas 3a784a He MOXKET
HMETb JBYX Pa3JIM4HBIX PelteHuit.

TycTh w - pellieHMs KpaeBol 3aJauu:
-Aw = gy,,(:v,y), (z,y) € 10,

w(0,y) = v (y), w(l,y) = 5 (¥), @1 <y < g2,
w(z,q1) =w(z, @) =0,0<z <l

Teopema 2. (CymiecTBOBaHMS H €AMHCTBEHHOCTH). IIyCTh BBINOIHEHBI YCJIOBHS TEOPEMEI
1, u, apomonnutensho, x(z) > xo > O,z € [0,l], BoInONHEHBI yCIOBHS COIIACOBAHHS
x(0) = 141(0), x(I) = v2(0). Toraa, eciu BHIOIHEHO HEPABEHCTBO:

-x"(z) - 9(,0) < w(,0),z € [0,]]

TO oﬁpa'n{aﬂ 331398 UMeEeT €IUMHCTBEHHOE DELICHUE.

T'pynnoBas kjaccudUKanys KBasWIMHEHHBIX ypaBHEeHHH 3JUTHOTHYECKOTO THUIIA.
Cnuvak C. B. (r. Kues)

Kpasu-nuueitunie JBYMEpHbIE€ YPaBHEHUA NIUIITUYECKOTO TUIIA
Au= F(Z‘, Y, Uy Uz, uy):

(A - nByxmepHmuift oneparop Jlamnaca, v = u(2,y), Uz = g%, Uy = g—;, F - npousBoJibHasA
raagkas QyHKUUS, KOTOpas sIBIseTcss HeJMHeRHO! xors Gbl MO OAHON U3 NEPEMEHHbLIX U,
Ug, Uy), OTHOCATCSA K (PyHIAMEHTAJILHLIM YPABHEHHAM MATEMATH1eCKON PU3MKM, KOTOphIE
LIMPOKO MPUMEHSIIOTCS B Pa3sHoOGpasHbix O6IacTAX COBPEMEHHOTO eCTECTBO3HaHMs (CM.,
Hamp. [1]).

B pabore mnpoBemeHa rpynnoBas KiaccMUKaUMsi ITOrO KJIacca ypDaBHEHHH, T. e.
HOJy4YeHB BCE NOAKJIACCH TAKHX YDaBHEHHH, KOTODble HMHBAPUAHTHBI OTHOCHTENIHHO
OIIEpPATOPOB CUMMETDHH, 06Pa3yoIUX pa3IidHble KoHeYHOMepHbIe ayrebpst Ju. B npouecce
KJIACCHbUKALMHE OTHENIbHO PACCMATPUBAIOTCS MOJYNPOCTHeE, paspemnMele anrebpbl Jlu, a
TaKXKe Te, KOTOpble SBJISIOTC MOJyNpaMol cymMMolt sTuX AByx THroB anre6p. IIpu stom,
MBI MCIOJIBb30BAIM METO, TIPeJIOKeH b B [2], KoTopbl#l fBiIsieTCs cHHTe30M Merona Jlu-
Oscsinnnkosa ([3]) u anrebpanyeckoro nogxoza.
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VYcpennenne pellleHHil CTAUMOHAPHOU CUCTEMBI yPaBHEHHUH MOTPaHUYHOIO CJIOS
JJISE MACHUTHOMN >KUAKOCTH.
Cnupusoros C. B. (r. Mockga)

TorpanugHeIit CT0M - TOHKHHA CI0M JKUAKOCTH OKOJIO I'PAHULIBI CONPUKOCHOBEHUS I0TOKA
c obrekaeMbiM TesioM. JI. IIpanariem GBUIO YCTAHOBIEHO, YTO BHE JAHHOTO CJIOA KHJKOCTh
MOKHO CYUHMTATh HEBA3KON, & BHYTDHM OKa3aJOCh BO3MOXHBLIM CYIIECTBEHHO YIPOCTHTh
ypasHenus Hasve-Croxca, B cuiy psijia CBOUCTB (PH3UIECKOro XapaKTepa.

PaccMarpuBaercss  IUIOCKONBPAJUIENBHOE  CTAUMOHAPHOE  JABHIKEHHE  MAHHTHOMN
KHIOKOCTH:

u  Ou  Bu dUu
ua—y; —ug '05!—1- = —d(z,y)(U(z) — u) — UE’ "

ou o

oz "oy

B obmactu D = {0 < £ < X,0 < y < 00} ¢ rpaHHYHBIME YCAOBUSAMH

u(0,3) = u1(y), u(z, 0) = 0,v(z,0) = vo(z) @
u(z,y) — U(z) npu y — oo,

rae u(z,y), v(z,y) — Npomo/bHAs M noONEPeYHasi KOMIIOHEHTHl CKOPOCTH IIOTOKA,

d(z,y) = -};J(z, y)B%(x), § — nposoguMOCTb KHUAKOCTH, B — opToroHanbHas K obTekaeMolt

[IOBEPXHOCTU KOMIIOHEHTA MATHHUTHON HHJIYKUMH, p — IUIOTHOCTb CPEAbl, & V — BA3KOCTb.

Dynkuus d(z,y) cAUTAETCA H3BECTHOM.

B wHacrosmie#t paboTe ycCTaHOBJEHBI HEOOXOAMMEBIE YCJIOBHA  CYyLIECTBOBAHHS
ACHMIITOTUYECKOTO PEIIEHUs] CHCTEMBI IIPH BHECEHHM MAJoro napaMerpa B byHKOun
Uo(w) " d(zvy)

PaccmorpuM ceMelicTBO ypaBHEHUH:

&ut [ O0ut L Out . daUu

V_@y_?_u 2 Y %—d(z,y)(U(z)—u)—Ua, ,
o o @
or ' 8y

B obnactu D = {0 <z < X,0 < y < 00} ¢ rpaHUYHBIME YCIOBHIMHU

u®(0,y) = u1(y), v (z, 0) = 0,v°(z,0) = vj(z) (4)
u*(z,y) — U(z) mpn y — oo,
Hmeer mecTo crieilyiomee yTBepXKIeHMe.
Teopema. Ilycts byHkumE v§ u d° cxosTes caabo npH € — 0 K vp ¥ d COOTBETCTBEHHO,
Torga pemenus u® ¥ v° 3amaun (3) - (4) CXOAATCA COOTBETCTBEHHO K PEILEHHSM U H U
ucxonHo# 3azauu (1) — (2) paBHOMEpPHO Ha MO6GOM OrpaHHYEeHHOM noamHoxecTe D.

Haunyqiune m-uiennsle npubimkenust Knaccos Becosa B , nonusomamu
Xaapa.
Craciok C. A. (r. Kues)
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Tlyers R, d > 1, — d-MepHOe UPOCTPAHCTBO C 3IEMEHTAMH T = (z1,..-,2q), 2
L,([0,1]%), — npocTpancTeo Bcex dyukuuit f, ¢ HopMOH

1/p
o= ([, Wera) ", 1p<o

1 ¢ ecTecTBeHHOH Moamdukanuelt mpu p = oo.
st 3anauHOro MuoxkectBa D 37eMeHTOB HekoToporo 6aHaxoBa mnpocTpaHcTBa B
HaWIy4nee m-wieHHoe nmpubiamkenue snemenTa f € B no oTHomenmo K cucreMe D ecThb

m
F=> ¢
Jj=1

rpe inf B3aT mo BceM aneMmenTtaM g; € D u Kospduumentam c;, j = 1, m. Paccmarpupas
B KadectBe D cucremy Xaapa H := {Hy}; nomysaem mns kjaccoB BecoBa B
(onpenenenne cm., Hanpumep, B [1]) crexyiomee yTBepXKAeHMe O MOPSLKOBBIX OIEHKAX
BenuHbl 0 (By o, H)g = sup om(f, H)q-
feBy,
Teopema. Ilycrb 1 < p < 00,1 < ¢ < 00, 1 £ 8 < o0, TOrma pis % < r < 1 umeer
MECTO TOPsIAKOBOE PABEHCTBO

)

B

O’m(f, D)B = inf

Om(By g, H)q < m~"(log m)(@-Dr+3-3),

YTBepKaeHHe TeopeMbl 1jis f = 00, TO ecTh Anf Kaaccop Hukosbckoro Hy, nomyteHo
B [2]. OT™MeTnM TakKe, YTO BEIMYHHBI am(B;Q,T)q IJI TPUIOHOMETPUYECKOH CHCTeMbl
)

T = {e!*9}, usyqanucy ® [3]. ConocraBus pe3ynbTAT TeOpeMbl C COOBETCTBYIONIMMH
OLIEHKAMH BEIHIHE 0m (B} 5,7 )q [3], oTmeuaeM, YTO NPH HEKOTOPBIX COOTHOLIEHHIX MEXKIY

napaMeTpaMH p, ¢ 1 0 mpubinKeHns no cucreme Xaapa UMeIOT MPEHMYLIECTBO 110 CPABHEHUH
¢ NpUGITIKEHNSIME [I0 TPUTOHOMETPHYIECKON cHCTeMe.
Jlureparypa
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OlLeHKM annpoKCUMATHBHBLIX ¥ SHTPOMUMHBIX YMCEe] MHTErPAJILHBIX ONIEPaTOpPOB
Crenanos B. [I. (r. Mocksa)

BaxHO XapaKTepHCTHKON KOMIAKTHOCTH (/60 MEpBI HEKOMIIAKTHOCTH) JIMHEHHOro
omepatopa T : E — F, gmefictByomero u3 GaHaxoBoro mpocTpaHcTBa E B 6aHaxoBO
npocTpaHcTBo F, SBASIOTCA €ro annpoKCHMATHBHbIE M SHTPONuiHbIE HCIa, an(T) u e (T),
onpejeisieMble CIEAYIOUIUM 06pa3oM:

an(T) :=inf{||T - Sllg—F: S:E—F, rank(§)<n-1}, ncN,

2"—1
en(T) :=inf{e >0 : T(Bg)C Bp(Tzj;€),%1,...Z2n—1 € Bppy, neN,
7
j=1
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roe Bg = {z € E : ||z|lg < 1}, Br(y,e) := {& € F : ||z — yllr < €}, N obosnaaer
MHOXKECTBO BCEX LENBIX IOJOKHTENbHBIX uuces. V3yueHHI0 CBOMCTB XapaKTePUCTHIECKUX
gnceNn JIMHEHHBIX Ipeobpa3’oBaHMt, BKJIIOYAs BbIIIEHA3BaHHEIE, NOCBAIIEHA OOIIMPHAs
6ubnuorpacdusa. Ocobbilf MHTEPEC NPEACTAaBAAIOT CJIy4aW ONEpaToOpoB, I KOTOPBIX
YA8€TCS NMOMYy9HTh JBYCTOPOHHHE HeyJydillaeMble OLEHKH CeKBEHIMAIBHBIX (KBa3H) HOPM
nocaesoBatenbHocTedt {an(T)} u {e.(T)}. B sTOM OTHOLIEHHM 3HAYATEJHHOE BHUMAHME
B MOCJEIHHE oAbl GBLIO YIEJEHO M3YyYEHHIO XapaKTePHCTHHYECKUX THCes MHTerpasbHBIX
onepatopos Tuns Xapad u Pumana-JInysuins.

B nokjane gaercsi 0630p HEKOTOPBIX OCHOBHEIX Pe3yJbTATOB O JaHHOU npobiieMaTuke.

CHMMeTpHsl B TOUHEIE pellleHus AByXMepHoro ypapnenns ®okkepa-Ilnanka ¢
nepeMennoli marpuneil auddysun.
Croruuit B. 1. , Mapxuranos 0. H. (HTYY "KIIH", r. Kues, Yxpauna),
Jlarro. B. H. (IIT11Y, r. HonraBa, Ykpauna)

Ypasuenue Pokxepa—Ilnanka

du ;] 1« &
il ; 5z, AW+ 5 i]Z:l 5mdz; (Biju), 1)
rme v = u(t,x), x = (z1,Z2,...,2Zn),

A= (Al(tax)7A2(t7x)a s 7An(t7x)) -

BekTOp CHocoB, B = ||B;;(t,x)|| — marpuna auddysnu, ABAAETC OHUM M3 LEHTPAJIBHBLIX
yDaBHEHHI TEOPHH CTOXaCTHYECKHX MeTofoB (M., Hanp., {1]).
3pech uccaenyercs ypasnenue (1), rme x = (z,y),

-z2 0
A = (e — 2%y,e — 21%), B=<Ox —y"’)' (2)

Jloka3aHO yTBepaKIeHHe.

Teopema. Maxcumasvroti xoneunomeprotl an2ebpoll UHBAPUAHTMHOCTIY YPASHEHURA (1),
(2), 8 xomopom € # 0, seanemcsa deyrmephas abesesa anzebpa JIu onepamopos cummempul
8; uudy. Ecau e (1) &€ = 0, Mo MAKCUMANLHOT KOHENHOMEPHOT a12€6POT UHBAPUGHMHOCTIU
IM020 YPAGHEWUA ABAAEMCA “emwpeTmepnai aazebpa Jlu Ly ¢ maxumu 6a3UCHBLMU
onepamopamu:

P():ag, I=u6u, D1 = —:cax+y8y,

T

Dy = —ztd; + ytdy —In ” udy.

B naspHe#imeM, ¢ UCTIONb30BAHHEM CHMMETPHHUHEIX cBO#cTB ypasHenus (1), (2), momyuenst
ero TOYHbIE DElIEHHs METOIOM CUMMETDHHHON DeAYKIMM, & TaKXe C MCIOIb30BaHNMeM
NPOUEAYPHl Pa3JIeNeHNs IePeMeHHbIX.

B uacrrocTH, Ans ypasuenust (1), (2), rae € = 0, nojyvens! Takue HECTAUMOHADHBIC
peleHus:

u=y teO [Cl (1 + ziy) +C, (1 - zly) 62’”"] , C1,C; €R;
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u = eV (29)"2(0, k + 1, 2w),
raek=-3+vIT—4a (a<3), %(0,k+1,2w) - pemenne ypasrenus Yurrexepa

4" = (WP +4k+1)2 - 1)y, w=uzy

JInreparypa
[1] Tapaunep K.B. Cmozacmunecxue memodn 8 ecmecmeennnir nayrxazr. — M.: Mup,
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On construction of optimal synthesis in control problems of prescribed
duration
Subbotina N.N., Tokmantsev T.B. (Ekaterinburg)

Optimal control problems of preseribed duration are under consideration [1]. Dynamics
of controlled system is assumed to be nonlinear. Values of controls are restricted by geometric
constrains. The cost functional of Bolza type is considered. The goal of the problem is to
minimize the functional along trajectories of the system on the time interval of prescribed
duration. It is assumed that data of problems are Lipscitz continuous. The set of arguments
of minimization in the Hamiltonian representation is assumed to be a singleton.

The researches of the problem are focused on construction of the value function which
brings the correspondence between any initial phase state of the system and the optimal
result at this state. The function takes a key part in constriction of optimal synthesis. It is
proven [2] that the nonsmooth value function is the unique minimax solution of the Cauchy
problem with additional restrictions. The assumptions provide that the function is Lipscitz
continuous. Using nonsmooth optimization [3,4] it is obtained [5] that the value function has
a representation based on generalized characteristics of the Bellman equation.

An algorithm for numerical calculation of the value function on the base of a backward
procedure is suggested [6]. It consists of integrating a generalized characteristic system and
working the representation of the value function mentioned above. Additional advantage of -
the procedure is constructing of optimal controls at any current state during the work of the
procedure. Estimates of difference between the optimal result and the result of application
of the suggested optimal synthesis are obtained. The algorithm realized the procedure is
created for optimal contro! problems on the plane. Results of simulations are exposed.

Recerches were supported by grant RFBR » 05-01-00609 and by grant of President RF
for scientific school » NSh~8512.2006.1.
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Paspemmmocts oGparHoit 3amauyn Iltypma-JInyBusis ¢ HepacnagaioUMUCs
KPaeBbIMH YCJIOBASIMH
CynranaeB 5. T., Axtamos A. M. (r. Yoa)

O603nauuM wepe3 L caexymoiyio cnekrpanbhyo 3aady [ltypma-JTuyBumns:
ly=—y" +q(x)y = Ay,
Ur(y) = ¥'(0) + a1, y(0) + arz2 y(m) = 0,
Uz(y) = y'(m) + a21 y(0) + aza y(m) = 0

(g(z) — cymmupyemas ynkuus, aij, i, § =1, 2 -~ KOMIJIEKCHbIE [IOCTOSHHbIE).
B nacrosmeit pabote aBTopaMu MOJIy4YeHa Te€OpeMa BOCCTAHOBJEHUA 3aJadd L mo aBym
CIIEKTPaM U OOHOMY COGCTBEHHOMY 3HAYEHMIO.

PaccMmoTpuMm Hapsgy ¢ 3agadelt L aBe 3aiad9¥ ¢ PacnajaloUMMCS TPaHUYHBIMH
YCJIOBUSIMH.
3apava B;:
ly=-y" +q(z)y=py,

Ur,1(y) = ¢'(0) + a1 y(0) =0,
Uz,1(y) = ¢'(m) + az1 y(m) = 0.
3angaua By:
ly=—y" +q(z)y=py,
Up,2(y) = y'(0) + a12y(0) = 0,
Uz2(y) = y'(7) + a2 y(m) = 0.
TIycTs pi, 1, fhk,2 — COBCTBEHHBIE 3HAYEHMS ITHX 3aJaM.

Teopewna IHycms danv docmamouno boavoe deticmeumenvhoe wucao Ay ~ N2
u dee nocaedosamensshociny OelCTNEUMENdHILT “UCEA [tk 1 U [k 2, YOOBAEMEOPAIOWUT
YCAOBUAM:

1) Nucaa pig,1 U fig, 2 MEPEMENCAIOMCA;

,

2) JEri=k+2+0(k) n yIa=k+2+0 (&), 20
by = % (au + az; + % ]-01r q(t) dt) , by = -11; (1112 + a2 + % fow q(t) dt) , bo # b},

Ipu evwnoanenuu smuz yeaosuli cywecneyem abcoaomno wenpepuenai Gynxyui ¢(z)
U NUCAQ G11, G12, Q21 U Q2g TNAKUE, “INO Lk, 1 — cnexmp 3adavu Bi; jx, 2 — cnexmp 3adavu
B,, a Ay — cobcmeennoe snaxerue sadavu L.

IMokazarenu JIsnynoBa auddepeHuanbHEIX YPABHEHUI BTOPOro ropsjika Kak
bYHKIMHK CKISIPHOTO apaMeTpa.
CynranbexoBa A. O. (r. Aimatsr)

Uccnenyercs Bompoc kmaccudukamuu mno Bspy [1] noxazarenet Jlsmynosa
nuddepeHuyaIbLHBEIX YpaBHEHNII BUOA

§=wb(t)y+alt)y, te R, a(t),b(t)eC’, wel0,1], 1)

rae CF - [IPOCTPAHCTBO HEMpEPHIBHBIX K orpanHuyenHbx Ha RY = [0, +00) dbynknui.
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Toxasarenn Jlanynosa ypasuenns (1) A\j(w) > A2(w) coBmagaoT ¢ noxasarensiMu
JIAnyHOBa SKBMBAJIEHTHON CUCTEMBI

z = A(t,w)z, z=col(z1,22), T1 =Yy, 2Z2=17,

0 1
Alt,w) = ( a(t) wb(t) ) @

Ucnone3yeMule 37ech HeoOXOIUMble CBEJEHHs M3 TeODMM IOKasaresell colepXxaTcss B
[2]. [ns smHeMHBIX CHCTEM HPOWM3BOJBHOrO BuAa (DA3MEDHOCTH He MeHblle ABYX)
cTporas NpHHAJIEXKHOCTh TOKasareneit JlsmywmoBa BTopomy Kiaccy DBspa cienyer
3 [3,4]. Omsako mns cucreM Buaa (2) STOT pe3yJbTAT HENPUMEHHM, TaK KaK B
J@HHOM CJIydae DacCMATPHBAIOTCS CHCTEMBI CHELHaJbHOrO Bua. JIs NPHBEJEHHBIX
suHefHEX auddepeRaTbHEIX YPABHEHHH BTOPOTO HOPANKa C JHHERHON 3aBHCHMOCTBIO
k03 bUIMERTA OT TapaMeTpa aHAJIOTHYHLIN Pesy/bTaT yCTaHOBINEH B [5]. 3zech usydaercs
STOT >Ke BONpPOC TIPH JIMHENHOR 3aBUCHMOCTH OT Napamerpa KoadbguimueHTa NMpH NepBof
nponaBoaHo# uckoMolt OyHKIMM AJis ypaBHeHHs oblero Buja.

Teopema 1. Cymecrsyor Takue bynkuuu a(t), b(t) € C*, wro noxasaremu JlsmyHosa
A1(w), A2(w) ypaBHenus (1) npMHamIeXaT CTPOro BTOpPOMy Kiaccy Bapa.
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AcuMIToTMYECKOe NoBeAeHne Ha 6eCKOHeYHOCTH pelreHnii ypaBHeHu#i runa
AMmaena-Paynepa.
Cypuavés M. . (r. Mocksa)

PaccMaTpuBaeTCss aCUMITOTHYECKOe TMOBeJeHMe npu  |z) — 00 pemeHn#

u(z) € VVZ;: (R™\ Bg) nosnynnHeHHOr0 paBHOMEPHO-3/UTHIITHYECKOTO YPaBHEeHusI

~ 5u _
> (o) g g = lelPlul M
ii=1 i
n>3, 0>1 p=>-2

oIpeAenéHHbIX BO BHemHOCTH mapa Br := {z € R" : |z| < R} B R". Kosdduuuments a;(z)
FIOJIATAIOTCA OTPAHMYIEHHBIMM, U3MEPHMEIMHA U YAOBIETBODPSIOMUMHY YCIOBHIO CTA6H/TU3AHH

o(r) = sup D |ai;(z) — & — NT;—? =O(jz|™%)

fal=r j=1

roe a > 0 1 K € {(—1,n — 2) - NOCTOAHHbIE.
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W3BecTHO, 4TO A/f ypaBHEHHH TaKOro THIA CyLIECTBYeT KPDUTHYECKOe 3HAUYEHHE O, B
HalllEM CIy4ae PaBHOE ﬂf:—‘z’(_l:—"l [pU [epexojie KOTOPOr'o CBOHCTB& pPeLIeHHH MEHSIOTCS
KavecTBeHHbIM obpasoM. Ing cilydast ¢ > 0, JOKa3aHO JBE TeOpPeMEl, JAIOINde OMUCAHHE
ACHMIITOTHYECKOTO MOBeAeHusl peuleHuii ypasHenus (1)

Hycrs B = —m(n — 2+ m), m = 0,1,2,... - cobCTBeHHble 3HAYEHUs OMEPATOPA
Jlannaca-Bensrpamu Ha emunuuHOlN cdepe B R™. OGo3HauuM Kak A, YIOBIETBOPSIOLIEe
ycioBuio tA < 0 pelreHne ypapHeHus

14+ KA +iAn—2~K)+Bm =0

IlepBast Teopema yTBepKAaeT, 94T0 Juist 1oboro peiueHus ypasuenus (1) u(z) Haiayres
TaKoe Lejoe 9ucao m > 0 u rapmorrdeckuit MHorowiex P, (z) nopsiaxa m, 4To

w(z) = |z|Pm "™ Pp(z) + O(|z]A ), v = const > 0 (2)

Ilpn srom kosdpduumentnl Pp,(x) 3aBucAT oT paccMaTpuBaeMoro pemeHust u(z), Ho
OrpaHUyeHbl [0 aBCONIOTHON BeIMYMHEE CBEPXY MOCTOSHHOM, 0T u(z) He 3aBHCAILEH.

Bropasi Teopema yTBepKIaeT, YTO Ul MPOM3BOJNBHBIX Lenoro uucaa m > 0 u
rapMOHHYECKOr0 MHOrowieHa Pp,(z) nopsiuka m cyuwecrByeT peutenue ypasoenusi (1),
onpezenéHHoe npy |z| > R (rae BesmyuHa R 3aBHCHT 0T Pp(Z)) ¥ UMerowmee aCUMOTOTHKY
(2) npn |z| — 0.

OCHOBY ZI0Ka3aTeNbCTBa COCTABIIAIOT MOy YEHNE AIPHOPHAIX OLEHOK Iy TEM NOCTPOEHUs
CynepelieHHit U TPUMEHEHHe TEeXHUKM BecoBbIX mnpocrpaHcts Kowaparbesa. Ha srom
IyTH MOXKHO MOJYYUTD M CJIELYIOMHe WICHbI ACUMITOTHYECKOIO TPEACTABJIEHAS PELIEHHSL.
PaccmaTpuBaeMoe ypaBHeHHE MOXKET CIIy>KHTh MOJEIBHBIM [IPH PacCMOTpeHKH Gosee o6mux
3a]84.

Homogenization of periodic differential operators as a spectral threshold effect
Birman M. Sh., Suslina T. A. (St. Petersburg)

We consider a wide class of matrix periodic elliptic second order differential operators
A = A(x,D), acting in the space Ly(R%C") and admitting a factorization of the form
A = X*X. Here X is a first order homogeneous differential operator. Many operators of
mathematical physics admit such a factorization. For the operator A, = A(e~!x,D) with
rapidly oscillating coefficients, we study the homogenization problem in the small period
limit. Namely, we study the behavior of the resolvent (A, + I)~! as ¢ — 0. We find approxi-
mation for this resolvent in the operator norm in L, (]Rd; C™) in terms of the resolvent of the
effective operator. For the error term, we obtain the sharp-order estimate {by Ce). Next,
taking the corrector into account, we find more accurate approximation for the resolvent
(Ac + I)~! in the operator norm in Ly(R%; C™) with the error estimate of order £2. Besides,
we find approximation with corrector for the resolvent in the operator norm from Lo (R C™Y)
to H! (Rd; C™) with the error term of order . Herewith, the form of the corrector depends on
the type of the operator norm. In the (L, — H')-approximation, it suffices to take the tra-
ditional corrector used in the homogenization theory, while in the (L; — Lj)-approximation
two new terms should be included in the corrector.

By the scale transformation, we reduce the problem to the study of the resolvent
(A + €2I)71, i. e., the resolvent of the operator A near the bottom of the spectrum. Tt
turns out that the behavior of this resolvent can be described in terms of the threshold
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characteristics of the operator A near the bottom of the spectrum. That is why the homoge-
nization procedure is a threshold spectral effect. The operator A is decomposed in the direct
integral of operators A(k) acting in Ly(£2; C"), where § is the cell of the lattice. The oper-
ator family A(k) is studied by methods of the analytic perturbation theory. General results
are applied to particular operators of mathematical physics. The results were obtained in a
series of papers by M. Sh. Birman and T. A. Suslina in 2001-2006.

Existence and backward motion of slow interface for the thin film equation
with nonlinear absorption and fast convection
Taranets R.M. (Institute of Applied Mathematics and Mechanics of NASU, Donetsk,
Ukraine)

The fourth order nonlinear degenerate parabolic equation is considered in
Q ¢ RY (N < 3) is bounded:

ug + div (|u|"VAu — [u|"Vu) = X - Vb(u), u = u(t,z), (t,z) € (0,T) x Q, (1)

where 0 < T < o0, n >0, m € R, X € RY, b(u) € W},,.((0,00)) with 5(0) = 0 and

[¥'(s)] < ¢]s]*™, A > 0, ¢ > 0. Many authors studied the equations like (1) without the
convection term. The equations describe the evolution of height of a thin liquid film spreading
on a solid surface as well as they appear in the Cahn-Hilliard model of phase separation for
binary mixtures and the theory of plasticity deformation. Also, the equations describe the
thin liquid films driven by the competing effects of a thermally induced surface tension
gradient and gravity. Our main goal is a solvability and a behaviour of the support of strong
solutions to the Neumann problem for (1) with fast convection, i.e. A < 1. The existence
strong solutions in a neighborhood of the slow interface for (1) with 1/8 <n < 2, m > 0,
max {},2271} < X < 1, b(u) > cu? is proved. Also we obtained a condition on the local
behavior of initial data to ensure appearance of the waiting time phenomenon and backward
motion of support propagations of the solution.
Joint talk with A.E.Shishkov.

HauanbHo-KpaeBble 3aa4u, [opoxgaemble qudpdysuamu
Tapacenxo II. FO. (r. Mockaa)

Kak wusBecrHo, pelnenne ypaBHEHUsI TEIUIONPOBOAHOCTHM B obmactu D C R"
npefcTaBjsieTcss Kak uHTerpan no npocrparctsy C([0,T), D) senpepoisunix dyHkumit co
sHavennsMu B D. B noxnajge mpusefeHO ABa NOAXOA8, NO3BOJISIOLIAX 38MEHHTb 3ITOT
HHTETpaJl Ha Ipejes uHTerpaJion no npocrpancrsy C([0, T}, R™) senpepsiBabx dyHKUm €O
3padenusmMu B R". Takum ob6pas3oM, pemieHue 33124y B 06/1aCTH NPEACTABIISETCA NPEIEIOM
pereHHit COOTBETCTBYIOIMX 3a,a4, 38JaHHLIX Ha BCeM npocrpaHcTse R™.

Iycts D - obnacrs 8 R™, Ds — § okpecTHocTs 9108 06nactu. Hyers ¢p(z) : R™ — R®
— IJIaJIKoe BEKTODHOe IIoJle Takoe, 4To npu & € D oHo paBHo O, a mpu ¢ € D; \ D ono
HAIPABJIEHHO B CTOPOHY O6JIACTH M €ro [JIMHa pABHA KBAJPATy PACCTOSHUA OT T 1o D.

B nepBomM noxxone nokasbiBaeTcs, 4To peutenue 3ana4u Komm-Heiimana qyist ypasuenus

TeIIONPpOBOOHOCTH oF = lAF B[0,¢ XﬁCH&‘{aﬂbeIM CJIOBHEM fq ﬁﬂBHHETCﬂ nopeneaoM
POBOI] T3 3 ) Y

(e mpocTpancTse pacnpesenenwit na D) 3azau Komm % = %AF —B(VF,cp) B[0,t) x R*
C HAYaJbHBIM YCJIOBHEM fp. DTa TeopeMma sIBJASETCH CIEACTBHEM TOro (pakTa, 4TO npeien
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Mep, mopoxiaeMsix auddysuonneiMu nponeccamu dX(t) = dB(t) — Bep(Xi(t))dt mpu
B — o0, siBAsiercs Mepol, MOpPOXKIaeMOl GPOYHOBCKMM JBIMXKEHHEM C OTPa’KeHHEM Ha
rpanuue obnacta 0D.

Bo BTOpOM TIOAXOZAEe IOKA3bLIBAeTCs, 4TO pewleHue 3anauyn Komu-Jlupuxne ajs
YDaBHEHHS| TEIUIOMPOBOAHOCTH C HAYAJBHBIM ycloBMeM fo|D sBisiercss mpegenom
3amad Komm pgns ceMefMcTBa ypaBHEHHHI TEILUIONIPOBOMHOCTM C MAUHHTHBIM ITOJIeM
8F = _1(iV + Bcp)®F B [0,1] x R™ ¢ HavanpubiM ycnoBheM fo. DTOT pesysbTaT
OCHOBaH HA AHAJIHM3€ Mepbl, MOCTPOEHHON MO (HYHIAMEHTAIBHOMY DeIeHHIO ypaBHEeHHs
TEIJIONPOBOHOCTH ¢ MATHUTHBIM FIOJIEM.

ConeprxaHue JOK/IaJa PA3BHBAET PE3YNbTATH, U3iaraeMsie B [1].

Jluteparypa

[1] Cmonsios O.T., Baitizexxep X. don, Burrux O. IToseprrocmune mepol U HA%AALHO-

xpaesvie 3adavu, noposcdaemoie duddysuamu co crocom. JAH. - 2007, npuramo x newamu.

