






МАТРИЧНЫЕ ПУЧКИ: РАЗРЕШИМОСТЬ
ОБРАТНОЙ ЗАДАЧИ1

Азизов Т.Я. (Воронеж)
azizov@math.vsu.ru

В инженерных расчетах элементов конструкций на колебания
приходится решать частотное уравнение, которое при наличии
демпфирующих элементов имеет вид

det(M◦ω2
◦ + B◦ω◦ + C◦) = 0,

где M◦ — положительная диагональная матрица обобщенных масс,
B◦, C◦ — матрицы, соответствующие вязкому и упругому сопро-
тивлениям, соответственно. Ряд конструкторских задач приводит
к необходимости восстановления, скажем, вала по заданным резо-
нансным колебаниям, т.е. определить матрицы B◦, C◦. Задачи та-
кого типа называются обратными спектральными задачами.
Постановка задачи. Пусть заданы два приведенных полинома
P2n и P2n−2 степени 2n и 2n − 2, соответственно. Требуется найти
такие якобиевы n× n-матрицы B и C, что

P2n(λ) = det(λ2 + Bλ + C)
P2n−2(λ) = det(λ2 + B1λ + C1),

где (n− 1)× (n− 1)-матрицы B1 и C1 получаются из B и C вычер-
киванием в каждой из них последней строки и последнего столбца,
соответственно.
В докладе будет дано необходимое и достаточное условие разреши-
мости поставленной задачи.

Литература
[1] Yu. Agranovich, T. Azizov, A. Barsukov and A. Dijksma. On an

inverse spectral problem for a quadratic Jacobi matrix pencil, J. Math.
Anal. Appl. 306 (2005), 1–17.

1Доклад основан на исследованиях, поддержанных грантом РФФИ 05-01-
00203-а и опубликованных в [1]
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О РЕШЕНИИ СИСТЕМЫ ИНТЕГРО-
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ИЗГИБА

ПЛИТЫ СЛОЖНОЙ ФОРМЫ
Алейников С.М., Агапов И.Е. (Воронеж)

alasmbkb@box.vsi.ru, agapov@vgasu.vrn.ru

Математическая формулировка задачи контактного изгиба пли-
ты на упругом неклассическом основании сводится к системе интег-
ро-дифференциальных уравнений [1]:

D

(
∂4w

∂x4
+

2∂4w

∂x2∂y2
+

∂4w

∂y4

)
= q(x, y)− p(x, y),

w(x, y) =
∫∫

A

p(ξ, η)ω(x, y, ξ, η)dξdη,

где D – цилиндрическая жесткость плиты, w(x,y) – функция про-
гиба, q(x,y) – распределенная нагрузка на плиту, p(x,y) – искомое
контактное давление, ω(x, y, ξ, η) – функция Грина, определяющая
контактную модель упругого неклассического основания.

Решение строится численно на основе комбинации методов ко-
нечных и граничных элементов. Расчет деформаций плиты про-
водится с использованием треугольных конечных элементов с 21
степенью свободы. Контактные давления в узлах треугольной сет-
ки определяются методом граничных элементов с использовани-
ем двойственного разбиения на многоугольные ячейки Дирихле-
Вороного [1].

Разработанный алгоритм, апробированный для круглых и квад-
ратных плит, был применен для расчета контактного изгиба плит
сложной многосвязной формы в плане. Расчеты выполнены для
неклассических моделей упругих оснований с известной функцией
Грина [1]. Численные исследования показали, что предложенный
алгоритм применим для расчета плит любой формы в плане, рас-
положенных на упругих неклассических основаниях при действии
распределенной нормальной нагрузки.

Литература
1. Алейников С.М. Метод граничных элементов в контактных

задачах для упругих пространственно неоднородных оснований. –
М.: Изд-во “Ассоциации Строительных Вузов”, 2000. – 754 с.
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ИСПОЛЬЗОВАНИЕ ПАКЕТА MATHCAD ДЛЯ ЗАДАЧИ
ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Алексеева С.М., Алексеева О., Молчанов А. (Балтийская
государственная академия)

Задача выбора оптимального режима лова рыбы — типичная за-
дача оптимального управления, одним из методов ее решения яв-
ляется метод максимума Понтрягина. При некотором упрощении
задача сводится к задаче на экстремум функции одной перемен-
ной.

Для ее решения студенты использовали графические возмож-
ности пакета Mathcad, встроенные функции given-find и interp
(pspline(Y, X), Y, X, x) и т. д. На основании численных расчетов
для модельных примеров при некоторых фиксированных парамет-
рах студентами получены следующие результаты.

1. В случае оптимального управления ловом в течение одного
года, если закон изменения веса особи линейный, то лов следует
начинать на 222 день и продолжать в течении 144 дней, а если
близок к естественному, то нужно начинать на 20 дней раньше.

2. В случае управления ловом в течение двух лет по графику
суммарного улова за два года в первый год лов следует начинать на
255 день и проводить его в течении 110 дней, во второй год начало
лова — 217 день. Если требуется получить максимальный результат
в первый год, то лов нужно начинать на 33 дня раньше.

3. Найдены управляющие режимы, которые с одной стороны
оптимизируют улов, а с другой стороны ориентируют на сохранение
данной популяции рыб.

ОДИН ИЗ СПОСОБОВ ВОЗБУЖДЕНИЯ
ХАОТИЧЕСКИХ КОЛЕБАНИЙ В

РАСПРЕДЕЛЕННОЙ КИНЕТИЧЕСКОЙ СИСТЕМЕ С
КРУГОВОЙ СИММЕТРИЕЙ

Аминова С.М., Кубышкин Е.П. (Ярославль)
AminovaSM@dgh.cityhall.yar.ru, Kubysh@uniyar.ac.ru

Рассматривается распределенная кинетическая система в плос-
ком круговом реакторе в окрестности пространственно однородно-
го состояния равновесия, на которую осуществляется некоторое пе-
риодическое воздействие. Математической моделью такой системы
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является следующая краевая задача

∂u

∂t
= D(ε)∆u + A(ε)u + F (u; ε) + µF1(x, θt, u; µ),

∂u

∂ν

∣∣∣∣
∂KR

= 0

где u(x, t) ∈ Rn, (x = x(x1, x2)) — вектор, характеризующий ве-
личину отклонения концентрации веществ от состояния равнове-
сия; ∂KR — граница круга KR радиуса R; ∆ — двумерный опера-
тор Лапласа; ν — направление внешней нормали к границе круга;
ε, µ > 0 — малые параметры, матрицы D(ε), A(ε) и вектор-функции
F (u; ε), F1(x, s, u; µ) являются достаточно гладкими по совокупости
переменных, 2π-периодическими по s. Матрица D(ε), определяю-
щая коэффициенты диффузий веществ, является симметричной и
положительно определенной при 0 6 ε 6 ε0. A(ε) и F (u; ε) опреде-
ляют скорости реакций веществ, F1(x, s, u;µ) — величину внешнего
воздействия на кинетическую систему. При µ = 0 краевая задача
обладает круговой симметрией. Предполагается, что при µ = 0 в
краевой задаче реализуется ”критический случай одной парой чи-
сто мнимых корней“.

Поведение решений краевой задачи с начальными условиями
определяется поведением решений некоторой системы обыкновен-
ных дифференциальных уравнений на устойчивом интегральном
многообразии. Эта система построена и анализируется численно.
Выявлены области параметров, при которых существуют хаотиче-
ские аттракторы. Отмечен ”докритический“ способ возбуждения
хаотических колебаний. Для аттракторов вычислены ляпуновские
показатели и ляпуновская размерность.

УСЛОВИЯ ПРЕДСТАВЛЕНИЯ ОБОБЩЕННОЙ
ФУНКЦИИ ШУРА В ОКРЕСТНОСТИ ЕДИНИЦЫ1

Андреищева Е.Н. (Воронеж)
anda_el@mail.ru

Задача аппроксимации функции Неванлинны в области Wθ рас-
сматривается в работе Крейна М.Г., Лангера Г. [1].
Через Λθ обозначим множество всех λ ∈ D, где D = {ξ : |ξ| < 1}
таких, что (α− i)(α + i)−1 = λ, α ∈ Wθ.
Для случая обобщённой функции Шура получен следующий ре-
зультат:

Теорема. Для функции s(λ) с s(0) 6= 0 следующие свойства:
1Работа поддержана грантом РФФИ 05-01-00203-а
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1. s(λ) ∈ Sκ, где Sκ− обобщённый класс Шура;

2. для некоторого натурального числа n > 0, существуют 2n
вещественных чисел: c1, c2, . . . , c2n таких, что имеет место
разложение:

s(λ) = 1−
2n∑

ν=1

cν(λ− 1)ν +O((λ− 1)2n+1), λ → 1, λ ∈ Λθ (1)

выполнены тогда и только тогда, когда существуют простран-
ство Понтрягина Πκ ,сжимающий оператор T в Πκ и порожда-
ющий элемент u ∈ dom((I−T )−(n+1)) для оператора T такой, что
справедливо представление:

s(λ) = 1− (λ− 1)
s(0)

[(I−λT )−1(I−T )−1u, T cu], λ ∈ D,
1
λ

/∈ σp(T ) (2)

В этом случае:

cν =





1
s(0)

[(I − T )−(ν+1)T νu, u], 1 6 ν 6 n;

1
s(0)

[(I − T )−(n+1)Tnu, (I − T c)−(ν−n)(T c)ν−nu],

n + 1 6 ν 6 2n;

Литература
1. M.G.Krein, H.Langer, Über einige Fortsetzungsprobleme,

die eng mit der Theorie hermitescher Operatoren in Raume
Πκ zusammenhängen, Teil I:Einige Funktionenklassen und ihre
Darstellungen, Math. Nachr. 77 (1977), 187-236.

ОБ ОДНОМ ПОДХОДЕ К МИНИМИЗАЦИИ ЯВНО
КВАЗИВЫПУКЛЫХ ФУНКЦИЙ МЕТОДОМ

ЦЕНТРОВ
Андрианова А.А. (Казань)

aandr78@mail.ru

Решается задача f∗ = min{f(x), x ∈ D}, где D = {x : x ∈
Rn, g(x) 6 0}, g(x) = max{fi(x), i = 1..m}, где f(x), fi(x)i = 1..m
- непрерывные явно квазивыпуклые функции в n-мерном евклидо-
вом пространстве Rn. Для ε > 0 зададим множество X∗

ε = {x : x ∈
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D, f(x) 6 f∗ + ε}. Требуется найти любую точку z ∈ X∗
ε . Пусть

f∗ > min{f(x), x ∈ Rn}, множество X∗
ε ограничено, min{g(x), x ∈

Rn} 6= min{g(x), x ∈ X∗
ε }, функция f(x) удовлетворяет на X∗

ε усло-
вию Липшица с константой L > 0, известны числа f и f , для кото-
рых f 6 f∗ 6 f .

Пусть для заданных значений параметров t, γ, α >
0, η > 0 определена вспомогательная функция метода цен-
тров F (x, t, γ, η) = max{f(x) − t, αg(x) − γ}. Обозначим
F ∗(t, γ, α) = min{F (x, t, γ, α), x ∈ Rn}, Z(t, γ, α, η) = {x : x ∈
Rn, F (x, t, γ, α) 6 F ∗(t, γ, α) + η}.

Если для заданных замкнутого ограниченного множества G и
числа λ существует точка y ∈ G такая, что g(y) < λ, то для любого
λ′ < λ существует число βλ′ такое, что для любого x ∈ G \ D(λ)
выполняется неравенство βλ′ρ(x, D(λ)) + λ′ 6 g(x), где D(λ) = {x :
x ∈ Rn, g(x) 6 λ}, ρ(x,D(λ)) = min{||x − z||, z ∈ D(λ)}. Тогда для
чисел λ, λ′, 0 < η < min{−λ, ε}, зафиксированых таким образом,
что min{f(x), x ∈ D(λ)} = f∗ + σ, где 0 < σ < ε − η, min{f(x), x ∈
D(λ′)} = f∗+ε−η при условии существования точки y ∈ X∗

ε−η, для
которой g(y) < 0, существуют коэффициенты β1 > 0, β2 > 0, при
которых выполняется указанное неравенство на множестве X∗

ε−η

при параметрах λ и µ, где µ ∈ [η,−λ], соответственно.
На основе этого свойства построены правила, гарантирующие

выполнение включения Z(t, γ, α, η) ⊂ X∗
ε . Для задач выпуклого

программирования такой подход был применен, например, в [1].
Теорема 1. Z(t, γ, α, η) ⊂ X∗

ε , если параметры α > 0, t, γ за-
фиксированы так, что γ > δ > 0, t > f∗ + γ + Lµ

β2
+ η, α >

−L(ε−η+δ+f−t)

β1σ .

Теорема 2. Z(t, γ, α, η) ⊂ X∗
ε для любого α > α′, если α > 1, t, γ

зафиксированы так, что t 6 f∗, α′ > −Lβ2(ε−η−f+t)−L2µ
β1β2σ , γ =

−α′ β1σ
L − ε + η.

Литература
1. Андрианова А.А. Неполная минимизация функции максиму-

ма в параметризованном методе центров // Материалы Воронеж-
ской весенней математической школы "Понтрягинские чтения- XV-
Воронеж, 2004. - с.9-10.

8



ОПИСАНИЕ NED-МНОЖЕСТВ, ЛЕЖАЩИХ НА
ГИПЕРСФЕРЕ

Асеев В.В. (Новосибирск)
btp@math.nsc.ru

В связи с изучением множеств, устранимых для пространствен-
ных квазиконформных отображений, Ю. Вяйсяля в 1962 г. ввел в
рассмотрение класс NED-множеств: Компактное множество E ⊂
R̄n называется NED-множеством, если для любого конденсатора
с пластинами F0, F1 ⊂ R̄n \ E выполняется равенство конформ-
ных емкостей (1): Cap(F0, F1; R̄n \ E) = Cap(F0, F1). Совпадение
класса устранимых множеств для квазиконформных отображений
и класса NED-множеств в случае плоскости (n = 2) было доказа-
но И.Н. Песиным в 1956 г. В пространстве (n > 2) устранимость
NED-множеств для квазиконформных отображений была доказана
в [1]. Вопрос о совпадении этих классов в случае n > 2 до сих пор
остается открытым. Введем обозначения: S(r) = {x : |x| = r} и
D(r0, r1) = {x : r0 < |x| < r1}.

ТЕОРЕМА 1. Компактное множество E ⊂ S(1) является NED-
множеством тогда и только тогда, когда существует (хотя бы один)
шаровой слой D(r0, r1) (r0 < 1 < r1), в котором выполняется ра-
венство (1) с F0 = S(r0), F1 = S(r1).

ТЕОРЕМА 2. Компактное множество E ⊂ Rn−1 ⊂ Rn является
NED-множеством тогда и только тогда, когда для любой точки x0 ∈
E и любых отрезков L0, L1, выходящим из x0 в противоположных
направлениях ортогонально к Rn−1, конформный модуль семейства
всех спрямляемых дуг в Rn\E с одним концом на L0\{x0}, а другим
– на L1 \ {x0}, равен бесконечности.

Теорема 2 существенно усиливает результат, полученный в [2].

Литература
1. Асеев В.В., Сычев А.В.: О множествах, устранимых для про-

странственных квазиконформных отображений. – Сибирск. матем.
ж., т. 15, No 6, 1974, стр.1213-1227.

2. Асеев В.В.: Пример NED-множества в n-мерном эвклидовом
пространстве, имеющего положительную (n-1)-мерную меру Хау-
сдорфа. – Докл. АН СССР, т. 216, No 4, 1974, стр. 717-720.
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РАВНОМЕРНЫЕ ОЦЕНКИ РЕШЕНИЙ
НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ

НЕРАВЕНСТВ1

Асташова И.В. (Москва)
ast@diffiety.ac.ru

Рассмотрим дифференциальные неравенства

y(n) +
n−1∑

i=0

ai(x) y(i) > p∗ |y|k , (1)

где ai(x) — непрерывные функции, p∗ > 0, n > 1, k > 1, и

rn(x)
d

dx

(
. . .

d

dx

(
r1(x)

d

dx

(
r0 (x) y

))
. . .

)
> |y|k , (2)

где все rj(x) — такие достаточно гладкие функции, что

0 < m∗ 6 rj(x) 6 M∗ < +∞. (3)

Теорема 1. Для любого заданного на отрезке [ a, b ] решения
y(x) неравенства (2) справедлива оценка

|y(x)| 6 C1 ( n, k, m∗, M∗ ) ·min{x− a, b− x}−n/(k−1).

Следствие. Пусть (3) выполняется для всех x ∈ R. Тогда не
существует заданных на всей прямой решений неравенства (2).

Теорема 2. Для любых k > 1, p∗ > 0, A > 0, n > 1 суще-
ствуют такие δ > 0 и M > 0, что для любых заданных на [ a, b ]
непрерывных функций a0(x), . . . , an−1(x), удовлетворяющих усло-
вию

∑n−1
j=0 sup { | aj(x) | : x ∈ [ a, b ] } 6 A , и любого решения нера-

венства (1) справедлива оценка

|y(x)| 6 M min { δ, x− a, b− x }−n/(k−1)
.

Замечание 1. Для теоремы 2 не существует следствия, анало-
гичного следствию теоремы 1. Так, неравенство y(n) + εy > |y|k, ко-
торое имеет определенное на всей прямой решение y(x) ≡ ε1/(k−1).

Замечание 2. Для неравенства y(n)+
∑n−1

i=0 ai(x) y(i) 6 −p∗ |y|k
справедливы результаты, аналогичные результатам, приведенным

1Работа выполнена при поддержке РФФИ (грант № 06-01-00715).
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для неравенства (1). Для неравенств y(n) +
∑n−1

i=0 ai(x) y(i) 6 p∗ |y|k
и y(n)+

∑n−1
i=0 ai(x) y(i) > −p∗ |y|k (при тех же условиях на ai(x), p∗,

n и k) не существует оценок, аналогичных оценкам, приведенным
для неравенства (1).

Литература
1. Митидиери Э., Похожаев С. И. Труды МИРАН

им. В. А. Стеклова, 234 (2001), 384 c. 2. Хей Дж. Дифференц.
уравнения, Т. 38, № 3 (2002), c. 1–7.

ТЕОРЕМА ВЛОЖЕНИЯ ДЛЯ ПРОСТРАНСТВ
СТОХАСТИЧЕСКИХ ПРОЦЕССОВ

Аубакиров Т.У., Нурсултанов Е.Д. (Караганда)
aub-toibek@yandex.ru

Предполагается заданным полное вероятностное пространство
(Ω, F, P ) с фильтрацией, т.е. семейством F={Fn}n>1, σ - алгебр Fn

таких, что F1 ⊆ ... ⊆ Fn ⊆ ... ⊆ F.
Для заданного стохастического процесса X = (Xn, Fn)n>1 и k >

1,k ∈ N обозначим

Xk = sup
A∈Fk,P (A)>0

1
P (A)

∣∣∣∣
∫

A

XkP (dω)
∣∣∣∣ .

Через Npq(F ), 0 < p, q < ∞, обозначим множество стохастиче-
ских процессов X = (Xn, Fn), n > 1,для которых при q < ∞

‖X‖q
Npq(F ) =

∞∑

k=1

k−1− q
p X

q

k < ∞

и при q = ∞
‖X‖Np∞(F ) = sup

k
k−

1
p Xk,

Npq(F ) будет квазинормированным пространством (при q > 1 нор-
мированным) как фактор-пространство по ядру

J =
{

X :
∫

A

XkP (dω) = 0, A ∈ Fk, k > 1
}

.

Введенные пространства Npq(F ) характеризуют усиленный за-
кон больших чисел для стохастических процессов. Так, если X ∈
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Npq(F ), то последовательность {Xk(ω)
k }∞k=1 почти всюду стремится

к нулю таким образом, чтобы сходился ряд

∞∑

k=1

(
k

1
p′

(Xk(ω)
k

)
)q 1

k
< ∞.

Пусть стохастический процесс X = (Xn, Fn)n>1 является суб-
мартингалом. Тогда 1) при 0 < q1 6 q 6 ∞ верно ‖X‖Npq(F ) 6
c‖X‖Npq1 (F ),

2) при 0 < p < p1 6 ∞, 0 < q, q1 6 ∞ верно ‖X‖Npq(F ) 6
c‖X‖Np1q1 (F ).

Пусть 1 < p < ∞, p′ = p
p−1 , 1 < q 6 ∞, α ∈ R. Определим

пространство мартингалов

Nαq
p (F ) = {X = (Xn, Fn)n>1 − мартингал :

∞∑

k=0

(2αk∆Xk)q < ∞},

где

∆Xk = sup
A∈F,P (A)>0

1

[P (A)]
1
p′

∣∣∣∣
∫

A

(X2k −X2k−1)P (dω)
∣∣∣∣ , X 1

2
(ω) ≡ 0.

Nαq
p (F ) является пространством сходящихся мартингальных про-

цессов, где параметры α, q и p характеризуют скорость и метрику,
в которой сходится данный процесс.

Теорема. Пусть фильтрация F = {Fn}n>1 такова, что для каж-
дого k = 1, 2, ... и любого A ∈ Fk, выполнено условие P (A) > c

k ,
где постоянная C > 0 не зависит от k. Если 1 < r < p 6 ∞, 1 6 q 6
∞, α = 1

r − 1
p , то имеет место вложение Nαq

r (F ) ↪→ Npq(F ).

УСЛОВИЕ ОГРАНИЧЕННОСТИ КОНСТАНТ ЛЕБЕГА
В (ζL)r

2π СУММ ФУРЬЕ ПО
ТРИГОНОМЕТРИЧЕСКИМ ОРТОГОНАЛЬНЫМ

ПОЛИНОМАМ1

Бадков В.М. (Екатеринбург)
Vladimir.Badkov@imm.uran.ru

Пусть {Φn(τ)}∞k=0 — ортонормированная с 2π-периодическим
весом ϕ система тригонометрических полиномов, полученная при

1Работа поддержана грантом РФФИ (проект 05–01–00233).
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ортогонализации на [0, 2π] методом Шмидта последовательности
1, cos τ, sin τ, cos 2τ, sin 2τ, . . . . Если Fϕ ∈ L1, то имеют смысл суммы
Фурье функции F по системе {Φn(τ)}∞k=0 :

sϕ,n(F ; θ) :=
1
2π

∫ π

−π

F (τ)
n∑

ν=0

Φν(θ)Φν(τ)ϕ(τ)dτ (n = 0, 1, . . .).

При ϕ(τ) ≡ 1 сумма sϕ,2n(F ; θ) есть обычная сумма Фурье sn(F ; θ).
Положим (ζL)r

2π := {F : Fζ ∈ Lr}, где ζ = ζ(τ) — измеримая
2π-периодическая функция, положительная почти всюду на [0, 2π].

М. Рисс установил неравенство ‖sn(F ; θ)‖r 6 C1(r)‖F‖r, где
1 < r < ∞, C1(r) не зависит от F ∈ Lr и n. Следующая теорема
(основной результат сообщения) обобщает этот результат М. Рисса.

Теорема. Пусть 1 < r < ∞ и

sup{‖Φn(τ)
√

ϕ(τ)‖∞ : n = 0, 1, . . .} < ∞. (1)

Тогда найдется константа C2(r, ϕ) такая, что для всех n =
0, 1, . . . и F ∈ (

√
ϕL)r

2π выполняется неравенство

‖sϕ,n(F ; θ)
√

ϕ(θ)‖r 6 C1(r)‖F√ϕ‖r. (2)

В [2] установлено, что условие (1) выполняется для широкого
класса весов ϕ ∈ C2π.

Литература
1. Badkov V.M. Orders of the weighted Lebesgue constants for

Fourier sums with respect to orthogonal polynomials // Proceeding
of the Steklov Institute of mathematics. – Suppl. 1, 2001. S48–S64.

2. Бадков В.М. Асимптотические и экстремальные свойства ор-
тогональных полиномов при наличии особенностей у веса // Тр.
МИРАН. 1992. Т. 198. С. 41–88.

ТЕОРЕМЫ ОБ ОГРАНИЧЕННОСТИ И
КОМПОЗИЦИИ ДЛЯ ОДНОГО КЛАССА ВЕСОВЫХ
ПСЕВДОДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ С

ПЕРЕМЕННЫМ СИМВОЛОМ
Баев А.Д. (Воронеж)

Пусть функция α(t) такая, что α(+0) = α′(+0) = 0, α(t) > 0
при t > 0, α(t) = const при t > d > 0, где d — некоторое число.
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Предполагается, что функция α(t) достаточно гладкая при t > 0.
На функциях u(t) ∈ C∞0 (R1

+) рассмотрим интегральное преобразо-
вание вида

Fα[u(t)](η) =

+∞∫

0

u(t) exp(iη

d∫

t

dρ

α(ρ)
)

dt√
α(t)

.

Это преобразование оператор “весового” дифференцирования
Dα,t =

√
−α(t) d

dt

√
α(t) переводит в оператор умножения на двой-

ственную переменную η. Следуя [1] преобразование Fα можно рас-
смотреть на обобщенных функциях, а также построить обратное
преобразование F−1

α .
Рассмотрим весовой псевдодифференциальный оператор вида

K(q)(x, t, Dx, Dα,t)[.] = F−1
ξ→xF−1

α [λ(x, t, ξ, η)FαFx→ξ[.],

где Fx→ξ(F−1
ξ→x) — прямое (обратное) преобразование Фурье, x ∈

Rn−1.
Пусть выполнено следующее условие:
Условие 1. Функция λ(x, t, ξ, η) ∈ C∞(Rn−1 × R1

+ × Rn−1 × R1),
причем

∣∣∣∣Dτ
x

∂l

∂tl
Dp

ξ

∂k

∂ηk
λ(x, t, ξ, η)

∣∣∣∣ 6 Cτlpk(1 + |ξ|+ |η|)q−|p|−k,

где Cτlpk > 0 — константа, q ∈ R1, |p| = p1 + p2 + . . . + pn−1.
Если функция λ(x, t, ξ, η) удовлетворяет условию 1, то будем го-

ворить, что символ весового псевдодифференциального оператора
принадлежат классу Sq

α.
Пусть Hs,α(Rn

+) — пространство функций v(x, t), для которых
конечна норма

‖v‖s,α =
∥∥∥F−1

α F−1
ξ→x[(1 + |ξ|+ |η|)sFx→ξFα[v]]

∥∥∥
L2(R

+
n )

.

Доказано следующее утверждение:
Теорема. Пусть выполнено условие 1 и v(x, t) ∈ Hs,α(Rn

+), s ∈
R1. Тогда K(q)(x, t, Dx, Dα,t)[v] ∈ Hs−q,α(Rn

+), q ∈ R1, причем спра-
ведлива оценка

∥∥∥K(q)(x, t, Dx, Dα,t)[v(x, t)]
∥∥∥

s−q,α
6 c ‖v‖s,α
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с некоторой константой c.

Кроме того доказано, что композиция весовых псевдодифферен-
циальных операторов с символами Sq

α и Sp
α является также весовым

псевдодифференциальным оператором с символом из класса Sq+p
α .

Литература
1. Баев А. Д.// Вырождающиеся эллиптические уравнения вы-

сокого порядка и связанные с ними псевдодифференциальные опе-
раторы. Доклады АН СССР, т. 265, №5, с.1044-1046.

О СУЩЕСТВОВАНИИ ОБОБЩЕННОГО РЕШЕНИЯ
ОДНОЙ НАЧАЛЬНО–КРАЕВОЙ ЗАДАЧИ,
ОПИСЫВАЮЩЕЙ КОЛЕБАНИЯ ВЯЗКОЙ

ЭКСПОНЕНЦИАЛЬНО–СТРАТИФИЦИРОВАННОЙ
ЖИДКОСТИ

Баева С.А. (Воронеж)

Рассмотрим систему дифференциальных уравнений с частны-
ми производными, описывающую малые колебания в вертикаль-
ной плоскости вязкой экспоненциально стратифицированной жид-
кости:

AU =




∂
∂t − ν∆ 0 0 ∂

∂x1

0 ∂
∂t − ν∆ g ∂

∂x2

0 −ω2
0

g
∂
∂t 0

∂
∂x1

∂
∂x2

0 0







U1

U2

U3

U4


 = 0 (1)

U(x, t) = (U1(x, t), U2(x, t), U3(x, t), U4(x, t))T , T — знак транспони-
рования, x ∈ R2

+ = {x = (x1, x2);−∞ < x1 < ∞, 0 < x2 < ∞};
t > 0. Здесь U1(x, t) и U2(x, t) — горизонтальная (вдоль оси Ox1)
и вертикальная (вдоль оси Ox2) составляющие скорости движения
частицы жидкости в точке x в момент времени t, U3(x, t) — откло-
нение плотности от стационарной в точке x в момент времени t,
U4(x, t) — давление жидкости в точке xв момент времени t, ν —
коэффициент вязкости жидкости, ω0 — частота Вяйсяля – Брента,
g — ускорение свободного падения.

Рассмотрим начально - краевую задачу в полупространстве x1 ∈
R1, x2 > 0, t > 0 для системы уравнений (1) с начальными услови-
ями

Uj(x1, x2,+0) = 0, j = 1, 2, 3 (2)
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и граничными условиями

U1(x1, +0, t) = 0, U4(x1, +0, t) = q(t)1[−1,1](x1), (3)

где 1[−1,1](x1) — характеристическая функция отрезка [−1, 1].
Справедливо следующее утверждение:
Теорема 1. Пусть q(t), q′(t) ∈ L2(0,∞), q(0) = 0 и для функций

q(t), q′(t) конечен интеграл
∞∫
0

(1 + t)
∣∣q(k)(t)

∣∣ dt = c5,1 < ∞, k = 0; 1.

Тогда существует обобщенное решение уравнения (1), для которого
справедливы равенства

lim
t→+0

U1(x1, x2, t) = 0, j = 1, 2, 3;

lim
x2→+0

U1(x1, x2, t) = 0; lim
x2→+0

∥∥U4(., x2, .)− q(.)1[−1,1]

∥∥
L2(R2

+)
= 0.

Получены также формулы представления решения задачи (1)-
(3).

Доказательство теоремы 1 проводится с использованием мето-
дов, развитым в [1] для задач с гладкими начальными и граничны-
ми условиями.

Литература
1. Глушко А. В. Асимптотические методы в задачах гидродина-

мики / А. В. Глушко. – Воронеж: изд. – во Воронеж. ун – та, 2003.
– 300с.

ПОСТРОЕНИЕ СПЕКТРА КОЛЕБАНИЙ
НАГРУЖЕННОГО ВЯЗКОУПРУГОГО СТЕРЖНЯ

КУСОЧНО ПОСТОЯННОГО СЕЧЕНИЯ
Базов И.А. (Ростов-на-Дону)

bazzov2@mail.ru

Физическая постановка задачи такова: рассматриваются малые
продольные колебания системы из двух прямолинейных вязкоупру-
гих стержней из материала Кельвина-Фойгта, скрепленных меж-
ду собой сосредоточенным грузом. Стержни жестко заделаны на
концах и имеют различные постоянные площади поперечного сече-
ния.Записанная в безразмерных переменных математическая мо-
дель задачи о собственных колебаниях имеет вид:

U”
j (x) = −ελ2Uj(x), j = 1, 2, x ∈]− 1, 0[∪]0, l[, (1)

16



u1(−1) = 0, u2(l) = 0, (2)

u1(0) = u2(0), λ2U1(0) = U
′
1(0)− γU

′
2(0), (3)

Здесь ε - отношение массы левого стержня к массе груза;
λ2 = − σ2

1+τσ - спектральный параметр, в котором σ - искомое соб-
ственное число, определяющее частоту и декремент затухания ко-
лебаний во времени, τ - безразмерное время релаксации, прямо про-
порциональное вязкости; γ - отношение площади правого сечения к
площади левого сечения стержней; l - соответствующее отношение
их длин.