HopMaJibHble B HOPMAJILHO-PETYJISipHBIC PEIUEHUsI CUCTEeMBbI
nuddepeHnralbLHEIX YPABHEHN B YACTHBIX IPOM3BOJHBIX BTOPOro MOpAAKa
Tacmamberos K. H. (r. Axrobe, Pecniy6nnka Kazaxcran)

Jaa cuctembl audepeHIUANbHBIX YPAaBHEHHH B YaCTHBIX MPOM3BOAHBIX BTOPOFrO
nopsaxa
Po'ZII-f‘Pl'ZI+P2'Z]I+P3'Z=0, (1)
QO'Zyy+Q1'Zx+Q2'Zy+Q3'Z=01

rae P; = Py(z,y) u Q; = Qi(z,y) (i =0,1,2,3)— ananuriyeckue PpyHKIUA WIM MHOTOUJIEHEI
J(BYX TIEDEMEHHbIX, HCCIEAYIOTCSE OCODEHHOCTH [IOCTPOEHHST HOPMAJIBHBIX

Z = exp(G(z,y)) @ -y ), Auw- 2"y, (oo #0) 2)
p,r=0

M HOPMAJIbHO-PEryNsIPHBIX pelleHHit

Z = exp(G(z,y)) 2”37+ Y Buw -7y, (Bog#0) (3)
pw=0

G(z,y) = Qk+1,0 gkl g, k41

k+1 k+1

(p, a, Au‘y u Bu'.,(u, v = 0, 1, 2, .. .), 1,0, 0,1, X1,1,- - - y Ok+1,00 X0,k+17 HEKOTOphbIE
IIOCTOSTHHbIE, KOTOPHIE CIIEAYeT OIPEeNuTh. )

Ecau psig B mpaBoit uactu cxonures aas |z| > a > 0,|y] > b > 0, a u b — HekoTOpHIE
[OJIOXKUTEJIbHEIE IOCTOSHHbIE, TO (2) HA3LIBAETCH HOPMAJIBLHBIM PEILeHNeM.

B ToM caydae, Korga psJ BBIPRXeHHs PAacXOQUTCS ¥ (2) nuwb  dopMaibHO
yoosiersopsier cucteme (1), To (2) massBaercs HopmajpHEIM psmom Tome or aByx
NEepEeMEHHBIX.

OcobbiMu uHAsIME cucTeMBl (1) SBJSIOTCS Te 3HAYEHHS HE3ABUCHMBIX TEPEMEHHBIX,
e Ko3dUIMEHTH IpH BTOPHX YACTHBIX MPOM3BOAHBIX OGpamaorcs B Hydb. O6bramo,
HOpMaJTbHbie pemennsi (2) CBSBEIBAIOT ¢ 0COGEHHOCTBIO (00,00), @ HOPMATLHO-DETY/IAPHbIE
pemmenns (3) ¢ ocobennocTbio B Havaje Koopausar (z =0,y = 0).

'yk+1+...+al,1'$y+011,0‘33+010,1'y, (4)
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Jns nocropemns THX pemieHuii npuMenseM Meron ®pobenuyca-JlarbieBoil.
Onpenensiomuit MEHOXHTEb MOABISAETCST TONBKO TOTAA, KOrAa panr p = 1+k (k— NIOAPAHT)
Gonbite Hyass, T.e. p > 0. Jjst 9T0ro ciyvasi NOJYYEHO aCHMOTOTHYECKOE Ipe/CTABJICHNe
HOPMAJILHOTO psaja.

Hoxkasana Teopema.

Teopema 1. IIpeoGpaszosanue

Z(z,y) = exp(G(z,y)) - U(z,y) (5)

TIPH HEONpeJeJIeHHbIX Koa(duIMeHTax MHOTOYIeHa OT AByX mnepemenneix G(z,y),
npuMeHeHHoe K cucreMme (1), He U3MeHsieT €ro paHra.

Ecmu xoabduiuentsr cucremnt (1) — MHOrOWIEHR! JBYX HEPEMEHHBIX, TO AJIA TaKOM
CHCTEMBI, HapsLy C MOHSTHEM PAaHra P, MOXKHO BBECTH M IOHATHE aHTHpaHra m = —1 — x
(x— aHTHNOZpAHT), a peuleHHe HeTCs B BUIe psia (3). .

UccnenoBan psin 4acTHBIX CilydaeB cucTeMbl (1), pelleHHsIMH KOTODOH SIBJISIOTCS
¢byHKUMKM YUTTeKepa ABYX NEepPEMEHHBIX, OPTOrOHAIbHbIE MHOrO4YJIeHbl Jlareppa u dpMmuTa
ABYX MepeMeHHbIX. JJIst ONHOTO 9acTHOrO Ciiydas Ko3hOHUUUEHTOB NOTYYEHO yTBEPKACHHUE.

Teopema 2. Ecnu ko3 unuents cucremnl (1) obnamaior csolicTBoM

pi(z) = fi(z"),9;(y) = 9;(¥") (7 =0,3),

rae r— HEKOTOpOe LeJI0e YHCI0, TO NpeobpasosanneM ™ = u,y" = v noapanr cucremsl (1)
nonyKaercst Ha v = (k + 1) - (r — 1)/r equnmy, rae k + 1— panr cucremsr (1).

ITosepxHocrHEle Mepbl CMmonsiHOBa-Baiinzekkepa Ha TpaeKTOpUAX B
PUMAaHOBBIX MHOT000pa3usaX, nopokaaemblie auddpy3sHOHHBIMH NPoLeCCaMU
Tesnsrauxos M. B. (1. Mocksa)

ITonATHe TIOBEpXHOCTHOX Mepbl Ha OGECKOHEYHOMEPHOM IPOCTPAHCTBE SBJIAETCH
ecTecTBeHHBIM 06oOmenneM Mepsl Jlebera Ha mnosepxHocTd B R"™: mo Mepe u Ha
BeCKOHETHOMEPHOM NpocTpaHcTBe X CTPONTCH Mepa 115, COCPeNOTOuEeHHas Ha AOCTATOYHO
riaaxo#t nmosepxuHoctu S B X.

Cnocof mnocTpoeHHsl [OBEPXHOCTHBIX Mep Ha OECKOHEYHOMEDPHOM MHOro6pa3ud B
ciay4ae, Korga MHOroobpasue obsaliaer 66CKOHEYHBIMA PAa3MEPHOCTHIO H KOPA3MEPHOCTHIO,
Geut mpemsioxkern B paBore O.I. Cwmonsmosa (cm. [1]): B srolt pabore B KadecTse
6eCKOHEYHOMEPHOT'O MHOIr0o0Opa3us paccMaTpUBasloCh IPOCTPAHCTBO OTOOpaXKeHUH OTPE3Ka
WIH OKPYXXHOCTM B KOMIIAKTHYIO rpynny JIu, a B KauecTBe Mepbl B OOBEMIIIOMIEM
NpocTpaHcTBe - Mepa Bunepa Ha nmpocrpascTse GYyHKUUNE CO 3HAYEHUSIMU B IPOCTPAHCTBE
maTtpul. B nasbHefiinenM, pe3ysstar sTo#t paGoTsl 6b11 pacupocTpalen B paborax [2, 3, 4, 5]
Ha Cjydall NpPOW3BOJLHOIO IVIaAKOTO KOMIAKTHOIO PHMAHOBOIO INOAMHOTOOpa3ust
©BKJIMIOBOTO MPOCTPAHCTBA.

Pesynbrart, nosiydeHHblit B HacTosALeR paboTe, PACIPOCTPaHAeT pe3yIbTaT, H3/I0KEHHbIH
B paboTax [2, 3, 4, 5|, Ha cayyail, Koraa BMecTo Mepsl Butepa ua C([0, ¢], R™) (ona onmcbiBaer
craniapTHOe BGpPOyHOBCKOe nprkeHue B R™) GepyTcs Mepni qudby3MOHHBIX IPOLIECCOB B
06'beMJTIONIEM TIPOCTPAHCTBE ¢ HEEIUHHYHBIMUE KOPPEIALHOHHBIMU ONIEPATOPAMH.

B pafore paccMaTpuBalOTCsl Pa3jIHYHbIE CIOCOOBI MOCTPOEHMsT OBEPXHOCTHBIX Mep,
JIOKA3bIBAETCS IKBUBAJIEHTHOCTb IOJIYYEHHBIX MED MepaM HeKOTOpbix uddy3HOHHBIX
nporeccos Ha M, npudeM HaileHbl COOTBeTCTBYIOmue mioTHoctH Pagona-Hukozina.

JInteparypa
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O npenenbHBIX UHKJIax cucreMsl gud depeHImaIbHbIX YpaBHEHH# BTOpOro
nopsiAxa ¢ napaMeTpom
Tepexun M.T. (Pssanckuit rocynapcrseHsbill yuupepcurer umenn C.A. Ecennna)

PaccmarpuBaercst cucrema Buaa

T=-y+ E E aw+/‘¢; i'«‘y’,
v=mitj=v (1)
. n . .
g=z+ 3 3 (b + )T,
v=mit+j=v
TAe Gij, bi; - AeHCTBHTENbHbIE YHCHA, [Lij, Aij - IAPAMETpL, M > 2.
TMonoxum By = (NuOsﬂu—l 1y ...,,u(),,), /\u = (}‘u07Au—1 1300y /\Ou)» Yo = (.U'u,)\u)y
Y=(tmIm+ 1L m)v=re,7>0,le| =1, S={e: || = 1}.
B nonsipHolt cucTeMe KOOPAMHAT, B AOCTATOUHO Majioll okpecTHOocTH TouKH (0, 0) cucremy
(1) MOKHO 3aMEHHTD ypaBHEHHEM

dp =Q(yp,p,1 ). (2)

Iyers p(p,p,7,e) - pemenue ypashenus (2), onpenenenHoe Ha cermente (0,27],
ple,p,7e) = . YcrasopieHo, uto p(p,p,T,€) TOLJA M TONBKO TOTA3 ABJsSeTcH 27—
NepHOAMYECKUM pellieHieM ypaBHeHus (2), Korga uncaa « > 0, v > 0 u BekTOp € € S
yaosnersopsior pasenctsy Ly (a,7,e) + o{[v[f) = 0, v = (a,7), Ly (e, 7,€) - nasecTHaz
dopma nopsaKa p OTHOCUTENLHO &, T

Hycts a = kr , F(k,e) = L, (k,1,¢), O (k,r,€) = o(jkr,[")/rP.

Teopema. Iycts ki, k2, ..., k4 - IPOCTHIE MONOXHUTENBHbIE KOpHU MHOrouneHa F(k, eg),
e, € S, npu mobom k > 0, k ¢ {k1,k,...,ka} F(k,e,) # 0. Toraa cucrema (1) umeer poBHO
d npenensubIx nEKIIOB BUAa p(p, a,7, ), obnanaomux ceoficroM a — 0 mpu r — 0.

®pelimMbl B 6aHAXOBOM NIPOCTPAHCTBE
Tepexun I1.A. (CaparoBcknit rocyaapcrsesHbiii yuupepcurer uM. H.I. Yepubrmesckoro)
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IIpennonaraercs o6CyJUTh pa3iMyYHbIE IOAXOABI K ONpPEAENCHUIO NOHATHs ¢pefiMa B
6aHAXOBOM IPOCTPAHCTBE, YCTAHOBHTH HEKOTOpble obOIpe cBoicTBa HpefMOB, a Takxke
YKa3aTh HA OPUJIOXKEHUS TEOpHH (PpeiMOB K IOJIyHeHHIO TeOpeM NpeJCTaBIeHus (byHKuuh
PAJSMH IO BCIVIECKOHNOAOOHBIM cHcTeMaM (YHKIMHA B Da3IM4YHBIX (DYHKIHMOHATBLHBIX
POCTPAHCTBAX.

K NIOCTPOEHMIO MHOXKECTBA CTOXAacTH4ecKuX JuddepeHumanbHbIX ypaBHeHmil
110 331aHHOMY UMHTErpajlbHOMY MHOrooGpa3uro
Trey6eprerop M.H. (Huctutyr matematnks MOH PKa3axcran)

B pabore Epyruna (1] crTpourcsi MHOXKeCTBO OBGBIKHOBeHHBIX auddepeHnuanbHbIX
ypasrenuit (OZY), KoTOphle HMMEOT 3aJaHHYK HHTErpajbHYI0 KpuByl. JTa paboTa,
BIIOCJIEICTBHH, OKA3aJ1aCh OCHOBONOJIATAIOUeH B CTAHOBJIEHHH ¥ Pa3BUTHH TEOPHH 0OPaTHBIX
3aja4 QuHaMuKH cucTeM, omuchiBaembix OJY (cm.[2] m ap.). IlycTs 3azana cucreMa
muddepenmanbabIX ypassenuit una Mo

'izf(xvyvt)v .’EER”, . (1)
¥ = R(z,y,t) + D(z,y,)U + o(z,y,t)§, y€RP.U€eR,£€R"

Tpebyercs onpeaenuts yupasienue U u MaTpuny audysuit o Tak, 9T06bl MHOXKECTBO

. Al(CL', t) = 0,
Aw): { da(z,,8) =0, @)
rae /\1 € Cg?, AQ € CzyhAl € le /\2 € ng my + Mo =
6bII0 MHTErPAJIbHBIM MHOT00Opa3HeM CHCTeMbl ypaBHeruit (1).

VkasanHas 3agawa mpu o = (0 [JOCTaTOMHO MONHO Hccreposana B (2],
CTOXACTHYECKHH CJlydali 3aJaun BOCCTAHOBJIEHWs C MCXOAHbIM ypasHenneM Uto BTOporo
nopstaka # = f(z.,%,t) + D(z,&,t)u + o(z,%,t) U 33IaHHBIM MHOXKECTBOM BHAA
A(t) : Mz, #,t) =0, A€ R™ - B [3].

Joxka3ssiBaeTcs

Teopema 1. Maa Ttoro urobel cucrema ypaBHenu#i (1) wuMena 3amaHHOe
nHTerpasbHoe MHoroofpasme (2) HeoBxoAUMO M  JOCTATOMHO, YTOGBI MHOXKECTBO
ynpasnesnit {U} u MuoxecrBo kosduupuenros ubdysun {0} uMennm Buz
{U} = {U1} N{U2}, {¢} = {o1} N{o2}, tre Uy, U3, 031, 02 onpegensiorca B Buje

Uy = s1[HiCh) + (H1)T (AL - Gy), 01; = s3[H3C1] + (Hs)t B,
= $3[HaCa] + (H2)* (A2 — G2) 02; = 84|H4Cy) + (Hy)* Bai,

92N 8y | 0P\ 8\ o\ 6f 8A1

_ oA T —_

rae G - t2 +26t6z 6x6xf+f 8:1:8:1:f+ oz 3.1/ 6:1: R
_ 18 _ P, 0, O Y i R

S = 5oy ) O = GRS GRS S = 2|y o)

H = /\ufyD, Hy; = MyD, H3 = )\la:fy» H4 = Azw a o014, 02, B, B - i-be
cTonBIL COOTBETCTBEHHO MATpHI| 01, 09, By, Ba.
JInteparypa
(1] Epyras H.IL //TIMM. 1952. T.10. B.16. C.659-670.
[2] Myxamersamos HM.A., Myxapnasmos P.I. Vpasmenus npozpammnsiz deusicenud.
M.,1986. 88c.
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[3] Tney6eprenor M.1. //duddepennuansnrie ypasnesns. M., 2001. T.37. Ne 5. C.714~
716.

Cyn.(ec'mona}me u csolicTa 3KCTPpEeMaJIbHBIX HEeNPpEPBLIBHEIX CEJIEKTOPOB
MHOTO3Ha4YHbIX o'ro6pa>l(e}mﬁ C pa3jIo’KUMbIMH 3HAaYEHUAMHU

ToncrororoB A.A. (MHcTuTyT nuHaMuky cucteM u Teopuu ynpasiaenns CO PAH)

PaccmaTpuBaeTcs HenpepbiBHoe 1o Xaycmopdy —MHOro3HauHOe —OTOOpakeHue,
ONpeJleICHHOE HA JIOKAJbHO KOMIAKTHOM, CcenapabelbHOM METPHYECKOM NPOCTPAHCTBE.
3Ha4yeHHsIMH ~ MHOIO3HAYHOI'O  OTOOpakeHMsl  SBJAIOTCS  3aMKHYTHE,  BBIILyKJIbIE,
OrpaHHYeHHble, DPa3jOXXHUMble MHOXecTBa co cBoficteoM R — N u3 [pocTpaHcTBa
HHTErpHpYeMblX 10 DBoxuepy ¢yskumit. DTn GyHKUMH ONpeRENEHbl HA JIOKAJILHO
KOMIIaKTHOM, Cenapabe/bHOM METPUYECKOM IPOCTPAHCTBE ¢ KOHEYHON, HEOTPHLATEILHOM,
HeaTOMMYecKOlt Mepoit PasoHa co 3HaueHnsMH B cenapabesbHOM GaHAXOBOM MPOCTPAHCTBE.
Jloka3aHO CyliecTBOBaHHME HENPEPHIBHOIO CEJIEKTOpa, MPOXOASIIErO MO 3KCTPEMaJIbHBIM
TOYKAM 3HAa4YeHH#l MHOTO3HAYHOro orobpaxkeHusi. Takue CceJeKTOPbHl HA3bIBAIOTCH
SKCTPEMAJILHEIMM.  YCTAHOB/IEHO, YTO B COOTBETCTBYIOLIIMX TONOJIOTHSAX MHOXKECTBO
HeNpePbIBHBIX SKCTPEMAJbHBIX CEJIEeKTOPOB IUIOTHO B MHOXECTBE BCEX HEMNPEPBHIBHBIX
CEJIEKTOPOB MHOTO3HAYMHOrO 0ToOpaskenusi. [IpuBeieHE! IPUMEPHI TaKHUX TOIOJIOTHM.

PaboTa BhinonHeHa mpu 4YacTu4HON unancoBod nopaepxke PODOU, rpautr N 06-01-
00247a.

O6 acCMMNTOTHYECKOM MHTErpPMPOBAHUEK OAHOM 3a1a4M KOCMOJIOTHHU
Tonopeucku#i A. B., Bykxanés E. E. (r. Mocksa)

Nccnenopanue KBaHTOBBIX 3¢ eKTOB B pacimpsiomeitcs BcelleHHON 4acTo IPUBOAUT
K JMHAMHYECKAM YDPABHEHHsSM Gojiee BBICOKOI'O TMOPSAKA YeM B KJIACCHYECKON AHHAMUKE.
Takasg CHTyauusi CBUIETENBCTBYET O TOM, YTO HECMOTPsS Ha YPE3BbIYAHHYIO MAJOCTb
TIONPAaBOYHLIX YJEHOB B coBpeMeHHON BcesleHHOM, MX BiaMsHME Ha JYHAMHKY MOXET B
HEKOTOPBIX CJIy4asiX OKa3aThCH CYIIECTBEHHBIM.

Knaccudeckoe OuHaMUYeCKOe ypaBHEHMe [uIsi ORZHODPOAHOM M mu3oTponHol Beesenuoft
(ypaBuenne Ppuimana) sBasiercss ajarefpandecKuUM U B NOAXOUSIEH CHCTeMe €IVHMIL
3aIUCHIBAETCS B BHJE

H? =p, (1)
rae H - mapamerp Xa66na, p - cpeiHsis INIOTHOCTh BelllecTBa BO BcesieHHON, KoTOpasd
MeHsieTcsl coriacHo AuddepeHnmanbHoMy ypasHenuio p = —3yHp. Iocrosunas v € (0,2)

XapaKTepH3yeT TepPMOAMHAMHYIECKHEe CBOMCTBA BEIIECTBA.

KsanToBni#t 3¢bdexT MNOASpHU3anMM BaKyyMa B TDABHTAlMOHHOM I0Jie [PHBOJUT K
NOSIBJICHUIO B TPaBoil 4YacTH ypasHeHus (1) JomosHuTenbHOro ciaraemoro. Jns Hac
CYIIECTBEHHA Ta YacTb NOMPABKHM, KOTOPAs 3aBHCHT OT MPOM3BOAHBIX napamerpa Xa66ia
¥ JeJaeT Hally 3aady CHHTY/ISPHO BO3MyIleHHON, Ona pasHa py = uw(2HH +6HH? — H?).
Tonnywo dbopMy py MOXHO Hafitu B [1].

B wmTore, nonaras p = —c? (3aech u cuuraerca < (), MpUXOAMM K 3ajade

22HH +6e2H H -2 H> = p- H?, jp+3vHp=0,
p(0,e) = p° H(0,e) = HY, H(0,e) = H'.
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J st HAXOX JeHHUs1 TTIABHOTO YJIeHA ACUMIITOTHKH 0 TIOJIOXKHM B IIEPBOM ypaBHeHuH € = (),
HafizeM p = VH, 1 noacTaBumM ero Bo Bropoe ypasHenue. Toraa po = 4 0°/(3 /O vt + 2)2,

CnaBHbIM wieH acuMnToTuky H OMpeaensiercss METOAOM YCPEJHEeHUs Nocie Nnepexoia B
NepBOM YPaBHEHUH K GbICTPOMY BpeMeHM T = /€ H 3aMeHBI p Ha po

1+ Cyexp(—3t\/po) 2v/C1 exp(—(3/2) t/Bg)
1 — Cyexp(—3t\/po) 1— Cyexp(—3t,/po)

Brinonneno npu nogaepxke POOU, rpauter 04-01-00710 u 05-02-17450.
JIutepaTrypa
[1] H. Buppen, II. Hesuc. Keanmosannvie noif 6 UCKPUSAEHHOM TNPOCTPAHCINGE-
epemenu. M.: Mup, 1984, 356 C.

Ho = \/po +v/Po cos(t/e + Cy).

Stability of contact discontinuities for the nonisentropic Euler equations in two
space dimensions
Trebeschi P. (Brescia, Italy)

Motivated by a recent result obtained by Coulombel and Secchi [1], we study the lin-
ear stability of contact discontinuities for the nonisentropic Euler equations. We consider
supersonic discontinuities which are weakly stable and we prove an energy estimate for the
Euler system linearized around a given constant discontinuity. Since the problem is charac-
teristic, we obtain a loss of control in the trace of the solution; more precisely, the loss of
control is only on the tangential velocity, which corresponds to the characteristic part of the
solution. Furthermore, the loss of derivatives is even related to the failure of the uniform
Kreiss-Lopatinskii condition, as well as to the multiplicity of the zeros of the Lopatinskii
determinant. Differently from the isentropic case treated in {1}, in which the zeros of Lopatin-
skii determinant are always simple, we find a critical value for the tangential velocity of the
constant equilibrium state, which produces a double zero. Hence, in this critical case, we get
a further loss of derivatives.

The result obtained in the constant case is the crucial step towards proving the similar
result for the variable coefficients case, which is still in progress.

References

[1] Coulombel J. F, Secchi P. The stability of compressible vortez sheets in two space

dimensions, Indiana Univ. Math. J., 563(4):941-1012, 2004.

MaremaTrdyecKoe MOAeIMpPOBaHUE B 3a0a48X MEXaHUKU MHOTOCJIOWHBIX
KOHCTpYKUmik
Tpy6aues C. H. (r. Kues)

MHorue 3312490, CBI3aHHBIE C MATEMATHYECKIM MOJEJIHPOBAHHAEM IPOIECCOB MEXAHHKH,
CBOJATCS K PEIISHHMIO YPABHEHKI MIIK CHCTEM yPaBHEHU /MU THYecKoro Tuna. [locrpoenue
B 3aMKHYTOM BH/€ SHAJMTHYECKNX DelUeHHH KpaeBhIX 334ad MEXaHHUKH BOZMOXKHO JIMIIb
is cucTeM mpocTol reomerpudeckodt dopmel. [losToMy Ha NMpaKkTHKe YacTO IMPHXOAHTCH
MCIOJIb30BATh YHC/eHHEle MeToapl pacdera. Cpeau <HCAEHHBIX METONOB NOCHe/Hee
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BpeMs OCOBEHHO HHTEHCHABHO Ppa3BHBACICS BapHAIMOHHO-CETOYHBI METOZA, KOTOPBI
MO3BOJISIET OCYIIECTBJIATL HENMOCPEICTBEHHBIM INepexol] K JUCKPETHON MOAENIU 3aJa4H. B
HacTosIelt paboTe A/ MOCTPOEHUs AUCKPETHON MOJENHM 38/la MEXaHUKHM MHOTOCTIOMHBIX
KOHCTPYKIHMii KCTIO/IL3YETCsT HOBBIIl TPeyrobHblil CIOUCTHIR KOHEYHDIH SJI€MEHT, B KOTOPOM,
B OTJIMYME OT APYFUX MoJesell MCIONL3YyeTCA pas3jiMdHasi, B IpelenaX KaXKJIOoro Cjos
aNNpOKCUMAaLMsl [epeMelteHuil. 3TO TMO03BOJISIET € BBICOKOH TOYHOCTBIO OMNMCAThH, Kak
ofiiee 1edbOPMHPOBAHHOE COCTOSIHUE, TaK M Je(bOPMUPOBAHHOE COCTOSHME KaXKJOro CJI0s
B OTIEJBbHOCTH M JaeT BO3MOXKHOCTh PEaN30BaTh Pa3/IHdHbIe BUABI PPAHNTHbBIX YCJIOBUH
Ha KpasX Ka)Joro u3 cioes. [Lja anmpoKcHMaluy HOPMaJIbHBIX mepeMelieHnt B HeCy X
CJI0IX B MPEAeIaX KaXk/Ior0 TPeyroJbHOrO 3J€MeHTa UCIIOIbL30BAJICA HeNmoJIHbIMA KyGudecKkuit
[OJIMHOM, 2 KACATEJIbHBIE NePeMEIleHHs 33JaBaluCh B BUME JIMHEHHBIX IOJUHOMOB. B
3aMOJHUTEME KACATENIbHblE NEePeMEIeHHs BbIPAXKAIOTCH depe3 QYHKIMH NepeMelleHuit
HeCymMX CJIOEB 1O KyOMYecKOMy B3aKOHY, & HOpMajbHBIE - IO nuneliHomy. Beblna
UCCIIeHOBaHA CXOAMMOCTD IIPEJJIOKEHHOTO KOHEYHOTO 3JIEMEHTa, KOTOpas HMeeT NOPAIOK
O(h). PaccMoTpeHE! pemreHust 3afad TEOPUH YIPYrOCTH B MOCTAHOBKE MMHIMU3AIMH
JUCKPETHOTO (PYHKI[HOHAJA NOTEHIIHAIBHON SHEPIUH U dynkuuonana tuna Peses-Purna,
METOJAMM HEJHHEHHOro NIPOrpaMMHpPOBAHMS, B HYAaCTHOCTH, KOODAMHATHON pellaKcauyu.

O HOBOM NOAXoJe K NOCTPOECHMIO YUCIEHHBIX METOAOB PELIeHMsi KPaeBbIX 3anat
nuisi oGeIKkHOBeHHBIX AuddepeHIMAIBHBIX ypapHeHul
Tpy6unkos C.B. (BI'Y um. IL.T. Ilerposckoro)

Ipeasiaraemslii TOMXOJ, TPHMEHUTENbHO K pemienmio 3ajad Koww, ocHosan Ha
NpeJCTaB/IeHKH TPUOIIKEHHOrO PelleHust B BH/IE TNaIKOK (DyHKUMH, KOTOpas MOJy4aeTcs
MpU KYyCOYHO-TIOJIMHOMHAJIbHON HHTEPHOJISLIIH MHOTOWIEHAMH SDpMuTa TATOTO NOPAIKA.
I'pachuk NpHOTIKEHHOIO DelleHHs MPeJCTaBIsAeT Cofof KMHEMATHYECKYI0 KPHBYIO. Hns
BBIMHCIIEHHA KO3 PULUEHTOB, ONPEAesIAIONIMX NPUOIHKeHHOe pelenne, GopMyIHpYoTCa
Tpe6OBaHHS, KOTOPbIe CBOAATCH K IPUOIHKEHHON MUHUMHU3AIUY HEBASKH. IpeacraBnsiemblit
[1OIXOZ 1103BOJISIET CTPOMTH HOBbIE YHMCIEHHble METO/BI PellleHus 3aa4 Kowmu 1 IpousBoAUTD
HTEpAlUOHHOe YTOUHEHHe NPUOIKEHHBIX CETOYHBIX pelleHHd, MOJy4eHHbIX IPYTHMHU
N3BeCTHLIMH YHMCJEHHLIMM MeTojaMmu. B KadecTBe mIOpuMepa OIMCAH OJMH M3 TaKHX
METOLOB, HAa3BaHHBIN MCHPABJEHHHBIM MeTOJOM Diiyiepa € HTEPAIMOHHBIM YTOYHEHHEM
[1]. TIpeanaraercst HOBEIf NOAXON K OLEHMBAHMIO NOrPEIIHOCTH TIAAKHX (e ceTOuHBIX)
NpubIMIKeRHbIX peluenuit 3anaun Kommu.

AHanormuHe#t 1oaxon 6bLI MCIONB30BAH MpH peaiusaluu o6Wed CxeMbl MeTona
HPHCTPEIKY IR PellleHnsl FPaHNIHOR 3a/a4u 015 fuddepeHIuanbHOro ypaBHeRNs BTOPOro
nopsazaka. IlofydyeHa ajJropuTMUYECKas CXeMa [JIs BBIYMC/IEHMS OLEHKH IOTPEIIHOCTH
pH6/THXKEHHOrO PEIleHNs] TPAHITHON 3a48un He KAk CEeTO4HOMH, a KaK raaaxkoi GpyHKIMH.

JIureparypa

[1] Tpy6uukos C.B. O rosom nodTode K NOCTPOEHUID WUCAEHHBIL MEMO006 PeweHu
o0noMepHIIT 3adan Kowu Ha 0CHOGE SPMUTNOBOT KYCONHO-MHOZOHAEHHOT UNMEPROAAYUL. -
BecTHAK BpSHCKOro rocyapCTBEHHOrO yHuBepcutera. N4 (2006): EcrecTBennbie ¥ TOYHbIE
Hayku. - Bpauack: PO BI'Y, 2006.

O6mas dopmyna cielgoB LJid poamymenutt I'unsbepra-IImuara
ILonanos H.J0. (Cesepo-OcernHckuil roc. YHHBEPCHTET)
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Tonyyena obmas GopMyna CleHOB Il BO3MYLIEHUS CAMOCOIPSIXeHHoro oneparopa I
¢ byskuuelt pacnpegesnesus cnekrpa N(r) :  lim —N;S,ﬂ < 00; 0 < a < 1, onepaTopamu

r—o00
T'unsbepra-UIMuara:
M,
i {32 [ = 7 ]
m=
M, s-1 k
+ Z ch—k (Bemlaemk) H(Be"lj)eMj—l)} = —Ks TT(BS) s
my=--=my=1k=2 j=2
1, if s> 2
Ks = {0’ f =1 s Cs—kp = Z Amel o 'Ami,_k .
rif 8= 1€6€ . gk k1

Mp=Mi41

rae s € N u {M,} noanociieoBaTelbHOCTh HATYDPAJIBHBIX YHCEN, OpefesifaeMasn CIeKTPOM
onepatopa T

AcuMnroTruka cobcTBeHHBIX 3Ha4YeHMH u dopmysa caeaa Ajs onepaTopa
IIIrypma-JIunyBuiansa
Tyasxy6aes P. 3.7 (r. Ypa)

B L2(0, 7] paccmaTpuBaercs clekTpasbHas 3a1a4a Jupuxie
-y +V(r)y =y,

y(0) = y(m) =0,

rae V(r) usmepumast GyHKIHSA, YAOBIETBOPSIOWAS YCIOBUIO foﬂ ré(m — r)¢|V(r)ldr < oo,
€ € [0,1]. OTmernM, 4TO B Kilacce CyMMUpyeMbix morenuuanos V(r) (To ects € = 0)
aHaJorMuHas 3anada usydamach (cM. [1},[2]). Ms1 mcnoss3yem Meron, npeIoKeHHBIH
X.X.Myprasunom (cm. [3]). Crmektp {\.}3%, omepatopa Hy = —d?/dr? cocrour u3
uucen A\, = n2, a COOTBETCTBYIONUIME OPTOHOPMHDPOBAHHEIE COGCTBEHHEIE (YHKUMH CYTb
fa(r) = \/2/m sinnr. Boasmem Ron(r,t,A) = Ro(r,t,\)—(An—=A) "1 fa(r) fu(t), rae Ro(r,t, A)
€CTb AApO MHTerpajibHoro oneparopa Ro(\) = (Ho — )71

Teopema 1. IIpu ¢ = 1 uw n >> 1 B OKPeCTHOCTH A, CHEKTp omneparopa
H = Hy + V onpenenserca u3 ypasHenus A = ®,(A), rme cxuMmaomas GyHKUus
Bu(N) = A+ (V fay fr)=(VRa(A)V fa, fr), & unrerpaibubii onepatop R, (A) onpenensercs
U3 ypaBHEHHS

Ro(A) + Ron(MVRL(A) = Roa(N).

Crextp {ux}52, onepatopa H npu n >> 1 mMeeT cleAyOLyIO aCHMITOTHKY
B =An+ (Vfn, fz) = (VRon(An)V fn, fa) + O(n—2)'

Teopema 2. [Tycrs ré(n — r)V(r) € L[0,7}, NEN, N > 1% — 1. Torma cymecrayer
¢uxcupopanHoe yucio § > 0, Takoe, 4TO

oo
n—An = Zafcn) +,8n7
k=1

7ABTOp BHIDAXKAET TPU3HATENBLHOCTL npodeccopy, A.p.-m.w. Myprasuny X.X. 3a nomoup B
TIOArOTOBKE TE3UCOB.
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_qyk+1
rze ofV = SL— 6\ sz — An)splRo(2)VI* Ro(2)dz u |6n] < comifittto
Teopema 3. IIpu N > ﬁ — 1 umeer MecTo opMyna caena

Z[ﬂn —An— a'n] =0,
n=1

e pAX CXOAUTCA aGCOMIOTHO, & YHCIa Oy = EkN=1 afc").

JIureparypa

[1] Bumokypos B.A., Cagopuuuuit B.A.06 acumnmomuxe pewerua 00M0pOdH020
AuNElNO020 OuPPEPERUUAALHOZ0 YDABHEHUR BMOPO20 NOPAOKA 6 HopmanvHol dopme
Juyeuaas |/ Huddepenupansunie ypaprenus. 1998.T.34.Ne 8.C.1137-1139.

[2] Bunokypos B.A., Cagosmurauit B.A.Acumnmomura 4106020 nopadxa cobcmeennus
anavenuti u cobemeenntnir Gynxuul xpaesoti sadavu IImypme-JTuysusrs na ompesxe
¢ cymmupyembm nomenyuasom // Iuddepenumansunly ypapuenus. 1998. T.34. Ne
10.C.1423-1426.

[3] Axmeposa 3.0., Myprasun X.X. CnexmpasvHai GCUMTIMOMUKG dan Hezaadxux
soamyusenutl dudepenyuarvnn onepamopos u popmyan caedoe // Hoknazet AH. 2003.
T.388. Ne 6. C.731-733.

JInddepennuansl onepaTopHeIX OYyHKIMH
Tsepurunos H. /1.

PaccMaTpHBaeTCsi HEKOTOPhIH Kyace QyHKIUE OT HEOTPAHMYEHHBIX CaMOCONPAXKEHHBIX
OIIEPATOPOB, BOIHUKAIOUIMX B Pa3IMHBIX PasfeliaX MaTeMaTHIecKol (GUSHKH. ITOT Kiace
MOXeT OBITh ONKCaH TaK:

1
(F1f(@) = / 2*dv(a), supp(v) C (0, 1)},
[i]

3lech v — g-aJAUTHBHAS Mepa C HOcuTeneM, nexamem B unrepsaie (0,1). Jdus dpynxuuit
9TOro KJIacca MPHUBOAATCR AOCTATOYHBIE YCIOBUsS TOro, yTo omeparop f(A + €) — f(A)
(3mech A, € OnepaTOphl) MPHHAIEKHT K CNELHANLHBIM KJI4CCAM, HANPUMED — SOEPHBHIX
onepartopos, ik - oneparopoB I'mibbepra-IlIMuara. [ng Taxux byukuuit u3 obuero
npupamenus (f(A + €) — f(A)) Bhimensiorcss NMHEHHbE, KBAAPATHYHbIE, & TAKXKe JaCTH
BoJtee BHICOKUX TOPSAKOB MAJIOCTH IO € (T.e. CTPOATCH AHAJIOTH IPOU3BOAHBIX oTobparkeHuit)
u npuBozuTcs aHajor popmynsl Teftnopa.
B kauecTBe ceACTBUlM, IOJy4eH ] NMOJIE3HBIX HEPABEHCTB.

HMnyJscHOe ynpaBieHue JiuHeiHON cucTeMoll B ycaoBusx BO3eficTBUSI TOMeX
Vxo6oros B.H. (Yenaburckuit rocyapCTBeHHbIl yHHBEPCHTET)

VrpapaseMblit TPOIECC OMUCHIBAETCA cucTeMOl And bepeHIuanbabIX ypaBHeRutt
dz = C(t)zdt + A(t)du + B(t)vd, zeR*ue R veR t<p (1)
3necs C(t), A(t) u B(t) ABASIOTCS HENPEPHIBHLIME MATPHUAMH COOTBETCTBYIONUIMX

pasmepHocTefi; P - MOMEHT OKOHYAHHs IIPOIECCa YyNpaBlIeHUd. 3agan  HavadbHBIR
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soMenT Bpemeny tol. HopMbl B COOTBETCTBYIOIMX NIPOCTPAHCTBAX 3aJAI0T KOJIMYECTBO
pecypcoB, HOTpaveHHble Ha (POPMUPOBaHKS ynpaBieHHs u noMexu [1]. Pemenne cucrems
(1) sanucwiBaercs ¢ uomoplo 0606wenHol dopmyasl Komu [1]. 3azams useftnoe
orobpaxkeHue 7 : R™ — R™ u BeInykabii kommaktr S C R™. Ienrs BriGopa ynpaBieHns
3aKJIIOYaeTCsl B TOM, YTOOB! IpH 0GOH peasin3ainy IoMexn ObIJIO BbIIOJIHEHO BKIIOYEHHEe

m 2(p) € S. (2)

C noMop0 MeToja OAHOMEPHOTO TIPOEKTHPOBAHA 2] IIOJIyYeHo ycioBHe, TIPA BBIIOJHEHHH
KOTOPOTO BO3MOXHO IIOCTPONTH Tpefyemoe ymnpasieHne. IIpuBe/ieH aJiropuTM NOCTPOEHHS
TAKOTO WMITYJIbCHOTO YIpaBieHusl, KOTOPHIA He HCIOJAbL3YyeT MHGMOpManuio o6 ocTaBLIEMCS
3anace pecypcoB y mnomexu. IIpuBelieHB! KJacChl 3a7ad, B KOTODBIX HEBBLINOJIHEHHE
NPUBEJEHHBIX YCJIOBUH IIO3BOJSIIOT NOCTPOUTb JONYCTHMYIO TOMeXY, O0eCHeYHBAIOLLYIO
HEBLINOJIHEHNe BKoYenus (2). Pazo6paH KOHKpeTHblE NPHMEPLL
JInreparypa

[1] Kpacoscxuit H.H. Teopnus ynpasnenns gpmxenuem. M.: Hayka, 1970. 420 c.

{2] VYxoboros B.HM. Merox o0JHOMEpPHOro NPOEKTHPOBAHUS B JIMHEHHOH wHrpe ¢
UHTErpanbHBIM OrpanudeHHeM H ogHoTunune urpst.// Mas. AH. Tex.knbepuernxa. 1994.
N 3. C.192-199.

Two-phase parabolic obstacle problem
Uraltseva N.N. (St.-Petersburg State University)

We consider the regularity of the free boundary for the following parabolic two-phase
obstacle problem
Au — dyu = sign(u).

We prove that both of the free boundaries, 8{u > 0} and 8{u < 0}, are C-surfaces near
the points of their contact.

Corresponding results in elliptic case were obtained in a joint paper of H.Shahgholian,
G.Weiss and the author.

This work was supported by grant NSh 8336.2006.1 and by RFFR grant 05-01-01063.

06 ycnoBusx teopemsl JepHoBa 06 oagHONMapaMeTpHYeCKHX TOJIyrpymnnax
Ypunoscknii A. H.

IlpencraBneHsl pe3ynpTaThl O 3aMBIKAEMOCTM M HOCTATOYHBIX YCJIOBHSIX JUIS
3aMKHYTOCTH HEKOTOPBIX ONEPATOPOB, BO3HUKAIOIMX B YCIOBHSIX, SIU3KMX K YCIOBHUAM
n3BecTHON Teopembl epHoBa, cGOPMyaHpOBaHHOM Hmvke. BaXkKHBIM KJIaCCOM TakKux
cemeiicts {F(t)} sBASAIOTCH OLlEPaTOpHBIE CeMeHCTBA, BO3HHKAIONME NPH NOCTPOSHHU Kak
noBepXHOCTHEIX Mep CMOJIsIHOBa, Tak M pellieHH 3BOMIOLMOHHBIX YPaBHEHHN B YaCTHBIX
IPOM3BOAHBIX.

Teopema 1 (Teopema Yepnosa). Ilyers f : [0,00) — L(B) — cuabHO HenpephiBHOE
otobpaxenue, f(0) — exunuunbit onepartop, || f(t)]] < € naa HEKOTOPOrO BELECTBEHHOTO
a ¥ nycts D ~ pekTopHoe nognpocrpatctso 8 Dom(f’'(0)), cyxenne na xoropoe oneparopa
f'(0) obnamaer 3ambixanumeM C. Ecan C ABisiercss reHepaTopoM CHIBHO HeENpephIBHOM
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nomyrpynnet €€, ro s kaxnoro T > 0 mocnegosarensnocts f™(t/n) (n € N) cxonurcs

K €'C B cunbHolt OTEePATOPHOM TOMOJIOrHHE PaBHOMepHO oTHOcUTe b O t € [0, T.

3necs B — Ganaxoso mpocrpancrso Han noseM K € {R, C} u L(B) — npocrpaHcTso
OrpaHMYeHHBIX JIMHEAHBIX onepaTopoB B B. B ycnoBusix 3TOH Teopembl HpeIioiaraercs
CYLIECTBOBAHUE AINPOKCUMUPYEMOI Oy TPYIbL, [IOITOMY JJisl IPUMEHEHHH aAHAJIOTHUHEIX
TeopeM B YKA3aHHBIX BHILUe paGoTaX CylIECTBOBaHME MOJYrpynnkl e'C  1oKassiBaercs
OTJENBHO.

Tlycrs 3anana dynxuus f : [0,ty] — L(B), toe f(0) — eansnussiit oneparop.

Teopema 2. Ilycrs cymecrsyer a > 0, Taxkoe 9o ||f(t)]] < € mnsi Becex t < tp u
oneparop f'(0) onpeneiten Ha BCiomy MmioTHOM B B smMHeliHOM MHOrooGpasuu M. Torma
oneparop f'(0) 3aMbikaeM.

3ameruM, 9ro ocnabiesve oxHoro u3 ycosuit go |f(t)| < K (K > 1) nenaer
YTBEDXKIEHUE TEOPEMbI HEBEPHBIM.

JIemma 1. Yciosui#, ykasanHeix B Teopeme 2, HeAOCTATOYHO, 4Tobnl oneparop f'(0)
6BUT 3aMKHYT.

Ormerum, uto limg™ (L) & = Z.

VYkaxkeM OZHO ¥3 JOCTATOYHBIX YCIOBHA 3aMKHYTOCTH.
Byaem cunrars, uto t € [0,t,). [IycTs Ha Beiogy miotHoM B B nmaeitHoM MHOroo6pasuu M,
JUIs Beex t ompeaenieHa npousBoiHast f(t).

IIpepnoxxenne 1. Ecin cymectByer Takas HerpepbiBHast ¢yHkuus F : R — R, urto
Ans mOBOro euRMIHOIO & € My CIIpaBe/INBO HEPABEHCTBO

Iz < FOF'©0)),

To onepatop f'(0) 3amkuyT B B.
Aprop Bhipaxkaer 6narogapaocts H.H. Illamaposy 3a nocTaHOBKY 38/a4H, IOJIE3HBIE
COBETBbI U MOCTOSIHHOE BHUMaHHUe K pabore.

O1epaTopbl B IPOCTPAHCTBE MOYTH CXOAALIMXCH MOC/IeJ0BaTeIbHOCTeH
Ycaues A. C. (r. Boporex)

JluneliHpilt HenpepbiBHbIA dyHKIMOHaN B Ha l Ha3biBaeTcst 6aHAXOBLIM IPeEIEJIOM,
eciu B > 0, B(1,1,...) = 1 u B uHBapuHaHTeH OTHOCHTEJHLHO OIEPATOpPa CABWIA.
[locsieaoBaTenbHOCTH, /IS KOTOPHIX 3Hadenue B(r) He 3aBucur oT B HasBarorcsa nodtn
CXOOALMMHACS. MHOXECTBO NOYTH CXOAALIMXCS OCIefoBaTeapHocTelt obo3Hadaercs ac.

Ilycrs 3agasa nocrenoBaTenbHOCTH HOMepoB myg,nx € N, Ilo  3nementy
z = (x1,22,23,%4,...) € loo MOCTPOUM 3JIEMEHT
T = (Zmys Tmytly - - - s Tmydny; Tmas Tmgtls - -+ s Emagdngs -+ )-

Teopema 1. Eciiu z 2% @ " ng — 00, T0 T = a.

OnpegenuM onepatop P: log — ly cllenytoumM obpasom:

Nk 41
1

(Po)m=——— Y @, m<m<m,

Tkt — Tk i=ng+1

rre {nk}32; BO3PACTAIOMAA NOCHEJ0BATEILHOCTD TaKasd, 910 1) = 1.
Ilycrs p(x,ac) paccrosiHue OT T 4O ac¢ B loo, T€. p(Z,ac) = iélf lz—ylie-
y€ac

Teopema 2. 1. Ecan x € I, 0 p(Pz,ac) < p(2,ac);
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2. p(Pz,ac) = p(z,ac) ana moboro r € [l TOrga M TONBKO TOTHA, KOLAA
sup(ng+1 — k) < 0o. Pabora BrimosHeHa npu puHanCcoBO# nopaepxxe Poccutickoro donmsa
k

dbynaamenTanbHbIX HecaenoBanult (kox mpoexTa 05-01-00629).

Kpurepnit cosnagenus crabujiLHBIX MOCTOB B [IByX UI'DOBBIX 3a7]a4aX O
c6nmxennn
Ymaxos B. H., Jlarymxun 5. A. (r. Exarepun6ypr)

PaccmaTrpuBaercs KOHeYHOMepHAasi KOH(JIMKTHO-yIpaBjigeMas CHCTeMa, MOBeJeHHe
KOTOpOR Ha KOHEYHOM IIDOMEXYTKe BpeMeHH [fg,U] ONHCHIBAETCS BEKTODHHIM
auddepeHINaIbHBIM ypaBHEHHEM.

UzyyaroTcsi ¥ CpPaBHMBAIOTCS [Be MIPOBble 3aJa4#t O COJHIKEHHH CHCTEMBl C
TEepMHHAIBHEIM MHOXecTBOM M B (pa30BOM NpOCTpPAHCTBe. B HepBO#t M3 HHUX MEPBOMY
urpoky tpebyercst obecrednth nonajganue ¢hpas’oBOro BEKTOpa CHCTeMbl Ha M B KOHeuHbIH
MomeHT BpemenH U. Bo Bropo#i 3aaade TpebGyeTcs ¢ MOMOMIBIO MO3UNMOHHOTO YIPABIEHAA
obecniednuTs nomnaaanne (a3oBOro BeKTOpa cHcTeMbl Ha M He mo3xke MomenTa 3.

ITH 33Ja9K SABIAIOTCH ONHMME U3 Haubosee BaKHbIX B TeOopuH AuddepeHIHalbHbIX
urp. OHn CBSI3aHBI C MHOMMMH KDPYyNHbIMH 38784aMH ONTHMAJBHOIO [apPaHTHPOBAHHOIO
yNpaBlieHusi JUHAMHYECKMMH CHCTEMaMH, B YaCTHOCTH, — C 3aadefl 06 ONTHMAaJILHOM
6BICTPONENCTBAN ISl JUHAMUYECKHX CHCTEM, NOJBEPXKEHHBIX BiusHMIO noMmex [1]. Kpome
TOro, B paMKH OOmell IOCTAHOBKM T8KHX 33784 YKJIAJBIBAIOTCA MHOIMe KOHKPETHBIE
nuddepesnnanbHbie Urps [1).

TlocTanoBka mepBoli 3anay¥ BHINISAMT [IpOLle, YeM IOCTAHOBKa BTOpON 3aaa4H,
H TMOSTOMY eCTeCTBEHHO OXMJATh, 4YTO aJITOPATMBI IIOCTPOEHMSI €€ pellleHdst INpolie,
YeM aJrOPUTMBI MOCTPOEHMs DeuleHMsi BTopoit 3amayu. VMetommitcss omblT pa3paboTkn
JIrOPHTMOB IIOATBEPXKAAET 3TO. ECTeCTBEHHO, BO3HMKAET BOIIPOC O BHIJEIEHHHU TEX YCJIOBUM
Ha KOHQJIMKTHO-YIIPABJIAEMYIO CHCTEMY M TEPMUHAJIbHOE MHOXeCTBO M, mpH KOTOPBIX
peinennst obenx 3ana4 coBnanaioT. IIpu BHEINOJHEHHH 3THX YCJIOBHI MOXXHO MCIIOJNB30BATh
Uil peuleHust BTOPOM 3aJaud aJrOPUTMBI NMOCTPOEHMs pelleHust Gosee MpocToi nepBoH
330844,

B noknazie npuBOAATCA TAKHe YCIOBHSA.

JInreparypa

[1] Kpacosckuit H. H., Cy660orun A. Y. Tlosuumonssie auddeperumaibunie urpul. M.:

Hayxa, 1974. 456 c.

ITocTpoenue BoJIHOBLIX (DPOHTOB B JHUHAMUYECKHMX 3aJadyaxX yNpasjeHus C
HEBBIIIYKJILIM TEPMHHAJIBHLIM MHOXECTBOM
Venenckutt A. A., Jlebenes II. /1. (r. Exatepun6ypr)

B xagecTBe HHCTPYMEHTOB HCCJIEIOBAHMS 38]84 TEOPHH YHPABJIEHHS M TEOPHH
anddepenupambEbIX Mrp [1-2] NPUMEHAIOTCS KOHCTPYKIMH TEODHH Q-MHOXecTB [3].
Hsyyenne CBOHCTB Q-MHOXECTB OCYIECTBISETCA METOAAMM BBINYKJIOTO H HELJIAJKOro
aHanu3a, a Takxke JanddepenumansHolt reomerpun. Beemennele B pabore NOHATHS
6UCCEKTPUCH MHOXECTBA M IICEBJOBEDIIUHEI KPHBON [PEACTABISIOT CaMOCTOATEIbHBIR
MHTEpeC, N103BOJISAS UCCIeA0BATh T'eOMETPUI0 MHOXECTB, BLIYHCIATD HX MepY HEBLINYKJIOCTH.
OTH NOHATHS TAKXKE OKA3BIBAIOTCA MOJIEBHBIMM NPH H3YYEeHHWH 3BOJIOUMH MHOXECTB
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[IOCTHXKHMOCTH YIPAB/ISEMBIX CHCTEM, TOCTPOEHHHM BOTHOBBIX (pOHTOB [4], BBIuMciIeHMH
sitKoHaa B TeOMeTpHUecKofi onTuxe. B paboTe pa3BUMBAETCS HHC/IEHHO-AHAIMTHIECKUH
HOZXOA K OTHICKAHHIO TICEBJOBEPIIMH KPUBOMH, BLIYHCIEHHIO MEPhl HEBBINYKJIOCTH ILIOCKOro
MHOECTBA M IOCTPOEHMIO Ha MX ocHose (GpoHTOB. IIpUBOAMTCS TOUHOE pelleHHe OXHON
3a249u OHICTPONEHCTBHSA.

Pa3paGoTaHbl UUCIEHHble ANTFOPUTMbI NOCTPOCHHS BOJIHOBRIX (DPOHTOB M JMHMHA HX
HEraJKOCTH IJ1s MHOXKECTB € KyCOYHO-IJIaAKOH rpanunelt. PeannsoBanbl BEIYHCIHTENBHbIE
IpOrpaMMsl, TO3BOJIAIOLWE KOHCTPYHPOBATH ANMPOKCHMAUMH (QYHKLUMH ONTHMATBHOTO
pesybTaTa IS OQHOTO Kiacca auddepeHmmatbHeix Mrp Gricrpogeitcrsus. Ilpmsoasires
pe3yNbTATH  HUCJIEHHOTO MOIETMPOBAHHA YIDABISEMBbIX JMHAMWYECKHX CHCTEM C
HEBHITYKJ/IBIM TEPMUHAJIBHBIM MHOXKECTBOM.

JIntepatypa

[1] Kpacosckuit H.H., Cy66orun A.M. Hosuyuonnve duddepenyuanvhvie uzpt. M.:
Hayxa 1974. 456 c.

[2] Cy66otun A.M. Obobuwennnie pewenus YpasHenutl 6 LaCMHHT NPOUZBOOHBT TLEPE020
nopadxa. Iepenexmuen Junamuneckot onmumuseyuu. - Mockea-Horcesck: Hremumym
Komnvromepnnr mexnoaozul, 2003, 336 c.

[3] a-mrooicecmea u ux ceoticmea / Yenenckut A.A., Yuaxos B.H., Pomun A.H.; Hn-m
mamemamuxy u mezanuny YpO PAH. - Examepunbype, 2004. - 62 c.: 38 ua. - Bubauoep.:
7 nass. - Pyc. - Jen. 6 BHHHTH 02.04.04, M 5{3-B2004

[4] Jlebenes I1.I., Ycnenckuit A.A. K eonpocy 0 zeomempuu 60AHOGHET pponmos //
Hseecmus Hnemumyma mamemamusy u ungopmamunyu. Hocescr, YoI'V. 2006. Bwn.3
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06 ogHOM KJjacce o6paTHBIX CHEeKTPaJbHbIX 3a7a4
Banees H. ®@. (r. Ycba, Bamkupckntt rocyAapcTBEHHRI YHHBEPCHTET)

Mycts H - cemapabempoe rubbeproBo mpocrpanctso, A(F,A) : H — H cemeitcTsO
3aMKHYTBIX CAMOCONPSIKEHHBIX ONEpaTopoB BHAA:

A(p,\) = Ao +p1Ar + p2Ag + .._.+pnAn - A,

. rae A -CeKTpaJibHbilt apaMerp, P € R™ — BeKTOp 1apaMeTpoB.

B pa6ore uccienyerca o6paTHas COeKTPaibHAR 33248 B CIeAyIOllel OCTAHOBKe.

O6parHasi cnekTpaabHas 3ana4a. Tpebyerca HaiTH Takue 3HAYEHHS BEKTOPa
napaMerpos § € R", npu xoTophix cnexrp oneparopa A(f,0) coaepxur 3aaHHBE HHCIa
Al < A2 <. < Mg

K ykasanuol bOpMy/INPOBKE NPHBOZMT DA TEXHHYECKUX 3aJa¥ KOHCTPYyHPOBBHHUA
PO3THYHEIX JMHAMHYECKUX CHCTEM C 38[AHHBIMH DE3OHAHCHBIMH X2PAKTEPHCTHKAMM, &
TaxKe TaK HA3bIBAEMbIE 33Ja4l JUATHOCTHPOBAHMS MOBPEXIEHUH TEXHUIECKUX CHCTEM IO
H3BECTHBIM 4acTOTaM coBCTBeHHbIX KoyebaHuil.

Onpegenenue. Byzem roBopuTb, 4TO AJ1A YNOPAAOYEHHOTO Habopa BelleCTBeHHbIX
qncesr A\ < Az < ... < Ap BeKTOp P € R™ Ha3piBaeTCs €-pellieHHeM, eClM y ONepaTopa
A(F, \) madzyTes coberernbie 3nadenus A < Ay < ... < A TaKue, 4TO 1A = Aell < e

Teopema. IIycTs BBINOMHEHBI CEAYIOUHE YCIOBUSL:

1) oneparop Ag — caMOCONPsKEHHBIH;

2) 0 ¢ g (Ao);

3) Ay ' Ar - KOMIaKTHEIE OEPATOPHL.
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Toraa ana moboro ynopsaaodeHHoro HaGopa n ucen A < Ag < ... < A, 1 yoboro 0 < €
CYHIECTBYET £-peleHue.

Takke HaMH IpUBEACHbl KOHCTPYKTHBHBIE METOABI IOCTPOEHHMs E-pellieHnH, OUeHKH
KOJIM4eCTBa pemeHui.

IIpn AOCTATOYHO MHKPOKHX YCJAOBHAX Ha omnepaTopsl A(f, A) chopMyInpoBaHs! yCIOBUS
CXOIHUMOCTH £-pelIeHul] K pelieHHsIM UCXOIHOH ofpaTHOI CrieKTpajIbHOMN 3aa4u.

BripoXXaeHHbIE NpeAesibHbie IMKIIB B MOJIMHOMHMAIBHBIX CHCTEMAX
Varin V. P. (UIIM um. M.B. Kengbima)

/Jljisi TIOMMHOMMANBHBIX CHCTEM HA IUJIOCKOCTH C OJBMM pebpoM MHOTOYTOJIbEMKA
Hulorona npen/ioXKeH MeTO[ BHIYHUCIIEHHSt ACUMITOTHKH oTobpaxkenus: IlyaHkape ajs
MOHOIpPOMHO# ocobolt Toukn. DOKyCHbIE BeJIMUHHB BEIYHCIAIOTCA C HOMOIIBIO ypaBHEHHU B
BapHaIMsAX BHICOKOTO IOPAIKa. Y PaBHERHS B BAPHAIHAX 06pa3yoT TPeyroabHYI0 CHCTEMY,
KoTopasi BCerja paspeliumMa. DTO [I03BOJIAET HCCIefoBaTh 6nypranyy poXKIeHHs CKOJIb
YTOJHO BLIPOKIEHHBIX IIUKJIOB B CHCTEMAaX € BBIPOXK AEHHOH (wm o'rcy'rCTByromeﬂ) JHetHoN!
4acThIO, & TAKXKe pemaeT npobieMy nenTpa-oKyca AT ITHX CHCTEM.

Ec/i uexoaHas CHCTeMa MaMWIbTOHOBA MJIM ONHOPOIHA, T.e. 0cobas TOUKa THOA LUEHTD,
OpH H3MEHEHUWM IIaPAMETPOB CHCTEMBI MOXKET 00pa30BaThCs NpelesbHbI! UK KOHEYHOTO
pajuyca, OeHKH [JIs1 KOTOPOrO MOXXHO BHIPAa3HThb depe3 ¢bOKyCHBIE BETUYHHEL.

JIns cHCTeM ¢ OAHHMM BHEIIHMM PeGpOM MHOTOYTOJBHMKA HuioToHa MeToj NO3BOJSET
H3y9aTh IpeAeibHble IUKJIb 6eCKOHEYHO GOIBIIOro paanyca.

O CHHrYJSIPHO BO3MYIISHHBIX 337jaUaX ¢ HEIKCIIOHEHIMAIbHBIM NOTPaHWYHEIM
cnoeM
Bacunvesa A. B. (r. Mocksa)

1. DKCNOHEHIMAIbHBIA TTorpaHnyHbIl cioll. PaccMorpum 3anayy:
ey =F(yx), 0<z<l,  y(0,6)=1° y(l,e) =y (1)

YV Buipokaennoro ypasuenns F(y,x) = 0 ecrb xopens ¢(z) n Fy(p(z),z) > 0. Torma
pemenne 3aaa4u (1) cymecTeyer u:

y(z,€) = p(z) + I+ R+ r(z,¢), @

Jlesuitt I 1 npaBuit R norpanciion y6biBaIOT KAK SKCIOHEHTbI M OCTATOYHBIA “WIeH 7 HMeeT
onenky r = O(e).

2. O6pamenue F,(p(x),z) B Hymh nepsoro mnopsaxa. Ilycrs y samaau (1)
paccMaTpuBaercs cayualt, xorna F = (y — ¢(z) )2 Torza uMeeT MeCTO aCHMITOTHYECKOE
npencTasiesne TUa (2), HO OTPAHC/ION UMEIOT CTENeHHOR BHI.

3. O6pamenune F,(p(z),z) B Hyas Gojee BhICOKOTO mopsaka. Ilycts F umeeT Bug
+(y — ¢(x))". Torna mpu 4éTHOM 7 pellleHHe CyIeCTBYeT B obomx ciaydasx *, & npH
HEYETHOM 70 TOJbKO IIPH 3HAKE -+. ACHMITOTHKa MMEET TOT e THI (2), HO TOPSAAOK
ocraTouHOro 4Yiena pasen O(£).
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4. Cnyyan npousBoabHOro Buga F(y, z). [l pewenus y(z, €) yaaéTcss AOKA3ATH OLEHKY
CBEpXY:
y(z,€) < p(z) + I+ R+,

rae 6 —— CKOMb yroaHo Manasi, Ho ¢pukcupoBanHas 1pu € — 0 nocTosHHAS.

5. IIpumep KpaeBoll 3aja4yu C BHIPOXKAEHHMEM Ha OJMH NOPAMOK. Paccmorpum
3ajaty:

e =+, 0<z <1,  y(0,e) =4 y(Le)=y", (°<y)

B 06oux c1y4asix MOrpaHCION MMEIOT CTENeHHOM XapakTep.
6. MuterpaibHoe ypaBHEHHeE:

t
evs(@,t,€) = — / Y@, te)dt,  y(0,te) = 1°(2).
0

TMocsrenoBaTeILHEIME TIPUBIIKEHUSIME PellleHHe CTPOUTCS B BUAE PsAa.

PeaynbTaThl NyHKTOB 2.~—4. noy4dens: B coasTopcrse ¢ B.C. ITumoruHsm.

PafoTa BHITIOJIHEHa pU YacTH4HOHK (unancosolt nopaepxke POOU (upoext N 004-01-
00710 u npoext N'205-01-00465).

Calculation of the best embedding constants for the multidimensional Sobolev
spaces
Vaskevich V. L. (Sobolev Institute of Mathematics, SD RAS)

Let © C R™ be a bounded domain with sufficiently smooth boundary. As is known (1], for
a given positive integer m > n/2 the Sobolev space Wé"')(ﬂ) is embedded in the space C({2)
of continuous functions with the domain €. The embedding operator is linear and bounded
and the norm A™ () of this operator is often refereed as the best embedding constant [2].
By the definition, the following estimate holds

Iu ] C@)I = supu(z)| < AT@)lu | W™ (@)

Yu e Wm™(Q).