Неклассический характер поставленной краевой задачи обу-
словлен наличием спектрального параметра не только в уравнении
(1), но и его вхождением во второе из условий сопряжения (3), что
представляет собой более общий случай, нежели рассмотренный в
[1, 2].

Для λ2 имеет место отношение Рэлея

λ2 =

∫ 0

−1
((U

′
1)(x))2dx +

∫ l

0
γ((U

′
2)(x))2dx

U2
1 (0) + ε

(∫ 0

−1
(U2

1 )(x)dx +
∫ l

0
γ(U2

2 )(x)dx
) (4)

Очевидно, что существует счетный набор простых собственных чи-
сел 0 < λ1 < λ2 < ... < λn < ..., причем λn −−−−→

n→∞
∞. Спектральный

параметр σ находится из квадратного уравнения, типичного для са-
мосопряженных квадратичных операторных пучков. Знаменатель
в формуле (4) определяет нагруженную весовую метрику, в которой
имеет место ортогональность собственных функций.

Явный вид собственных чисел находится из характеристическо-
го уравнения

tg
√

ελ =
√

ε

λ
(1 + γ tg

√
ελ ctg

√
εlλ).

Приведем асимптотику первого собственного числа для малых
ε << 1

λ1 =
√

1 +
γ

l

(
1− ε

6
(1 + γl)

)
+ O(ε2)

При больших значениях n и l = 1 имеет место формула

λn =
nπ√

ε
+ ε

1
2
1 + γ

nπ
− ε

3
2
(1 + γ)2

n3π3

(
1 +

ε(1 + γ)
3

)
+ O

(
1

n4π4

)
.
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Литература
1. Задорожный А.И., Базов И.А. Математическая теория демп-

фера сухого трения с вязкоупругим элементом // Вестник Ростов-
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КУРС МАТЕМАТИКИ ТИМОФЕЯ ФЕДОРОВИЧА
ОСИПОВСКОГО

Барабанов О.О., Юлина Н.А. (Ковров)
barabanov@tritiumnet.org

В этом году исполнилось 240 лет со дня рождения Тимофея Фе-
доровича Осиповского – выдающегося русского естествоиспытате-
ля, философа-рационалиста, математика, педагога и организатора
образования, неутомимого переводчика передовой западной мысли
на русский язык. В истории отечественной науки и образования
Осиповский стоит по времени между Ломоносовым и Лобачевским
и на одном уровне с ними. При этом других столь же ярких ученых
в этот промежуток в России не наблюдается. Осиповский родился
в селе Осипово Ковровского уезда Владимирской губернии 2 фев-
раля, вероятно, 1766. Стал лучшим в первом выпуске Петербург-
ской учительской гимназии. В 1786 приступил к педагогической
деятельности и к работе над фундаментальным четырехтомным
учебником по высшей математике.

С 1813 по 1820 Осиповский был ректором Харьковского уни-
верситета. Учеником Осиповского был Остроградский. По доносу
проф. философии Дудровича Т.Ф. Осиповский, так много сделав-
ший для процветания Харьковского университета, был отстранен
от работы. Скончался Т.Ф.Осиповский в Москве 12 июня 1832.

Учебник Осиповского полнее, чем какое-либо другое руковод-
ство, освещал математические знания того времени от начальных
сведений по арифметике до вариационного исчисления и по ясно-
сти и строгости изложения стоял на одном уровне с лучшими со-
временными иностранными учебниками, см. [1,2]. Т.Ф.Осиповский
вносил в [3] лично полученные новые результаты, как уже извест-
ные. Наиболее глубоким исследованием математического содержа-
ния [3] является работа [4]. Нами ведется работа по переизданию
[3] в современной редакции. Знакомство с [3] заставляет по-новому
взглянуть на современные проблемы педагогики математики.
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МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ 200 ЛЕТ1

Барабанова Л.П. (Ковров)
barabanov@tritiumnet.org

Первая публикация [1] метода наименьших квадратов (МНК),
признанная Гауссом как принцип Лежандра, была продолжена бле-
стящей серией: Гаусс (1809, 1810, 1821), Чебышёв (1859), Марков
(1898), Фишер (1935), Рао (1946), Колмогоров (1946, 1947), Маль-
цев (1947) и др.

В 70-х годах прошлого века МНК подвергся справедливой кри-
тике в связи с его слабой чувствительностью к выбросам. Однако
при планировании измерительной системы разумно предполагать
её регулярную работу в будущем, поскольку для модели выбросов,
как правило, нет оснований. Отсюда следует, что МНК не потерял
своего значения.

Пусть измеряемый столбец t ∈ RN имеет ковариационную мат-
рицу σ2

t · I, где I — единичная матрица. Пусть искомый столбец
x ∈ Rn, N > n, связан с t системой условных уравнений F (x) = t.
При гладком F и высокоточном несмещённом измерении t имеем
σx = K · σt, где σ2

x = M(x− x̄)2, M — математическое ожидание, x̄
— МНК-оценка x,

K2 = tr
(
DT D

)−1
, (1)

где tr — след матрицы, D = F ′(x) — матрица Якоби. Для планиро-
вания навигационных систем важно перевести классическую фор-
мулу (1) на язык строк матрицы D. Пусть S‖ — множество всех
подмножеств по k строк в D, Γ(s) — определитель Грама системы
строк s.

1Работа выполнена при поддержки РФФИ (проект №05-08-50076)
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Теорема. Формула (1) равносильна

K2 =

∑

s∈S\−∞
Γ(s)

∑

s∈S\
Γ(s)

. (2)

Представление (2) имеет отчётливый геометрический смысл.
При n = N оно было получено ранее в [2], что позволило про-
извести оптимизацию конфигурации четырёх спутников в конусе
видимости навигационной системы типа GPS, ГЛОНАСС, Galileo
по критерию minK.
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ОБРАТНАЯ ЗАДАЧА РАССЕЯНИЯ ДЛЯ
ДИСКРЕТНОГО ОПЕРАТОРА ШРЕДИНГЕРА С

СЕПАРАБЕЛЬНЫМ ПОТЕНЦИАЛОМ
Баранова Л.Е. (Ижевск)

chuburin@otf.pti.udm.ru

Рассматривается дискретный операторШредингера H = H0+V,
действующий в пространстве l2(Z), где

H0{ψ(n)}n∈Z = {ψ(n + 1) + ψ(n− 1)}n∈Z

и V = λ(·, ϕ0)ϕ0, λ ∈ R. Здесь {ϕ0(n)} ∈ l2(Z) — ненулевая после-
довательность.

Соответствующее уравнение Липпмана-Швингера имеет вид

ψ±(n,E) = ψ0(n,E)−
∑

m∈Z

G0(n,m, E ± 0)V ψ±(m, E),

где E ∈ (−2, 2), ψ0(n,E) удовлетворяет уравнению H0ψ0 = Eψ0, а
функция G0(n,m, E) есть ядро резольвенты оператора H0.
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Обозначим через ϕ̂0(s) преобразование Фурье элемента ϕ0 ∈
l2(Z). Можно доказать, что амплитуда рассеяния A+(E) опреде-
ляется из уравнения

2λ(A+(E)− 1)

2∫

−2

|ϕ̂0(Ẽ)|2
(Ẽ − E)(

√
4− Ẽ2)

dẼ +2πλ
|ϕ̂0(E)|2√

4− E2
= 1−A+(E).

(1)
Видно, что картина рассеяния определяется функцией |ϕ̂0(E)|.

Рассмотрим класс S четных или нечетных последовательностей
ϕ0 из пространства l2(Z), которые удовлетворяют следующим усло-
виям: |ϕ0(n)| 6 Ce−a|n|, n ∈ Z, где C = const, a = const > 0 и
ϕ̂0(0) = ϕ̂0(π) = 0.

Теорема. Предположим, что индекс на отрезке [−2, 2] функ-

ции f(E) =
1 + i(A+(E)− 1)
1− i(A+(E)− 1)

неотрицателен. Тогда уравнению (1)

удовлетворяет не более одной функции |ϕ̂0(E)| такой, что ϕ0 ∈ S.

О ХАРАКТЕРИЗАЦИИ ГЛАВНЫХ ЧАСТЕЙ
МЕРОМОРФНЫХ ФУНКЦИЙ КОНЕЧНОГО

ПОРЯДОКА И НОРМАЛЬНОГО ТИПА
Беднаж В.А. (Брянск)

Для изложения результата работы введем кратко следующие

определения: T (r, f) = 1
2π

2π∫
0

ln+ |f(reiϕ)|dϕ +
r∫
0

n(t)
t dt − характери-

стика Неванлинна функции f , мероморфной на комплексной плос-
кости. Мероморфная функция имеет конечный порядок и нормаль-
ный тип, если T (r, f) 6 Crρ, ρ > 0.

Положим F (z, zk) =
+∞∏
k=1

(
1− z

zk

)
e

z
zk

+ z2

2z2
k

+...+ zm

mzm
k - произведе-

ние Вейерштрасса. Особые точки функции f удовлетворяют усло-
виям разрешимости интерполяционной задачи в классе мероморф-
ных функций конечного порядка и нормального типа.

В классической теореме Миттаг - Леффлера дается полное опи-
сание главных частей мероморфных функций в окрестности особой
точки. Однако там не характеризуются главные части классов ме-
ромофных функций, для которых вводятся ограничения на харак-
теристику Неванлинны.

В работе получен следующий результат:
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Теорема. Для того, чтобы существовала мероморфная функ-
ция конечного порядка и нормального типа с главными частями

ak,1

z − zk
+

ak,2

(z − zk)2
+ . . . +

ak,n

(z − zk)n

необходимо и достаточно, чтобы

lim
k→+∞

ln |ak,n ·
(
F
′
(zk, zk)

)n

|
|zk|ρ < C.
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О ЗАДАЧЕ КОШИ ДЛЯ ПОЛУЛИНЕЙНОГО
ВОЛНОВОГО УРАВНЕНИЯ С УПРАВЛЕНИЕМ В

СТАРШЕМ КОЭФФИЦИЕНТЕ1

Беляева О.А., Сумин В.И. (Нижний Новгород)
belaeva84@rambler.ru; v_sumin@mail.ru

Пусть c, c, ĉ, T1, T2 – фиксированные неотрицательные числа,
0 < c 6 c, Π ≡ {

t ≡ {t1, t2} ∈ R2 : ct1 6 t2 6 T2 − ct1, 0 6 t1 6 T1

}
.

Рассмотрим задачу Коши для полулинейного волнового уравнения

Lc [x] ≡ x′′t1t1 − (c (t1))
2
x′′t2t2 = g(t, x(t)), t ∈ Π, (1)

x (0, t2) = 0, x′t1 (0, t2) = 0 при t2 ∈ [0, T2] , (2)

в которой g(t, l) : Π×R → R – заданная функция, c(t1) : [0, T1] → R
– управление. Функции g(t, l) и g′l(t, l) удовлетворяют условиям Ка-
ратеодори и ограничены на любом ограниченном множестве. Допу-
стимы управления из класса D абсолютно непрерывных на отрезке
[0, T1] функций, удовлетворяющих на нем условиям c 6 c (t1) 6
c, |c′ (t1)| 6 ĉ. Пусть Γ – "нижнее основание"{t ∈ ∂Π : t1 = 0} мно-
жества Π. Для любых x (·) ∈ W 1

2 (Π) , c (·) ∈ D, η (·) ∈ W 1
2 (Π) ,

z (·) ∈ L∞ (Π) обозначим через J [x (·) , c (·) , η (·) , z (·)] выражение∫
Π

{
x′t1 (t) η′t1 (t)− (c (t1))

2
x′t2 (t) η′t2 (t) + z (t) η (t)

}
dt. Решением за-

дачи (1), (2), отвечающим управлению c (·) ∈ D, назовем функ-
цию x (·) ∈ W 1

∞ (Π) , для которой при любом η (·) ∈ W 1
2 (Π) , рав-

ном нулю на ∂Π\Γ, имеем J [x (·) , c (·) , η (·) , g(·, x(·))] = 0. Каждому
1Поддержка грантом РФФИ 04-01-00460
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управлению может отвечать не более одного такого, глобального,
решения. Пусть Ω – множество тех управлений, каждому из кото-
рых отвечает глобальное решение (1),(2). Обозначим через Ac[z]
решение из W 1

∞(Π) задачи Коши с условием (2) для уравнения
Lc [x] = z(t), t ∈ Π, при c (·) ∈ D, z (·) ∈ L∞(Π). Для каждого
c (·) ∈ D линейный оператор Ac[·] : L∞(Π) → L∞(Π) ограничен.
Сформулируем общую теорему об устойчивости свойства глобаль-
ной разрешимости (1),(2) при возмущении управления и ее кон-
кретное следствие.

Теорема. ∀c0 (·) ∈ Ω ∃δ > 0 : c (·) ∈ D, ‖Ac0 −Ac‖ < δ ⇒ c (·) ∈
Ω.

Следствие. ∀c0(·) ∈ Ω ∃δ > 0 : c(·) ∈ D, ‖c(·)− c0(·)‖C[0,T1]
+

+ ‖c′(·)− c′0(·)‖L∞[0,T1]
< δ ⇒ c (·) ∈ Ω.

РАЗРЕШИМОСТЬ ЗАДАЧИ ДИРИХЛЕ НА
СТРАТИФИЦИРОВАННОМ МНОЖЕСТВЕ

Беседина С.В. (Воронеж)

В работе рассматривается связное множество Ω = Ω0 ∪ ∂Ω0, яв-
ляющееся подмножеством в Rn, составленное из n-мерных много-
гранников (стратов), прочно примыкающих друг к другу. Граница
множества состоит из одномерных стратов, размерности меньшей
n. На Ω рассматривается задача Дирихле

div(p gradu) = 0,

u|∂Ω0 = ϕ,

p = const в пределах каждого страта. На Ω вводится понятие мяг-
кого Лапласиана.

Применение классических методов, без изменения, для доказа-
тельства разрешимости задачи Дирихле на рассматриваемом мно-
жестве невозможно, в связи с рядом особенностей, которые воз-
никают в местах стыковки стратов. В связи с этим доказательство
разрешимости проводится при помощи модифицированного метода
Пуанкаре-Перрона.

В основе метода Пуанкаре-Перрона лежит теорема о среднем,
неравенство Харнака и формула Пуассона в шаре. Уже при введе-
нии понятия шара (вид которого может быть достаточно необыч-
ным) появляется ряд особенностей, что связано с достаточно слож-
ной геометрией рассматриваемого множества. В результате нуж-
ные теоремы удалось доказать только для шаров достаточно малого
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радиуса, что повлекло необходимость доказательства ряда вспомо-
гательных утверждений из которых следует разрешимость задачи
Дирихле.
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О ВЛОЖЕНИИ В ПРОСТРАНСТВЕ ЛОРЕНЦА
Бимендина А.У. (Караганда)

bimen@mail.ru

Пусть {ϕk(x)}+∞k=0-система Прайса на группе G[1]. Для функции
f ∈ L(G) ставим в соответствие её ряд Фурье-Прайса.

Через Lpθ(G), 1 6 p 6 +∞, 1 6 θ 6 +∞ обозначим пространство
Лоренца[2].

Последовательность {ak}+∞k=0 называется квазимонотонным, ес-
ли ∃τ > 0 такое, что ak

kτ ↓ 0 при k → +∞.
Справедливы следующие утверждения:
Теорема 1. Пусть f ∈ Lpθ(G), где 1 6 p < +∞, 1 6 θ 6 +∞.

Если для некоторого q : 1 6 p < q < +∞ ряд

+∞∑

k=1

kθ( 1
p− 1

q )−1Eθ
k(f)pθ < +∞

сходится, то f ∈ Lqθ(G) и справедлива неравенства:

‖f‖qθ 6 cpqθ



‖f‖pθ +

[
+∞∑

k=1

kθ( 1
p− 1

q )−1Eθ
k(f)pθ

] 1
θ



 ,

En(f)qθ 6c′pqθ



(n + 1)

1
p− 1

q En(f)pθ +

[
+∞∑

k=n+1

kθ( 1
p− 1

q )−1Eθ
k(f)pθ

] 1
θ



 ,
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где Ek(f)pθ - наилучшее приближение функции f ∈ Lpθ(G) посред-
ством линейных агрегатов по элементам мультипликативной систе-
мы Прайса.