The embedding constants like A™(Q) are of great importance in estimations of condition
numbers for certain computational algorithms [3],[4]. By this reason, it is very useful to
know the numerical values of A™(f?) for a given smoothness m, dimension n, and domain
. The asymptotic formulas for A™(£2) are also useful when m — oo or n — oo. In our talk
we study the problem of calculation of the embedding constant A7'(Q2) in the case when Q
is the unit cube in R”.- The embedding constants for periodic Sobolev spaces are evaluated
separately. This work was supported by RFBR project No. 05-01-00250.
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On the Constructively Determination the Spectral Invariants of the Periodic
Multidimensional Schrédinger Operator
Veliev O. A. (Depart. of Math., Faculty of Arts and Sci., Dogus University,Acibadem,
Kadikoy, Istanbul, Turkey)

In this paper we constructively determine a family of the spectral invariants of the
multidimensional Schrédinger operator with a periodic potential by the given band functions.

C-integrable systems of discrete lattices
Vereschagin V.L. (Institute for mathematics, Russian Academy of Science, Ufa)

We examine system of fully discrete "hyperbolic"equations
Uipr,j+1 = F(Uit1,5) Uij1, i),

where 4,7 are integer indices, u;; is & vector of n unknown sequences, f is a vector of n
known functions. The problem is to find conditions for so-called C-integrability, or Darboux
integrability which means existance of sufficient number of i- and j-integrals for initial system.
The integrals are I(u) such that (T; — 1)I(u) = 0, (T is shift in i) and the same for J:
(T; —1)J(u) = 0. Conditions of C-integrability for linear systems were written out explicitly
in the form of proven statements and were illustrated by appropriate examples. For the
systems equality of generalized Laplace invariant to zero is the condition of integrability.
System is called "C-integrable"if its lattice of generalized Laplace invariants breaks at both
directions. Further, for integrable systems the Laplace procedure was applied for obtaining
generic solutions. For nonlinear systems the concept of C-integrability should be understood
as C-integrability for appropriate "linearized"equation. There is a procedure for constructing
complete set of integrals for those systems.

TlocTpoeHMe YaCTHBIX JIIMNTUYECKHX PeLleHUH HeMHTeTPUPYeMbIX CHCTEM
Vernov S. Yu. (HHHUSI® MT'Y, r. Mocksa)

TIpennaraercss MeTOA NOCTPOEHHs HIMITHYECKUX PElIeHUl HEMHTETPHPYEMbIX CHCTEM.
Jlampbif METON OCHOBAH Ha HCHOOJAL30BAHHH DelleHMi B Buie dopMaIbHbIX PANOB
Jlopana u sienserca MonuduKanuelt Merona Konra—MioseTTsl [1]. Merog Konra-MioserTst
NpenHasHaueH JUIsi HAXOXIeHMsi KaK O/UIMNTHYECKMX pemenn#, Tak M pelleHufi B
BHle JIEMEHTADHBLIX (YHKUMH (BBIPOXKIEHHBIX SJUIMITHIECKHX pellenuit), MOSTOMY He
HCTIONb3yeT OcOGEeHHbIe CBOMCTBA SMIMITHYECKUX (YHKIMi, Takue Kak PaBEHCTBO HYJIO
CyMMEI BBIYETOB B IIapalielorpamMme epHojoB. TlpeanaraeMsift METOZ NPEAHA3HAYEH ISt
[OMCKa TOJAbKO 3UIMITHYECKHX pelleHHH M MaKCHMAJIbHO HCTONb3yeT MX CBOHCTB2, B
YaCTHOCTH Teopemy BbiueroB. OTMeTHM, YTO TEOpPeMa BbIYETOB 3bdeKTHBHO HCIOAB3YETCS
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JUISl TIONYYeRnst yCaoBull Ha K03(GMHUMEHTE CHCTeMbl, HEOOXOANMBIX ISl CyHIECTBOBAHUSA
SJMnTHYECKUX peienudt (cm. [2] u [3]).

Ilpennaraemeift MeTOs MO3BOJIHJI HANTH IHNTHYECKME PellEHMs] B BUAE Oerymux u
CTOfYMX BOJIH JIsl KOMILIEKCHOTO ypaBHeHns ['nisbepra—Jlanaay natoit crenenu

A+ pAzs + glAPA+ r|APA - ivA =0, (1)

rae A; = %’%, Apy = %’-}-, xoHcTaHTH p,q,7 € Cu~y € R.

OrmernM, 4TO BCe M3BECTHBIE PaHEE TOYHBIE PELIEHUs JAHHOTO yPaBHEHHS BbIPaXKaoTCH
B 3neMeHTapHEIX Gynkumax. Joknan ocHoBaH Ha crarbe [4].
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Markov dynamics and quasisimilarity.
Vershik M.A.

We consider the dynamics of polymorphisms e.g. markov transformations with invariant
measure. The main example is a random perturbation of the deterministic dynamical system.
There exist such systems and its random perturbation of the special type which are quasisim-
ilar to unperturbed system. Up to now this effect is known only for K (kolmogorov)systems
and the conjecture that only for those.

O knacce Bapa Tomosoru4eckoli sHrponuu
Vetokhin A. N. (UTuI')

OnHOM M3 XapaKTEPUCTHK, CBS3aHHBIX C POCTOM OpPOUT, SIBASETCst TONOJOTHYECKast
sHrponug [1]. B maHHol 3ameTke Mbi GyjeM pacCMATPHBATL CBOMCTBA TONOJIOTHYECKON
SHTPONMM B 3aBHCHMOCTH OT W3MeHeHHs JuHaMudeckolt cucremsl. Tomomornyeckas
SHTPOMNMS He SBJSETCS HENPephIBHOM (YHKUMEN HA MHOXKeCTBe AWHAMHYECKHX CHCTEM,
Hale/leHHOM pasiaWuHbiMug  tomosorusim 1. B. M. MuiMOHUMKOB [peJIoXKu
HCMOMb30BaTh KAaccHbHKanuio Bapa paspbisHbix ¢yHknuit [2] mis omucanus cBoiicTB
Pa3/IMYHbIX XapaKTePHCTHK AMHAMHYECKMX CHCTeM. B YaCTHOCTH, OH YCTaHOBMJI, YTO
noxasareny JIsnyHoBa pHHAUIEXAT BTOpoMy Kiaccy Bapa [3], a M.J1.Paxumbepayessim B
pabore [4] 661710 yeTaHOBAEHO, YTO NOKa3aTenu JIANyHOBa He IPHHALNEXKAT IEPBOMY KJ1accy
Bspa.

Iyers (X, d) — xoMmakTHoe Merpudeckoe npocTpaHcTso. O6osnauum Lip(X) —
MHOK€CTBO HelpepbIBHBIX (hyHKIWH, YAOBIETBOPSIOWUX YCA0BUI0 JIMIIIIIa ¥ HaJelleHHoe
TONOJIOTMEll paBHOMEPHON cxoaumocTd Ha X. [las 3aQaHHOTO HATYDPAJbHOTO HUCHIA T
PaccCMOTPUM METPHKY

di(z,y) = max d(f'(z), ().

0<Lisn~1
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Iycrs Ny(f,e,n) — MakcuMajbHOe KonudecTBO Todek B X mnonapubie di(z,y)-
PACCTOAHUA MeX]y KOTOpbIMU Gosbiie vyeM ¢. Tomonorudeckast IHTponus oTobpakenus f
ompezensieTcs: popMyolt

() = lim limsup = In(Ny(f,, 7))

B pabore 6yaem m3yuars nosenenne GyHKOMH hiop(-) : Lip(X) — R B 3aBMcuMOCTH OT
JAHHAMUYECKON CHCTEMBI.

Teopema 1. Qynuryus hyop(-) npuradaesicum emopomy xaaccy Bapa na npocmparcmee
Lip(X).

Bosrukaer Bompoc 06 yiayumienus TeopeMbl 1. B ofuiem ciiydae, KaK MNOKa3HIBaeT
cnegyomut npumep, Teopemy 1 yaydmunrs Hens3s. Ilyers Xo — mnpocrpancTBO
TOCJIE/IOBATENBHOCTE N, COCTOANMX W3 HyJTell U eMHUL, HaJejeHHoe MeTpukol d(z,y) = 1
— rae k HOMep nepBofl pa3aMYHO} KOMIIAHEHTHI.

Teopema 2. Qyuxuyun heop(-) He npunadacocum nepsomy waaccy Bapa o
npocmpancmee Lip(Xo).
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Minimal limits of trajectory attractors of the 3D Navier—Stokes alpha-models
Vishik M. I. (IITP RAS and MSU)

1. The trajectory attractor of the 3D Navier-Stokes system.

2. a-models for the 3D Navier-Stokes system (the Leray-a model, Camassa-Hold equa-
tions, Clark-a models, and other models).

3. The limit of the trajectory attractors of some a-models of the 3D Navier—Stokes
system as o — 0+.

4. The minimal limit ., of the trajectory attractors A, of a 3D Navier-Stokes a-model
as a — 0+. The formula determining the set Apin.

SJl

The theorem on the connectedness of the minimal limit ;. The theorem on the
invariance of the set i with respect to the translation semigroup {T'(h),h > 0}.

6. Some open problems:
i) Is the trajectory attractor 2y of the 3D Navier—Stokes system itself a connected

set in the corresponding trajectory space?

ii) Do the minimal limits is of the trajectory attractors corresponding to different
a-models of the 3D Navier-Stokes system coincide? (Conjecture: different a-
models can have different minimal limits Apin).
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The report is based on the joint paper [1} by V.V.Chepyzhov, E.S.Titi, and M.LVishik.
[1] V.V.Chepyzhov, E.S.Titi, and M.LVishik. On convergence of trajectory attractors of 3D
Navier—Stokes-o. model as a approaches 0. Sbornik: Mathematics, 2007 (to appear).

O coBCTBEHHBIX YACTOTAX KoJieGaHMs CTPYHbI C TOYEYHBIM pacnpeAe/ieHHeM
Macc
Bunaaumupos A. A. (MOTH (T'Y)),
Ile#tnax H. A. (MT'Y um. M. B. Jlomorocosa)

Ha orpeaxe [0, 1] paccmMarpuBaerca Clexylonias CeKTPaibHasd 33/1a4a C CHHIYJISPHEIM
BECOM

-y =Xy, y(0)=y(1)=0. (1

TIpu 3TOM mpeAnonaraeTcs, uro p = P’ nna nekotopo# HeybnBatomed GyHkuuyn P, npraém
NIpPOU3BO/IHAS IIOHUMAETCS B OOOOIIEHHOM CMBICIIE.

Ecm y P Her a6comoTHO HepepbiBHOf wacTy, To (cM. [1]) anst cobcTpennbix 3HaweHkH
paccMaTpHBaeMoll 338K CIpaBeJinBa aCUMATOTHYeCKas (opmyna n = o(vAn)-

B pabore [2|, B IpeanoNoXeHnH, 4To p — camononobras cunrynsipuas Mepa (P = 0,
Pying # 0), nonyyena acuMnToTHIECKas DOPMYITA 7t ~ AP s(In(A\n)), TnRe 0 < D <1/2,as
— nepuommdeckas GYHKIMS, KOTOPAs MOXKET BbIPOXKJATBCH B KOHCTAHTY.

OCHOBHO# IEJbIO HACTOSIIEro JOKJAA SBASETCS U3yHeHMe IOBeJeHHs COGCTBEHHBIX
3HaveHu#t 3anaun (1) B INIPEONIONOXKEHWM, YTO O SIBJISETCH 060OUIEHHON NPOU3BOAHON
HeyGniBatomedi camononobHo#t ¢yHkuun P, mMeroweil CIETHOE HUMCIO CKAYKOB, KOTOPBIE
HAKAIIBAIOTCS K TIPABOMY KOHIY oTpe3ka [0, 1]. st kpaTkocTu chopMyIupyeM OCHOBHOMN
Pe3yABTAT A4Js CAy4ast, Korga P NOpoXJaeTcs ABYMs OnepaTopamu moaobus (em. [3]).

Teopema 1. Ecau P — neybuiearoued KYCouHo-nNOCMOARNAR CAMOT0006HAA Pynryus,
mo

n~Clni,

20e wucao C > 0 onpedeanemea napamempamu camonodobus dyrxyuu P.
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06 ypaBHeHHsX C 3aNa3AbIBAHUAMHI U UMIYJILCHBIMHE BO3MYIICHUIMH,
BO3HMKAIOLIMX B PAJUOTEXHUKE
Banaceuko JI. A., Pytkac A. I (XappkoBcknit HAIMOHAJILHBI# YHHBEPCHTET
uM. B.H. Kapa3sunza)
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B n-MepHOM MPOCTPAHCTBE M3ydaercs MoayIuHelHoe quddepeHiyaibHoe ypaBHeHNe

—[Aou ] + ZBu(t—wJ)-— f(t,u(t), ne.t> 1, (1)
=0

w=0<w <...<wyp =w, (2)

C HaYaNbHBIMH YCJIOBUAMH
u(t) =g(t), to—w<t<ty, ulto+0)=muo,
M MMOYJBCHBIMY BO3MYILEHHSMHE
Aulimy, = ulty + 0) — u(t — 0)) = x(u(te — 0)),

k=1,2,...,tg<t1 <ta <...—00.

Ins seipoxxaennoro ypasHenusi {(det Ag = 0) ycTaHaB/MBAIOTCH YCJIOBHS COIVIACOBAHUS
Ha [paByl0 4YaCTb, HadajbHble [aHHbIE ¥ HMIyJbCHbie BO3NeHcTBHsA, HeoOXomuMBbie
/IS CyNIeCTBOBAHMS M €AMHCTBEHHOCTH peinerus. [lnd OfHO3HAYHON pa3pemuMOCTH
HEeBBIPOKIEHHOTO YDAaBHeHHUst 3TUX ycaosull He TpeGyercs {1).

HnTepec K ypaBHenuio (1) BEI3BaH MCCIEIOBAHNEM HENHMHEMHBIX 3JIEKTPHUECKHX Uenel
¢ OTpesKaMu JJIMHHBIX JMHMA. B (2] nusns nepenauu 6e3 nmoreph ONMCHIBAETCA SIBHBIM
ypaBHEHHeM C 3amasipiBaHueM. YpaBHeHust uenedl B [3] comepxar auddepennuaibHbie
ypaBHeHUsiMU 6e3 3ala3/blBaHus, He Pa3pellleHHble OTHOCUTENIBHO CTapell Npou3BOLHOM.
BrIporkieHHBIE InHeltHbIe ypaBHeHHs (1), ONHCHIBAIONINE S/IeKTPUIECKHe NEnH C JJINHHBIMU
JIMHUSMH, UCCIeN0BaIHCh B [4]. PaccMoTpuM cliefyiomyio 3/1eKTPUYECKYIO Lenb.

Il(Il,t) Iz(:b‘z,t)
e e
I

EITCD Ui(z1,t) ULT L

Up(z2,t) CDTEz

T T 1 L
| | | |

0 171 T2 1 0
Ha Bxozax ABYX [AJMHHEIX JHMHMH ¢ uHzyxTusHocTsiMH Ly, L, u emxoctamu Ci,Cp
BKJIIOYEHBl HCTOYHHKM Hampsokenuit Ej(t), Ea(t), Ha BHXOZaX - HHAYKTHBHOCTD

L, conpormBnenme r u wnenuHefimsie norepn P(l.). DTa Uemp  omuchiBaercs
ypasrernem (1), tme u(t) = (Uh(1,t),L(t), L(t). 1), w; = 2/L;C;, § = 1,2

Ftu) = 2Bi(t — w1/2),2Bs(t — w2/2),0,9(L))", Ao = {aw}iser, By = (b :*k ’

§ =012 o = ax = —ay = L, bg‘? — 50 = 50 = o0 = b = b2 = 1,59 = —r,
bgg) b(l) v L1/Ch, b (2) = \/L;;/C2, OCTaJbHBIE 3JIEMEHTH! MATPHUI, PABHbI

HYJIO. Hpe,zmonarae’rcst, 4TO B }IHCerTHbIe MOMEHThI BpEMEHH TOKHM H HAaIIPsXKeHUSA MOI'yT
II0ABEPTraThCsd KPATKOBPEMEHHBIM MMITY/IbCHBIM BO3MYIIEHUAM.
JIurepatypa
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Solvability and Properties of Solutions of Abstract Functional Differential
Equations
Vlasov V. V., Medvedev D. A. (Moscow)

We consider a class of abstract linear non-homogeneous functional differential equations
in Hilbert spaces, that include some partial functional differential equations as special cases.
We describe the spectral properties of the homogeneous problem, and obtain sharp estimates
of the growth bound of the solution to the non-homogeneous problem.

We consider the following initial value problem

" h
u'(t) + Ault) + Z B Au(t — hi) + /B(S)Au(t —8)ds = f(t), t >0, 1)
k=1 °
u(s) = g(s), s € [—h,0]. (2)

Here A is a normal operator with compact inverse A~!, spectrum of operator A is lying
in the open angle Sg = {A € C: |argA| < 8}, 0 < 8 < 7/2. Operators By, and B(s) have
the from: By = TR A%, B(s) = T(s)A~%, here T} are bounded operators in the space
H, the operator-valued function T'(s) is a bounded operator for s € [—h,0] and is strongly
continuous with respect to s. Constants 6, and hy satisfy 0 < 0 <1 for £ =0,1,...,n and
O<hi<hy<---<h,=h.

Theorem 1. Let g € W}((—h,0), 4), f =0 and choose a constant 3 such that 3 < s,
and that there is no eigenvalue A, of L(\) on the line RA = 3. Then the strong solution u
of the problem (1), (2) has the following representation

ut)= Y. Cqjaas(t) +us(t), t > 0. (3)
AgEARA >

Here ug € W3 5((0, +00), A); ¥q,,s(t) are exponential solutions for homogeneous equation (1)
corresponding to eigenvalues A, of operator-valued function L(A) which is the symbol of the
equation (1) (see [1] for more details).
We should remark that the localisation of the spectra of L(\) implies that the sum on
right-hand part of (3) contains only a finite number of terms (see [1],[3] for more details).
Theorem 2. Let g € W}((=h,0), A), f € Ly((0,T), H) for arbitrary T > 0. Then the
strong solution u of the problem (1), (2) satisfies the following estimate

leellws (e-n0),4) < dult + 1)+ "1+ ligllwy (~n,0),4)
t

FdaVE([(t — 8 + 12D 2 0-9)|| 7(s)|2,ds)1/2, £ 2 0, “
0

where the constants d; and ds are independent of the functions g and f, s¢4 = sup®A, and
v, is maximum of the multiplicities of such A, that ®Ag = s4.
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We note that the estimate (4) is sharp in the sense that it is impossible to substitute
the constant s, by s, — ¢ for an arbitrary positive & > 0. The result on solubility for more
general functional differential equations were obtained in [2], {3]. The localization of spectra
of the symbol L()\) was researched in {1], [3].
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KpurHdecKne MOKA3aTeNM HEKOTOPbIX SBOJIONMOHHBIX MOMYIMHERHBIX
nuddepeHIMATLHBIX HePABEHCTB BBICOKOrO NOPAAKa.
Bomnoaun. FO. B. (r. Mocksa)

Tlyers k, m u N — OpoM3BOJbHBIE HATYypajbHble uHCHa, ¢ > 1, o > 0, R > 0,

={z € RN | lz| < R} — o'rxpmbm wap ¢ rpanunet 9Bg = {z € RV | |z| = R},
B — nononuenve mapa Bp 1o RN

PaccmoTpum 3azaqy 06 OTcyTCTBHH HeTPUBMAJbHBIX pelnesnit anddepeHmaIbHOrO
HEpaBeHCTBa

k
%g +(~1)™A™u > ajul? 1)
¢ ycnoBusiMu Ha rpanute 0B sua
/aB (-DiAtuds = ai(t), i=0,1,...,m—1, (2)
R
a Tak>Xe ¢ Ha4YaJIbHbIMH YCJIOBUAMH
u .
50 —(z,0) = ui(z), 7=0,1,....,k—1, ug—a(z) 2 0. (3)

PeruenveM HaualnHO-Kpaesolt 3aiaun (1)-(3) naspiBaercst dymkumst u(z,t) Kmacca
C?™k (B, x Ry), yaoBiIeTsopaiomas 3a1anHeM yenosusM (2), (3) u nepasenctsy (1) mpu
Beex = € By, t > 0.

Byaem npexnonarats dyskuud a;(t), ¢ = 0,...,m — 1, 3HAKONOCTOSHHBIMHU. Boigenum
rpaHugHBIE YCIOBHS (2), KOTOPBIM COOTBETCTBYIOT pasHble KpHTHYeCKHe nokasaTesm. Ilycts
m 2 2 v bUKCHPOBaHO HaTypadbHoe Yucao 1 < n € m+1. U nycrb BRImOIHEHB! CleAyonue
YCIOBHS:

1) (=1)"am-n(t) <0 m
2) (=1)™tq;(t) >O0mpui=m—-n+1,...,m—1

(ycroBMe He HAKJIAIbIBAETCS, €CIM COOTBETCTBYIOHHMH JMANasoH WIH HHJeKC i
[IPOTHBOPEYMB).

Teopema. Ilyere N > 3, 1 < n <€ m. Kpaesas samaua (1)—(3) npu
N > 2(m - n— m/n+ 1) He uMeer HeTpUBHAIBHBIX pentenuit npu 1 < ¢ < gg, rae

. N+2m/k+n-1)
= Nyomlk+n-m—1)
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Ecau xe Bmimonneno ycnosug 3 < N < 2(m —n — m/k + 1), 10 3a1a4a He HMeeT
HeTPUBHAJbHBIX PelIeHu! npu Beex ¢ > 1.

OtmeruM, 4TO ecitt n = m + 1, To Toraa Aast a06oro ¢ > 1 MOXKHO IPUBECTH NPHMEpH
3884, KOTOPbIE MMEIOT PElleHHs], OTSIHYHbIE OT TOXKJAECTBEHHOTO HYJIs.

JokasaresnncrBa 6asupyrorcss Ha Meroge NpobHbIX ¢yHKuMi, pa3paboTaHHOM
9. Muruzuepu u C.1. IToxoxkaesrm (cm. [1]).

JInreparypa
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Venoeus ueHTpa AJisi OAHOrO Kjlacca NOJHMHOMUANBHBIX CUCTEM
Volokitin E. P. (r. Hoocubupck, Hacturyt matematuku uM. C. JI. CoGoresa CO PAH)

PaCCManPlBae’I‘CH NOJTHHOMHaJIbHadA COBEPUIEHHO U30XpPOHHAs CHCTEéMa BUOA

¢ = -y +2Q(z,y) Sy ai(z® + ),
U=z +yQ(z,y) Ximg ai{z® +y?Y,

rae Q(z,y) — OQHOPOAHLIN MHOTOUIIEH CTENeHH Kk OT IepeMeHHHIX T, Y.
Cucrema nmeer emuHCTBeHHYIO TOo4Ky nokost (0, 0), KOTOpasi SIBJASI€TCH LEHTPOM IO
JIMHEHHOMY TPHOINKEHHIO.

Teopema. Ecnu
27

Q(cos d,sind)dd = 0,
0
TO HAYAJIO KOOPAMHAT €CTh LEHTP PaccMaTpHBaeMol cucreMmsbl. I'paHuna o61acTn LEHTpa B
ciydae oBIero noJoXKeHHs COCTOUT U3 ORHOM MM JBYX HEOrPAHUYEHHBIX TPAaeKTOPHIA.

Teoperna o6obuiaeT MONyveHHblE paHee YC/IOBUs LEHTpPa A0Sl KBa3HOHHOPOIHBIX
[OIMHOMHAAIBHEIX COBEPIIEHHO M30XPOHHLIX cucreM {cm. [1).

C ucrnons30BaHHEM JOKA3aHHON TeopeMbl IIOCTPOEH IpHMep  IOJHHOMHAJILHON
COBEPIIEHHO H30XPOHHON CHCTEMBI C IEHTPOM, He SIBASIOINEHACS peBepcHBHOM U He
KOMMYTHPYIOLIEH HE C KaKo# IOIMHOMHMAIBHON cucTeMol. Bonpoc o cyimecTBoBaHui TaKolh
cucreMul Gbi mocTaBieH B [2, 3.

Pabota Bhinonnesa npu noaaepxke POOH (npoexr 05-01-00302).

JInreparypa
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O npeobpazopanuax Xapau 1 BesiMmaHa psiioB MO MyJIBTIIHKATHBHBIM
cucreMamMm
Bonocuper; C.C. (CapaToBckmit rocyfapcTBEHHbIH YHHBEPCHTET)
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Hycts 2 < po K Nagnan € Nymg =1, my = p1...pn, n € N, Torna kaxmoe
z € [0,1) uMeer pasnoxenue T = Y po Tx/mi, Tk € Z, 0 < Tf < i, a Kaxa0e k € Z,y
NpeACTaBUMO B BHIE k = Z;’il kim;_1, k; € Z, 0 < k; < p;. Torma no onpenenesuo
Xk (z) = exp(27i Z;‘;l zik;/p;). Cucrema {xx}§° oproHopmupoBana u noana s L[0,1) (cM
[1,§ 1.5]). Ecau f(n) - kospdumpentsr Pypre pynxiun f € L[0,1) no cucreme {xx}3°, 1o
¢f =g, tme §(n) = Liey f(K)/n, n €N, §(0) = 0; Bf = h, rze h(n) = T2, f(k)/k,
n € N, h(0) = 0. U3Bectro (cM. [2] B ci1yyae p, = 2), aro € u B orpaundens B L,[0,1)
npu 1 < p<ooul<p< oo COOTBETCTBEHHO.

Iycrs E - cuMMerpuyHoe npoctpaHctso yskuu#t wa [0,1) [3, ra2, § 4],
o-f(t) = f(t/7)X[0,1)(t/T), rre X4 — unauxaTop MHOXKecTBa A, pE(t) = || X[o,nlle. Janee
TpebyeM BBHINOJHEHUs] OBYX ycJiosul qia E:

1) llo-lle—e < C(E)sup{pe(rt)/pE(t) : 0 <t < min(1,1/7)};

2) 1 <lim,_ope(2t)/vE(t) < lim—opE(2t)/vE(t) < 2.

Teopema 1. Hycrs f € L[0,1) u ans moboro n € N 52 | f(k) — f(k + 1)| < Cf(n).
Toraa ycnoBus f € E u Bf € E paBHOCHIBLHEIL.

Teopema 2. ITycts f € L[0,1) u f(k) |. Torna yetosust f € E u € f € E paBHOCHIBHEL

Jluteparypa

[1] Tony6os B. H., Edbumos A. B., Cksopuos B. A. Padw u npeobpasosanus Yorwa,
Hayka, Mocksa, 1987.

|2] Eisner T. "The dyadic Cesaro operators". Acta Sci. Math.(Szeged), 64:1-2 (1998),
99-111.
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]

BTopoit 4wieH acMMIITOTUKY NpeoGpa3oBaHMsi MOHOAPOMMH
Boponun A. C., Measesesa H. B. (r. Yensabuuck)

UccnesoBan BTOpoli WieH aCUMITOTHKH NpeoGpa3soBaHHsl MOHOAPOMHMH MOHOXPOMHOIM
0c060it TOUKH BEKTOPHOI'O MOJIS Ha IJIOCKOCTH, HPUHAJIEXKAIIET0 KAACCY BEKTOPHBIX NoJelt,
umeromux quarpaMmy HeroTona, cocrosimyio u3 AByx ueTHnix pebep. B paccMoTpuBaeMom
KJIacCe TJIaBHBI WieH npeobpasoBaHHs MOHOAPOMHH TOXKIAECTBEHEH M [IO3TOMY HEBO3MOXKHO
chOpMYIIHPOBATH JOCTATOYHOE yCI0BUe HPOKYCa U NOCTPOUTH IPAHUILY YCTOWIMBOCTH B 3TOM
KJIACCe ¢ MOMOIIBIO MJIaBHOrO wieHa. [losyduennas GpopMyia no3BoJisieT NOCTPOUTH CPAHHUILY
YCTOMYMBOCTH H ¢HOPMYIHUPOBATH JOCTATOYHOE yciioBue OKyca.

PaGora BuimonHeHa npu nopgepkke POOU, rpanr HITHUJI _a 05-01-02801.

Cynep nuueiinas anarebpa u o6o6uwenne reopun I'enbdanga—
Konamoroposa-Byxmrabepa—Puca
Boporos @. @. (r. Manuecrep)

Temnpany u Koamoropos [1] B 1939 r nokasanm, uro moboe KOMIAKTHOE
xaycaopdo80 NpocTpacTBo X KaHOHUYECKH BKJAJbIBAeTCs B GeCKOHETHOMEPHOE BEKTOPHOE
npocrpaucreo C(X)*, asoficrsentoe K anreGpe venpepsisunix dyukuutt C(X), B kavecTe
“anrebpamdeckoro MHorooGpasus’, 3aJaBaeMOro GecKOHeYHbIM HaGOPOM KBaAPATHIHBIX
ypapuennit suga f(a?) = £(a)?. (Baecs f € C(X)* ua € C(X).)
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Hepasno ByxmraGep u Puc pacnpocTpaHujd 3TOT pe3yJIbTAT HA BCe CHMMETPHYECKHE
crenren Sym™(X), Ha ocHOBe cBoero nonsTusa “bpoberuycoBckux n-romoMopdusmos”’, Cm.
pabory (2] m cchlikM B Helt.

Ml maem ynpoluenue ¥ fadibHelee obobiieHne 910l TeOpUH, UCHONb3Ys UAEH Cymep
nunedtnolt anrebprl. Jlok/an ocHoBaR Ha coBMecTHo# pabore ¢ O. M. Xynasepasinom [4].

IIpocrpancrBy X conocrapisiercs GpyHKTOPUATbHBIA OOBEKT SymP? X, rne p,g > 0, a
KOMMYTATHBHOH! anrebphi ¢ eqununeil A — cooTBeTCTByOmAs anrebpa SP17 4. Mpr HazbiBaeM
Ux “060BIEHHBIMM CAMMETPUIECKEMH cTelleHsMuU”. IMeeTcst KaHOHIUYECKOe 0ToDparKeHue U3
Sym? lex g C(X)*. Hnsa ouncanust ero obpa3a Mbl BBOJAMM OIpefesieHHble airebpandeckue
ypaBHeHus1, 060o6iast Tem caMbIM yTBepKaeHus Lesnbdania- -Koamoroposa u Byxmrrabepa—~
Puca.

PesyabTathi O JMHEMHBIX OIEPATOPAX HA CyNepHpOCTpaHcTBax |[3] MorHBHpYOT
onpegnenenne “xapakrepucruyeckoit bynkunn” R(f,a,2) = efn(1+a2) e f: A — B —
JIMHeHOe OTOOpaXKeHHe KOMMYTATHBHBLIX alreSp ¢ eauHuneit, a € A u z — GopMabHbIH
napamerp. Anrebpauveckne cBoiicTsa oTobpaxenus f nposBisiorcs B cBoiicrBax R(f, a, 2)
kak ¢ynknuu 2. Ecin f romomopdusm anrebp, to R(f,a,2) = 1 + f(a)z ects jmHelHbI!
asyaned. Teopus ByxiiraGepa-Puca orsedaer NOIHHOMHANBHOH XapaKTePHUCTHYIECKON
GyHkuuM, a Hame oBobuEHAe — IPOU3BOMILHOA pauuoHasbHolt. IIpexnokenHbie MeTonpi
JIAI0T, B YaCTHOCTH, IPOCTOE IPAMOE [JOKA3aTEILCTBO OCHOBHOH TeopeMbl Byxmrabepa—Puca.
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Vcaosus CyleCTBOBAHMS KNACCMYEeCKOro pemteHus 3aga4dn Komm ans
ypapaenus guddysnu ApoGHOro riopsaxKa
Voroshilov A. A. (Benopycckuit rocyaapcrenHsiii yHuBepcaTeT, MuHCK)

Uccaenyerca pemenue u(x, t) 3agaun Komu

(°Dg, 1) (z,t) = NAgu(z,t) (z € R™, t>0; n—1<00), (1)
*u m
5 (©,04) = fi(z) (k=0,...,.n-1; z€R ) (@)

s auddepeHMansHOro  ypaBHeHHs ¢ 4acTHOH apoGHoit mpoussogmoit  Kamyto
(°Dgy +u) (z,t) (om. [1, §2.4.1]). Pemenue 3amaqu nonyeno 5 [2] B suge

u(z, t) = / Gz —7,t) folr)dr (0<a<l), 3)
R_m
u(z,t) = / [(G§(z — 1, ) fo(T) + °G(z — T, t) ()] dr (1< a<?2), (4)
Rm
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°G%, °GS BhIpaxatoTCs B TepMutax H-dynxuuu no dopmynam [2, (38),(41)].

@yuxmuo u(z,t), B cooTBeTCTBHM C [3], OyleM Ha3BIBATL KJIACCHYECKMM PpeIUeHHeM
sanaun Kowmw (1)-(2), ecim oHa JBask bl HempepslBHO AuddepeHnupyema o  MpH KaxioM
t > 0; mpu kaxaom r € R™ wu(z,t) HenpepbiBHA N0 { U MMEET HENPEPHIBHYIO YaCTHYIO
NPOU3BOJHYIO NIOPAIKa « 1o L.

Teopema (a) Iycts yukuust fo(x) Henpepniena Ha R™,

@) < Conptipt) (Ch> 0, n<322), )

u, ecnda m > 1, JgOKadbHO Tembaeposa. Torga GbyHKims (3) ABIAETCA KIACCHYECKIM
pemenuenm 3anaun (1)-(2) ¢ 0 < a < 1. (b) IHycrs bysxkuun fo(z) u fi1(z) HempepsIBHLL
na R™, ynosaersopsior onerike (5) # noxasibHo resbaepossl, ectd m > 1. Toraa dynxuus
(4) siBsieTcst KTaccudecKuM peuieHneM 3ata4d (1)-(2) c 1< a < 2.

Jlureparypa
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1990. — T. 26. No. 4. — C. 660-670.

OcuunsinuoHHble cBolicTBa cobcrBenHbIx ¢yHnkuult oneparopa
Hirypma-JInysunns
Bsiuecnasos A. B. (MIY um. M. B. JlomorocoBa, MeXMaT)

PaccmaTpuBaerca 3a0a4a Ha cobcTBeHHble 3Havenns onepatopa Llltypma-Jlnysuis
-y’ +ig(z)y =Xy,  y(-7/2) =y(x/2) =0,

rae q(z) € C[=m/2,7/2] - HeverHas BellecTBeHHas MOHOToHHasi pyHkuus. CobcTBEHHBIE
3HAYEHNsA JaHHOM 33/|84l HMEIOT aCHMIITOTUKY

A = K14+ 0(1/k%), k€N,

[pH4YEM BCe NOCTATOYHO GONbIUME N0 MOAYJIO COGCTBEHHblE 3HAYEHHS BEIECTBEHHDI.
BanymepyeM ducia Ak, k= 1,2,... B IOpfAMIKE BO3PACTAHUA MOAYJIEH.

Kaxzyo coberBenyio GYHKUMIO Yk LAHHOM 3a1adH, COOTBETBYIOLLYIO BElECTBEHHOMY
COBCTBEHHOMY 3HAYEHHIO, MOYKHO HPEICTABHTD B BUAE Yk = Pk + 1Yk, T DYHKIMH Yk U Pk
BelIECTBEHHbIE N OJHA U3 HUX YeTHAs, a Jpyras HedeTHasl.

Jloka3saHa CIIpaBeJIMBOCTD CIeAYIOMEl TeOpeMBl, yCTAHABIMBAIOWIEH OCI/IAIHOHHbIE
CBOICTBA BEIECTBEHHHIX W MHHMBIX dacTell coGcTBeHHBIX GYHKUMH HaHHOA 3ajaqn,
AHAJIOTMYHBlE W3BECTHBIM OCLMJIAIMOHHEIM CBoficTBaM coGeTBeHHBIX (yHKUME omeparopa
Itypma—JIuyBumns ¢ BemecTBeHHHIM noTeHnuanom (eM. {2], [3]).

Ob6o3Ha4nM:

1 _(r+2m e m+2m € 2 _ (™ e €
Ak,n(e)_< 2% k! 2%k +k ’ Akn()"‘( )’
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™ e €
M) = (-5 + o5~ s)

Teopema. JIns moboro yncia € > 0 u moboro o € (0,1) cymwectsyet ko Takoe, 4To Ast
Beex k > ko k-2 cobcTBenHas GyHKUHMs 3aJa49H Yx MMeET [PEICTABJEHHE Yx = Pk + ik,
rie GYHKUMM Yop B Qox+1 YETHBIE, 8 (DYHKIMH Yors) H QPor HeYeTHBIE, obiagaiouiue
CIeAYIOIKUMH CBOHCTBAMMU:

1) i umeer poBHo (k — 1) Hyselt Ha unTepBase (—m/2,7/2), npudem JJi HEYETHBIX Kk
HYJIM pacrolnoxensl B unreppanax Ag (e/k), a qis verneix k B unreppanax A2 (e/k).

2) Ha unrepBanie Ag(e,0) Hyan GYHKUMA 1)p HAXOAATCH B MHTEPBAjiax Afm(e) i
HeYeTHBIX 3HaYeHUH k, ¥ B MHTepBajax A}m(e) JJIsl YeTHBIX 3HayeHu#t k, npudeM BHYTpH
K&XKJI0I'0 MHTEPBaJIa HAXOQUTCS POBHO OXMH HYNb byHKuMu k.

Pabora BeimosnseHa mox pykoBoactBoM npod. A.A.IllxanukoBa, nojnep»xaHa CPaHTOM
POOU Xe07-01-00283, u ¢hoHmoM mHOAuepKKM BeAyLUIMX HAy4IHBIX wmKoJ, rpadt HIII-
5247.2006.1.

Jlureparypa

[1] Hatimapk M. A. Jlunetnwnd dudepenyuanvrie onepamopti. - M.: Hayka, 1969.

{2} Tantmaxep ®. P. Kpe#tnu M. I Ocyusrayuonnsie mampuuys u Adpa U maavie
xoaebarua mexanuvecxur cucmem. - M.-JI.: I'TTHU, 1950.

[3] Kommuurron 3. A. JleBuncon H. Teopus obuxnosennwzr duddepernyuavrvic
ypasrerud. - M.: UHJI, 1958.

®opmyasl Ajis Bhiyuciaenus MaTpuy, Ctokca auHefiHol cucTeMbl B BUAe psiia
or ee K03 PUUMEHTOB
Vyugin I. V. (Mocxksa)

Mur crpoum copmynsr g Marpuy Crokca Ci,...,Cp cHCTeMBl JIMHERHBIX
aubdepeHInaTbHbIX ypaBHeHHH,

d
zd—z:(Bo+Blz+...+quq)y, 2eT

B ocobolt Touke z = oo. IIpu ¢ = 1 u Marpune B,, uMeromell pasiuqnbie COGCTBEHHBIE
3Ha4YeHus, AaHbl GOPMYNIbl B BUAE CXOALIMXCH CTENEHHBIX PAAOB OT 3JEMEHTOB MaTpPHI
K03 PUIHMEHTOB CHCTEMBI. DTH PsAbI MOXKHO PacCMATPHBATH KaK HeKoTopoe obobmieHue
psgoB M.A. Jlanno-JannneBckoro (BLIPAXKarOLIMX MaTPULBI MOHIAPOMHU) A MATPHULL
Crokca. IIpu 6osee Brhicokux panrax Ilyankape ¢ > 1 cTpoMTCs UHIYKTMBHasl IIpoOuLEAypa,
MO3BOJIAIONIASA TIepefTH K AHAJIOTHYHOMN 3aJa4e, HO ¢ MeHbIIHM ¢. C IOMOMHIBIO 3TOT0 MeTOAa
MOXKHO TMOJIy4YHTh U HEKOTOphie cBo#icTBa oTobpaxkenns Crokca

(Bo,...,Bq)—’(Cl,...,Cl),

orobpaxaiouiero K03 dUIMEHTH! CHCTEMBL B e¢ MaTpuisl CToKca.

A nabaTuyeckue npeledinl AJ1s5 HEKOTOPBIX MHOrooGpasuii co cioenuem.
Sxosnes A. A. (r. Yoa)
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Ilyers (M, F) — KoMnakTHOe MHOroo6pasue cO CJIOGHMEM, ¢ — DHMAHOBA MeTPUKA
na M. Kacarennnoe paccioenne T'M k MHoroobpasmio M TpeacTaBuMo B BHIE IPSIMON
cymmnl TM = TF @ H, toe TF— xacarenbhoe paccioenue X cioennio F u H = TFL
— oproronaynbnoe gononsenne K TF. Takum o6pa3oM, METPUKY g MOXKHO 3aIlMCATB B BULE
9 = grF + gu, TA€ grF — orpanuyvenne MeTpuku g Ha TF ¥ gy — orpanuyenve METPUKH ¢
Ha H.

Onpenenum onsonapaMeTpuyeckoe cemeircTso {g. : € > 0} puMaHOBBIX MeTpuK Ha M
o ¢popmysie

9e = 9TF +€ 2gn.

Hns moboro € > 0 paccmorpum oneparop Jlammaca-Bemsrpamyu A., acconuupoBaHHEI
¢ wMerpuko#i g.. Omepatop A, ABAsgeTcss CAMOCONPSXEHHBIM, JUIMITHYECKUM
IucddbepeHIHanTbHbIM 0IePATOPOM € MOJIOKUTEILHO ONDEeeHHBIM, CKATISPHBIM TJIABHBIM
cuMBoIOM B ruabbeproBom npocrpancTee L2(M,g.) KBaJpaTWMHO MHTErPHpYEMbIX
dbynkumit na M, HaJe/€HHOM CKAJISIPHBIM IPOU3BEJEHHEM, HHAYIUPOBAHHEIM METPHKOH g..
Hnsa moboro € > 0 crekTp oneparopa A, COCTOMT M3 COGCTBEHHEIX 3HAYEHMH KOHEWHON
KPaTHOCTH:
0= MXofe) < Mi(e) £...,Aj(e) = +00 mpu j — oo.

Qynknus pacupefenenus cnektpa Ng(\) onepatopa A, 3anaerca popmyioit:
Ne(A) = #{5 : A;(e) < A}
B nannott pabore paccMaTpHBaeTCst ABa IpUMEpa MHOToobpas3uit co ClIoeHneM:

1. M — pumanoso MHoroobpasue [IelsenGepra, citoeune F 3agaerca opburamn
JIEBOMHBAPHAaHTHOI'O BEKTOPHOrO 10sst Ha M.

2. M — pumanoBo Sol-mMuorooGpasme, cioenne F  3amaerca  opburamm
JIEBOMHBAPHAHTHOI'O BEKTOPHOro noisa Ha M.

B ofoux cinydasx nosyyeHBl acHMMNTOTHYecKHe GopMynnl s byskuun Ng(\) B
auabaTHIecKOM MpPeLeJIe, TO €CTh, MpH GUKCUPOBAHHOM A H nIpH € — 0.

Cuctema ypaBHeHult ABMXKEHUS TOPHOTO JIEAHUKA
H. Fuzhita Yashima (Univ. Turina, Italiya)

CuuraeMm, YTO aJIbMANACKUN JEJHUK B CBOSM MEIUIEHHOM JABMXXEHHH MOCTYTIAeT, KaK
HEHBIOTOHOBCKAf JKHAKOCTh, KOTOpas JprxKercsa. Ecinm JBMKeHMe CTAIHOHADHOE, OHO
Y/AOBJIETBOPsIET CKCTEMEe ypaBHEHUH

3 oy °. 8 P
ovi o p-2, opP _ s . _
(1) 0 E v; bz uj; o2; (|E(v)[P~2eq;(v)) + o 0963, i=1,2,3,

i=1 i

(2) V.v=0,

rae v = (v), v, ¥3) — CKOPOCTD, ¢ — IJIOTHOCTb, PP — NaBnienue, g — ycCKOpEHHe IO THIKECTH,
v — K03 UUMEHT BA3KOCTH, a

3
i) = 3o 4 ) B = (Y les@)?) 2

dz; Oz
’ * ij=1
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Y10 KACATCH YMCIA P, SKCIEPUMEHTATBHbIE PE3YIBTATH NOKA3BIBAIOT, uTo p & 1 + 4.

Byzem paccmaTpuBaTh ypaBHenus (2.1)-(2.2) B obmactu ), KoTopas ABJA€TCH
OTKpPHITHIM OrpaHHYeHHBIM peryIspHeM noaMuoxectsom R3. Ha rpanuue paccmorpum
ycnoBue

3) V=0 Ha 0%,

roe a — 3ajJaHHast Ha O} BekTOpHAsA QYHKIMSA, TAKAs 4TO

Y4) / a-ndS =0,
an

e n 0603Ha4aeT BHEIIHIOW N0 OTHOILEHHUIO K ) HopMmaab K Of).

JList 970l npobiIeMbl IOy UMM cilemytoutut pesysnrar. [lycrs Boimoasens: (4) n ycnopue
% < p < 00. Ecan cymecreyer BexTopHOe moste @ Takoe, 9to V-a = 08 2, a = a Ha 99,
a |lallwa (o) mocTaTouno Mana, To cymecTByeT caboe pelleHue v € W) sanaun (1), (2),
(3).

On sensitive sets in topological dynamics
Ye Xiangdong

In this talk notions of sensitive sets (S-sets) and regionally proximal sets (Q-sets) are
introduced. It is shown that a transitive system is sensitive if and only if there is an S-set
with Card(S) > 2, and for a transitive system each S-set is a Q-set. Moreover, the converse
holds when (X, T) is minimal. It turns out that each transitive (X, T’) has a maximal almost
equicontinuous factor.

According to the cardinalities of the S-sets, transitive systems are divided into several
classes. Characterizations and examples are given for this classification both in minimal and
transitive non-minimal settings. It is proved that for a transitive system any entropy set is
an S-set, and consequently, a transitive system which has no uncountable S-sets has zero
topological entropy. Moreover, it is shown that a transitive, non-minimal system with dense
set of minimal points has an infinite S-set, and there exists a Devaney chaotic system which
has no uncountable S-set. Finally, & non-minimal sensitive E-system is constructed such
that each its S-set has cardinality at most 4.

BuddypKaiuu ocobbIX TOUeK NapaMeTPUYeCKHX BEKTOPHBIX mostelf
Yumagulov M. G. (Cubaticknit uucTatyT (hunnast) Banrkupckoro rocynapcTBeHHOTO
YHHBEPCHTETA)

PaccmaTpuBaeTcsi ypaBHeHUE
z = B(p)z + b(z, u), 1)

re B(u) — muHeHHBUi BOONHE HENPEDHIBHBIN OMEPATOP, JeficTByoumit B ruibGepTOBOM
npocrpancTse H ¥ HempephBHO 3aBMCSmp# OT BEKTODHOTO napameTpa i € R*, a
esmumefinbiit onepatop b(z,p) ymosnersopser coorsomesmmio [b(z,p)|| = o(jiz|) npm
ljzll — o.
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W3yyaerca BONpPOC O JOKaJbHBIX OudypKauusix B OKPeCTHOCTH peutenns ¢ = 0
ypasHenus (1) npu 3HaYeHMsIX lapaMeTpa L, OJNM3KHX K HEKOTOPOMY KDHTHYECKOMY
3HaYeHUIO . [lpedmosaraercss, 9TO 4YMCIO 1 HBJSETCS NOJYIPOCTHIM COGCTBEHHBIM
3HaveHHeM oneparopa B(up) xparHocTy k.

Ilonyden HOBbIt JOCTATOYHBIN NpH3HAK OUQYPKALMM [0 HANPABJIEHHIO COOCTBEHHBIX
BEeKTOPOB JIHHEA3UPOBAHHOTO IMOJIsl, a TakXe pa3paboTaHa WTepalMOBHAs CXeMa
npubimkeHHoOro uccienoBanust Oudypranun. PaccMmoTpensl npunmoxenus B 3aJade o
6udypxauyn AnjgposoBa-Xomnda, B IJIOCKOH OrpaHMYeHHON 3JUTMITHYECKOR 3ajaye Tpex
TeJ, B AMHAMHYECKHX CHCTEMAX C MEIEHHO MEHSIIOUMMHCS IapaMeTPaMH.

Near Extinction of Solution under Strong Absorption on a Fine-Grained Set
Yurinsky V. V. (Covilha, Portugal)

Consider a boundary problem describing diffusion or heat transfer in an absorbing medi-

um with fine-grained microstructure characterized by a small spatial scale e > 0: for z € G
andt >0

O (|u5|7_2u5) = div (Alvuslp_rzvus) - S;’|u€|"‘2u5, (n

where the initial and boundary conditions are uf,_, = up € LY**(G) with constant k > 0,
and uc|y; = 0. The bounded domain G & R? is limited by a regular boundary, and the
diffusion matrix A is positive definite. The nonlinearities in (1) have variable exponents [1,2];
these are Holder continuous and separated by positive gaps:

1<o(z)+36 <v(x), v(x)+ 3% <p(x) <psy <d, §>0. (2)

Both the variable exponents and the coefficient Se = S (z, %z) > 0 do not depend on time.
The existence of u, is assumed as a prerequisite. .

The parameter ¢ characterizes dispersiveness of the sets B g = {S. > 8}, 8 > 0, where
absorption is strong, and F, = {S. = 0}, where there is no absorption.

If the set F,. is massive, there is no bona fide finite-time extinction of the solution (see
[1,3]). Yet, the behavior of the solution may imitate extinction in finite time if the set B is
also massive and fine-grained (e.g., e-periodic ) and k in the initial condition large enough.

Condition (2) can be used to construct for the L7+*-norm of the solution a majorant
that decays at a rate characteristic of finite time of extinction after the norm passes below a
threshold value. This majorant becomes inapplicable when it sinks below another threshold
value. Later, it can be substituted by another majorant that decays, typically, as a negative
power of time. The characteristic time-scale at this last stage is small, but the rate of decay
no longer implies extinction of the solution in finite time. The method used to construct
majorants is an adaptation of the energy method [3] to variable exponents of nonlinearity.

Acknowledgement. This work was supported by FCT (Portugal) through Centro de
Matemsética UBI in the framework of Program POCI 2010 co-financed by Portuguese Gov-
ernment and EU (FEDER).
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O6parHasa 3ana4ya nis auddepeHIuaNbHBIX IY4YKOB Ha JepeBe
Yurko V. A. (Caparosckuit rocynusepcurer um. H.I. Qepubimesckoro)

PaccMOTpUM KOMNakTHOE cBsA3Hoe fepeBo T B R™ ¢ KOpHEM Vg, MHOXKECTBOM BEDIIMH
V = {vo,...,vr} u muoxectsom pebep E = {er,...,er}. Iyete [' = {vo,...,0p}
— MHOXECTBO I'paHUYHbIX BepuiuH. [Ipeanonoxum, 4To AiMHA Kaxzoro peGpa pasHa 1.
Oyuxuus Y na T moxer GbiTh npeacrasiesa kax Bektop Y (z) = [y;(2)];-17, z € [0, 1] rae
bynkuus y;(z) onpenenena na pebpe e;. lyers q(x) = [g;(2)];_17 u p(x [p;(2)] ;=17
— KOMILTeKCHO3HauHble Gynkuun Ha T rtakme, uto ¢;(x) € L[O 1}, pi(z) € AC{7
PaccemoTtpum caenyomee auddepeniuyanbHoe ypapHenue Ha T

¥} @) + (0 + ipp; (@) + 4@y (2) = 0, = €0,1], M

re p — CUeKTPaJIbHbLE Mapamerp, Gynkium y;(x), yj(2) abcomorHo nenpepbshst Ha [0, 1] 1
YAOBJIETBOPSIOT TAK HA3BIBAEMbIM CTaHJAPTHBIM YCJIOBHUSIM CKJEHKH B KaXKJ0i BHyTpeHHeil
Bepmte (HenpepbisrocTh 1 yenosne Kupxroda). Iyere Vi (z, p) = [¢r;(x, p)] ;o157 k = L,p
- pemienus ypasuenust (1) mpu rpammﬂblx yenosusx Wy ju, = Ok, § =0, p, rae Ox; — cumBon
Kponekepa. O6o3naunm Mg (p) := ¥} o; ok =T, p. Bextop M (p) = [Mk(p)] k=Tp Ha3bIBAETCH
BekTopoM Beitng nas (1). Uccneayercs obparnas 3ana4a Boccranosiennst ¢(z) u p(z) na T
110 BeKTOpy Beitist M.

Teopema. 3adarnue eexmopa Betinn M odnoanawno onpedeasem xospguyuenmoe ¢(z)
up(z) na T.

Meroa JoKa3aTeNbCTBa SIBJISETCS Da3BUTHEM METOJA CIIEKTPAJILHBIX OTOGpaKeHHit,
uanoxentero B [1}-[2], 1 maer Tak:Ke KOHCTPYKTHBHYI NpOLEAypy pelleHHs ofpaTHOl
sanaun. [lomyveHo Taxxke pelienue o6paTHON 3ajaum BoccTanoBieHus ¢(z) u p(x) mo
cucreMe p + 1 CneKTPOB M IO AUCKPETHHIM CIEKTPAJILHBIM JAHHBIM.

Jlureparypa

1. Yurko V.A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse
and Ill-posed Problems Series. VSP, Utrecht, 2002.

2. IOpxo B.A. Beezenue B Teopuio o6paTHbBIX CHEKTPaJIbHBIX 33034, - M.: Ouamariaur,
2007.

MareMaTH4ecKoe OXKMJAHME PelleHus ABYMEPHOrO ypaBHEHUs
TEIUIONPOBOAHOCTH CO Ciy4aliHbiMu Ko3d dULeHTaMu
3anopoxuuit B.I, Boposukosa M.M. (Bopouex<cknif rocyHHBEpCHTET)

Paccmarpusaercs 3anada Koy g5 ypaBHEHHS TENIONPOBOIHOCTH
up = €1(t)Uaz + £2(D)uyy + e3()u + f(t, 7,Y), (1)

U‘(tU) = g(m,y), (2)
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rae t € T = [to, t1], u- nckomas byHKUMA,EL,E2,€3, f,g - CIydafinse DyHKuMH, 3a02HHbIE
XapaKTepPUCTHYeCKNM yHKLHOHAaOM (1]

Y(v1,v2,v3,w) =
M(exp(i /T le1(8)v1(5) + e2(s)va(s) + ea(s)vs(s))ds+

i/T/R2 f(s,711, 72)w(s, 11, 72)dr1dT2ds)).

Oycrs F{f(x,y)}(¢&,n) - npeobpasopanne Pypve byHkmMM f TO INepeMeHHVM Z,7Y,
Fop(, m)](z,y) - obparnoe npeobpaszopanue Dypbe, * - 3naK CBEPTKH IO NlePEMEHHBIM
z,y, x(to,t,8) = lopu s € [to,t] u x(to,t,s) = O mpu s ¢ [tg,t],%%? - BapHAIMOHHAH
nponssoguas [1].

Teopema 1. O6o6utennoe maremaruueckoe oxumanne M(u(t,z,y)) pemenns 3agaun
(1),(2) BeIpaxkaercs bopmyoit

M(u(t,a:, y)) = M(g(z, y)) * F_1[¢(if2x(t0, t, ')’ iWQX(to, t, ')v —iX(to, i ’)7 0)](3:’ ZI)—

i [ Fo [F[M(iizx(n t ) ix(m b, ), —ix(rt, ), )

Sw(r, z,y) (z,p)dr.

to
Iycts p(v1,v2,v3) - xapakTepucTHIeckuit HDYHKIMOHAT MPOLECCOB €1, E2, £3.
Teopema 2. Ecnu crnyuaiiuel! npomecc f He 3aBHCHT OT CIy4alHRIX NpPOLECcCoB
€1,€2,€3,9, TO

M(u(t) z, y)) = M(g($! y)) * F_1[¢(i§2X(t0a t, ')1 i’lzx(toy t, ')r _ix(tOy t, ))](I, y)+ .

+/t F_l[cp(iﬁzx(‘r,t,-),inzx(r,t,-),—ix(‘r,t,-))](a:,y)*M(f(T,:L’,y))dT

ABJseTCs 0BOOLIEHHBIM MATEeMATHYECKHUM OXXUIaHNEM pellennus 3agayn (1), (2).
JInreparypa
[1] 3anmopoxuwmit B.I. Meroas sapmaumonoro asammsa // B.I'3azopoxuuit, M.-
Wxesck: HULL PX 1, 2006.- 316 c.

CnekTpansHaa Kpaepas 3agada ans OJ1Y, BOZHMKAIOIEro B TEOPUH
rpaBuTalHoHHBIX MTIJI-BONH
3anopoxusili A.H. (FOxusiit esepanpuniit ynupepcurer)

WUsyuenue B siunefinol MoCTAHOBKE CBOGOAHBIX KOJIEOAHMH CJOS TAXeNOK ONHOPOAHONR
HECXKHMAEeMOl HICAIbHOM KUAKOCTH GeCKOHEYHOR 3JIeKTPUYECKOH IIPOBOAMMOCTH NpH
HaJIOXKEHWH CTAIlHOHAPHOTO BEPTUKAJIBHOTO MArHHTHOTO IOJS CBOZUTCH B 6€3pa3sMepHBIX
TIePEMEHHBIX C y4YeToM mpeACTaBiienus v(t,z,z) = expli(wt+ ) k crenyomelt
HEKJIaCCHYECKOH KpaeBoit 3a71aue ¢ cOGCTBEHHBIM YMCIOM B FPAHUYHOM YCJIOBHH

AW (2) - W"(2)] + MW" (2) - W(2)] = 0,z €] —d,0];
W(=d) = 0, W"(—d) — W'(~d) = 0,
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W"(0) + W'(0) = 0, A [W"(0) — W'(0)] + AW'(0) — W(0) = 0.

3pece A > 0 - uyucio AnbdbeHa, d- ruyOuMHA >KHAKOCTH, OrPaHMYEHHOH CHU3Y
TBEpAbIM JHOM, 8 CBEPXYy CBOGOIHON NOBEPXHOCTBIO, A = w?- MCKOMBIH CHEKTPAJIbHbI
napameTp, w - 4acTora konebanuil. IlpuBeseHHOMY Bbillle TMHEHHOMY ONEPATOPHOMY Iy4KYy
conocrasisiercst GyHxkunuonan Panes

\= [W(0)[2 + A{W/(=d)2 + [W'(0)|2 + [2, [W"(2)|? + |W'(2)[?] dz}
2 W@+ W(2)2) dz :

Jloka3aHo, 4TO COOTBEeTCTBYIOMMR ciayudalo A = ( OZHOTOYEYHBIH CHEKTP w? = thd,
OTBeYaIONMil MOHOTOHHO BO3pacTaoiiell 110 IepeMeHHOH 2z TOBEPXHOCTHOMH MOJe, IEPEXOIUT
B JMCKPETHEIN cuernbiit cektp 0 < 24/(2+ d?) < A\; < Ag < ...A; < ... C AMHCTBEHHOH
GeckoHedHON TpeenbHON TouKol. [T KaxzoM GUKCHPOBAHHOM A CyIIECTBYeT Takoe d4,
gro npu d < d4 Haumenpmee CU ); ompezensieT NOBepXHOCTHYIO Mofy. B ciyyqae d > da
BCE MOJBI TEPSIOT MOHOTOHHBIN xapakTep, dbopma KoneGaunit ¢ HambonbIIe#t aMIUIMTYIOH
Ha cBOBOAHON MOBEPXHOCTH NMPUHUMAET BUJ TaK Ha3blBaeMO! HeXapaKTePHOH BHyTpeHHel
BoHbL. B nipesensHoM mepexose X 3agage Jlam6a (d — +00) CIIEKTP CTAHOBHTCS CIVIOMIHbIM.

Modal control for linear systems with incomplete feedback
Zaitsev V.A. (Izhevsk)

Consider a linear stationary control system
t=Ax+Bu, y=Cz, (z,u,y)€R*xR™xR*. (1)

Let the control in the system (1) be constructed as linear incomplete feedback u = Uy.
Corresponding closed-loop system is

&= (A+BUC"z, zcR" @)

System (2) has modal control if for any given polynomial p(A) = A" + 71 AU+,
7 € R there exists a constant m X k-matrix control U such that the characteristic polynomial
x{(A+ BUC*; ) of the matrix A+ BUC"* coincides with p(}).

Suppose that the coefficients of the system satisfy the following conditions:
A={aij}lm i1 #0,i=1n—Lay; = 0,5 > i+1,i=T1,n—=2; the first (p—1) rows of
the matrix B and the last (n — p) rows of the matrix C are equal to zero for some p € {1,n}.
Suppose X(4; ) = A" + ;A" ! 4 ... + an. Let us construct the matrix S; = {s};}7;=
from the matrix A : s}; :==1;8};:= 0, j = 2,m; 8 = @1, 0= 2,n, j = 1,n. Then we
construct the matrix S; = {s};}F,_; from the matrix §;—; = {sﬁ;l}}"jzl for every | = 2,1
in the following way: s}, := 1, s}, := 0, 85 := 0, j = Z,m; s, := ST -1 6 = 2,n. Let
S=25,-Su_1-...- 8. All the matrices S; and S are nonsingular lower triangular. Suppose
Jo= {5} g = L i=Tn-T g5 =0,j #i+ 1 Ju = JE, Jo = I. Let us

n

construct G := ), a_1J] 5 ap := 1.

=1
Theorem 1. Suppose Xx(4 + BUC*)X) = A" + %A"™' + ... + 7¥n; then
v =a; - Tt SBUC*S™1J;_1G.
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Theorem 2. System (2) has modal control if and only if the matrices
Cc*S~'J,GSB, C*S~'J,GSB, ..., C*S7'J,_,GSB 3)

are linearly independent. In that case the feedback matrix U which reduces x(A+ BUC*; A)
to the given polynomial p(A) with the coefficients +; is found from the system of linear
equations: TrC*S™1J;_1GSBU =a; — v, i = 1,n.

Corollary 1. If the matrices (3) are linearly independent, then the system (2) is stabi-
lizable by the constant matrix control U.

The research was supported by the Russian Foundation for Basic Research (grant Ne06-
01-00258).

Hecranuonapuste aHasioru ¢dopmyn I'puna u Taycca aas pemenumit
TUIepGoINYEeCKHX CUCTEM
3axupbsnosa I K., Anekceesa JI. A. (HHcrutyr maTematuxy Munucrepcrsa
obpaszopanus u Haykn Pecrniybanku Kazaxcran)

Vsyuyenne AMHAMHYECKHX IPOLECCOB B  CIVIOMIHBIX  CPeJaXx, CBS33HHBIX C
pacnpocTpaneEneM H Oudpaxuueil BOJH, IPUBOAMT K KpaeBbIM 3aJa4aM I CHUCTEM
ypaBHeHWH runepbOIUYecKoro THIIE B ODJACTIX CO CJIONKHOR reoMerpueil IDaHHIEL
KOHCTPYKTHBHBIM ~METOHOM PEIIeHHsT TAaKHX 3aJad sBISAeTC METOJ TIPaHHYHbLIX
unTerpasbhbix ypasHerut (MI'MY), koTopsiii no3Bossier HCXoOHy0 AuddepeHinaIbHyo
KpaeByw 3a4ady B OOJACTH CBECTHM K PELICHUIO CHCTEM WHTErPAJbHBIX YyPaBHEHHMH Ha
ee rpaHule, YTO INMOHMIKaEeT Da3MEPHOCTb pellaeMoll 3aJa4d M NOBBLLAET yCTOHYHMBOCTb
PAcYeTHBIX CXeM IpH NOCTPOEHWH peiuexuit. B HacTosiliee BpeMs 3TOT METOJ IUHPOKO
WCTIONb3yeTCs JUIs pPeLIeHUsi CTAUMOHAPHBIX 3aJad MaTeMarudeckoi ¢usmuku. Pemenue
HECTALMOHAPHBIX JMHAMHYECKUX 3a4a4 Ha ocHoBe MeTona [NV Tpebyer BBeleHNa MOHATHS
00ODILIEHHOrO peLlleHHsl, YTO CBA3aHO ¢ OCOGEHHOCTBIO (YHIAMEHTAJbHBIX peleHuit
runep6oJIMIecKUX ypaBHEHUH, KOTOpble NPUHAIEXAT KJIACCYy 000OIEHHBIX DYHKIUI.