Теорема 2. Пусть f ∈ Lqθ(G), 1 < q < +∞, 1 < θ < +∞
и её коэффициенты Фурье-Прайса {ak}+∞k=1 квазимонотонны. Тогда
для любого p ∈ (1, q) имеет место неравенство:

+∞∑
n=1

nθ( 1
p− 1

q )−1Eθ
n(f)pθ 6 c′′pqθτ‖f‖θ

qθ.
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УРАВНЕНИЕ (a · x)× b = c В ТЕТРАГРУППОИДЕ, В
КОТОРОМ НЕТ ЗАКОНОВ ДЛЯ ОПЕРАЦИЙ

Блюмин С.Л. (Липецк)
slb@stu.lipetsk.su

Рассматривается тетрагруппоид TΓ =< S, ·,×;¯,⊗ > с основ-
ными операциями ·,×, coпровождающими операциями ¯,⊗ и со-
провождающими элементами a·, a¯, a×, a⊗ такими, что:

(∇a)(∃a·)(∃a¯)(∃a×)(∃a⊗)
1·(∀x){(a· · (a · x))¯ (a¯ · x) = x},
2·(∀x, y){a · (y ¯ (a¯ · x)) = a · y};
1×(∀x){(x× a⊗)⊗ ((x× a)× a×) = x},
2×(∀x, y){((x× a⊗)⊗ y)× a = y × a}.
Не предполагается наличие сочетательных, переместительных,

распределительных законов, нейтральных, симметричных, регу-
лярных элементов.

Критерий разрешимости уравнения (a · x)× b = c:
(a ·(a· ·((t×b⊗)⊗(c×b×))))×b = ((t×b⊗)⊗(c×b×))×b = c, t ∈ S.
Общее решение:
x = (a· · ((t× b⊗)⊗ (c× b×)))¯ (a¯ · s), t, s ∈ S.
Пример: S = {p, q, r}, операции
· p q r
p q p r
q p q p
r q r r

× p q r
p q p r
q p q p
r q r r

¯ p q r
p p p p
q q r q
r q r r

⊗ p q r
p p q r
q p q p
r r q p

.
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Для уравнения (r · x)× p = q, можно использовать r· = p, r¯ =
p, p× = p, p⊗ = q, t = r. Выполняется критерий (r · (p · ((r× q)⊗ (q×
p))))×p = (r · (p · (r⊗p)))×p = (r · (p · r))×p = (r · r)×p = r×p = q;
общее решение:

x = (p ·((r×q)⊗(q×p)))¯(p ·{p∨q∨r}) = r¯{q∨p∨r} = {q∨r}.
В полукольце [1] с совпадающими умножениями · и × роль ¯ и

⊗ играет сложение +, a· и b× - обобщенные обратные к регулярным
a и b, a¯ и b⊗ - их регулярные дополнения, и результаты сводятся
к полученным в [2].
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КОНТРАСТНЫЕ СТРУКТУРЫ В РЕШЕНИЯХ
СИНГУЛЯРНО ВОЗМУЩЕННЫХ

ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В
СЛУЧАЕ НЕСТАБИЛЬНОСТИ СПЕКТРА

Бободжанов А.А., Прохоренко В.И., Сафонов В.Ф.
(Москва)

В настоящей работе продолжаются исследования, связанные с
возникновением внутренних переходных слоёв в интегро-диффе-
ренциальной системе вида

ε
dy

dt
= A(t) y +

t∫

0

exp


1

ε

t∫

s

µ0(θ)dθ


K(t, s) y(s, ε)ds+

+M(t)

t∫

0

exp


1

ε

t∫

s

µ1(θ)dθ


N(s) y(s, ε)ds + h(t), y(0, ε) = y0

(1)
с двумя быстро изменяющимися ядрами, одно из которых имеет
нестабильное спектральное значение (µ1(t) ≡ 0 ∀t ∈ S ⊂ [0, T ]),
другое - стабильное спектральное значение (µ0(t) 6= 0 ∀t ∈ [0, T ]).
При этом предполагается, что спектр {λj(t)} матрицы A(t) ста-
билен. Ставится задача о построении асимптотического решения
(любого порядка) системы (1) при ε → +0. В ходе исследования
этой задачи обсуждается (как самостоятельный объект) проблема
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описания контрастных структур в систе(1). Исчерпывающий ответ
на вопрос о том, при каких условиях возникают такие структуры
и какова их конструкция, может быть получен на основе анализа
асимптотического решения задачи (1). Разрабатывается алгоритм
построения такого решения, основанный на методе регуляризации
и методе нормальных форм (см. например. [1-3]).
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ДИФФЕРЕНЦИАЦИЯ В ПРОЦЕССЕ
ПРЕПОДАВАНИЯ МАТЕМАТИКИ В ВЫСШЕЙ

ШКОЛЕ
Бобылева О.Д. (Нальчик)

Математика как учебный предмет имеет ряд специфических
особенностей. Во-первых, процесс изложения учебного материала
в основном является линейным, что диктует необходимость систе-
матичного овладения системой математических знаний, умений и
навыков, необходимых для дальнейшего изучения как самой дис-
циплины, так и смежных дисциплин. Во-вторых, одной из основ-
ных задач педагогического процесса обучения математике являет-
ся усвоение результатов знаково-символической деятельности, что
ведет к соответствующей организации познавательной деятельно-
сти, способствующей сознательному оперированию математически-
ми объектами. В-третьих, обучение математике опирается на разви-
тое логическое мышление, пространственное воображение, инстру-
ментальные и графические навыки, т.е. в определенной степени
на индивидуальные психо-физиологические особенности, поэтому
учет психологических законов восприятия, возможностей и законо-
мерностей нейрофизиологических механизмов памяти и мышления
должен оказать положительное воздействие на качество усвоения
материала.

Очевидно, что оптимизация процесса преподавания математи-
ки может быть достигнута путем специальной организации формы
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и содержания занятий. Изучение особенностей преподавания ма-
тематики на различных специальностях позволили нам определить
педагогические факторы, критерии и условия формирования содер-
жания образования, в качестве которых мы приняли следующую их
совокупность:

1) Уровень подготовки к восприятию математических знаний
студентами разных курсов и направлений подготовки специалиста.

2) Фактор учета способностей и возможностей к изучению ма-
тематики студентами разных курсов и направлений подготовки спе-
циалистов.

3) Фактор учета мотивации к изучению математики студента-
ми разных курсов и специальностей.

4) Интеграция математических знаний с другими областями
знаний.

Таким образом, особенности математики как учебного предме-
та диктуют особое значение дифференциации в процессе обучения,
влекущее за собой построение специальной модели предмета, а за-
тем наполнения ее конкретным содержанием. На наш взгляд, опти-
мальной является внутренняя дифференциация, которая в стенах
вуза пока является достаточно инновационной, однако в последние
годы явно наблюдается тенденция к ее развитию, что отражается в
работах В.И. Горовой, Е.А.Климова, Н.Б. Русских, Л.Л.Супрунова,
а также в трудах ряда других ученых. Она может проявляться как в
традиционной форме учета индивидуальных особенностей учащих-
ся, так и в форме уровневой дифференциации, которая выражается
в том, что, обучаясь в одной группе, по одной программе и учеб-
ной литературе, студенты могут усваивать материал на различных
уровнях. Реализуя дифференциацию в вузе, на наш взгляд, необ-
ходимо делать акцент на дидактико - технологическую составля-
ющую, в ходе которой осуществляется выбор наилучшего режима
работы для студента, подходящего уровня сложности материала,
оптимального способа предъявления информации. При этом важ-
но контролировать процесс выполнения требований, предъявляе-
мых к студенту вуза, поскольку уровень обязательной подготовки
студента, свидетельствующий о выполнении минимально необхо-
димых требований к усвоению содержания и являющийся основой
для формирования более высоких уровней овладения материалом,
является определяющим, то есть происходит планирование резуль-
татов обучения.
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О ПРОДОЛЖЕНИИ 2-МЕРНЫХ АЛГЕБР,
СОДЕРЖАЩИХ СКАЛЯРНЫЕ МАТРИЦЫ1

Болдырева О.А. (Воронеж)
boa@vgasu.vrn.ru

При изучении однородных многообразий возникает задача о
продолжении матричных алгебр Ли. Алгебра, соответствующая
аффинно-однородной поверхности в C3, состоит из матриц специ-
ального вида:

M =




A1 A2 0 p
B1 B2 0 s
a b c q
0 0 0 0


 . (1)

Два элемента c, q таких матриц являются вещественными, а
остальные, вообще говоря, комплексными числами. При этом име-
ются некоторые дополнительные ограничения на эти элементы. На-
пример, для некоторых положительных ε1, ε2

a = 2i(p̄ + 2ε1p), b = 2i(s̄ + 2ε2s). (2)

Левые верхние 2х2-блоки этих матриц сами образуют веществен-
ную алгебру. Переход от подалгебр M(2,C) к подалгебрам M(4,C)
мы и называем продолжением.

Нас интересуют продолжения двумерных подалгебр M(2,C) до
5-мерных вещественных подалгебр M(4,C) общего положения. Под
общностью положения мы понимаем ограничение (ε1 − ε2)(2ε1 −
1)(ε2 − 1) 6= 0 на параметры ε1, ε2 из (2).

Все двумерные алгебры описаны в [1]. В [2] доказана невозмож-
ность продолжения алгебры с нулевым кратным спектром. Здесь
мы обсуждаем еще 3 типа алгебр из [1], содержащих скалярные
матрицы. Один из этих типов содержит лишь скалярную алгебру,
а в алгебрах двух других типов имеются не только скалярные мат-
рицы.

ТЕОРЕМА. В общем положении продолжение скалярной дву-
мерной подалгебры M(2,C) невозможно.

При доказательстве этой теоремы оказывается полезным следу-
ющее

Предложение. Если двумерная алгебра, допускающая продол-
жение, содержит скалярную матрицу, то эта матрица является ве-
щественной.

1Работа выполнена при поддержке РФФИ (грант 05-01-00630 ).
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Из этого предложения следует что невозможно также продол-
жение алгебр, содержащих скалярные не вещественные матрицы.
Если скалярная базисная матрица, входящая в двумерную алгебру
является вещественной (единичной), то вопрос о продолжении та-
кой алгебры сводится к большой системе квадратичных уравнений.
Эта система до конца пока не изучена.
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двумерных вещественных подалгебр алгебры Ли M(2,C). Труды
5-й междунар. конф. молодых ученых «Актуальные проблемы со-
временной науки». Самара 2004, стр. 104-107.

[2] Болдырева О.А. О продолжении 2-мерных матричных ал-
гебр. Воронежская зимняя математическая школа. Тезисы докла-
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ТЕОРЕМА РАВНОСХОДИМОСТИ ДЛЯ
ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ ПЕРВОГО

ПОРЯДКА НА ГРАФЕ-ЦИКЛЕ1

Бурлуцкая М.Ш. (Воронеж)
bums@kma.vsu.ru

Рассматривается дифференциальный оператор первого поряд-
ка, заданный на связном геометрическом графе Γ, состоящем из
n ребер. Изучается вопрос о равносходимости разложений некото-
рой функции f(x) по собственным функциям данного дифферен-
циального оператора и по обычной тригонометрической системе.
Используется векторный подход ([1], с.21), в соответствии с кото-
рым краевая задача, порождающая изучаемый оператор, имеет вид
y′j(x) = λdjyj(x) + djf(x), x ∈ [0, 1], dj > 0, j = 1, . . . , n

Uj(y) =
n∑

k=1

ajkyk(0) +
n∑

k=1

bjkyk(1), j = 1, . . . , n

Дифференциальный оператор вводится следующим образом:

Ly = D−1y′, y = (y1, . . . , yn)T , D−1 = diag(d−1
1 , . . . d−1

n ) (1)
U(y) = P0y(0) + P1y(1) = 0, (2)

где P0, P1 — матрицы коэффициентов {aij}, {bij} соответственно,
T — знак траспонирования.

1Работа выполнена при финансовой поддержке гранта РФФИ № 04-01-00049
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Теорема 1. Если краевые условия (2) регулярны по Биркгофу
(в данной задаче detP0 det P1 6= 0), то к любой вершине графа не
может примыкать более двух ребер.

Таким образом, для регулярности краевых условий, необходимо,
чтобы Γ являлся циклом. Пусть теперь Γ — цикл, и условия (2)
означают непрерывность y(x) на Γ.

Теорема 2. Если fj(x) ∈ L[0, 1], δ ∈ (0, 1/2) то
lim

r→∞

∥∥∥ 1
2πi

∫
|λ|=r

(Rλf)j dλ− σrdj
(fj , x)

∥∥∥
C[δ,1−δ]

= 0,

j = 1, . . . , n, f = (f1, . . . , fn)T , (Rλf)j — j-ая компонента резоль-
венты опертора L ; σr(g, x) — частичная сумма ряда Фурье ска-
лярной функции g(x) по тригонометрической системе {e2kπix}+∞−∞
для тех k, для которых |2kπ| < r.

Был использован метод контурного интеграла [3], развитый в
[2].
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О НУЛЯХ АНАЛИТИЧЕСКИХ В ПОЛУПЛОСКОСТИ
ФУНКЦИЙ С ЗАДАННЫМ РОСТОМ НА

БЕСКОНЕЧНОСТИ
Быков С.В. (Брянск)

b_serecha@mail.ru

Пусть C+ — верхняя полуплоскость комплексной плоско-
сти, λ(r) — монотонно растущая положительная функция из
C(1)(0, +∞). Обозначим через H(C+) — множество всех голоморф-
ных в C+ функций, и предположим, что

A(λ) = {f ∈ H(C+) : ln |f(z)| 6 Cfλ(|z|), z ∈ C+} .

Для функций конечного порядка ρ характеризация корневых мно-
жеств получена Н.В. Говоровым ([1], [2]). Им, в частности, установ-
лено, что если

ln |f(z)| 6 Cε|z|ρ+ε, ∀ε > 0 (1)
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и f(iyn) = 0, n = 1, 2, ..., то при всех ε > 0
+∞∑
n=1

1

yp+ε
n

< +∞. При

этом существует функция f с условием (1) и {yn}+∞n=1 такая, что

f(iyn) = 0, n = 1, 2, ... и
+∞∑
n=1

1

yp−ε
n

= +∞ при произвольном ε > 0.

Для класса A(λ) нами установлено:

Теорема. Пусть λ ∈ C(2)(0, +∞), причем λ
′′

(r)

λ′2(r)
→ 0 при r → +∞.

Тогда если f ∈ A(λ): f(iyn) = 0, n = 1, 2, ... при всех ε > 0, то
+∞∑
n=1

1
λ(yn)(lnλ(yn))1+ε < +∞ при всех ε > 0.

Обратно: Если λ удовлетворяет вышеуказанному условию, то
существует функция f ∈ A(λ) и последовательность {yn}+∞n=1,

f(iyn) = 0, n = 1, 2, ..., что
+∞∑
n=1

1
λ(yn)(lnλ(yn))1−ε = +∞ при всех ε > 0.

Замечание: Условие (1) не накладывает ограничения на рост
функций.

Литература
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О НУЛЯХ АНАЛИТИЧЕСКИХ В ПОЛУПЛОСКОСТИ
ФУНКЦИЙ С ЗАДАННЫМ РОСТОМ НА

БЕСКОНЕЧНОСТИ
Быков С.В. (Брянск)

b_serecha@mail.ru

Пусть C+ - верхняя полуплоскость комплексной плоскости, λ(r)
- монотонно растущая положительная функция из C(0, +∞). Обо-
значим через H(C+) - множество всех голоморфных в C+ функций,

A(λ) = {f ∈ H(C+) : ln |f(z)| 6 Cfλ(|z|), z ∈ C+} .