B pa6ore usnaraerca meron 'Y gnst mocrpoenust pelenuit HagaJibHO-KPAEBhIX 3aa4
JIISL CHCTEM THTepOOIMYeCKHX ypaBHEHHHl B OPOCTPAaHCTBax pa3MepHocTH N, XapaKTepHBIX
A 3aga4 MaremaTndeckoll dusuxu. Merog Gasupyercs Ha IOCTPOECHHHM B IPOCTPAHCTBE
06001mennbIX QYHKIUH HecTalHOHAPHBIX aHasoros ¢opmyn [puna u laycca ana peuenuit
cucrem runepbonyeckKux ypaBHeHuit. [isi nocrpoenust 3THX (HOPMYJ HCHOIb3YeTCA
marpuna [puHa cucTeMbl M ee nepBooOpas3Has Mo BpemeHu. Ha ux OCHOBe MHOJIydYeHbI
peryJisipHble UMHTErpajibHble TpEACTABJeHUs] pelleHHd ¥ pa3pemaiouide CHHIYJISIPHBIE
rpaHMYHblE MHTErpPaJibHbie ypaBHeHHs. PaccMaTpHBaloTCs BONPOCHL ITOCTPOEHHS YCJIOBUi
Ha BOJHOBHIX (poHTax./JoKazaHbl TEOPEMBl €JIMHCTBEHHOCTH peIIeHHH MNOCTaBJIEHHbIX
HAYaJIbHO-KPAEBbIX 33184, B TOM UYHCJIE B C/lyvyae HAJMYHUS YAAPHBIX BOJH.

B kauecTBe mpHMepa PpACCMOTDEHBI HeCTAMOHAPHbIE KpaeBbie 33Ja4YH TEOPHH
YOpYTrocTH.

Kpaesasi 3aga4a qiia gudrdepeHInallbHo-pa3sHOCTHOIO
3JITMNTUKO-NTapabosimyeckoro ypaBHeHUs

3apy6un A.H. (Opnosckuif rocyIapCTBEHHEIH! YHUBEPCUTET)
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YpapHenue
H(y)Uy(z,y) + H(—y)Uyy(z,y) — sgyUss(z,y) + Uz — T,y — H(y)h) =0, (1)

e 0 < 7,h = const; H(§) - ¢dbynkuus Xesucahina; paccmarpupaercs B o6acTH
D =DYuD UJ, Dt = {(z,9) : 1z[0},D™ = {(z,y) : |z] < 400, —=h < y < 0},
J={(z,y): |z| < +oo, y =0}.

3amaua Q. Haittn pewenne U(z,y) ypasuenus (1) B ofmacrm D wus kmacca
C(D)NCY(D) N C*(D\ J), yaOBIeTBOPSIONIEE IPAHNYHLIM YCJIOBHSIM

Uz, —h) = f(z), le] < +o0: lim U(z,y)=0, -h <y <0,
=00
YCIIOBHSIM CONPSDKEHUS]

Jim Ulz,y) = Jm Uz,y) =w(z), |z < +oo,

yl{%ﬁ_ Uy(z,y) = yl—i}g_ Uy(z,y) = v(z), |z} < +oo,

rae sanannas ynkuua f(z) € C(J) N C*(J) u f(+o0) = 0.

EnuscTBeHHOCTb pelnenns 3a1a4u Q cleyeT U3 TOTO, YTO OIHOPONHAS 3a1a4a Q MpH
7 < /2 umeer B obnacTi D TpuBHAIbHOE pelIeHHe.

Bonpoc cymecTBOBaHUsA pelleHHs 3a/a9n Q CBOXMTCS K DA3PElIMMOCTH CHHIYJSPHOTO
MHTErpaJIbHOTO yPABHEHNS 1EPBOIO POja.

OneHK# CKOPOCTH CXOAMMOCTH K NPEJEeNLHOMY PEeXHUMY AJist HEKOTOPBIX
HEeCTAlMOHAPHBIX JINHEHHBIX cUCTeM
3eticpman A.H. (Bosoroackuit rocynapcrsenHsii negarormyeckuit ynupepenter # BHKIT
IISMH PAH), Yerogaes A.B., lInnosa I'H. (Bonoroackmit rocymapcTpeHbit
neAarorHYecKHil yHHBEPCATET)

PaccmarpusaeTcst cucrema amHelHbIX And¢epeHIualbHBIX ypaBHEHUH, ONUCHIBAIONIAN
HEOQHOPOAHYIO MAapKOBCKYIO 1ieflb ¢ FMOIVIOUICHHEM B HyJie M IPOCTPAHCTBOM COCTOSHMI
Sy = {0,...,N}. Marpuua A(f) Tako#t cucTeMbl MMeeT HyJeBoll mepselit cTonGen,
ee BHeJUarOHAJIbHblE 3JIEMEHTBI a,-j(t) HEOTpHUATENbHBl NpH Bcex ¢ > 0 U JIOKaJIbHO
nHTerpupyemni Ha [0;00), & CyMMa 3/IEMEHTOB KaXk[0ro CTOI6Na NpH BCeX ! PABHA HYJIIO.
PaccmaTpuBalorcss TpH IOAXOJA K MOMYYEHHIO OUEHOK CKOPOCTH CXOOMMOCTH peIleHHi
CHCTEMBI K BBIDOXKJEHHOMY NPEAEIbHOMY PeXKHMY.

ITepsoiit moaxon omucan B pabore [1]. Ilycrs marpuua B(t) nomyuaerca us A(t)
BbIGpACHIBAHMEM [EPBOIf CTPOKM ¥ INEpBOro cToibua. PesyasraTtsi [1] rapasTmpyior
CyIeCTBOBaHNE NMPeoGpa3’oBaHksl CHCTEMBI K CIELNAJBHOMY BHAY, [IOILYCKAIOWEMY TOYHYIO
OLIEHKY CKOPOCTH CXOZMMOCTH B C/Iy4ae HENPEePLIBHOCTH U HEPA3JIOKHMOCTH IIPH BCEX
t marpunst B(t). K coxanenuro, 3TOT MOAXOA HE JaeT BO3MOXKHOCTH OCTDOEHUS
npeoOpa30BaHusl ¥ PeATIbHON OLEHKH CKOPOCTH CXOJUMOCTH.

Bropo#i mogxon OCHOBaH Ha [OHATUM  JOCTHKHMOCTH HYJIEBOTO  COCTOSIHHS
COOTBETCTBYIOIEH MOMIOIAoNIe! MAPKOBCKOM LIENH ¥ UCIOJIb30BaHuN JupdepeHImaIbHbIX
HEPABEHCTB, cM. [2]. DTOT MeToa HaeT sIBHO MONyYaeMble, HO OUeHb IPYObIe OLEHKH.

HauGonee 3¢ddhekTHBHBIM NpPEACTABASEICS TPETHit NOAXOJ, ONHCAHHBIA B JpYrHX
cutyanusx 8 pabore [3]. OH 0CHOBaH Ha NOHSATHH JOTapUGMMUYECKOH HOPMBI H CTIELHAIbHBIX
n1peo6Gpa30BAHUAX MATPHUIBI CACTEMBI, H BO3MOXKHOCTb €0 IPHMEHEHNS BIIePBbIe YIIOMAHY T
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B 3amerke [4]. Umenno, paccMarpusas cucTemy %f = B(t)z, ynaerca HOIYyYHTb
ABYCTOPOHHIOI oOleHKy Buaa Cie” Jo &(r) dr < z(t) < Coe™ I B(1) 4T npuyem B
Cilydae NOCTOSHHON HeBLIPOMKAEHHON MATPULBl B CymecTBYIOT Npeobpa3oBaHus, NaiouiHe,
COOTBETCTBEHHO, TOYHBIE [0 MOPSAKY BEPXHIO M HHXKHIOI OIEHKH.

B xauecTBe npuMepa pacCMATPUBAETCS CUCTEMA, B CTAIIHOHADHOM CJIy4ae ONMHCHIBAIOLIAs
MPOCTYIO CTOXACTHYECKYIO MOZEND MUAeMHH, cM. [5,6].

Pa6ora Brmmosnera npu ¢unancosott noggepxke PODU, rpanr Ne06-01-00111.
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Unrerpupyembie runepbonnyeckue ypaBHeHMsl M XapaKTepUCTHYECKHEe aarebpnt
JIu
2Kubep A. B., Myprasnna P. /. (r. Yoa)

WssectHo, uTo cuMmMmerpuiiHbit womxox (cM. [1]) ana  pememust mpobiemsr
KJIaCCH(MUKAIMN HHTEIPHPYEMbIX HEJIMHEHHBIX MUNepOOTMYeCcKUX yPaBHEHHUI

Ugy = f(uv uzyuy) (1)

HATAJIKUBAETCS HA CepPbe3Hble TPYAHOCTH,
B npennaraemott paore ass pewennst KIacCHUKAUMOHHOR 3aJa9H HCIOIb3YeTCs
METOZI, CBI3AHHELA ¢ XapaKTepucTuyecko# anrebpoit JIu (em. [2],{3]).
X(Y) - xapakrepucrudeckas anre6pa Jlu ypasmemns (1) ects anrebpa A(A),
IIOPOXKAEHHAS BEKTOPHBIMH IOJIAMHI

[=3]
0 0 0
- D1 g L -9
2D Ny + gy Xe= 5,
B+~ 1 0 0
= z _+u18u Yz-—a—ul),
THE Uy = Uz, Ul = Uy,Up = Ugg Uz = Uyy,... 1 D(D) - oneparop mnosmoro

muddepennuposanus 1o z(y).

VYpasnenne (1) sBASeTCSt ypaBHEHWeM JHYBWJUIEBCKOTO THIIA TOTHA M TOJBKO TOLHA,
KOLAA T M ¥ — XapaKTePHCTHYeCKHe aJrebpbl KOHEUHOMEPHBI. A MMEHHO, €Cllli ypaBHEHHe
(1) uMeeT HeTPHBHMATBHBIN T-MHTETPA] NOPSIKA N

w=w(y,u,...,u)(Dw=0),

TO pa3MepHOCTb ajirebpsl A pasha n + 1.
Iycts L — munetinas 060J104Ka BeKTOPHBIX noJieit X 1 Xo, La MOpoxXaaeTcs s1eMeHToM
[X1, X2], Ly ~ ausettnast obonouka Bexropbix nomedt [X;, [X1, Xa]), [ Xz, X1, X]] u .o
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_T_or,qa XapaKTepucTHIecKas airebpa Jiu A npeacraBuMa B Buze A = Ui’iz L;. Ananormuno
A=, L. _

TToxazaHno, 4TO OrpaHu4eHNe Ha MOPSIOK POCTa Pa3MEPHOCTH NpocTpaHcTB L, u L,
a MMeHHO He Gojlee weM Ha eJMHMILY, MO Kpaihell Mepe Ha WEPBBIX IIAraX, HOJHOCTHIO
onpefensier npasyl0 4YacTe ypasHenus (1). IIpu 3TOM nonydeHHBIH CITHCOK ypaBHeHwit
COBIAJAET C U3BECTHBIM CIMCKOM YDaBHEHMH, UHTErPHPYEMBIX MeTOJ0M OOpaTHON 3amadn
TEOPHH PaCCesHUA.

Onpezenens: xapaKTepucTiyeckue anrebpsl A 1 A pasMepHOCTBIO He Goslee Tpex.

Pabora Beimonsena npu dunancoBot noanepxxke POOU, rpants Ne 05-01-00775-a, Ne
06-01- 92051-K3-a.

JIureparypa

[1] ?KnGep A. B., lllaGar A. B. Cucrems! ypaBuernit u, = p(u,v), vy = g¢(u,v)
obnanaonpe cummerpusimu. Joxaadw AH CCCP, 1984, T. 277, N 1, C. 29-33.

[2] Jlesnos A. H., Cmupros B. I, Illabar A. B. I'pynnma BuyTpeHRuX cummerpuit
N YCJOBHSI MHTEIDHPYEMOCTH [IBYMEPHBIX MAMHAMMYECKMX cucTeM. Teopemuueckas u
Mmamemamuneckan gusuxa. 1982, T. 51, N 1, C. 10-21.

[3] 2Kubep A. B., Myprasuna P. . O xapaxTepuctudeckux ajirebpax JIu ypasHenwuit
Uzy = f(u,uz). Pyndamenmarvran u npuxiadnas mamemamuxa. 2006, T. 12, 7, C.
65-78.

O cyurecTBOBaHMH M €AMHCTBEHHOCTH CNAGOro pelleHns AJjisi CHCTEMBI
Banacosa-ITyaccona
2Kunkos I1. E. (r. Ay6Ha)

PaccmarpuBaercs cucrema Brnacosa-Ilyaccona

g—{+vAsz+va~E(:t,t) =0, f=f(t,z,0), (t,7,v) ER xR’ xR,

Bt)= [ VU=t w0y dv, UGe) =i,

f(oix’v) = fO(xvv)x

rae k = tl-nocrosinnan. Y3 dpusnyecknx coobpaxkenu#l norpebyem eme:
f=0, / ft,z,v)dz dv = 1.
R3xR3

Iycrs I-unrepsan, comepxamuit 0, n fo € L1(R3 x R3) N Lo (R? x R3) ynosnersopser
yCnoBHIO M3 mpexblaymeit crpoxu. Haszosem dynkumio f(t,z,v), UpHHaAIEXKAULYIO
C(I; Ly(R® x R3)) npu kaxaom 1 < p < oo, orpannyentyio B Loo(R3 x R3) pasromepno
no ¢ w3 obOro OrpaHHYeHHOro MHTEpBAaa, YAOBIEeTBOPIOIYIO NIPEALAYINEMY YCJIOBHIO U
paBHyIO fo mpu ¢ = 0 0. B., clabwIM pelleHHeM 3a]a4y, eciad s moGor 1 = n(t, z,v),
HenpephiBHO Audxbepennupyemoli n uMetomell KoMmnaxTHuit mocutens B 1 x R3 x R3,
BBIIOJIHEHO:

/R .., 5 Bl 2,0 (1,2,0) = 1(0,2,0)fo(e, )}~

t
——/ ds/ dz dvf(s,z,v)x
0 R3xR3
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x{ﬂs(& .’l’,’U) +uv- Vzn(svzv 'U) + vUn(syz’v) - E(x’s)} =0.

Bygner npeacrapien ciIeaylomuil pe3yabTaT (A0Ka3aTeqbeTBO cM. B [1]).

Teopema Jlia moboit fo, yAOBAETBOPAIOWEH NPeAbIAYMAM YCJIOBAAM, YKa3aHHAH
3a/iaua UMeeT eMHCTBEHHOe caaboe penieHye, onpejeieHHoe s Beex (&, Z,v), TaKkoe, 410
ero (z,v)-HOCHTENb OrpaHAYeH PABHOMEPHO IO ¢ M3 JIOGOro OrpaHHYEHHOrO MHTEPBAJA.
SHeprus CUCTEMBI HE 3aBHCHT OT BPEMEHH.

JIureparypa

{1] P. Zhidkov. On global solutions for the Vlasov-Poisson system, Electron. J. Diff. Eqns.

2004, Vol. 2004, No 58, 1-11; http://ejde.math.swt.edu

About elliptic equations with non-standard growth condition. On stationary
thermo-rheological viscous flows
2Kukos B. B.

1. 3agmaya [lupuxie, cassannas ¢ p(z)-Jlaninacuanom. IIpocrpancrBa Cobonepa-
Opanua, sddexr JIaBperTreBa K HpobieMa NpeAebHOTO NePexoia B NOC/Ie0BATeIbHOCTH
ypaBHeHHil.

2. O pa3spemuMOCTH CTAIIOHAPHON 3a1a4K O TepMHUCTOpe 1 napHo cucreMbl Byccuneck
13 I'MAPOMEXAHMKH HEeHbIOTOHOBOM xuakocTu (quasi-Newtonian flow with viscous heating).

Anropﬁ'mvmqecxaz npoBepKa Tonojornyeckoi COITPAIKEHHOCTH

NCEeBOOAHOCOBCKUX roMmeoMopdhusMon
2Kupos A. FO. (Mouuro)

B noknage 6ymeT paccka3aHO O TOM, KaK C HOMONIBIO KOHEYHOrO AaJTOPHTMAa
MOXKHO TIPOBEPUTH SIBJISIOTCS JM JB& IICEBI0aHOCOBCKHX TOMEOMOPGhHM3Ma TOIOJOTHYECKH
CONpSKEHHBIMU. [OMeoMOpdHM3M TNOBEPXHOCTH MOXeT ObITh 3aJaH aBTOMOPdH3IMOM
yHIaMEHTANbLHONM TPYNNbI IOBEPXHOCTH, YOBJIETBOPAIOIMM yCHOBUSIM TeopeMbi [lena—
Hiuutbcena. 3agaer Ju Takoft apToMopdu3M roMeoMOphHU3M MOBEPXHOCTH, WIOTOMHBIN
[ICEBIOGHOCOBCKOMY, MOXXHO MPOBEPHTH € MOMOIIBbI0 H3BECTHOTO AJrOpUTM BecTBHHBI-
Xenma. ITOT >Ke ajJrOPUTM TO3BOJISET MOCTPOUTH TAK HA3BIBAEMOE KEJIE3HOZOPOKHOE
IpeJICTaBJIeHHe TICEeBIOAHOCOBCKOro romeomopdusma. OTNpaBisisicb OT HEr0 MBI CTPOMM
MapKOoBcKoe pasbuenue, 061aJaloliee HEKOTOPBIMH CHEUMAJbHBIMH CBORCTBAMH, KOTOPBIE
[I810T BO3MOXKHOCTb YJOBHOrO KOMOGMHATODHOTO ONMCAHHS CAMOro pa3bueHns H melcTBHSA
roMeoMophU3Ma, Ha €ro 3JeMeHTH. JTO OIHCaHHe CBOOMTCH K KOHeuHOMy Habopy
[AHHBIX, Ha3LIBAEMOMY KOIOM IICEBAOAHOCOBCKOrO romeomopdusma. 3Has ABA Koja, C
MOMOINBIO TeXHWKH, paHee PasBUTON aBTOPOM Ui DellleHHsl 38Ja4y O TOIOJIOrHYecKoi
CONPSIXXEHHOCTH FHHEePOOIHYIECKUX aTTPAKTOPOB qudpeomopdbU3MOB MOBEPXHOCTEH , MOXKHO
3a KOHEYHOe YHCJIO IIAroB BLIAICHHTb COUPSPKEHBI I COOTBETCTBYIOIIHE [ICEBIOAHOCOBCKME
romeomopduaMbl WM HeT. Takum obpa3oM, 3amada, chOPMYIHpOBaHHAS B HA3BaHUH
IOK7Iaga, CBOAATCA K TOMY, YTOObI IO YKEJE3HOAOPOKHOMY MPEICTABIEHUIO BEIYHCIINTD KOJ,
TICEBI0AHOCOBCKOTO ToMeoMopdu3Ma. OTBET Ha BOMPOC O TOM KaK 3TO MOXHO CAEJIaTh H
COCTaB/se€T OCHOBHOE COJIepXKaHe T0KIaIa.
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PexyppeHnTHsle cBoiicTBa 1 nx pyHKUMH
2Kyrosa A. A. (BopoHeXCKHI rocyfiapCTBeHHbIY YHHBEPCHTET)

Teopema 1. IIycmv f(t) : R — M ecmd XOMNaxmMHAA DAGHOMEPHO HENPEPHIGHA
dynmyus. Tozda us a1060t nocaedosameavrocmu cdeuzos f(t+h.) moorcrno ewbpams maxywo
nodnocaedosameavnocms f(t + h;), wmo

F(t+ hi) = g(t) aoxaavno. (1)

Oynxuus g(t) HasbIBaeTCA NpHUCOeAMHEHHON K bynkuun f(t) u obosnauaercs g(t) = f(¢).
SlcHo, YTO OHA TAKIKE ABJILETCH PABHOMEPHO HENPEPHIBHON M OrpaHHYeHHOM.

Teopema 2. [Iycmv f(t) : R — M- pexyppenmnas gynryua. Hyemo o(z) : K — N-
nenpepueroe omobpaoicenue. Toeda cynepnosuyun g(t) : R — N, 2de g(t) = ¢[f(t)], ecmo
maxoice pexyppenmuaes Gynxyua.

Pexyppenmnve gynxyuu f(t) : R - M u g(t) : R — N naswearomca coemecmmo
PEXYPPERMHBIMY, ECAU PeKYpPenmKol Asasemes cocmaenar Pynrkyua hit) : R — M x N,
2de h(t) = f(t),g(t) € M x N.

Teopema 3. Tyems f(t) : R — M u g(t) : R — N cosmecrmmo pexyppenmume. ITyemo
f(t) : R > M npoussoavras npucoedunennas x f(t), a §(t) : R — N npoussosvnas
npucoedunennan x g(t). Tozda pexyppenmmme dywryuu f(i) u §(t) maxoce cosmecmmo
PEXYPPEHMMAL.

Teopema 4. [Tycms f(t) : R — R- nexomopas pexyppenmuas ynryua u f(t) : R — R-
npou3eoavhan npucoedurennar x Heti Pynxyur. Tozda aubo

) = f(t), —00 < t < +00, (2)

aubo R
pasnocme f(t) — f(t) (3)

NPUHUMAEM KAK TLOAOHCUTNEALHBIE, TNAK U OMPUUATNEALHBIE ZHAUEHUA.

Teopema 5. Ilpeobpasosanue Pypve-Cmusvmoeca Pynryuu ozpanuxennot 6¢puayuy
ABAREMCA PERYPpenmMoll Pynxyuet 6 MOM U TNOABKO MOM CAYHAE, €CAU IMA PYHKYUA
ozpanunennod sapuayuy cosnadaem co ceoell dynxyuets cxawkos. IIpu ewnoanenuu amozo
yeaoeus npeobpasosanue Pypve-Cmuavmoveca asasemes nowmu nepuoduveckoli gynxyued
¢ abconromno crodsugumes padom Pypve.

JIureparypa

[1] Oemuaosuy B.II. Jexyuu no mamemamuneckoti meopuu ycmotinueocmu./ B.IL
Jemuaosuy.- Mocksa, Hayxa, 1967. - 472 c.

[2] Maremaruueckas sHuukoneausi, T.4.-Mocksa, u3n-so "Coserckas sHiuKIONEAUA",
1984. - 1216 c.

JIuccunaTHBHOCTD NPOTPAMMHOIO MHOI'006pasusi ynpasJsieMbIX CHCTEM
Kymaros C. C. (Mucturyr matematuku Munucrepcra obpasopanns u Hayku PK)

3ajaua  TNOCTPOEHMS  yCTOMYMBBIX  CHCTEM  ABTOMATHYECKOrO  YIPaBJIEHHS
& = f(t,z) — B¢, £ = ¢(0), ¢ = PTw no 3aganHOMy NPOrPAMMHOMY MHOrOOGDA3HIO
Qi) = w(lt,z) = 0 cBomdTcs K HCCAENOBAHHIO YCTOWYHBOCTH, ONTHMAJILHOCTH,
JHCCHTIATHBHOCTH K Ap. CBOACTB cucreMsl [1]:

w=—~Aw—- HB¢, £ = ¢(0), 0 = PTw, (1)
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rae £ € R"-pektop cocrosHus ofbekTa, w € R° s < n-Bekrop, £ € R"-BexTOp
YUpPaBieHUs IO OTKJIOHEHHIO OT 3aJAHHON IMPOrPAMMBI, YJOBJETBOPSIOMMN YCIOBUIM
JIOKAJILHOI KBaApaTU4HON CBA3M.

Onpepenenvie 1. Muoxecrso G, cosepxatuee w = 0, fIs KOTOPOro NpOrpamMMHOE
MmHOroobpasue §}(t) coxpaHsieT CBOe CBOWCTBO ACHMITOTHYECKOM yCTORYMBOCTH
OTHOCHTE/IPHO BEKTOP-YHKIMHM (w, HA3bIBAETCH OONACTHIO IPHTSKEHHS JAHHOTO
MHOroo0pasus.

Omnpenenenne 2. Cucrema (1) Ha3piBaeTcst AMCCHIATHBHOM, ecd B R,, Cyliecrsyer
orpaspveHHas 3aMKHyTad obxacth npuTskenus G.

CrpasegiuBa OLEHKA

vy Woezp{—on(t — to)} < 7% < v Woerp{—as(t — to)} ¥ t > to. 2)

Teopema 1. Ilycrs cuctema (1) aCHMIOTOTHYECKH yCTOMHYHBA, OTHOCHTEIBHO BEKTOD-
QynRUuMH W, a HeMHeNHAs PYHKUUS yAOBIETBOPAET JOKATBHEIM YCIOBHSIM KBAAPATHIHOMN
ceazy. Toraa o6r1acTbio NPHTAXEHHS IPOrpaMMHOro MHOroo6pasus (M(t) npu BbiOIHEHHH
yeaosust a; > 0, a, > 0 6yzer Bce da3osoe npocrpanctso R,,.

Jlutreparypa

[1] XKymazos C.C., Kpementyso B.B., Maiirapun B.2K. Bmopoti memod Janynosa 6

3adavar yemotwusocmu u ynpasaenua deusicenuem. AnmaTel, 1999. 228 c.

AcuMIITOTHYECKAS CUMMETPH3aUMs TaMUJILTOHOBBIX CUCTEM
2?Kypasnés B.®. , Ilerpos A.I. (Mocksa UIIMex PAH)

HopmanbHaa ¢hopMma raMu/IbTOHOBON CHCTEMbI B OKPECTHOCTH MOJIOKEHHsS PAaBHOBECUS
obnazaeT, KaK M3BECTHO, JBYMs OCHOBHBIMHM CBOHCTBAMU: &) TEMIOPOBCKOE Da3/IoXKeHHe
HOPMAJIbHOH (DOPMBI MMeeT HAaMHOPOCTEMIIM BHJ, COCTOSUIMMA TOJBKO M3 TAK HAa3bIBAEMBIX
PE30HAHCHLIX YJIEHOB; 6) HeJMHEMHAs HaCTb CHCTEMBI B LEJNOM M KAaXABIN €8 4ieH B
OTZIEJIbHOCTH KOMMYTHPYeT C JIMHENHON 4acThio.

Ilepsoe cBOMCTBO Cily>KMT onpejeseHHeM HOPMaJbHON (GOPMbI M HCHOIB3YETCH B
npoueaype npuseielus K Heii. Bropoe cpoiicTBo ofsieryaer nocrpoenye aCHMITOTHYECKUX
pelueHnit, aHa/lu3 yCTOHYUBOCTY U T.I., TeM CaMbIM, IIPEACTaBiss coboli OCHOBHYIO LeJb
TIPUBEJIEHUSI.

Mexay TeM, IOCTHXKEHNE ITOIl LEJIM BO3MOXKHO U HETIOCPEACTBEHHO, 6€3 IpHBIICYCHHS
TeflIOPOBCKUX pa3soxennit. PopMa raMuIbTOHHAHR, YAOBIETBOPAIOWAs! TONLKO CBOHCTBY 6)
MHBAPUAHTHA M0 OTHOLIEHMIO K BUAY JHHeHAHOl, uan, Gonee 0OI0, HEBO3MYIEHHON YacTH.
KommyTupyromue B 310# hopMme yYacTH raMUIbTOHHAHA WHAYUUPYIOT (hasoBble IOTOKH,
SIBJISTIOLIMECS] B3AUMHBIMM CHMMETPHSAMI.

FaMUIbTOHMAH MOXKHO ACUMITOTHYECKH CHMMETPU30BATL TP BEChMa OBIIUX YCJIOBUAX
Ha HEBO3MYLIEHHYIO YacTb. AJITOPUTM CUMMeTPU3AUNM {M/IH HHBAPUAHTHOH HODPMAJTH3ALMH )
CBOANTCA K [OCIEAOBATENILHOMY BBIYHMCIACHMIO OJHOTHIIHBIX KBaJPATYD H CYLIECTBEHHO
[IPOLIE BCEX CYIIECTBYIOIMX NPOLENYp HopMasnsanuu. IIpejioxkeHbl jgBe pa3sHOBHHOCTH
aNropuTMa CUMMETPH3aluM. B repBoft MCKOMBlE KAHOHHYECKHE 3aMeHBl (bOPMHPYIOTCH
[IPOU3BOASIIUHMM TAMUJILTOHHAHOM, BO BTOPOHf OHH NPENCTABJISIOTCS B NAPAMETPHHECKOM
BHJE.

IIpuBouTcs pss npUMEpOB, B KOTOPbIX HAXOAMTICS CHMMETPH3OBaHHas (opMa
raMmJIbTOHHaHA! IUIOCKas OrpPaHM4eHHAs 3aJa4a TpeX TeJl NPH pe30HaHCce; 33/1a4a O
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KadauonIciicst 1py>kuiie; chepuucckuii MasiTunK ¢ BUOPUpYyIomei 10 TPeM KOOPMIaTaM
TOUKOIT 110;[BeCa, BOHYOK Jlarpaizka u JApyrue upuMephni.
Jlureparypa

1. WKypapnés B.®. Hnsapuauruast nopmasimsaiius [ICABTOHOMIILIX [AMHILTOINOBLIX
cucrem,//TIMM. T.66. Boir.3. 2002.C.356-365.

2. Tlerpos AT O6 wnBapuanTHO# HOPMAJIM3AIMYM HCABTONOMHLIX 1AM TOUOBBIX
cneres//TIMM. T.68. Boni.6. 2004. C.402-413.

3. Bpiono A ZT. O soiuncienny raMuinTon0Boi Hopmadisioii dopmnt//JAH. 2006. T.
410, N4. C. 474-478.

O aunamuke puddeomopodpusmos Mopca-Cwmeita
Ayxoma E. B. (r. Hwxunii Hosropoy)

Myctn, f @ M™ — M" - juddeomopdusm Mopea-Cueilia 3aMKHYTOIO 7
meprioro  mmoroobpasusi M™  (n > 3). OGosunaumm wucpes  Ag(f) obneumicime
CTOKOBBIX HNCPHOJIMYCCKUX TOYCK H OJUIOMEPHBIX LCYCTOMYMBBIX MIOroo6pasuil ce/y1oBLIX
ICPUO/IMYCCKHX TOUCK (CCJIM TAKHC CCJYIOBLIC TOUKH umceiorcst). ClleJlyIonue TeopeMbl
nosiyqeunt copmecrno ¢ B.3. T'puiecom n B.C. Meyweennim.

Teopema 1. Ag(f) sssiercst upursirusaloinuM MuoxecersoM juddceomopdusma f.

O6osnaunm  uepes  Bo(A)  obuacrs  upursikenust  muosecrsa  Ag(f).  Tora
Ry(f) = M™ — By(A) smusicrest orrankusaioium Mioxecrsom judbdeomopdusna f.
Myers BY(f) = M\ (Ao(f) U Ro(f)). Oroxcpicersasist kaxyio opbury us BI(f) ¢ roukoi,
uostyssm npocrpancrso opbur B§(f)/.. O6o3uauns uepes p; CCTCCTBCHINYIO IPOCKINMIO
BY(f) = BY(f)/ .