В работах Н.В. Говорова ([1], [2]) установлено, что если

ln |f(z)| 6 Cε|z|ρ+ε, ∀ε > 0 (1)

и f(iyn) = 0, n = 1, 2, ..., f(i) = 1, то
+∞∑
n=1

1

yρ+ε
n

< +∞ при всех ε > 0.

При этом существует функция f с условием (1) и {yn}+∞n=1 такая, что
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f(iyn) = 0, n = 1, 2, ..., f(i) = 1 и
+∞∑
n=1

1

yρ−ε
n

= +∞ при произвольном

ε > 0.
Для класса A(λ) нами установлено:

Теорема. Пусть λ ∈ C(2)(0,+∞), причем λ
′′

(r)

λ′2(r)
→ 0 (2) при r →

+∞. Тогда если f ∈ A(λ): f(iyn) = 0, n = 1, 2, ..., f(i) = 1, то при

всех ε > 0
+∞∑
n=1

1
λ(yn)(lnλ(yn))1+ε < +∞.

Обратно: Если λ удовлетворяет вышеуказанному условию, то
существует функция f ∈ A(λ) и последовательность {yn}+∞n=1 та-

кие, что f(iyn) = 0, n = 1, 2, ..., f(i) = 1 и
+∞∑
n=1

1
λ(yn)(lnλ(yn))1−ε = +∞

при всех ε > 0.
Замечание: Условие (2) не накладывает ограничения на рост
функций λ.

Литература
1. Говоров Н.В. ДАН СССР,1965.
2. Говоров Н.В. Краевая задача Римана с бесконечным индек-

сом.М.:Наука,1986.

О ПPИЛOЖEНИИ METOДA PEШЕTA K KOPOTKИM
ИHTEPBAЛAM АРИФМЕТИЧЕСКОЙ ПРОГРЕССИИ

Вахитова E.B. (Стерлитамак)

Paccмoтpим поcлeдовaтeльнocть A :

A := {kn + l | k, l, n ∈ N, (k, l) = 1, 0 < l < k, n 6 x}, (1)

x – дocтaтoчнo бoльшoe полoжитeльнoe чиcлo.
Tеopeма 1. Пусть поcлeдовaтeльнocть A oпpeдeлeнa

уcлoвиeм (1), a, b, c ∈ R, 1 6 b < c < a, 2c − b − 1 > 0. Тогда
имеeт меcтo cлeдующaя оценкa:

∑

P2∈A

1 > 2 + O(ε)
ϕ(k)

a

4(2c− b− 1)
K(a, b, c)

x

ln x
,

гдe вeличинa K(a, b, c) oпpeдeлeнa cлeдующим paвeнcтвoм:

K(a, b, c) :=
10c + 3b− 7

10
ln 3− b− 1

2
ln 5− 4(b− 1)

3
+(4−c) ln

4− b

4− c
+
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+
(

ln
5
3

+
8
3

+
4(b + 1)

5

)
ln

b + 1
2

− c ln c− 4 + 4b− 5c

5
ln(4− b),

P2 – 2–пoчти пpocтoe числo, ϕ(k) – функция Эйлера.
Теорема 2. Cуществуют числа P2, такие, что

P2 = kn + l, 0 < l < k, (k, l) = 1 и x− x
1

Λ2 < P2 < x, Λ2 = 1, 975.

Oтмeтим, что paнee были пoлучeны знaчeния Λ2 = 1, 845
(Ивaнeц) и Λ2 = 1, 937 (Гpивc). Пpи дoкaзaтeльcтe тeopeм 1 и 2
пpимeняeтcя мeтoд решета. O paзличныx мeтoдax решета мoжнo
узнaть из paбoт [1] – [4].
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[4] Heath –Brown D. R. Lectures on sieves. Bonn: Univ. Bonn,
Mathematisches Institut. Bonner Mathem. Schriften.– 2003. – 50 P.

ОЦЕНКИ НЕКОТОРЫХ НЕЛИНЕЙНЫХ
ФУНКЦИОНАЛОВ И ИХ ПРИЛОЖЕНИЯ К

ГЕОМЕТРИИ1

Габушин В.Н. (Екатеринбург)
Gabushin@imm.uran.ru

В связи с использованием для задания кривых различных клас-
сов действительных функций представляют интерес оценки гео-
метрических характеристик таких кривых. Пусть вектор-функция
~r(t) = (t, f(t), g(t)), t ∈ I ⊂ R задает некоторую пространственную
кривую (размерность d = 3), а вектор-функция r(t) = (t, f(t)) зада-
ет плоскую кривую (размерность d = 2). Рассматривается задача о
точных по классу оценках кривизны кривых

Kα(W ) = sup{‖kα(r, t)‖I : ~r(t) ∈ W}, (1)
1Работа поддержана грантом РФФИ 05-01-00949.
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где kα(r, t) =
∣∣∣[~r′(t), ~r′′(t)]

∣∣∣/|~r′(t)|α при d = 3, kα(r, t) = |f ′′(t)|/(1 +

f ′(t)2)α/2 при d = 2, ‖kα(r, t)‖I = sup{|kα(r, t)| : t ∈ I}, W –
некоторый класс вектор-функций (класс кривых). Пусть ~r∗(t) =
(0, f(t), g(t)) при d = 3, r∗(t) = (0, f(t)) при d = 2, длина вектора
определяется стандартно, и пусть ‖r∗(t)‖p,I = (

∫
I
|r∗(t)|p dt)1/p при

0 < p < ∞, ‖r∗(t)‖∞,I = ess sup{|r∗(t)| : t ∈ I}, Wn
p,s(A,B) = {r(t) :

‖r∗‖p,R 6 A, ‖r(n)
∗ ‖s,R 6 B}. Если α = 3, то kα – кривизна.

Теорема 1. Пусть p, s > 1, d = 3, α > 1. Тогда
Kα(Wn

p,s(A,B)) = Cp,sA
αB1−α, где Cp,s – точная константа в

неравенстве Колмогорова

‖f ′′‖∞ 6 Cp,s‖f‖α
p ‖f (n)‖1−α

s , α = (n− 2− 1/p)/(n− 1/p + 1/s).

При этом либо существует плоская экстремальная кривая, либо
существует экстремальная последовательность кривых, лежа-
щих в одной плоскости.

Пусть Wn(a) = {r(t) = (t, f(t)) : f(t) − алгебраические много-
члены степени не выше n, ‖~r∗‖∞,I 6 a, I = [−1, 1]}.

Теорема 2. Пусть α > 0, n > 3, I = [−1, 1]. Тогда найдется
такое число a∗ = a∗(n, α), что для любой экстремальной в задаче
(1) для класса Wn(a), 0 < a < a∗, вектор-функций r(t) имеем

Kα(Wn(a)) = kα(r, 1) или Kα(Wn(a)) = kα(r,−1).

О СПЕКТРАЛЬНЫХ СВОЙСТВАХ ОДНОЙ КРАЕВОЙ
ЗАДАЧИ ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО

УРАВНЕНИЯ С ДРОБНОЙ ПРОИЗВОДНОЙ
Гачаев А.М. (Грозный)

niipma@mail333.com

Рассмотрим краевую задачу

u′′ + λΓ(2− α)Dα
0xu = θ(x), (1)

u(0) = 0, u(1) = 0, (2)

где Dα
0xu – дробная производная Римана-Лиувилля порядка α [1],

θ(x) – известная функция.
Задача (2) для уравнения (1) рассмотрена в работах [2], [3], [4].

35



Теорема. Если 0 < λ < (3− α)(2− α)/24, то уравнение

u(x) + λ





x∫

0

x(1− t)1−αu(t)dt−
x∫

0

(x− t)1−αu(t)dt



 = F (x)

имеет единственное решение и разность между этим решением
и решением

ũ(x) = F (x) +
(2− α)(3− α)(−x)
(3− α)(2− α)− λ

1∫

0

(1− t)f(t)dt

уравнения u(x)− λ

Γ(2− α)

1∫

0

x(1− ξ)1−αu(ξ)dξ = F (x), удовлетво-

ряет оценке
∣∣∣∣∣∣
u(x)− (2− α)(3− α)(−x)

(3− α)(2− α)− λ

1∫

0

(1− t)f(t)dt− F (x)

∣∣∣∣∣∣
6

Nλ
(
1 + 24

23

)2

1− λ
(
1 + 24

23

) .

Литература
1. Нахушев А.М. Дробное исчисление и его применение. М.:

Физматлит, 2003.
2. Алероев Т.С. // Дифференц. уравнения, 1984. Т. 22, № 1.
3. Алероев Т.С. // Доклады РАН, 1995. Т. 341, № 1.
4. Джрбашян М.М. Интегральные преобразования и представ-

ления функций в комплексной области. М.: Наука, 1966.

КОНЕЧНОШАГОВЫЙ РЕГУЛЯРИЗОВАННЫЙ
МЕТОД В ЗАДАЧЕ УПРАВЛЕНИЯ
ПАРАБОЛИЧЕСКОЙ СИСТЕМОЙ1

Герасимова Е.Н. (Москва)
elena@neumann-elektronik.ru

Рассматривается задача оптимального управления

J(u, v) = Φ(w, u) → inf,

1Работа выполнена при поддержке РФФИ, проект № 04-01-00619.
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wt − (a(x) · wx(x, t))x = d(x)u(t) + f(x, t), (x, t) ∈ Q,

wx(0, t) = v(t), wx(l, t) = 0, t ∈ [0, T ], w(x, 0) = ϕ(x), x ∈ [0, l]

c ограничениями на управления (u(t), v(t)) ∈ L2(0, T )× L2(0, T ) :

|u(t)|L2(0,T ) 6 R1, |v(t)|L2(0,T ) 6 R2.

Здесь Φ - выпуклая функция, Q = (0, l)× (0, T ); a(x) ∈ C1[0, l],
a(x) > 0, f ∈ L2(Q), y(x), d(x), ϕ(x) ∈ L2(0, l).

Для данной задачи ставится в соответствие конечноразностная
задача. Для решения конечноразностных задач применяется метод
проекции градиента с конечношаговыми внутренними процедура-
ми. Для вычисления проекции применяется двойственный регуля-
ризованный метод [1], который является развитием обобщенного
метода моментов [2]. Используя методику исследования свойств ап-
проксимаций задач оптимального управления [3], выведены усло-
вия и оценки сходимости по функционалу и по управлению.

Литература
[1] Ишмухаметов А.З. Двойственный метод решения одного

класса выпуклых задач минимизации. ЖВМ и МФ, 2000, т.40, №7.
c. 1045-1060.

[2] Васильев Ф.П., Ишмухаметов А.З., Потапов М.М. Обоб-
щенный метод моментов в задачах оптимального управления. М.:
Изд-во МГУ, 1989.

[3] Ишмухаметов А.З. Регуляризованные методы оптимиза-
ции с конечношаговыми внутренними алгоритмами. Доклады РАН,
2003, т.390, № 3, с. 304-308.

РАЗНОСТНОЕ УРАВНЕНИЕ, РЕШАЮЩЕЕ ЗАДАЧУ
О МАЛЫХ КОЛЕБАНИЯХ СТРУННОЙ СЕТКИ С
УСЛОВИЕМ "ЖИДКОГО" ТРЕНИЯ В УЗЛАХ1

Глотов Н.В. (Воронеж)

Начально-краевая задача для волнового уравнения на конечной
и ограниченной пространственной сети с условиями так называе-
мого жидкого трения в узлах (и с краевыми условиями второго
типа) сводится, применяя подход, изложенный в [1], к классиче-
ской задаче о распространении граничных режимов, производная
вектор-функции из которых является решением уравнения

(2(M − V −1A) + (P −M)(I + V −1K))µ′(t) = g(t), (t > 0) (1)
1Работа выполнена при поддержке РФФИ (проект 04-01-00049)
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где µ : [0; +∞) → Rm (m - количество узлов пространственной
сети, включая тупиковые точки), A - матрица смежности узлов,
V - матрица валентностей, (Pf)(t) := f(t + 1), (Mf)(t) := f(t −
1), K - диагональная матрица коэффициентов трения в узлах, g -
известная функция, определяемая через начальное отклонение.

Теорема. Пусть α := (I + V −1K)−1(2V −1A), γ := −(I +
V −1K)−1((I − V −1K)), g̃(τ) := (I + V −1K)−1(P −M)V −1g(τ + 1).
Если существует δ - решение уравнения δ(α + δ) = γ, матрицы α, δ
перестановочны, V 6= K, то

µ′(t + n) =
n−1∑

k=0

(−1k)δk(α + δ)n−k−1(µ′(t + 1) + δµ′(t))+

+
n−1∑

k=0

n−k−2∑

j=0

(−1)kδk(α + δ)j g̃(t) + (−1)nδnµ′(t). (t ∈ [0; 1), n ∈ N)

Литература
[1] Прядиев В.Л. Один подход к описанию в конечной форме

решений волнового уравнения на пространственной сети // Spectral
and Evolution Problems: Proceeding of the Fifteenth Crimean Autumn
Math. School – Symposium. Vol. 15, September 17-29, 2004, Sevastopol,
Laspi. – Simferopol, 2005.

ОЦЕНКА АСИМПТОТИКИ ПРИ t →∞ РЕШЕНИЯ
НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ
ТЕПЛОПРОВОДНОСТИ В ПОЛУПРОСТРАНСТВЕ

Глушко А.В., Рябенко А.С. (Воронеж)

В работе рассматривается дифференциальное уравнение

∂ v

∂ t
− a2 (x3)∆v = g (x, t) (1)

с начальными и граничными условиями:

v (x, t) | t=0 = 0, (2)

v| x3=0 = v| x3=∞ = 0, (3)

где t > 0, (x1, x2) ∈ R2, x3 ∈ [0,∞) , a2 (x3) ∈ C [0,∞) , 0 <
ε1 6 |a(x3)| 6 ε2, при некоторых ε1, ε2.
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Известно, что при произвольном a(x3) нельзя построить реше-
ние задачи (1)-(3) в явном виде, поэтому для изучения поведе-
ния решения задачи (1)-(3) при t → ∞ применен принцип лока-
лизации, позволяющий свести изучение этого поведения к иссле-
дованию контуров потери аналитичности образа Фурье-Лапласа
Lt→γ Fx1,x2→s1,s2 решения задачи (1)-(3) в окрестности точки по-
ворота.

Выделение зон аналитичности основано на априорных оценках
образа Фурье-Лапласа решения задачи (1)-(3). Полученные оценки
поведения при t → ∞ являются точными, что подтверждается в
случае a(x3) ≡ const.

Введем необходимое функциональное пространство.
Определение. Пусть δ > 0.Функция u(x1, x2, x3, t) принадле-

жит пространству H+
2,1,δ =

{
u|u(x1, x2, x3, t) · exp [δt] ∈ L2(R4

++)
}

с нормой

‖u‖ 2,1,δ = ‖u exp [δt]‖+
∥∥∥∥

∂ u

∂ t
exp [δt]

∥∥∥∥ +
3∑

j=1

∥∥∥∥
∂ 2 u

∂ 2 xj
exp [δt]

∥∥∥∥,

где ‖·‖ — норма L2(R4
++).

Сформулируем основной результат работы.
Теорема. Пусть g(x, t) ∈ H+

2,1,δ, а v(x1, x2, x3, t) — решение зада-
чи (1)-(3), тогда справедлива следующая оценка: |v(x1, x2, x3, t)| 6
c · t− 3

2 .

О ПЛАНИРОВАНИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
СТУДЕНТОВ

Глушко Е.Г., Дубровская А.П., Провоторова Е.Н.
(Воронеж)

Важнейшим условием продуктивности как аудиторных так и
внеаудиторных занятий является уровень культуры умственного
труда студентов, психологическая и практическая готовность к са-
мостоятельной работе к вузе и наличие умений и навыков к ней. По-
этому задача формирования у студентов умений овладевать знани-
ями и методами обучения становится доминирующей в организации
учебно-воспитательного процесса. Одной из составных частей это-
го процесса является самостоятельная работа, эффективность ко-
торой определяется в большей мере степенью ее организации. Если
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рассматривать организацию самостоятельной работы как отдель-
ную систему, то все основные ее элементы могут быть представлены
следующими подсистемами:

1) планирование; 2) контроль; 3) анализ.
Подсистема планирования определяет последовательность и

непрерывность в изучении математических дисциплин и решает за-
дачу распределения затрат времени студентом на все виды учебной
работы с учетом их трудоемкости. Подсистема контроля обеспечи-
вает ритмичность работы студентов в процессе обучения и содер-
жит контрольные мероприятия, включающие контрольные работы,
коллоквиумы, типовые расчеты, курсовые работы, отчеты по те-
мам, вынесенным на самостоятельное изучение, зачеты, экзамены.
Структура и содержание контрольных мероприятий дает возмож-
ность студентам поэтапно, планомерно, непрерывно организовать
процесс обучения, что является обязательным условием достиже-
ния высокого качества знаний.

Для обеспечения эффективного руководства самостоятельной
работой студентов нами разрабатываются методические указания,
представляющие собой планы-графики по каждой математической
дисциплине по каждому семестру отдельно и всего курса в целом.
Структура их следующая:

1. Содержание требований к уровню усвоения дисциплины и
умений студентов.

2. Объем всего курса, соотношение лекционных и практических
занятий, количество часов по видам, выделяемых на самостоятель-
ную работу.

3. Программа лекционных и практических занятий.
4. Тематика курсовых работ с указанием основных источников.
5. Перечень тем, выносимых на самостоятельное изучение с ука-

занием их места в общем курсе.
6. Перечень контрольных мероприятий, тематику, последова-

тельность и сроки их проведения.
7. Учебно-методический комплекс, включающий учебную и ме-

тодическую литературу, вопросы для подготовки к коллоквиумам,
экзаменам, зачетам, а также образцы заданий к контрольным ме-
роприятиям.

Корректируя планы-графики, мы стремимся определить и реко-
мендовать студентам оптимальные условия самостоятельного изу-
чения математических дисциплин, что позволяет интенсифициро-
вать внеаудиторную работу, сделать ее наиболее организованной и
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продуктивной.

ДИНАМИКА НОРМАЛЬНОЙ ФОРМЫ ТРЕХ
БЛИЗКИХ ОДНОНАПРАВЛЕННО СВЯЗАННЫХ

ОСЦИЛЛЯТОРОВ
Глызин С.Д. (Ярославль)

glyzin@uniyar.ac.ru

Рассмотрим модель однонаправленного взаимодействия трех
близких осцилляторов

üj + εu̇j + uj + ϕ(Kuj)− νϕ′(Kuj)ϕ(Kuj−1) = 0,
j = 1, 2, 3, u0 = u3,

(1)

часто встречающуюся в радиофизических приложениях. Здесь
uj(t) – скалярная функция, пропорциональная напряжению в цепи
j-го осциллятора, 0 < ε << 1 – параметр, определяющий потери,
K > 0 – коэффициент усиления, наконец, параметр ν = ν0ε от-
вечает за глубину связи между осцилляторами. Достаточно глад-
кая функция ϕ(z) представляет собой характеристику нелинейного
элемента цепи, которую ниже будем считать равной

z√
1 + z2

. При

ε = 0 линейная часть системы (1) имеет в спектре устойчивости
пару чисто мнимых собственных чисел ±i

√
1 + K кратности три,

что позволяет построить для изучения локальной динамики этой
системы следующую нормальную форму:

ṗ1 = −p1/2 + γp3 sin α1, ṗ2 = −p2/2 + γp1 sin α2,
ṗ3 = −p3/2− γp2 sin(α1 + α2),
α̇1 = γ [(p3/p1) cos α1 − (p2/p3) cos(α1 + α2)] + p2

1 − p2
3,

α̇2 = γ [(p1/p2) cos α2 − (p3/p1) cos α1] + p2
2 − p2

1,

(2)

где pj(t) – нормированные амплитуды осцилляторов, а αj(t) – раз-
ности фаз между ними. Величина γ определяется параметрами си-
стемы (1) и пропорциональна ν0. Качественный анализ системы
(2) позволяет показать, что при |γ| − 1/

√
3 << 1 в ее фазовом про-

странстве бифурцирует орбитно асимптотически устойчивый цикл.
Более того, при γ < −1/

√
3 наряду с этим циклом у системы (2)

сосуществуют несколько различных устойчивых режимов с узкими
областями притяжения, некоторые из которых сохраняются и при
меньших значениях γ. Применение численных методов позволяет
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показать наличие у данной системы сложной динамики и просле-
дить за некоторыми ее фазовыми перестройками. Вычисление стар-
шего ляпуновского показателя аттракторов (2) дает возможность
выделить области существования хаотических колебаний.

НЕОБХОДИМЫЕ УСЛОВИЯ ДЛЯ МАТРИЦ
BIF-РАСКЛАДОВ НА Rn

+

Гнездилов А.В. (Воронеж)

В [1] для нахождения допустимых bif−раскладов критических
орбит, гладкого фредгольмова функционала V с n-круговой сим-
метрией на банаховом многообразии M, была использована схе-
ма (?) редуцирующих переходов V (x, λ), x ∈ M B W (ξ, λ), ξ ∈
R2n B W̃ (r, λ), r ∈ Rn B Ŵ (ρ, δ) =

∑n
j=1 αj(δ)ρj +

∑n
j,k=1 aj,kρjρk ,

ρ ∈ Rn
+, αj(0) = 0, и получен при n = 3 полный список матриц

M = (mj,i)n−1
j,i=0 = (lji ) допустимых bif−раскладов критических то-

ров , где lji — количество критических (j +1)−мерных торов индек-
са Морса i. Bif−расклады условно критических точек функции Ŵ
на симплектическом конусе Rn

+ также можно описывать с помощью
матриц M̂ = (m̂j,i)n

j,i=0 = (lji ), где lji — количество усл. критических
точек ρ индекса i, для которых card supp(ρ) = j. Согласно схеме (?)
из списка матриц M, легко восстанавливается список M̂ при n = 3.
Еще раньше в [2] была описана общая структура каустик Σ мно-
гомерных полурегулярных угловых особенностей и в ряде случаев
— распределения бифурцирующих невырожденных точек локаль-
ного минимума по граням Rn

+. При n > 4 — полного описания по-
ка нет. Существенно сократить список допустимых для Ŵ на Rn

+

bif−раскладов позволяет следующая теорема.
Теорема. Пусть для функции Ŵ из схемы (?) : 1) rk

(
∂αj

∂λi

)
= n;

2) det (aj,k)p
j,k=1 6= 0 ∀p ∈ N : p 6 n ; 3)

∑n
j,k=1 aj,kρjρk > 0 при

ρj > 0 ∀j и ‖ρ‖ > 0. Тогда при δ 6∈ Σ для Ŵ допускаются толь-
ко те bif−расклады усл. критических точек на Rn

+, у матриц M̂
которых: 1) m̂0,0 = 0; 2) m̂j,n = 0 ∀ j = 1, n; 3)

∑n
i=0 m̂0,i = 1;

4)
∑n

i=0 m̂j,i 6 Cj
n = n!

j! (n−j)! ∀j = 0, n; 5) l̂ = 〈M̂γ, ς〉En+1 = 1,
где γ = (1,−1, 1, . . . , (−1)n)>, ς = (1, 2, 4, . . . , 2n)>. Здесь l̂ — обоб-
щенное эйлерово число для матриц bif−раскладов условно крити-
ческих точек на Rn

+, введенное аналогично с l , введенным в [1].
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ОБ ОДНОМ МЕТОДЕ МАТЕМАТИЧЕСКОГО
МОДЕЛИРОВАНИЯ СИНГУЛЯРНО

ЗАКРЕПЛЕННОЙ КОНСОЛИ
Голованева Ф.В. (Воронеж), Обласова И.Н.

Классическая консоль определяется уравнением

(pu′′)′′ = f (0 < x < l) (1)

Здесь u(x) — отклонение упругой линии и f — интенсивность внеш-
ней нагрузки, в сочетании с условиями защемления левого конца

u(0) = 0, u′(0) = 0. (2)

На правом конце принудительные условия отсутствуют, а усло-
вия свободного конца имеют вид

u′′(l) = 0, u(3)(l) = 0. (3)

Если стержень упруго закрепить в какой-либо промежуточной точ-
ке x = ξ, то перерезывающая сила в точке x = ξ имеет скачок

(pu′′)′(ξ + 0)− (pu′′)′(ξ − 0) = −γu(ξ), (4)

где γ — коэффициент упругости опоры. Однако последнее обстоя-
тельство лишает в точке x = ξ смысла исходное уравнение, превра-
щая его в два — одно слева от ξ, а второе — справа. Возникает есте-
ственный вопрос — существует ли для данного цельного стержня
единая на отрезке [0, l] функция влияния? Вопрос обусловлен тем,
что математическая формулировка описанной задачи не позволяет
воспользоваться методами функции Грина стандартных краевых
задач.

Исходя из вариационного подхода к определению функции вли-
яния K(x, s), мы определяем ее как деформацию исходной системы
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при действии единичной в точке x = s силы, что позволяет рассмат-
ривать K(x, s) как минималь функционала потенциальной энергии

Φ(u) = γ
u2(ξ)

2
+

l∫

0

pu′′
2

2
dx− u(s)

при условиях (2) и (3). Заметим, что предельное (при γ → ∞) за-
крепление в точке ξ означает фиксацию этой точки неподвижным
шарниром.

Подход, описанный выше, позволяет дать описание функции
влияния, адекватное физическим представлением, и достаточно
полно изучить наиболее важные ее свойства, например, установить
ее положительность при достаточно малом γ.

МОДЕЛИРОВАНИЕ СЕТЕЙ ПЕРЕДАЧИ
ИНФОРМАЦИИ

Головко Н.И. (Владивосток), Катрахова А.А. (Воронеж),
Рыжков Д.Е. (Владивосток)

ygolovko@yahoo.com

Развитие вычислительной техники и средств передачи инфор-
мации привело к возникновению сетей ЭВМ, сетей передачи ин-
формации. В настоящее время активно проводятся исследования по
проектированию и анализу функционирования таких сетей. В силу
специфики потока сообщений на узлах локальных компьютерных
сетей системы массового обслуживания (СМО) со скачкообразной
интенсивностью входного потока удобно использовать при модели-
ровании таких узлов.

Скачкообразный характер входного потока возникает в силу
следующих причин: изменение маршрутов сообщений, в силу чего
на элементе сети возникают и исчезают потоки сообщений; выход
из строя отдельных элементов сети и их блокировка, что приводит к
исчезновению потоков сообщений на последующих элементах сети.
В реальных узлах сети обслуживание происходит по экспоненци-
альному закону, так как сообщения обрабатываются с постоянной
скоростью, а длина сообщений является случайной величиной, рас-
пределенной по экспоненциальному закону из-за того, что сумма
длительности обслуживания на одном временном интервале не за-
висит от суммы длительностей обслуживания на других интерва-
лах.
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Рассматривается СМО с одним обслуживающим прибором с экс-
поненциальным обслуживанием с интенсивностью µ и бесконеч-
ным накопителем. На вход СМО поступает дважды стохастический
пуассоновский поток заявок, интенсивность которого λ(t) представ-
ляет собой скачкообразный процесс, принимающий значения на ко-
нечном интервале [a, b] , интервалы постоянства λ(t) экспоненци-
ально распределены с параметром α, значения процесса справа
в точках разрыва имеют плотность распределения ϕ(x). Обозна-
чим через ν число заявок в СМО в стационарном режиме, а через
qk(x) = P{ν = k, x < λ < x + dx}/dx соответствующие стационар-
ные характеристики числа заявок. Стационарные характеристики
числа заявок удовлетворяют бесконечной системе разностно- инте-
гральных уравнений типа Колмогорова-Чепмена:

−(x + α)q0(x) + µq1(x) + αϕ(x)
∫ b

a
q0(y) dy = 0,

xqk−1(x)−(x+µ+α)qk(x)+µqk+1(x)+αϕ(x)
∫ b

a
qk(y) dy = 0, k > 1,

с условием нормировки
∑

k>0 qk(x) = ϕ(x). Для решения беско-
нечной системы интегральных уравнений авторами предложен но-
вый метод, в котором на первом этапе с учетом условия норми-
ровки производится переход к неоднородной системе интегральных
уравнений путем введения новых неизвестных функций rk(x) =∑

n>k qn(x), затем к новой бесконечной системе интегральных урав-
нений применяется метод производящих функций, затем для на-
хождения неизвестных функций применяется обратное преобразо-
вание Лорана. В итоге получено явное представление неизвестных
функций через r1(x) , а для неизвестной функции получено неод-
нородное интегральное уравнение Фредгольма 2-го рода. В работе
приводятся теоремы существования и единственности приведенной
системы интегральных уравнений при условии отсутствия перегру-
зок в СМО: b < µ.
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ОБ ОДНОЙ НЕЛОКАЛЬНОЙ ЗАДАЧЕ ДЛЯ
УРАВНЕНИЯ АЛЛЕРА
Голубева Н.Д. (Самара)
golubeva@samaramail.ru

Рассматривается задача о нахождении в области

D = {(x, y) : 0 < x < a, 0 < y < b}
регулярного решения уравнения Аллера

uy =
(
A(x, y)ux + B(x, y)uxy

)
x
. (1)

Это уравнение вместе с некоторыми дополнительными данны-
ми является математической моделью процесса влагопереноса [1].
Пусть задан поток

(
A(x, y)ux + B(x, y)uxy

)∣∣
x=0

= f(y), (2)

и нелокальные условия

u(x, 0) + l(x)
∫ b

0

u(x, y) dy = ϕ(x), (3)

u(0, y) + µ(y)
∫ a

0

u(x, y) dx = ψ(y), (4)

где f(y), ϕ(x), ψ(y) — заданные функции.
Нетрудно показать, что задача (1–4) может быть сведена к нело-

кальной задаче с условиями (3), (4) для нагруженного гиперболи-
ческого уравнения второго порядка

B(x, y)uxy + A(x, y)ux =
∂

∂y

∫ x

0

u(ξ, y) dξ + f(y). (5)

Подобные с другими нелокальными интегральными условиями
задачи рассматривались в [2].
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О МЕТОДЕ ПОСТРОЕНИЯ АНАЛИТИЧЕСКИХ
РЕШЕНИЙ ЗАДАЧ О СОБСТВЕННЫХ

КОЛЕБАНИЯХ СТЕРЖНЕЙ С ПРОИЗВОЛЬНЫМИ
ГЕОМЕТРИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ

Гордон В.А., Семёнова Г.А. (Орлов)

Исследуется влияние перекоса осевого отверстия в консольном
стержне на спектр частот и на формы крутильных колебаний та-
кого стержня.

Однако получение точных решений для уравнений, описываю-
щих такие колебания, сопряжено с серьёзными трудностями и воз-
можно лишь в частных случаях.

Классический подход к решению таких уравнений, заключаю-
щийся в отыскании базисных функций в виде бесконечных перемен-
ных рядов и определении частных решений методом произвольных
постоянных, удаётся применить лишь к сравнительно узкому клас-
су специальных уравнений второго и четвёртого порядка.

Нами предложен метод построения аналитических решений за-
дач о собственных колебаниях стержней с произвольными законами
изменения жёсткости и плотности вдоль оси стержня.

Решения опираются на модифицированный и адаптированный к
задаче указанного типа аналитический метод интегрирования диф-
ференциальных уравнений с переменными коэффициентами. Ме-
тод позволяет получить замкнутые решения в явном виде в эле-
ментарных функциях, что позволяет проводить дальнейшие иссле-
дования.

Для этого используется матричная форма записи дифференци-
альных уравнений и вводится преобразование переменных, позво-
ляющее представить исходную матрицу в виде суммы диагональ-
ной матрицы c элементами, равными собственным числам исходной
матрицы, и матрицы с одинаковыми диагональными элементами,
при этом побочные элементы характеризуют связанность уравне-
ний системы.