Teopema 2. BJ(f)/~ smusicres  (xaycnopdosbiM) —IVajKuM  3aMKUYTLIM -
mioroo6pasuem. IIpockiysl py ecris HAKPLITHC ¢ PYHIOH HAKPLIBAIOUMX OTOBPAKCIITL,
usomopdnoit Z. Eciu M™ opucnrupyemoe u f coxpansier opuenrargio, to B§(f)/~
SIBJSICTCSI  OPHCHTUPYCMbLIM — MHOI'OOODa3ueM, KOTOPOC JIMGO  HEUpPUBOMMO,  Jiubo
romcomopdiio St x §"-1L. ’

Auvrop 6naroyaput PODU (rpairr 05-01-00501) sa dunancosyio HOUCPIKKY.

06 oamoit 3agavue ycpeaueHus napaboJiMuecKoro HepaBelcTBa
3y6osa M. H., Ianomuukosa T. A. (r. Mocksa.)

Iycrs Q - orpanmnyenuas obnacrs B R® ¢ kycouno-riamkoit rpaunneii 89, cocrosuncii
U3 JIBYyX ajKux nosepxuocreit I'y u I‘g, UPH‘IGM QcC{z1>0NnR T C {a; =0}
O6osnanunm G2 = {z € R® : 2y = 0,23 + 23 < a2}, Cc = U,z (GO + 262) = U2, GI, me
7! - muoxecrso BekTopos Buaa z = (0, 23, 23) € NEIOUHCICHIILIMH Koop)umaTamu 22 M 23.
Monoxkum G = N(E)GJ N(ey=de™2,d>0u G CT§ = {z €T : o(x,00) > 2}
Iycern

Ko ={ve H(,T2): v>0u s ua G},
e = {9 € Ly(0,T; Hi {2, T3)) : g(t) € K, yust . s, t € [0,T}}.

Iycrs ve € K., Opue € Ly(0,T; H7Y(,T3)), upnuem ue(z,0) = 0 n. 5. B Q u unmcer

MCCTO 1ICPABCICTBO

T

O/(atue, >dt+/(Vue,V(u—uE))drdt> /f(u—us)du]f

Qr Qr
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Jyisl pousnosbioro ementa v € Ke, f € La{Qr) u Qr = Q x (0,T). Yepes < u,v >
obo3navaem aeicrsic emenrta u € H~1(Q,T'y) na anemenre v € H(Q, o).

Hycrs u € Ly(0,T; Hy(Q,T2)), du € Ly(0,T; H71(2,T3)) - sipssiercs: o6obiuennbimM
pelciyeM resuneiinoi kpaenoii 3auaun du = Au+f B Qr, u(2,0) =0,u =0nalyx (0,7),
% +cu~ =0uaTly x (0,T), ¢ = const. 3jice u™ = inf{0, u}.

Teopema. [IpenonoxnM, yro li



Hexknaccuyeckoe nosegenue pereHuit o6LIKHOBEHHBIX
nuddepeHIMANTBHBIX ypaBHEeHnii BTOPOro nopsaka
SAxy6os B.5. (MI'H3M)

Mssecruo, uro ecin koadduuucnt g(r) B ypasuennu
v+ (1~ g(z))y=0 (1)
YAOBJICTBOPSICT YCJIOBHSIM:
a) g(z) € C({a, +00)) (a > 0) u 6) unrerpas 7m'|g(t)[dt CXOUMTCS, TO y ypan-
a

Helus (1) cyumecTByerT GynjaMeHTalbLHast CHCTEMa pelICHUIl, JloifycKalomasi IIpu
T — +00 HpeacTaBiicHUe

+o00 +o0
un(z) = sinz + O / l9(8)1dt), ya(z) = cosz + O / lo(®)\de) @)

U3 (2) cnepyer, uro ycsosus a) u 6) 06CCIEUHBAIOT OTPAIMYCIHOCT, BCEX PEILCHUH
ypasnenust (1) 4, cJey0BATEILHO, CFO YCTOHYUBOCTD.

B 1929 rogy I1.Qary omy6auxoBajl MOKa3aTeNbCTBO YCTOHYMBOCTH ypPaBIEHMS
(1) upn poumosnnenun yeuopus B) limz— 40 g(z) = 0 BMecTo 6). Oanako B 1930 ro-
ay O.Ilcppon uokasasi, 4T0 HPY BLINOJIIICHHE TOJALKO yCNOBUS B) y ypasremus (1)
CYLIECTBYCT 1ICOIDAIIMYCIIIOE PCHICHHE, YeM ouposepr yTepxkicuue I[1.Pary.

Hamu paccMmorpeno ypasuenuc

cos®  sinf a:((a+3) sin? z—(B+1) cos? :c)

/"
Y+ {l1+m -7
V a1 A+1 +1 B+1 2 (3)
cos  sil z * i
+mIeE g - (mcos 25 x> ] y=0, z >0,

U JOKa3allbl CJICAYIOUC TeOPEMDI

2
Teopema 1. ITycrs uncia «, B, v takonol, 4to 1) [ cos®tl¢sin®+1tdt =0, a > 0,
0

2
B>v>0um2) fcos®isin®tlitdt =c #0,a>0 8>+~ > 1 Torma e
0
pelucHitst ypasucuust (3) orpaiuycibL.
2
Teopema 2. ITycry uncia a, 8, v u m raxosst, uro [ cos®*ltsin®+ltdt = ¢ # 0,
0

mec >0, a>0,02>7=1 Torma upu z, = nm, n — +0o y ypasucuus (3) ecrn
pemieuue y(z) Takoe, 4T0 Y(Ty) ~ (—1)"z, 2~ .
2w
Teopema 3. ITycts unciia «, 8, v u m taxosl, yro [ cos®t!tsin+ltdt = c #0,
0
me>0,a>0,82>7,0<+v<1 Toraa upu z, = nw, n — +oo y ypasueuus (3)
ccTb peuucnue y(z) Takoe, 4TO

cm 1-
Y(za) ~ (~1)"eFa-T""
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Takum 06pas3oM, L0Ka3all0, YTO y ypaBlCHHs
o(x
v+ 28y o, (4)

rae p(z) € C([a, 4+-00]) n orpanuyena, a ¥ > 0 ¢CTL PCUICHHSI, KOTOPLIC B 3aBHCHMO-
cta oT coiteTs (yuxuun ¢(T) MOIyT BLITL OrpalUYelLIMU HIH UMCTL CTElelHof
U J1aXKe IKCUONCHUNAILHLIA POCT.

Acumnrornuyeckue ouenku tuna JInysunna-I'puna ana peruenuii
ckansipHbix AuddepeHvanbibIX YpaBHenuii BBICOKOIO MOPsAAKa.
Kornrcqnast H. H. (1. Apxaurcibek )

B pabore [1] M.B. ®elopIiok uccieoBall aCHMITOTHKY PCLICHHH CHCTCMD Jud-
depenumansubix ypasueuutt Y/ = F(x)Y, e F(z) = ¢(z)Q(z)B(z)Q~!(z), upu
z — +oo. B paborax [2,3] npeacrasnen kiacc MaTpHL, LO3BOJISIOUH [OJNY'IHTDL
6osiee TOULBIC ACMMUTOTHYCCKHC (HOPMYJIbI Jyisl peluenuil janiioil cucromnl. Kak
CAEACTBUE, HOJYUEHL! aCUMITOTHYCCKHE OLCHKH THUA Jlnyswuisa-I'puna Jis pelic-
nuii cKassipubix AuddbepeiuualLILIX yPaBleiitil BLICOKOIO 1I0PA/Ka U PACCMOTPCIL
HEKOTOPbLIE IIPUMEPBL.

Pabota Buimosiena npu dunaticoBoit nouucpkke Poccuiickoro douga dyuya-
MeHTaJIbILIX HecesoBanuil (kou npoekra 07-01-00192-a).

Jlurcpatypa

1. ©cuopiok M.B. Acumurornka coberBeninix 3uadenuit 1 cobersenipix QyHk-
LM OMIIOMEPHLIX CHUrYJSIpIBX Juddepenuuannubix oneparopos. // JAH CCCP.
1966. T. 169. Buin. 2. C. 288-291.

2. Mirzoev K.A., Eastham M.S.P. A Liouville-Green cstimate for a class of
differential systems. // Russian Journal of mathematical physics, Vol. 12, N 4, 2005,
p. 439.

3. Konechnaya N. N., Mirzoev K. A. On a class of operators related to second-
order differential equations // Russian Journal of Mathematical Physics.— 2006.—
V. 13, Nel.— P. 55—63. '

IloBenenne B6aM3N ocH caabbiX OCECHMMETPUYHBIX PEIIEHUi CUCTEeMbl
Hasne-Crokca.
Muxatinos A.C. (r. Cauxr-Ilerepbypr)

PaccMmarpusacTes ypaBicuue Jis yrioBoil KOMUOUCIITH BEKTOPa CKOPOCTH OCC-
CHMMCTPHYHOr0 peulenius Tpexmepuoit cucremnt Hasbe-Crokca. YUs-3a yeiosus oce-
BOY CHMMCTDHH, yPaBHEHHE JJIsI ITOH KOMIIOUeHTsl He BYUCT colcpKaTh HABJICHHS.
IMosToMy ouo MoxKer 6LITL KIAaCCU(PUUUPOBAIIO KaK UapaboiH4ecKoe ypaBHelue C
HCPCI'YJISIPIBIME MIIAIHME KO3 DUHIHCIITAMH, KOTOPBIC UMEIOT OCODCINOCTD 11a OCH
cummerpun. Uzyuacres noseseinue pemenust juucitioro napaboiudeckoro ypasile-
HHSI TAKOro TUla BOJIM3M OCH, LOCJIE HCI'0 LOJYUCHUDLI PC3YJNLTAT HPUMENSIETCS K
OCCCHMMCTDHYIILIM peruciiusiM cucreMs! Hasbe-Crokcea.
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Flat Submanifolds without Torsion in Pseudo-Euclidean Spaces,
Associativity Equations in 2D Topological Quantum Field Theories, and
Frobenius Manifolds.

Mokhov O. I. (Moscow)

We prove that the associativity cquations of two-dimensional topological
quantum field theories are very natural reductions of the fundamental nonlincar
equations of the theory of submanifolds in pseudo-Euclidean spaces (namely, the
Gauss cquations, the Peterson—Codazzi-Mainardi equations and the Ricci equations)
and determine a natural class of potential flat submanifolds without torsion. We show
that all potential flat torsionless submanifolds in pscudo-Euclidean spaces possess
natural structures of Frobenius algebras on their tangent spaces. These Frobenius
structurcs arc gencrated by the corresponding flat first fundamental form and the
set of the sccond fundamental forms of the submanifolds (in fact, the structural
constants arc given by the sct of the Weingarten operators of the submanifolds).
We prove that cach N-dimensional Frobenius manifold can locally be represented
as a potential flat torsionless submanifold in a 2N-dimensional pscudo-Euclidcan
space. By our construction this submanifold is uniquely determined up to motions.
Moreover, we consider a nonlincar system, which is a natural generalization of the
associativity equations, namecly, the system describing the class of all flat torsionless
submanifolds in pseudo-Euclidean spaccs, and prove that this system is integrable
by the inverse scattering method.

References

[1] Mokhov O. I. “Nonlocal Hamiltonian operators of hydrodynamic type
with flat metrics, integrable hierarchies, and the associativity equations”. Funkts.
Analiz © Ego Prilozh., Vol. 40, No. 1, pp. 14-29, 2006, English translation
in Punctional Analysis and its Applications, Vol. 40, No. 1, pp. 11-23, 2006,
http://arXiv.org/math.DG /0406292 (2004).

[2] Mokhov O. I “Theory of Submanifolds, Associativity Equations in 2D
Topological Quantum Field Theories, and Frobemius Manifolds”. Proceedings of
the Workshop "Nonlinear Physics. Theory and Ezperiment. IV", Gallipoli (Lecce),
Italy, 22 June — 1 July, 2006; Preprint MPIM2006-152. Maz-Planck-Institu fur
Mathematik. Bonn, Germany. 2006; hitp://arXiv.org/math.DG/0610933 (2006)
(will be published in "Theoretical and Mathematical Physics”, 2007).

Inhomogeneous boundary value problems for compressible
Navier-Stokes equations: well-posedness and sensitivity analysis
Plotnikov P. I. (Lavryentycv Institute of Hydrodynamics, Siberian Division of
Russian Academy of Sciences)

Inhomogeneous boundary value problems for compressible, stationary Navier-
Stokes equations are considered. In particular, the well-posedness for inhomogeneous
boundary value problems of elliptic-hyperbolic type is shown. Analysis is performed
for small perturbations of the approximate solutions, which arc determined from
Stokes problem. The cxistence and uniqucness of solutions closc to approximate
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solution are proved, and in addition, the differentiability of solutions with respect to
the coefficients of differcntial operators is shown. The results on the well-posedness
of nonlinear problem arc interesting on its own, and are used to obtain the shape
differentiability of the drag functional for incompressible Navier-Stokes equations.
The shape gradicnt of the drag functional is derived in the classical and usctul for
computations form, an appropriate adjoint state is introduced to this end. The shapc
derivatives of solutions to the Navier-Stokes equations are given by smooth functions,
however the shape differentiability is shown in a weak norm. The method of analysis
proposcd in the paper is general, and can be used to establish the well-posedness
for distributed and boundary control problems as well as for inverse problems in
the case of the state equations in the form of compressible Navier-Stokes equations.
The differentiability of solutions to the Navier-Stokes equations with respect to the
data lcads to the first order neccssary conditions for a broad class of optimization
problems.
The talk is based on the joint work with J. Sokolowski.

Canards on the torus existence and uniqueness
Schurov I.V.(Moscow State University)

Let us consider slow-fast system on the two-torus:

T = f(x7y1€)
'.[/ = 59(1\3/,5)

The solution of this system is called a “duck” (or a “canard”) if it spends
finite (bounded away from 0) time ncar unstable part of the slow curve
M = {(z,y) | f(z,y,0) = 0}. We will study attracting canard cycles, which arc
not observed in generic slow-fast systems in the plane.

Ilyashenko and Guckenheimer in the work [1] constructed an cxample of a slow-
fast system on the two-torus which have a unique attracting canard cycle for arbitrary
small values of parameter €. More preciscly, there exists a scquence of intervals
accumulating to 0, such that for any ¢ belonging to these intervals the system has
cxactly two limit cycles, both being canards, one stable and the other unstable.
They proposcd a conjecture that unlike planar systems, therc exists an open set in
the space of slow-fast systems on the two-torus which satisfies this property. In our
- work we prove this conjecture. Actually, we will show that every generic slow-fast
system on the two-torus with convex slow curve satisfies this property.

This work was partially supported by RFBR Grant Ne7-01-00017p and joint
RFBR/CNRS Grant Ne 05-01-02801-HITHUJI _a.

Bibliography

{1} J. Guckenheimer, Yu. S. llyashcnko, The Duck and the Devil: Canards on the

Staircase, Moscow Math. J., Volume 1, Number 1, 2001, pp. 27-47.

(z,9) € T?, e€ (R,0). (1)

W-Mmeron nnsa penieHusi BApHAIMOHHBIX 33a4: YCTOWYNBOCTb CTOMKH MOJ
Harpy3Ko
Haumiox B. 3. (Ky6axckuii roc. yuusepcurer)
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B soknane xpaTko ouucsisaeres upuMeime W-MeTona K BapHALHONIIBIM 3a1349aM
€ KBaJPaTH'ILIM (YIKIUHONAIIOM, B KOTOPLIX HCKOMOf siBJIsicTest (hyHKIHsI, OIpese-
Jrennast ua orpeske [a, b. CyTs MeToza: ¢ romompIio oneparopa I'puna nogxousumm
06pa3oM BLIGPALNON KPacBOW 3a4aMM s yPABHEUUS] B OBLIKHOBCIILIX LIPOUBBOJ-
[BIX BApHALUONNAs 3a/la4a [ICPEBOLUTCS B 9KCTPCMAJILHYIO 38)a4y B IIPOCTPAlICTBE
Lo(a, b) miu B 11CKOTOPOM €I'0 HOMIIPOCTPAICTEE.

OTO NO3BOJIACT HOJNYUUTDL HCOBXOAUMDIC U JOCTATOMIILIC YCIOBUST CYILICCTBOBAINMST
CHMIICTBCIHOR TOYKH MMHAMYMa B TCPMHHAX CLHEKTDA JMICUIONO HHTCI'DAJILHOIO
oneparopa B Lo ¢ cummerpuqnbiM siapom.

K Taxum 3asa4am o CylICCTBOBAHKMH €AMHCTBEIIIONO MHIHMYMa B BapHaLHOIHONH
32724C IPUBOMMT IIPUMCHCHMC BapHauuouuoro npunuuna Jlarpaipka x 3agadc o6
YCTOHYMBOCTH BEPTUKAJILION CTONKY HOJ IIPOJOJILHOL HArDY3KOM.

Hcuoin3oBanye cUMBOIBIBIX KOMILIOTEPHLIX BbIMHCICHHE 181 (xycoumo-) Mito-
rowicubiMd (hYHKIHAMU € DALMOURIBLHLIME KO3DQDHUHUEHTAMU I03BOJISICT BLIMUC-
JIUTL KDUTHYCCKYIO CHJIY HArpy3KH, rapaHTUpPyd, B LPHILHKIIC, JIOOYI0 lanepel 3a-
Jallylo TOYHOCTL PE3YJILTaTa.

IIpu 3TOM CTCPIKCIIb MOMKCT UMETH HEDEMCHTILIE (BO3MOKIIO, Pa3pLIBLULIC) XapaK-
TCPUCTHKH LIONEPEHIOrO CCUEHMsT, B TOM HHCJIe LIPUBOMSIINE K TPCXMEPIIOi Jedop-
Mallii CTCPXKHsl. BO3MOXKIIO NPOU3BOJIBIOE KOJIHMYECTBO JOUOIUTCIBIILIX ONOP.

B jokiajic UPUBOASITCS IPUMCPBI PACUCTOB KPHTHYECKO CHIILL.

PaBora 6nuia nopuepxana POOU, rpantor Ne 04-01-96016, Ne 06-01-00744 u Ne 07-
01-96060.

Cummerpuunbie Tevenus Hasbe-Crokca-Ilyaccona 6aporponHoii
CXKMMAaeMo# XKUILKOCTH B BaKyyMe
3nornuk A. A. (r. Mocksa)

PaccmaTpuBaloTest CHMMETPUHIILIC CAMOIPABUTHPYIOLUC TCYEIIHST BI3KOH CHKHU-
MacMO#t 6apOTPOILIIOH XKUUKOCTH/a3a BOKPYI' KECTKOIO sIApa O cBOGOMLION BHel-
Helt rpaiueit B sakyyme. IlinoTiocrs BhIpoxiaercs na cobomuoit rpauune. Takue
Teyeuust (B ciyyac chepuyecKoi CUMMETPHH) IIPECTABISIIOT OCOBLIH HITEPEC B acT-
pouzuxe. Bepyres Gosbline 1, BooBUIC rOBOPS, Pa3PLIBILIC (11eberoBrl) nauaILILIC
Jaunbie 1 obmwast HyuKIuKM coCTOsIMSL (CTPOrO WK LIECTPOro BO3pacTaiomas). Bi-
BOUUTCS JocTaTouno Gorareii HaGop MI0BANLHBIX 110 BPEMEHM OLECHOK pelucHuil
H3Y4aCTCsl LOBEAEHUC PELICHUE (CKOPOCTH, INIOTHOCTH, cBOBOAUOH I'PaliMubi) LpH
11eOIPaHMYeHIIOM BO3PACTallui BPEMELH B JIArPAIDKCBBIX MACCOBLIX, a TAKXKC B 2ilie-
POBLIX KOOPAHIIATAX. YCTAABJIMBAIOTCS M PE3y/bTaTLL O CyWIECTBOBANMM/ Hecylie-
CTBOBAIIMU ¥ O CAUHCTBEHHOCTH COOTBETCTBYIOMMX CTATHYCCKUX PCIICHHH.

Cuty4att, Koria na cBo6OOM IPANMLE IIOTHOCTD IOMOMKUTC/IDbIA M IPHCY TCTBYET
BlICLIIIEE JaBiicuue, 6bL1 neyaso usyyen s {1], [2].

Pabota Bomoinena upy uacTuunoil dpunancosoit nomucpxke PODHU, 11pockrb
06-01-00187 u 07-01-00416.

JInreparypa

(1] Ducomet B., Zlotnik A. Math. Meth. Appl. Sci. 2005. V. 28. N 7. P. 827-863.

[2] BnoTuux A.A., Miokome B. Mamem. c6oprux. 2005. T. 196. N 12. C. 33-84.

359



Author Index

Abanin A V.
Abdrakhmanov A.M.
Abdrashitov K. Kh.
Abduvaliev A.O.
Abramov S.A.
Abramov S. A.
Afendikov A. L.
Agoshkov V. L.
Agranovich M. S.
Ai-Hua Fan
Akhmetov R. G.
Akhtyamov A. M.
Aksenov A. V.
Aldibekov T.M.
Alexeeva A. V.
Alexeyeva L. A.
Alhutov Yu. A.
Aliev A.B.
Allyonov S.V.
Alvarez-Caudevilla P.
Alymkulov K.
Alyoshin P.S.
Amangaliyeva M. M.
Andreev A. A.
Andreishcheva E.N.
Andryushin D. V.
Antonets M.A.
Antontsev S.
Aptekarev A. L.
Aranson A. B.
Arkhipova A.A.

abanin@math.rsuru..................... 5
kickufa@onlineru........................ 5
boxforall@yandex.ru..................... 5
abduval@rambler.ru..................... 6
sabramov@ccas.ru ...l 7
sabramov@ccas.ru......... ... 261
andre@keldysh.ru.................... ... 8
agoshkov@inm.ras.ru .................... 8
magran@orcru.........oooo 10

........................................ 10
akhm@bspu.ru . ...l 10
AkhtyamovAM@mailru............... 309
aksenov@mech.math.msusu............ 11
........................................ 12
alexandra-aleks@mailru................ 12
alexeeva@math.kz .................. ... 346
alkhutov@vgpu.vladimirru............. 14
aliyevagil@yahoo.com................... 13
allenov@list.ru..................oil 14
pablo.alvarezQucavila.es................ 15
keldibay@mailru............. ... ..., 15
AlyoshinPavel@gmail.com .............. 16
dzhenali@math kz ................... ... 83
andre@ssu.samara.ru ................... 17
anda_el@mailru............ ... ... 18
dv_andryushin@mailru................ 18
antonets@nnov.tv .......... ..ol 19
antontsevsn@mailru. ... L 20
aptekaa@keldysh.ru................... .. 21
aranson@cbgrad.ru..................... 22
Arina@AA1101.spbedu.............. ... 22

360



Arutyunov A. V.
Asanova A.T.
Aseev S. M.
Astashkin S.V.
Astashova 1. V.
Aulisa E.
Avsyankin O. G.

Babenko A. G.
Babich V. M
Babin A. V.
Babych N.
Bakhtina Zh. I.
Bakhtin V.
Bakhvalov A. N.
Balashov M. V.
Barabanov A. E.
Barkatou M.A.
Barsegyan D. S.
Barsukov A. L.
Beklaryan L. A.
Belishev M.1.
Belykh V. N.
Bespalov M.S.
Beyn W.-J.
Bezrodnykh S. 1.
Bigun Ya.l.

Bikchentaev A. M.

Bikkulov 1. M.
Birman M. Sh.
Biroli M.

Biryukov O. N.
Biryukov R. S.
Biryukov S. N.

arutun@orc.ru. ... 23
anar@math.kz................ ... 23
aseev@mirasru ... 24
astashkn@ssu.samara.ru................ 24
ast@diffiety.acru........... ...l 25
....................................... 118
avsyanki@math.rsuru.................. 26
babenko@imm.uran.ru.................. 26
babich@pdmirasru .................... 27
ababine@math.uciedu.................. 27
n.babych@bath.acuk................... 28
....................................... 243
bakhtin@tut.by......................... 29
anbakh@rolru.......................... 30
givanov@mail.mipt.ru............ ... 30
Andrey.Barabanov@pobox.spbu.ru...... 31
moulay.barkatou@unilim.fr............... 7
sart@ysu.am. ... 31
barsukov@math.vsu.ru.................. 32
beklar@cemi.rssiru..................... 33
belishev@pdmi.rasru................... 33
belykh@math.nscru.................... 34
bespalov@vpti.vladimirru.............. 34
........................................ 35
sergeyib@pochta.ru..................... 36
ya_bigun@mailru...................... 36
Airat.Bikchentaev@ksu.ru .............. 37
im_radosti@rambler.ru................. 38
“suslina@listru. ... 311
marco.biroli@polimi.it.................. 39
Oleg_Biryukov.81@mailru............. 39
biryukovrs@yandex.ru................ .. 56
sergeybirukov@yandex.ru............... 40

361



Blatov L.A.
Bobylov A. A.
Bogachev V. 1.
Bogatyrev A.B.
Bogdanov M.R.
Bogdanov R.I.
Bogolyubov A. N.
Bogovskii M. E.
Boiko A. V.
Borisov D.
Borovikova M.M.
Borovikov 1. A.
Borovskikh A. V.
Bozhonok E. V.
Bratus’ A.S.
Bruk V. V.
Bruno A.D.
Brusentsev A.G.
Bubnova N.A.
Bukzhalev E. E.
Bulgakov A. 1.
Burnaev E. V.
Burobin A. V.
Burskii V.P.
Burtsev M.V.
Butenina N. N.
Buterin S.A.
Butko Ya.
Butuzov V.F.
Buzykin G. O.
Bychenkov Yu.V.
Bykov V. V.

Cardone G.

blatow@mail.ru......................... 41
abobylov@ukrnet ...................... 41
vibogach@mailru....................... 42
gourmet@inm.rasru.................... 43
bogdanov@bogdan.npi.msu.su.......... 43
bogdanov@bogdan.npi.msu.su.......... 43
bogan7@yandex.ru ..................... 45
mbogovskii@sci.pfu.eduru.............. 45
boiko@itam.nscru............... ..., 208
borisovdi@yandex.ru.................... 46
....................................... 343
borovikovia@mail.ru.................... 47
bor.bor@mailru........................ 48
katboz@crimea.edu..................... 49
asbratus@comailru................... .. 49
vladislavbruk@mail.ru.................. 50
bruno@keldysh.ru...................... 51
........................................ 52
blatow@mail.ru............. FUTTUUR 41
bukzhalev@mailru.................... 317
aib@tsu.tmb.ru............. .. ... 52
drazil@list.ru........................... 53
burobin@iate.obninsk.ru................ 54
v30Q@dn.farlepnet .................... .. 55
burtsevmv@orel.ru...................... 55
n.n.butenina@mail.ru................... 56
buterinsa@info.sgu.ru................... 57
yanabutko@yandex.ru.................. 58
butuzov@phys.msu.ru .................. 58
gbuzykin@newmail.ru .................. 59
bychenkov@yahoo.com.................. 59
vbykov@land.ru ........................ 60
gcardone@unisanniodt.................. 61

362



Carja O.
Chechkin G. A.
Chegodaev A.V.
Chepyzhov V.V.

Cherepennikov V. B.

Cherevko I.M.
Chiadd Piat V.
Chihacheva O.A.
Chizhonkov E. V.
Chupakhin A. P.
Cianci P.

Diaz J. I.
Danchenko V.I.
Dang Khanh Hoi
Danilin A. R.
Danilov V. G.
Daryin A. N.

Dauylbayev M. K.

Davydov A.A.
Deltchev D.
Demidenko G. V.
Demidov A.S.
Demyanov A.V.
Denisov V.N.
Denisova I. V.
Denisov A. M.
Denisov M. S.
Denisov S. A.
Diaconescu O. V.
Diarova D.M.
Dobrokhotov S.
Dolgikh I. N.
Dostoglou S.

ocarjaQuaic.ro.......................... 61
chechkin@mech . math.msu.su........... 61
....................................... 347
chep@iitpru....................oL 63
vbcher@iceru.......................... 63
cherevko@chnu.cviua................... 64
valeria.chiadopiat@polito.it ............. 65
dma@rspu.ryazan.ru.................... 66
chizhonk@mech.math.msusu........... 66
chupakhin@hydro.nsc.ru................ 67
cianci@dmi.unict.it..................... 68
diaz.racefyn@insde.es................... 20
danch@vpti.vladimirru................. 68
- dangkhanhhoi@yahoo.com.............. 69
dar@mm.uran.ru....................... 69
danilov@miem.edu.ru........ P 70
daryin@cs.msu.su............oiiiia. 71
dauyl@kazsukz................. ... ... 71
davydov@vpti.vladimirru .............. 71
....................................... 277
demidenk@math.nsc.ru................. 72
asd@mathmsusu...................... 73
....................................... 205
1216.g23@g23.relcom.ru . ............... 76
ira@wave.ipme.ru....................... 75
den@cs.msu.su ... 74
den_i_sov@ramblerru................. 76
denissov@math.wisc.edu................ 76
odiac@math.md....................... 247
ddiarova@mailru....................... 77
dobr@ipmnet.ru.............. ... ... 77
dolgih.irina@pomorsu.ru................ 78
stamatis@math.missouri.edu............ 78

363



Dryuma V. S.
Dubinskaja W. Ju.
Dubinskii J. A.
Dubovitskij V. A.
Dubrovin B.
Dudnikova T. V.
Dykhta V. A.
Dzhenaliyev M. T.
Dzhumabaev D.S.

Edneral V. F.
Efremova L. S.
Egorova A.A.
Egorov Yu. V.
Ermolaeva P. G

Fahroutdinov V. K.
Faminskii A.V.
Fardigola L. V.
Fazullin Z. Yu.
Fedorov V.E.
Fetisova Yu.V.
Filimonov A.M.
Filinovskii A.V.
Filonov N. D.
Fournier-Prunaret D.
Frolova E.V.
Fursikov A.

Gadylshin R.R.
Galatenko V. V.,
Galimov A. N.
Galkin V. A
Gasnikov A. V.
Gaudiello A.

valery@dryuma.com.................... 79
DubinskajaW@yandex.com ............. 79
Dubinskii@mm.mpei.acru.............. 80
dubv@icp.acru............ ... ... 81
dubrovin@sissa.it ....................... 82
dudnik@elsiteru..................... ... 82
pdykhtaQisea.ru..................... ... 83
dzhenali@math.kz ...................... 83
dzhumabaev@list.ru.................... 84
edneral@theory.sinp.msu.ru............. 85
lefQuicnov.ru......................... 85
alena.egorova@gmail.com............... 87
egorovQcegetelnet .............. ... ... 86
........................................ 63
russoul@mailru........... ... . 88
andrei faminskii@mailru.............. 89
fardigola@ukrmet. .............. ... ..., 90
fazullinzu@mailru......... ... ... ... ... 90
kar@Qcsu.ru ............. ... ... 90
....................................... 283
....................................... 203
finv@yandex.ru.................... .. ... 91
filonov@pdmi.ras.ru .. ... e 92
daniele.fournier@insa-toulouse.fr.. ... ... 93
elenafr@mailru......................... 93
fursikov@mtu-netru.................... 94
gadylshin@yandex.ru................... 94
vvgalatenko@yahoo.com............. ... 95
ArturGalimov@ramblerru.............. 95
val-gal@yandex.ru...................... 96
gasnikov@yandex.ru............ ..., 97
gaudiellQunina.it....................... 98

364



Gerasimenko V. A.

Girin A. G.
Gladkov A. L.
Glavan V.
Glotov N. V.
Glushko A.V.
Golodova E.S.
Golovaty Yu. D.
Golovin S. V.
Golovko V. A.
Golubeva V.A.

Golubiatnikov A. N.

Golubnichi K. V.
Goncharova M.N.
Gorbachuk M.L.
Gorbachuk V.L
Gorin E.A.
Goritskii M. A.
Gorshkova E. 1.
Goruchkina I. V.
Grebenikov E.A.
Grigoryan A.
Grines V. Z.
Grinevich P. G.
Grishina G. V.
Grudo J. O.
Gutu V.
Gurevich B. M.
Gurevich E. Y.
Gurevich P.
Gushchin A K.

Horvath Agota P.

veraliza@mailru........................ 99
vpenko@mailru............... ... 98
gladkoval@mailru..................... 100
glavan@Qusm.md ....................... 100
....................................... 254
mail@angl.vrnru. ... 101
....................................... 102
yu_holovaty@franko.lviviua........... 102
sergey@hydro.nscru................... 103
golovko@mecme.ru .. ... 104
golub@vinitiru................... .. .. 105
golubiat@mech.math.msu.su........... 105
kiril-golubnichi@yandex.ru............. 106
m.gonchar@grsu.by.................... 107
imath@horbach.kieviua................ 107
imath@horbach.kieviua................ 108
evgeny.gorin@mtu-net.ru .............. 108
....................................... 143
elena.gorshkova@gmail.com............ 109
chukhareva@yandex.ru ................ 110
greben@.ccasru ... 110
grigor@math.uni-bielefeld.de........... 111
grines@vmk.unn.ru...........o 111
pgg@landau.acru ..................... 112
galinavg@mtu-net.ru .................. 113
jan_grudo@tut.by.................. ... 125
gutu@Qusm.md.................... ... 116
gurevich@mech.math.msu.su........... 113
elena_gurevich@list.ru................ 114
gurevichp@yandex.ru....... AU 115
akg@mirasru......................... 116
ahorvath@renyi.hu.................... 117

365



Ibragimova L.S.
Ibragimov A.
Ikhsanov E.V.
I'in V.A.

llyin A.A.
Iokhvidov E.I.
Ipatova V. M.
Ishkin Kh. K.
Iskakova U.A.
Islamov G.G.
Ivanov G. E.
Ivochkina N. M.
Izobov N. A.

Jager W.

Kalinin A. L.
Kalita E.
Kalitvin A.S.
Kalmenov T.Sh.
Kamenskii M. L.
Kamynin V.L.
Kanguzhin B.E.
Kapshayev 1. R.
Kaptsov O. V.
Kapustina T.
Karapetyants A. N.
Karasev M.V.
Karol’ AL
Karyuk A. L.
Katrakhov V.V.
Kazarian M.
Kersner R.
Khalilov Sh. B.

lilibr@mailru.......................... 119
Akif. Ibraguimov@ttu.edu.............. 118
unatatyrau@nursat kz .................. 77
iline@csmsu.su........................ 120
illyin@keldysh.ru..................... .. 119
an_u_ta@mailru.................. ... 120
ipatval@mailru .......... ... ... ... .. 120
[shkin62@mail.ru...................... 121
koshanov@list.ru...................... 127
gislamov@udm.ru ..................... 122
g.e.ivanov@mailru ......... ... ... .. 123
ninaiv@NI1570.spb.edu................ 124
izobov@im.bas-net.by ................. 124
wjaeger@iwr.uni-heidelberg.de......... 210
kalininai@bsu.by ...................... 125
ekalita@mailru........................ 126
kalitvin@mail.ru....................... 126
koshanov@list.ru ...................... 127
mikhailkamenski@mailru.............. 129
imageQ@consultant.ru.................. 130
kanbalta@mailru...................... 130
liga300@mailru....................... 131
kaptov@icm.krasn.ru.................. 132
okapustin@mtu-net.ru................. 132
alexeyk@aaanet.ru..................... 133
mkarasev@gcnet.ru.................... 133
karol@ak1078.spb.edu................. 134
karyuk@mailru ....................... 134
katrakhov@mail.ru .................... 135
kazarian@mccme.ru . ............... ... 136
kersner@witch.pmmfhu............... 136
shavkats8@mailru ................ ... 136

366



Khromov A.P. KhromovAP@info.sguru.............. 137

Kiguradze I. kigQrmi.acnet.ge...................... 138
Kilbas A. A. anatolykillbas@gmail.com ............. 139
Kirillov A. I 139
Kirin N.A. Kirin N _A@mailru.................. 140
Kiselev A. P. kiselev@domen.com ................... 142
Kiselev A. V. akiselev@mph.phys.spburu............ 141
Kochubei A.N. kochubei@i.comua .................... 142
Kochurov A. C. kochurov@mech.math.msu.su.......... 143
Kodzoeva F. D. ferdos@mailru................... 144
Kogut P.I. kogut@a-teleport.com ................. 144
Kolesov A. Y. kolesov@uniyar.acru .................. 145
Koltsova O.Yu. koltsova@Quic.nnov.ru.................. 146
Kolutsky G. A. kolutsky@mecme.ru . ...l 146
Komarov M.A. kami9Qyandex.ru....................... 71
Komech A. 1. alexander.komech@univie.ac.at ......... 82
Komech A. L. akomech@iitp.ru....................... 147
Kon’kov A. A. konkov@mech.math.msu.su............ 148
Kondrashov R. E. romicmmf{2006@rambler.ru............ 148
Konechnaya N. N. mermaid@atnet.ru................... .. 356
Konenkov A. N konenkov@cs.msu.su................... 148
Konkina A. 302
Kononenko L. 1. rylov@math.nscru............... ... 149
Konopelko O. A. 154
Kopachevsky N. D.  Kopachevsky@crimea.edu.............. 150
Kopezhanova A. N. ... 151
Kordyukov Yu.A. ykordyukov@yahoo.com ............... 152
Kornev A. A. kornev@dodo.inm.rasru............... 152
Koroleva N.I. koroleva@ken.msk.ru .................. 153
Koroleva Yu. O. korolevajula@mailru............ L 153
Korolev S. A. korolev_s a@mailru................. 148
Korzyuk V. L. korzyuk@bsu.by, Korzyuk@suas.bas-net.by154
Koshanov B. D. koshanov@list.ru ................... .. 155

367



Koshelev AL
Kosmodemiyanskiy D.
Kostin A. V.
Kostin D. V.
Kostin V. A.
Kovaleva M. 1.
Kovalevsky A. A.
Kovalishin A. A.
Kozhevnikova L. M.
Kozyrev S.V.
Kpekpassi M.
Krasnogorsky A. A.
Krasnov Y.
Krasovskii A. A.
Krichever .M.
Kruglov V. E.
Krutitskii P.A.
Kryakin Yu. V.
Kryazhimskii A. V.
Kryvko A.
Kryzhevich S. G.
Kucherenko V. V.
Kulzhumiyeva A. A.
Kurina G.A.
Kurokhtin V. T.
Kurzhanskii A. B.
Kuvshinov R.V.

Lépez-Gémez J.
Lahno V. I.
Langhoff T .-A.
Lapin A.V.
Laptev G.1.
Latushkin Ya.A.

akosh@AK13603.spb.edu.............. 156
dakosm@gmail.com.................... 157
leshakostin@mail.ru................... 157
dvkostin@rambler.ru .................. 158
vlkostin@mailru ...................... 158
....................................... 159
alexkvl@iamm.ac.donetsk.ua........... 160
nucrect@inm.rasru.................... 173
kosul@mailru......................... 160
kozyrev@mi.rasru................... .. 161
Kpekpass@hotmail.com................ 161
Krasnogorsky AM@mpeiru ............ 162
krasnov@math.biu.acil................ 163
ak@imm.uran.ru...................... 164
krichev@math.columbia.edu ........... 164
....................................... 164
brown@domen.com.................... 165
kryakin@math.uni.wroc.pl.............. 26
kryazhim@iiasa.ac.at ................... 24
andrei@esfm.ipn.mx................. .. 166
kryzhevitzQrambler.ru................. 165
valeri@esfm.ipn.mx.................... 166
aiman-80@mailru................... .. 167
kurina@kma.vsuru..............,..... 168
vktb4@ramblerru .................. ... 169
kurzhans@mailru ...................... 70
........................................ 89
Lopez Gomez@mat.ucm.es............. 15
....................................... 307
....................................... 277
alapin@ksu.ru............... ... .. ... 169
glaptev@yandex.ru.................... 170
yaroslav@el.ru........................ 324

368



Lazarev A.
Lazarev K. P.
Lebedev P. D.
Lebedev V. L.
Leksin V.P.
Lerman L. M.
Lesnykh A. A.
Levenshtam V. B.
Limansky D. V.
Lohéac Jean-Pierre
Lopushanskaya E. V.
Lukatsky A.M.
Lukomskii S. F.
Lyakhov A.V.
Lyakhov L.N.
Lyashko A. D.
Lysukho P. V.

Makarenkov O. Yu.
Makhrova E. N.
Maksimov V.P.
Maksimov V. I.
Malkin M.L.
Maltsev A. Ya.
Malykh M. D.
Malyutin K. G.
Mamontov A. E.
Markitanov. Y. N.
Maslov V.P.
Matryokhina A. A.
Matskevich S. E.
Matveeva 1. L.
Matveeva J.V.
Maximenko I. E.

lazarev@ihes.fr..................... ... 171
lazarev_k@mailru.................... 172
pleb@yandex.ru....................... 324
nucrect@inm.rasru.................... 173
lexin_vp49@mailru................... 173
lermanl@mmounn.ru. ... 174
andrey les@mailru................... 175
vleven@math.rsu.ru ............... ... 176
lim3@skifnet.......................... 176
Jean-Pierre LoheacQec-lyon.fr ......... 177
kate lopushanskaya@yahoo.com....... 178
macrolab@eriras.ru...............oLL 177
Lukomskiisf@info.sgu.ru............... 178
aleck 3712@mailru................... 135
lyakhov@box.vsiru.................... 179
[ldar.Badriev@ksu.ru.................. 180
kafmatan@novsu.acru................. 180
omakarenkov@math.vsuru............ 129
elena_makhrova@inbox.ru............. 181
maksimov@econ.psu.ru................ 181
maksimov@imm.uran.ru............... 182
malkin@Qunn.ru. ...l 182
maltsev@itp.ac.ru ...l 183
malykam@mtu-net.ru................... 45
malyutinkg@yahoo.com ............... 183
relic@hydro.nscru..................... 184
yurmark@rambler.ru .................. 307
v.p-maslov@mailru.................... 185
amatr@mailru .......... ... 45
smatsk@yandex.ru. . ... 185
matveeva@math.nscru................ 186
KupriyanovaJulia@rambler.ru ......... 187
irene@ir4558.spb.edu.................. 188

369



Maylybaev A A.
Medvedeva N. B.
Medvedev D. A.
Megrabov A. G.
Meirmanov A.M.
Merzon A. E.

Metcherykov V.V.

Metrikin V. S.
Mihailov V.P.
Mikhailets V.
Mikhailov A.V.
Mikhaylov A.S.
Mikhaylov V. S.
Mitryakova T. M.
Moiseev E.I.
Moiseev T.E.
Mokejchev V.S.
Mokhov O. L.
Molchanov S.
Molyboga V.
Morando A.
Morozov A. D.
Morozov A. D.
Morozov O.1.
Motovilov A.K.

Muhamadiev E. M.

Mukminov F. Kh.
Murach A. A.
Muratbekov M.B.
Muratov M.A.
Muravnik A.B.
Murtazina R. D.
Murtazin H. H.

....................................... 189
medv@csu.ru............... 336
plop@mailru.......................... 333
mag@ssce.ru ......ooviiiiii 189
meirmanov@bsu.eduru................ 190
anatoli@ifm.imich.mx ................. 147
metcherykov@mailru.................. 190
pmk@Qunn.acru........................ 192
akg@mirasru......................... 192
mikhailets@imath.kiev.ua.............. 192
sashamik@maths.leeds.acuk........... 193
mikhaylov@pdmi.rasru................ 356
ftvsmQuafedu ........................ 194
mtm@mm.unn.ru. ... L 195
moiseev@cs.msu.su.................... 120
tsmoiseev@mail.ru..................... 195
valery.mokeychev@ksu.ru.............. 196
mokhov@mi.rasru..................... 357
smolchan@unccedu................... 196
molyboga@imath.kiev.ua.............. 192
morando@ing.unibs.it ................. 197
karabanov@dm.komisc.ru.............. 148
morozov@mm.unn.ru................ .. 197
oim@foxcub.org ........... ... ... ... 199
motovilv@gmail.com................... 199
muhamergd1@mail.vstu.eduru........ 198
mfkh@ramblerru....................... 38
murach@imath.kievua................ 199
musahan_m@mailru.................. 200
mustafa_muratov@mailru.......... .. 201
amuravnik@yandex.ru................. 202
ReginaUFAQyandex.ru................ 348
Murtazin@mailru..................... 203

370



Muzafarov S. M. Msalich@mailru....................... 203

Myshkis A.D. amyshkis@mtu-net.ru.................. 203
Mystafoqulov R. zarullo _rQ@tajiknet ............... .. .. 204
Naboko S. N. naboko@snoopy.phys.spbu.ru.......... 141
Naimov A.N. nan67@Qramblerru..................... 204
Nazarov A.L an@AN4751.spbedu................... 205
Nazarov S. A. serna@snark.ipmeru .................. 206
Nazyrova R. R. tdsoftstudy@rambler.ru................ 207
Nechepurenko Yu. M. yumn@inm.rasru...................... 208
Nefedov N.N. nefedov@phys.msu.su.................. 208
Neklyudov A. Y. nekliudov2002@mail.ru................ 210
Nekrasova N.V. nekrasovanv@mailru.................. 168
Neuss-Radu M. Maria.Neuss-Radu@iwr.uni-heidelberg.de210
Neuss N. neuss@math.uni-karlsruhe.de .......... 210
Nezhinskaya [.V. niv@IN15041.spb.edu.................. 210
Nguyen M. H. hungnmnath@hnue.eduvn............. 212
Nicolosi F. _ fnicolosi@dmi.unict.it.................. 160
Nikitin A.G. singul@phys.msu.su ................... 208
Nikolskii M.S. mni@mirasru. ... 212
Nikolsky I. M. haifly@rambler.ru..................... 212
Ni Ming Kang mingkang@mailru................. ... 213
Novikov S.P. 215
Novikov S. I. Sergey.Novikov@imm.uran.ru.......... 214
Novikov S. Ya. nvksya@camapa.ru.................... 215
Novikov V.S. sashamik@maths.leeds.ac.uk........... 193
Novokshenov V. Yu. novik53@mailru....................... 216
Nurlybaev N.A. nurhat@gmail.com..................... 217
Nurov [.D. nid1@mailru.......................... 218
Nursultanov E. D. er-nurs@yandex.ru. .......... ... 151
Odzijewicz A. aodzijewQuwb.edu.pl.................. 220
Orlovsky D. G. odg@bkoru ... 221
Orlov 1. V. oiv@crimeaedu.. ...l 220

371



Orynbassarov M. O.
Oseledets V. 1.
Oshepkova S. N.
Osipov A.S.
Oskolkov K.I.
Ospanov K.N.
Otelbaev M.
Ovchinnikov V. L.

Palin V. V.
Paltsev A. B.
Panasenko E. A.
Panasenko G.P.
Paneah B.
Panin A. A.
Pankratova 1. L.
Pankratov L.
Panov E. Yu.
Panyunin N. M.
Parmuzin E. L.
Pashkova Yu. S.
Pastor V.J.
Pastukhova S.
Pavlov B.S.
Pechentsov A.S.
Penkin O. M.
Penskoi A. V.
Perekhodtseva E. V.
Perov A. 1.
Petrov A.G.
Petrov P.P.
Pham Trieu Duong
Piatnitski A. L.
Pilyugin S. Yu.

dauyl@kazsukz........................ 222
oseled@mech.math.msu.su ............ 222
oshepkova@bsu.eduru................. 223
osipa68@yahoo.com ................... 223
oskolkov@math.scedu................. 224
ospanov_k@mailru................ ... 224
....................................... 225
vio@math.vsuru...................... 226
....................................... 227
viasov@ceasru . ... 227
panlena_t@mailru.................... 228
Grigory.Panasenko@univ-st-etienne.fr . . 229
peter@tx.technion.ac.il ................ 230
a-panin@yandex.ru . .................... 45
iripan@hin.no......................... 230
leonid.pankratov@univ-pau.fr.......... 231
pey@novsu.acru .. ... 232
nikitasp@rambler.ru................... 232
parm@inm.rasru..................... 233
j_pashkova@mailru................... 234
........................................ 35
leonowmw@cs.msu.su.................. 234
pavlovenator@gmail.com .............. 236
pechentsov@mail.ru ................... 236
penkin@bsu.eduru.................... 237
penskoi@mceme.ru ...l 237
perekhod@mecom.ru .................. 238
anperov@mailru...................... 239
....................................... 352
e 99
trieuduong71@vnn.vn ...l 240
andrey@sci.lebedev.ru.............. ... 240
sp@spl196.spbedu.................... 241

372



Piskarev S.
Plakhov A. Yu.
Plamenevsky B. A.
Plotnikov P.I.
Pochinka O. V.
Podolskii V. E.
Pokornyi Yu. V.
Pokotilo V. 1.
Pokrovskii A.
Pokrovskii A.V.
Polischook V.
Popa M. N.
Popivanov N.
Popova S. N.
Popov A.Yu.
Popov [. Yu.
Portnov M. M.
Posviansky V.P.
Potapov M. M.
Pribyl M.
Prilepko A. L.
Prohorova R. A.
Prokopenya A. N.
Protasov V. Yu.
Pryadiev V. L.
Pshenitsyna N. A.

Réfty J.

Radkevich E. V.
Rakhimberdiev M. 1.
Ramazanov M. 1.
Recke L.

Red’kina T. V.
Remizov A. O.

........................................ 35
plakhov@mat.ua.pt.................... 242
plamen@rol.ru................. ..., 242
plotnikov@hydro.nsc.ru................ 357
olga-pochinka@yandex.ru.............. 243
podolski@mech.math.msu.su........... 267
pokorny@math.vsuru................. 243
vadikne@mail.ru.............. ... ... 244

....................................... 302
pokrovsk@imath.kiev.ua............... 245
polischook@list.ru..................... 246
popam@math.md...................... 247
nedyu@fmi.uni-sofia.bg................ 247
psQuniudmoru........................ 248

....................................... 236
popov@mail.ifmo.ru............... ... 248
mmportnov@mailru................... 249
posv2002@mtu-net.ru................... 49
mpotapov@tochka.ru.................. 250
zcd043Q@sectorb.msk.ru................ 251
tkachenko@nkosino.ru................. 251
izobov@im.bas-net.by ................. 124
prokopenya@brest.by.................. 252
vladimir _protassov@yahoo.com ....... 253
pryad@mailru............ . ..o 254
pshenya@gmailru..................... 255
reffyj@math.bme.hu.............. ... 256
evra@mathlibru.................... ... 227
marat@math.kz ....................... 255
dzhenali@math.kz...................... 83

....................................... 208
TVRS9@mailru. ...t 134
aremizov@fc.up.pt.............. 256

373



Repin S.I.
Romanov M. S.
Rosov N. H.
Rozhin A. F.
Rudakow 1.A.
Rudnev V. Yu.
Rutkas A. G.
Ruzakova O.A.
Ryaben’kii V. S.
Ryabenko A.S.
Ryabenko A. A.
Rykhlov V.S.
Rykov Yu.G.
Rylov A. L.
Ryzhikov V. V.

Sabitov K.B.
Sachkov Yu. L.
Sadik N.

Sadovnichaya I. V.

Sadovnichy V. A.
Sadov S.
Sakbaev V. Zh.
Sakharov A. N.
Saltykov E. G.
Samovol V.S.
Samoylenko Yu. I.
Samusenko P. F.
Sanina E. L.
Santini P. M.
Sapronov Yu. L.

Sartabanov Zh. A.

Sataev E. A.
Saushkin I. N.

repin@pdmiras.ru. ... 109
meliz@mailru. ... 257
rozov@rozov.mcecme.ru .. ... 145
rozhin@front.ru ....................... 258
rudakov_bgu@mailru................. 239
vrudnev78@mailru.............o 259
Anatoliy.G.Rutkas@univer . kharkov.ua . 331

........................................ 90
ryab@keldysh.ru..................o 261
....................................... 101
ryabenko@cs.msu.ru. ... 261
RykhlovVS@info.sgo.ru................ 262
Yu-Rykov@yandex.ru.................. 263
rylov@math.nscru.................. ... 263
vryz@mech.math.msu.su............... 264
Sabitov_fmf@mail.ru.................. 265
sachkov@sys.botikru.................. 265
sadnaz@mail.ru ....................... 266
ivsad@yandex.ru ... 266
....................................... 267
sergey@math.mun.ca.................. 268
fumi2003@mailru............coooees 269
root@agri.sci-nnov.ru. ... 270
saltykov@cs.msu.su.................... 271
svs46@mailru. ...l 272
yusam@univ.kieviua................... 273
psamusenko@ukr.net .................. 273
lyakhov@box.vsiru.................... 275
Paolo.Santini@romal.infnit ........... 112
yusapr@mail.ru.............. oL 275
aiman-80@mailru................... .. 167
sataev@iate.obninskru................ 275
insau@ssu.samara.ru. ................... 17

374



Savchuk A. M.
Schnack E.
Schurov I.V.
Secchi P.
Sedykh V. D.
Semenov A.S.
Semenov E. M.
Semenov V. L.
Serdyukova S.1.
Serebryakov V.P.
Sergeev A. G.
Sergeev 1. N.
Sesekin A.N.
Sevryuk M.B.
Seyranian A.P.
Sgibnev M.S.
Shadrina T.V.
Shamaev A. S.
Shamarov N.
Shamin R. V.
Shananin N.

Shaposhnikova T. A.
Shaposhnikov S. V.

Shapoval A. B.
Sharapudinov LI
Sharin E. F.
Shcheglova A A.
Shchepakina E.A.
Jorg Schmeling
Sheipak I. A.
Shelkovich V.M.
Shilkin T. N.
Shilova G.N.

artem _savchuk@mailru............... 277
eckart.schnack@imf.mach.uka.de....... 277
ilya.schurov@noo.ru ................... 358
paolo.secchi@ing.unibs.it .............. 278
sedykh@mceme.ru..................... 278
vpenko@mailru................oo 279
nadezhka ssm@geophys.vsuru........ 279
semvi@kuzstu.ru .............. ... 280
SIS@JINrru. ..o 281
V-P-Serebr@yandex.ru ................ 281
sergeev@mi.rasru ... ... 282
in_serg@mailru....................... 282
sesekin@list.ru........... ... L 283
brown@domen.com .................... 284
seyran@imec.msu.ru................... 189
sgibnev@math.nscru.................. 284
shadrina@keldysh.ru................... 285
sham@rambler.ru...................... 157
NShamarov@yandex.ru................ 285
roman@shaminru..................... 286
nashananin@inbox.ru.................. 287
shaposh.st@Qrumnet..................... 353
shaposh.st@rumnet..................... 287
shapoval@mceme.ru................... 288
sharapud@iwt.ru...................... 289
eugene _sharin@mailru................ 290
shchegl@iceru. ...t 290
shchepakina@yahoo.com............... 101
joerg@maths.lthse ..................... 10
iasheip@mech.math.msusu............ 331
shelkv@vs1567.spb.edu................ 291
shilkin@pdmi.rasru................... 292

....................................... 347

375



Shiryaev E.A.
Shiryaev K.E.
Shishkina E. L.

Shishkov Andrey E.

Shkalikov A.A.
Shkil N. L.
Shondin Yu. G.
Shutyaev V. P.
Sidorov E.A.
Sitnik S. M.
Skopina M.
Skorokhodov S. L.
Skubachevskii A.
Sloushch V. A.
Slutskij A. S.
Smolyanov O. G.
Sobolev V. A.
Sokolowski J.
Soldatov A. P.
Solonnikov V.
Soloviev V. V
Spichak S. V.
Spiridonov S. V.
Stasyuk S. A.
Stepanov V. D.
Stogniy V. 1.
Stonyakin F. S.
Subbotina N.N.
Suleymanova A H.
Sultanaev Y. T.
Sultanbekova A. O.
Surnachev M. D.
Suslina T. A.

506@rambler.ru ....................... 292
tmm@kstu.eduru.......... ..o 293
ilina_dico@mailru.................. .. 294
shishkov@iamm.ac.donetsk.ua ......... 295
ashkalikov@yahoo.com................. 277
shkil@domen.com ..................... 295
shondin@sinn.ru....................... 296
shutyaev@inm.rasru .................. 233
dynamics@mm.unn.ru................. 296
mathsms@yandex.ru................... 297
skopina@MS1167.spb.edu.............. 298
skor@ccas.ru.............. 299
skub@lector.ru................. ... ... 115
vova@VS3648.spbedu................. 300
slutskij@gmail.com .................... 301
Smolyanov@yandex.ru................. 301
sable@ssu.samara.ru................... 302
Jan.Sokolowski@iecn.u-nancy.fr........ 302
soldatov@bsu.edu.ru................... 303
solonnik@pdmi.rasru.................. 303
solovevv@mailru...................... 303
stas_sp@mailru ...................... 304
ss@maxmat.net........................ 305
stasyuk@imath kiev.iua ................ 305
vstepanov@sci.pfu.eduru.............. 306
valerly _stogniy@mail.ru............... 307
oiv@crimea.edu........................ 220
subb@uranru......................... 308
albinal210@mailru.................... 265
SultanaevYT@bsu..................... 309
azhek@mailru.................. ... ... 309
peitsche@yandex.ru.................... 310
suslina@list.ru......................... 311

376



Sveshnikov A. G.

Taranets R.M.
Tarasenko P. Yu.
Tarasyev A. M.

Tasmambetov Zh. N.

Telyatnikov I. V.
Terekhin M. T.
Terekhin P. A.
Tikhonov S.
Tleubergenov M.1.
Toda M.
Tokmantsev T.B.
Tolstonogov A.A.
Tonkov E. L.
Toporensky A. V.
Trebeschi P.
Troubetzkoy S.
Trubachev S. L.
Trubnikov S.V.
Tsalyuk V. Z.
Tsopanov 1 D.
Tsvetkov D. O.
Tuimebayeva A. E.
Tulkubaev R. Z.
Tveritinov I. D.

Uhobotov V.I.
Uraltseva N.N.
Urinovskii A. N.
Usachjov A. S.
Ushakov V. N.
Uspenskiy A. A.

Vakulenko A.F.

-

sveshnikov@phys.msu.ru................ 45
taranets _r@yahoo.com................ 312
pj_tarase@mail.ru.................... 312
tam@Iimm.uran.ru................ ... 164
tasmam@rambler.ru................... 313
teljat_ilya@mailru.................... 314
dma@rspu.ryazan.ru................... 315
terekhinpa@info.sguru................ 315
tikhonov@mceme.ru................... 219
marat207@math.kz................. ... 316
....................................... 118
Tokmantsev@imm.uran.ru............. 308
aatol@iceru.............. 317
eltonkov@Qudm.ru...................... 228
lesha@saimsuru...................... 317
paola.trebeschi@ing.unibs.it ........... 318
........................................ 10
trubachev__s@hotbox.ru............... 318
sergeyt@yandex.ru . ................... 319
vts@math.kubsuru................ ... 359
i.tsopanov@globalalania.ru ............ 319
tsvet@crimea.edu...................... 150
dzhenali@math.kz ................... ... 83
RinatTulkubaev@pochta.ru............ 320
tveritinov@pobox.ru............. .. ... 321
ukh@esuru. ... 321
uunur@NU1253.spbedu............... 322
urinovskii@list.ru...................... 322
usa-alexandr@yandex.ru............... 323
ushak@imm.uran.ru................... 324
uspen@imm.uran.ru. ... 323
belishev@pdmi.rasru................... 33

377



Valeev N. F.
Varin V. P.
Vasil’eva A. B.
Vaskevich V. L.
Vektohin A. N.
Veliev O. A.
Vereschagin VL.
Vernov S. Yu.
Vershik A.M.
Vishik M. I.
Vladimirov A. A.
Vlasenko L. A.
Vlasov V. L.
Vlasov V. V.
Volodin Yu. V.
Volokitin. E. P.
Volosivets S.S.
Voronin A. S.
Voronov Th. Th.
Voroshilov A. A.

Vyacheslavov A. V.

Vyugin [. V.
Wang J.P.

Yakovlev A. A.
Yakubov V. Ya.

Yashima H. Fuzhita

Ye Xiangdong
Yumagulov M. G.
Yurinsky V. V.
Yurko V. A.

Zadorozhnii V.G.
Zadorozhnyi AL

valeevnf@yandex.ru ................ ... 325
varin@keldysh.oru................... ... 326
bukzhalev@mail.ru.............. ... .. 326
vask@math.nscru................... .. 327
vetokhin@front.ru................ ... .. 329
oveliev@dogus.edu.tr............... ... 328
v_vereschagin@mailru................ 328
svernov@theory.sinp.msu.ru ........... 328
vershik@pdmirasru................ ... 329
vishik@iitp.ru................ ... ... 330
vladimi@mech.math.msu.su ........... 331
Larisa.A.Vlasenko@univer kharkov.ua..331
vlasov@ccasru ........... ... ... ... 36
vicvvlasov@rambler.ru............... .. 333
viv@inbox.ru............ o 334
volok@mathnscru.................. .. 335
VolosivetsSS@mailru.................. 335
medv@csuru............ ... . 336
theodore.voronov@manchester.ac.uk . . . 336
22365Qrambler.ru............. ..., 337
andrey _msu@hotbox.ru............ ... 338
ilya_vyugin@mail.ru.................. 339
sashamik@maths.leeds.ac.uk........... 193
yakovlevandrey@yandex.ru ............ 339
matan@miem.ru..................... .. 355
hisao.fujitayashima@unito.it ........... 340
yexd@ustc.edu.cn............ ... ... .. .. 341
yum_mg@mailru............. ... .. .. 341
yurinsky@ubipt......... ... ... L. 342
yurkova@info.sguru........... ... ... .. 343
zador@amm.vsu.ru............... ... .. 343
simon@rsu.ru.......................... 344

378



Zaitsev V. A.
Zajtsev P.N.

Zakiryanova G. K.

Zarubin A. N.
Zeifman A.L
Zemtsova N.I.
Zhedanov A.S.
Zhiber A. V.
Zhidkov P. E.
Zhikov V. V.
Zhirov A. Yu.
Zhukova A. A.
Zhumatov S. S.
Zhuravlev V.F.

Zhuzhoma E. V.

Zlotnik A. A.
Zubova M. N.

verba@Qudm.ru......................... 345
dolphin _land@mail.ru................. 135
zakir@math.kz ..................... ... 346
aleks zarubin@mail.ru................ 346
zai@uni-vologda.ac.ru .............. ... 347
zemni@.ccasru.......... 7

........................................ 55
zhiber@mailru................ ... .. 348
zhidkov@thsunl jinrru................ 349
zhikov@vgpu.vladimiroru .............. 350
alexei zhirov@mail.ru................. 350
confer@amm.vsu.ru. ................... 351
anar@math.kz......................... 351

....................................... 352
zhuzhoma@mailru.................... 353
zlotnik@apmsun.mpei.ac.ru............ 360

....................................... 353

379



Haywnoe usdarue

MexayHapoaHasi KoH(pepeHIys,
NOCBAIIEHHAA TAMATH
N. I'. ITerposckoro

XXII copMecTHOe 3acenanue MOCKOBCKOro MaTeMaTH4YeCKOr'o
oblecTBa
u cemuHapa um. J. . Ilerposckoro

MockBa, 21-26 masa 2007 r.

Te3ucel JOKJIag0B

KomnbloTepHas BepcTka U MOArOTOBKa opuruHai-mMakera: Ilupses E.A., Kapynuna E.
Juzaitn o6noxku: [newanos E.B.

Tunorpadus opaeHa «3uax [Toyeta» n3narenscrea MI'Y
119992, Mocksa, JIeHUHCKHE rops!
3akaz Ne 219 Tupax 600 ax3.