Такое преобразование позволяет построить первое приближение
искомого решения, с помощью которого получается ряд из соб-
ственных функций, являющийся точным решением рассматрива-
емой системы дифференциальных уравнений. Кроме того, метод
позволяет получить формулу для вычисления частот собственных
колебаний.

Полученные данные в дальнейшем предполагается использо-
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вать для консольных стержней с дефектом отверстия, в частности,
для расчётов динамических характеристик свободных колебаний
орудийного ствола.

НЕЧЕТКИЕ РЕЛЯЦИОННЫЕ УРАВНЕНИЯ:
ПРИЛОЖЕНИЯ И МЕТОДЫ РЕШЕНИЯ

Грибовский А.В. (Воронеж)
alex@amm.vsu.ru

Теория нечетких реляционных уравнений – один из разделов
теории нечетких множеств. Она используется при построении экс-
пертных систем, хранилищ знаний, в нечетком управлении.

Пусть A, R и B – нечеткие отношения, определенные на X ×Y ,
Y × Z и X × Z соответственно. Уравнение

A ◦R = B, (1)

где отношение R подлежит нахождению, а ◦ – max-T композиция,
определяемая как A◦R = maxy∈Y {T (A(x, y), R(y, z))}, T – T-норма,
называют нечетким реляционным уравнением.

Если множество решений уравнения (1) R(A,B) не пусто, то
оно имеет единственный максимальный элемент R̂ и конечное чис-
ло минимальных элементов Ř(A,B). Полное множество решений
определяется как

⋃
Ř∈Ř(A,B){R|Ř 6 R 6 R̂}. При решении необ-

ходимо сначала, используя специальные теоремы о разрешимости,
определить, является ли уравнение разрешимым. Если уравнение
разрешимо, то его множество решений находится при помощи спе-
циальных методов (метод матричного шаблона, метод Г-матриц),
иначе ищут приближенное решение при помощи нейросетевых ме-
тодов (методы Ли-Руана). Поскольку данные методы работают для
различных T-норм, то для построения универсального решателя
мы используем их комбинацию.

В системе Matlab была написана программа, которая решает
уравнение (1) для любой непрерывной T-нормы. Данная програм-
ма используется в приложении, решающем при помощи нечетких
реляционных уравнений задачу анализа и выбора цели на поле боя.

Литература
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ПРОБЛЕМА УСЛОВНОЙ ПРИВОДИМОСТИ
НЕОТРИЦАТЕЛЬНО ГАМИЛЬТОНОВЫХ

ОПЕРАТОР-ФУНКЦИЙ1

Гриднева И.В. (Воронеж)
giv@kma.vsu.ru

Исследованию задачи условной приводимости гамильтоновых
оператор-функций к блочно-диагональному виду посвящены рабо-
ты [1]-[2]. Полученные в этих работах результаты для неотрица-
тельно гамильтоновых операторнозначных функций со значениями
во множестве ограниченных операторовмы мы обобщаем на слу-
чай замкнутых неограниченных гамильтонианов. Первым шагом
в этом направлении стало рассмотрение оператор-функций A(t) c
iR ⊂ ρ(A(t) вида A(t) = S0 + B(t), где t ∈ [0, 1]. В этом представ-
лении S0 — некоторый неограниченный гамильтониан, а B(t) —
неотрицательно гамильтонова непрерывная оператор-функция со
значениями во множестве ограниченных операторов.

Доказывается, что если комплексное гильбертово пространство
H , являющееся ортогональной суммой двух экземпляров одного и
того же гильбертова пространства G:H = H 1⊕H 2, H 1 = H 2 = G
разлагается в прямую сумму максимальных семидефинитных ин-
вариантных относительно A(t) подпространств L±(t), то оператор-
функция A(t) условно (H 1,H 2)-приводима, т.е. существует такая
непрерывная и непрерывно обратимая оператор-функция V (t), что
A1(t) = V −1(t)A(t)V (t) – блочно-диагональная матрица:

A1(t) = diag {A1,+(t),A1,−(t)}, Re σ(A1,+(t)) > 0, Re σ(A1,−(t)) < 0.

Заметим, что сформулированное выше условие сушествования
максимальных семидефинитных инвариантных подпространств
выполняется, например для случая L±(t) = P±(t)H , где P±(t) -
проекторнозначные функции вида P±(t) = − 1

2πi

∫
Γ±

A(t)(A(t)−λ)−1

λ dλ.

Эти функции являются непрерывными для t ∈ [0, 1], если ре-
зольвента оператора S0 удовлетворяет неравенству ‖(S0 − λ)−1‖ 6

C
1+|λ| , λ ∈ ρ(S0).

1Исследование поддержано грантом РФФИ 05-01-00203-а.
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О ГЕНЕТИЧЕСКОМ МЕТОДЕ В ПРЕПОДАВАНИИ
БЕСКОНЕЧНО МАЛЫХ

Давыдова М.Б., Покорная И.Ю. (Воронеж)

Ясная интуитивная опора, необходимая для осознанного усво-
ения математического анализа, невозможна без обсуждения неде-
лимых, восходящих к древним грекам. Еще Демокрит был убеж-
ден, что любая протяженность состоит из конечного, хоть и очень
большого числа неделимых атомов. И Архимед, говоря о неисчис-
лимости песчинок, имел в виду, что их количество конечно, но что
соответствующее число не может быть выговорено. А разве может
свежий ум поверить, что существует n реальных объектов при лю-
бом n? Или что отрезок можно разделить на n частей при любом n?
Поэтому понятие бесконечно малой величины, при этом перемен-
ной, принимаются студентами на веру без всякого рационального
осознания.

В этой связи крайне полезно провести несколько рассуждений,
когда метод Демокрита не может вызвать сомнений. Например,
круг есть собрание радиусов. И что это (по Архимеду) позволяет
методом неделимых явно найти формулу площади. А затем, под-
ключив метод исчерпывания, пояснить, что предельный переход –
источник формальной строгости. Именно здесь можно говорить о
бесконечно малых, как переменных – не по природе, а по методу
использования.

Словом, идея Демокрита-Лейбница может быть освоена на бы-
товом уровне в терминах "еле-еле" , "чуть-чуть" , "едва-едва" на
ряде примеров (в том числе с касательной и треугольником Пас-
каля, т.е. с dx и dy), как источник формул, источник коренного
знания, которым довольствовалось естествознание до конца XIX
века. А предельный переход должен осваиваться, как более циви-
лизованный разговор, цель которого – избежать ошибки.
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ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ
ТЕПЛОПРОВОДНОСТИ

Данилкина О.Ю.
danola@mail.ru

Рассмотрим в области QT = {(x, t) : x ∈ (0, l), t ∈ (0, T )} уравне-
ние

ut = uxx + p(t)u + f(x, t), (1)

где p(t) – неизвестный коэффициент.
Поставим для уравнения (1) задачу с начальным условием

u(x, 0) = ϕ(x), (2)

граничными условиями

ux(0, t) = ux(l, t) = 0, (3)

и интегральным условием переопределения
∫ l

0

K(x, t)u(x, t) dx = E(t), t ∈ (0, T ). (4)

Введем новую функцию v(x, t) = u(x, t)exp

(∫ t

0

p(η) dη

)
.

Это позволяет перейти к следующей линейной задаче:

vt = vxx + q(t)f(x, t),

v(x, 0) = ϕ(x),

vx(0, t) = vx(l, t) = 0,
∫ l

0

K(x, t)v(x, t) dx = E(t)q(t),

где q(t) = exp

(∫ t

0

p(η) dη

)
.

Доказано следующее утверждение:
Теорема. Пусть выполняются условия:

f(x, t), K(x, t) ∈ L2(QT ), ϕ(x) ∈ L2(0, l), E(t) ∈ L2(0, T ),

|E(t)| 6 E1п.в. в(0, T ).

Тогда существует решение {u(x, t), p(t)} обратной задачи (1)–(4),
где u(x, t) ∈ W 1,0

2 (QT ), p(t) ∈ L2(QT ).
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ТЕОРЕМА ЮНГА-О’НЕЙЛА ДЛЯ АНИЗОТРОПНЫХ
ПРОСТРАНСТВ ЛОРЕНЦА Lpq∗

Дарбаева Д.К., Нурсултанов Е.Д. (Казахстан, Астана)
er-nurs@yandex.ru

Пусть f(x1, ..., xn) -измеримая функция, определенная в евкли-
довом пространстве Rn. Через f∗(t) = f∗1,...,∗n(t1, ..., tn) обозначим
функцию, полученную применением невозрастающей перестанов-
ки последовательно по переменным x1, ..., xn при фиксированных
других переменных. Данную функцию будем называть невозраста-
ющей перестановкой функции f в Rn.

Пусть 1 6 p = (p1, ...pn), q = (q1, ..., qn) 6 ∞, ∗ = (j1, ..., jn).
Анизотропное пространство Lpq∗(Rn)[1] определяется следую-

щим образом:

Lpq∗(Rn) =
{

f : ‖f‖Lpq∗ =

=
(∫ ∞

0

...

(∫ ∞

0

(
f∗1,...,∗n(t1, ..., tn)t

1
p1
1 ...t

1
pn
n

)qj1

×

× dtj1
tj1

) qj2
qj1

...
dtjn

tjn




1
qjn

< ∞





.

В случае q = ∞ выражение
∫∞
0

(G(t))q dt
t )

1
q понимается, как

supt>0G(t).
Хорошо известно неравенство Юнга-О’Нейла для пространств

Лоренца.
Теорема 1.(О’Нейла)Пусть 1 6 p, q, r < ∞, 1

q + 1 = 1
p + 1

r ,
тогда для оператора свертки

Af(x) =
∫

Rn

f(x)K(y − x)dx

имеет место
‖A‖Lp→Lq

6 c‖K‖Lr∞ .

Теорема 2.Пусть 1 < p = (p1, ...pn),q = (q1, ...qn), r = (r1, ...rn) <
∞. 1 6 s = (s1, ..., sn) 6 ∞, 1

qi
+ 1 = 1

pi
+ 1

ri
, i = (1, .., n). Тогда

‖A‖Lps∗→Lqs∗ 6 c‖K‖Lr∞∗ .
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Теорема 2 является не только обобщением теоремы О’Нейла, но и
усилением ее.

Существует пример ядра К, когда ‖K‖Lr∞ = ∞, но ‖K‖Lr∞∗ <
∞.

Литература
1.Нурсултанов Е.Д. Интерполяционные теоремы для анизотроп-
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СУЩЕСТВОВАНИЕ СПЕКТРАЛЬНОЙ ФУНКЦИИ
ДЛЯ НЕКОТОРЫХ ПРОИЗВЕДЕНИЙ

САМОСОПРЯЖЕННЫХ ОПЕРАТОРОВ1

Денисов М.С. (Воронеж)
den_i_sov@rambler.ru

Пусть H — гильбертово пространство со скалярным произведе-
нием (x, y) и нормой ‖x‖ = (x, x)1/2, где x, y ∈ H.
A : H → H — линейный, непрерывный, самосопряженный и неот-
рицательный оператор.
G : H → H — линейный, непрерывный, самосопряженный оператор
и 0 ∈ σc(G).
Рассмотрим полуторалинейную форму [x, y] := (Gx, y),где x, y ∈ H.
Гильбертово пространство H с таким образом введенной на нем
формой [x, y] будет называться сингулярным G — пространством.
Оператор AG будет самосопряженным относительно формы [x, y],
или G — самосопряженным, см. [1]. В работе исследуется вопрос су-
ществования спектральной функции у G — самосопряженного опе-
ратора AG в сингулярном G — пространстве.

Литература
[1] Азизов Т.Я, Иохвидов И.С. Теория операторов в простран-

стве с индефинитной метрикой.- М.: Наука, 1986.

О СПИНОРНОМ ПРЕДСТАВЛЕНИИ ОПЕРАТОРА
УДВОЕНИЯ

Дмитриев А.А. (Владивосток)
dmitriev@iacp.dvo.ru

В заметке рассматривается представление оператора удвоения
в группу вращений, играющего важную роль в задачах теоретиче-
ской физики и теории вейвлетов.

1Исследование поддержано грантом РФФИ 05-01-00203-а.
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Оператор удвоения можно определить, используя тензорные
произведения и пермутатор

P =
1
2
(1⊗1 + σ1⊗σ1 + σ2⊗σ2 + σ3⊗σ3) = −i exp

{
i
π

2
P

}
,

где σj , j = 1, 2, 3 — хорошо известные матрицы Паули, следующим
образом. Пусть P n,N = 1⊗(n−1)⊗P ⊗ 1⊗(N−n−1), n = 1, . . . , N − 1,

тогда оператор удвоения P N =
N−1∏
n=1

P n,N .

Для стандартных образующих алгебры Клиффорда их попар-
ные произведения ωj,k соответствуют вращению в плоскости (j; k)
пространства C2N (см. напр. [1]) при этом оператор P n,N можно
записать в виде

P n,N = −ei π
4 exp

{π

4
(ω2n,2n+1 − ω2n−1,2n+2)

}×
× exp

{−i
π

4
ω2n−1,2nω2n+1,2n+2

} def= −ei π
4 Rn exp

{−i
π

4
ωnωn+1

}
.

Тогда при четном N для P N справедливы равенства

P N =(−i)N/2
N−1∏
n=1

Rn exp
{−π

4

N∑
n=1

ωn

}(
ω+

C + iω−C exp
{π

2
ωN

})
=

=(−i)N/2 exp
{−π

4

N∑
n=1

ωn

} N−1∏
n=1

Rn

(
ω+

C + iω−C exp
{π

2
ω1

})
,

где через ωC
± обозначены проекторы

1
2

(
1± exp

{−π

2

N∑
n=1

ωn

})
.

Используя полученные равенства несложно вычислить предста-
вление P N в группе вращений SO(2N,C) и тем самым свести вы-
числение спектра оператора ΩP N для Ω ∈ Spin(2N,C), к вычис-
лению спектра двух операторов вращения в пространстве C2N .

Литература
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РЕЛАКСАЦИОННЫЕ СПЕКТРЫ В ЛИНЕЙНЫХ
ВЯЗКОУПРУГИХ МОДЕЛЯХ МЕХАНИКИ
ВЫСОКОМОЛЕКУЛЯРНЫХ ВЕЩЕСТВ

Дубовицкий В.А. (Черноголовка)
dubv@icp.ac.ru

При математическом описании механического поведения поли-
мерных материалов используются представления о движении лег-
ких упруго связанных частиц в вязкой среде [1]. В линейном при-
ближении это приводит к задаче Коши

τ ẋ(t) = Ax, x(0) = x0, t > 0

Здесь x(t) ∈ X , где X гильбертово пространство, а τ,A самосопря-
женные операторы, причем τ обратим и положительно определен,
A отрицательно полуопределен и, вообще говоря, неограничен. В
уравнении произведение τ ẋ имеет смысл силы трения, а оператор A
есть антиградиент квадратичного функционала U(x) = −(Ax, x)/2
энергии упругих связей. Если пространство X конечномерно, то
уравнение обобщает модель Рауза [1] движения линейной молеку-
лярной цепи, а случай X = W 2

2 [0, 1], A = ∆ соответствует контину-
альной вязкоупругой модели движения полимера. Целью работы
является вычисление и характеризация экспоненциальных разло-
жений F (x(t)) =

∫
exp(tλ)g(dλ), где F (x) - заданный целевой функ-

ционал состояния, а мера Радона g(dλ) есть т.н. релаксационный
спектр (РС). На практике особо интересны линейные и квадратич-
ные целевые функционалы, выражающие механические напряже-
ния, размер, энергию, а также критерии неотрицательности соот-
ветствующего РС.

Теорема. Пусть τ−1/2Aτ−1/2 =
∫ 0

−∞ λE(dλ) есть интеграль-
ное спектральное представление самосопряженного оператора по
операторной мере коммутирующих ортопроекторов. Тогда в слу-
чае линейного целевого функционала F (x) = (x, l) имеем для РС
представление g(dλ) = (τ1/2E(dλ)τ−1/2l, x0) , а в случае F (x) =
U(x),соответственно, g(dλ) = −λ(τ1/2E(dλ/2)τ1/2x0, x0)/2.

Из теоремы следует, что РС энергии неотрицателен при любых
начальных условиях, т.е. функция диссипации потенциальной энер-
гии абсолютно монотонна по времени. А позитивность РС линей-
ной целевой функции равносильна принадлежности x0 некоторому
выпуклому конусу K ⊂ X. Работа выполнена при поддержке РФ-
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ФИ и Министерства промышленности и науки Московской области
(р2004наукоград а N 04-01-97202).
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О ВАРИАЦИОННОЙ ЗАДАЧЕ ДЛЯ
СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ
Думачев В.Н. (Воронеж)

dumv@comch.ru

Рассмотрим стохастическое дифференциальное уравнение как
подмногообразие Σ в расслоении джетов Jn (π): E → M , опреде-
ляемое уравнениями F (x, y, p00, p10, p01, p20, p11, p02) = 0, где x, y ∈
M ⊂ R, u = p0 ∈ U ⊂ R, pi ∈ J i (π) ⊂ Rn, E = M ×U . Как и любое
дифференциальное уравнение оно описывает струю в пространстве
джетов J1 (2, 1), с локальными координатами (x, y, u, ux, uy, uyy),
где расширение расслоения до вторых производных (uww) является
следствием корреляционых соотношений для средних Винеровско-
го процесса: < dy >= 0 , < dy2 >=< dx >. Последние соотношения
позволяют ввести распределение Картана для СДУ в виде

θ = du−
(

ux +
1
2
uyy

)
dx− uydy.

Поскольку 2-форма dθ 6= ω∧θ - по теореме Фробениуса распреде-
ление не интегрируемо. Несмотря на особенности, переплетающие
независимые переменные, данное распределение Jk (π) допускает
существование полей Ли и их поднятие в Jk+1 (π). Геометрическая
постановка задачи вариационного исчисления

vcd (Ldx ∧ dy + Λ ∧ θ) = 0

предполагает использование распределения Картана в качестве
неголономной связи и введения дифференциальной 1-формы им-
пульса Λ = λdx + µdy как множителя Лагранжа. Используя в ка-
честве векторных полей v = ∂θ, v = ∂ux

, v = ∂uy
получим систему:

Ludx ∧ dy = −dλ ∧ dx− dµ ∧ dy,

λ = Luy
, µ = − Luy

1 + 1
2

duyy

dux

,
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из которой следуют уравнения Эйлера-Лагранжа поставленной ва-
риационной задачи:

Lu =
d

dx

(
Lux

1 + 1
2

duyy

dux

)
+

d

dy

(
Luy

)
.

ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИОННЫХ
ТЕХНОЛОГИЙ ДЛЯ КОНТРОЛЯ ЗНАНИЙ

СТУДЕНТОВ
Евдокимович В.Е. (Гомель)

evdokimovich@gsu.unibel.by

Одним из важнейших элементов образовательного процесса в
ВУЗах, являются: а) контроль студентов, осуществляемый препо-
давателями; б) самоконтроль знаний, позволяющий студентам луч-
ше оценивать свои потенциальные возможности и недостатки, и,
следовательно, более четко представлять те направления, в кото-
рых им необходимо направить свои усилия для лучшего овладения
той или иной дисциплиной. Традиционно, контроль знаний осу-
ществляется путем проведения контрольных и лабораторных ра-
бот, коллоквиумов и т.п. Однако уже сейчас существует, и в отдель-
ных ВУЗах Республики Беларусь используется (в частности в Бело-
русском государственном университете транспорта), такая форма
контроля и самоконтроля, которая позволяет избежать недостат-
ков, характерных для вышеперечисленных методов. Это компью-
терное тестирование. Его суть заключается в существовании ком-
пьютерных программ, позволяющих проводить тестирование сту-
дентов как за весь курс, той или иной дисциплины, так и по от-
дельным ее разделам. Результатом такого тестирования является
оценка, показывающая тестируемому в баллах, на сколько хорошо
он владеет предметом. Низкий балл свидетельствует о недостаточ-
ной подготовленности студента. Высокий же, наоборот, позволяет
судить о том, что студент хорошо разбирается в данном предмете.
Такая форма контроля позволяет преподавателю достаточно быст-
ро и без особых сложностей проводить проверку уровня знаний
большого числа студентов. Быстрота и легкость проведения тести-
рования дают возможность более частого контроля и как резуль-
тат, более ясное представление преподавателю об уровне знаний
студентов. Тестирование также можно рассматривать и как форму
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проведения зачета, или же рассматривать его результат, как фор-
му допуска к сдаче экзамена. Еще одним плюсом компьютерного
тестирования является то, что студент может проводить его само-
стоятельно, без участия преподавателя. Конечно же, как и любая
другая форма контроля, компьютерное тестирование не лишено ря-
да недостатков. Однако те положительные элементы, которые несет
в себе компьютерное тестирование, позволяют надеяться, что такая
форма контроля и самоконтроля будет все активнее внедряться в
учебные процессы различных ВУЗов Республики Беларусь.

ОЦЕНКИ МИНИМАЛЬНОГО СОБСТВЕННОГО
ЗНАЧЕНИЯ ОДНОЙ ЗАДАЧИ ШТУРМА–ЛИУВИЛЛЯ

Ежак С.С. (Москва)
SEzhak@teach.mesi.ru

Рассматривается следующая задача:

y′′(x) + Q(x)y(x) + λy(x) = 0, (1)

y(0) = y(1) = 0, (2)

где Q(x) — неотрицательная ограниченная на [0, 1] функция, удо-
влетворяющая условию:

∫ 1

0

Qα(x)dx = 1, α 6= 0. (3)

Рассмотрим функционал

R[Q, y] =

∫ 1

0
y′2(x)dx− ∫ 1

0
Q(x)y2(x)dx∫ 1

0
y2(x)dx

.

Тогда λ1 = infy(x)∈H1
0 (0,1) R[Q, y]. Пусть mα = infQ(x)∈Aα

λ1,
Mα = supQ(x)∈Aα

λ1, где Aα — множество неотрицательных огра-
ниченных на [0, 1] функций, удовлетворяющих (3).

Т е о р е м а. Если α > 1, то mα > π2

2 , Mα = π2, причем
существуют такие функции u(x) ∈ H1

0 (0, 1) и Q(x) ∈ Aα, что
infy(x)∈H1

0 (0,1) R[Q, y] = R[Q, u] = mα. Если α = 1, то m1 есть при-

надлежащее интервалу (0, π2) решение уравнения 2
√

λ = tg
(√

λ
2

)
,

M1 = π2, причем m1 достигается на функции Q(x) = δ
(
x− 1

2

)
, не

принадлежащей классу H1
0 (0, 1).
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Если 1/2 6 α < 1, то mα = −∞, Mα = π2. Если 1/3 6 α < 1/2,
то mα = −∞, Mα 6 π2. Если 0 < α < 1/3, то mα = −∞, Mα < π2.
Если α < 0, то mα = −∞, Mα < π2, причем существуют такие
функции u(x) ∈ H1

0 (0, 1) и Q(x) ∈ Aα, что infy(x)∈H1
0 (0,1) R[Q, y] =

R[Q,u] = Mα.
Замечание 1. mα = m при α > 1 и Mα = m при α < 0, где m

является решением системы уравнений




∫ H

0
duq

mH2−mu2+ 2
p Hp− 2

p up
= 1

2 ,

∫ H

0
upduq

mH2−mu2+ 2
p Hp− 2

p up
= 1

2 ,

где H = maxx∈[0,1] u(x), m = G[u] = infy(x)∈H1
0 (0,1) G[y],

G[y] =
R 1
0 y′2(x)dx−(

R 1
0 |y(x)|pdx)2/p

R 1
0 y2(x)dx

, p = 2α
α−1 .

Замечание 2. В работе [2] исследовалась задача (1)–(3) с от-
рицательным потенциалом Q(x).

Литература
[1] Egorov Yu.V., Kondratiev V.A. On Spectral theory of elliptic

operators // in Operator theory: Advances and Applications. Birkhou-
ser, 1996, V.89, P. 1–325.

[2] Ежак С.С. // Дифференц. уравнения, 2004, Т.40, N 6, С. 856.

О РАСХОДЯЩИХСЯ РЯДАХ ФУРЬЕ ДЛЯ
НЕПРЕРЫВНЫХ ФУНКЦИЙ

Емгушева Г.П. (Элиста)
galina_emg@mail.ru

При изучении рядов Фурье от непрерывных функций естествен-
но возникают вопросы: если ряд Фурье от непрерывной функции
сходится равномерно, то будет ли он сходиться от квадрата, куба
этой функции. Имеется пример непрерывной функции, ряд Фурье
которой сходится равномерно, а квадрат этой функции расходится
на множестве мощности континуума [1-2]. Здесь рассматривается
случай куба от этой непрерывной функции.

Обозначим через S класс непрерывных функций, у которых ряд
Фурье всюду сходится равномерно. Справедлива следующая теоре-
ма: существует функция f(x) из класса S, для которой ряд Фурье
от функции f3(x) расходится на множестве мощности континуума.
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Функция имеет вид f(x) = g(x)+ξ(x), где g(x) имеет абсолютно схо-
дящийся ряд Фурье, а ξ(x) есть непрерывная функция с ограничен-
ным изменением. Доказательство основано на факте, что частная
сумма ряда Фурье от суммы двух функций может быть неограни-
чена.

Литература
1. Салем Р. A singularity of the Fourier series of continuous

functions. Duke Mathematical Journal, 10, 1943, p. 711-716.
2. Бари Н.К. Тригонометрические ряды. М., 1961.

К МОДЕЛИРОВАНИЮ КОНВЕКТИВНОГО
ТЕПЛОПЕРЕНОСА С УЧЕТОМ ДИССИПАЦИИ ПРИ

ТЕЧЕНИИ НЕНЬЮТОНОВСКОЙ ЖИДКОСТИ
Еремин Д.В. (Воронеж)

teormech@vgta.vrn.ru

Рассмотрен теплоперенос с учетом диссипации механической
энергии при одномерном установившемся течении вязкопластиче-
ской жидкости Балкли-Гершеля в плоском канале.

Постановка задачи приведена в [1]. В основу математической
модели были положены уравнения гидродинамики и конвективного
теплопереноса для вязкой несжимаемой жидкости.

Область течения разбивалась на две зоны: вязкую и пласти-
ческую. При этом теплофизические характеристики среды прини-
мались постоянными. На границах канала для скорости ставились
граничные условия прилипания, а для температуры жидкости –
условия первого рода. На границах вязкой и пластической зон те-
чения ставились условия сшивания скоростей, температур и тепло-
вых потоков.

Гидродинамическую часть задачи решали независимо от тепло-
вой. Решение уравнения конвективного теплопереноса искали ме-
тодом разделения переменных.

При такой постановке задачи с некоторыми дополнительными
допущениями было получено аналитическое приближенное реше-
ние.

Это позволило с помощью ПЭВМ провести анализ влияния ос-
новных критериев подобия (чисел Рейнольдса, Прандтля, Эккерта,
Эйлера и Бринкмана) на распределение температуры вязкопласти-
ческой жидкости в плоском канале.
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ГЕОМЕТРИЧЕСКОЕ РЕШЕНИЕ ПРОБЛЕМЫ
ФРОБЕНИУСА О ЕДИНСТВЕННОСТИ ТРОЕК

МАРКОВА
Ермаков В.В. (Москва)

av31125@comtv.ru

Исследуя минимумы бинарных квадратичных форм, россий-
ский математик А. А. Марков [1] установил связь между числами
дискретного спектра (получившего его имя) и решениями кубиче-
ского уравнения x2 + y2 + z2 = 3xyz в натуральных числах. Все
решения такого уравнения (так называемые тройки Маркова) по-
лучаются из очевидного решения (1; 1; 1) с помощью преобразова-
ний T1 : (x; y; z) → (3yz − x; y; z), T2 : (x; y; z) → (x; 3xz − y; z),
T3 : (x; y; z) → (x; y; 3xy − z).

Фробениус [2] сформулировал проблему единственности: пусть
(x1; y1; z1) и (x2; y2; z2) – две тройки Маркова, причем x1 > y1 > z1,
x2 > y2 > z2. Тогда если x1 = x2, то y1 = y2, z1 = z2.

Получено геометрическое решение этой проблемы. Рассматри-
вается действие группы преобразовний, свободно порожденной T1,
T2, T3, на вещественных точках поверхности Маркова. Построена
фундаментальная область этой группы и описаны неподвижные
точки преобразований. Показано, что две тройки Маркова с оди-
наковыми максимальными элементами являются образом решения
(1; 1; 1) под действием одного и того же преобразования.

Литература
1. Markoff A. Sur les formes binaires indefinies. Math. Ann., 17

(1880), 379-399
2. Frobenius G. Uber die Markoffschen Zahlen. Sitzungsber. Preuss.
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ОБ УСТОЙЧИВОСТИ СУЩЕСТВЕННО
ПОЛУРЕГУЛЯРНЫХ ОПЕРАТОРОВ ПРИ
КОММУТИРУЮЩИХ ВОЗМУЩЕНИЯХ

Еровенко В.А. (Минск)
erovenko@bsu.by

Пусть X — бесконечномерное комплексное банахово простран-
ство и B(X) — множество ограниченных линейных операторов на
X. Обозначим через N(T ) и R(T ), соответственно, нуль-простран-
ство и область значений оператора T . Многие авторы рассматри-
вали свойства устойчивости ограниченных (замкнутых) линейных
операторов с замкнутой областью значений, для которых по край-
ней мере размерность ядра или коядра конечна. Однако если обе
указанные характеристики ограниченного оператора с замкнутой
областью значений бесконечны, то, согласно классической теореме
Гольдмана, можно указать такой линейный компактный оператор
бесконечного ранга, даже сколь угодно малый по норме, прибавле-
ние которого нарушает замкнутость области значений.

Положим R∞(T ) = ∩nR(Tn). Говорят, что оператор T ∈ B(X)
полурегулярный если область значений R(T ) замкнута и справед-
ливо вложение N(T ) ⊂ R∞(T ), соответственно, оператор T ∈ B(X)
называется существенно полурегулярным если область значений
R(T ) замкнута и справедливо существенное вложение N(T ) ⊂e

R∞(T ). Последнее включение означает, что существует конечно-
мерное подпространство F ⊂ X такое, что N(T ) ⊂ R∞(T ) + F . В
частности, это включение выполняется тогда и только тогда, когда
dimN(T )/(N(T ) ∩ R∞(T )) < ∞. Для мотивировки изучения ука-
занных класов операторов заметим следующеее.

Замкнутость области значений устойчива при возмущениях про-
извольными непрерывными операторами конечного ранга, даже ес-
ли их ядро и коядро бесконечномерны. В определенном смысле
мы имеем два крайних случая устойчивости. С одной стороны, ес-
ли на нормально разрешимые операторы накладываются условия
полуфредгольмовости, то для таких операторов имеется широкий
класс допустимых возмущений, сохраняющих замкнутость области
значений.

С другой стороны, если на нормально разрешимые операторы не
накладывается дополнительные ограничения, то соответствующие
допустимые возмущающие операторы образуют весьма узкий класс
даже в пространстве ограниченных операторов. Существенно полу-
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регулярные операторы устойчивы относительно возмущений опера-
торами конечного ранга, кроме того они устойчивы относительно
компактных коммутирующих операторов.

Т е о р е м а. Пусть T — существенно полурегулярный опера-
тор и пусть T и S ограниченные линейные коммутирующие опера-
торы, то есть T ∈ B(X) и TS = ST . Существует такое ε(T ) > 0,
что если для спектрального радиуса существенного спектра Фред-
гольма оператора S выполняется неравенство re(S) < ε(T ), то
тогда возмущенный оператор T + S также является существен-
но полурегулярным .

Интересным для приложений является свойство устойчивости
существенно полурегулярных операторов при возмущении их ком-
мутирующими строго сингулярными операторами (см. [1]).

Литература
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клады НАН Беларуси. — 2004. — Т.48. — №6. — С.16-20.

БИНОМИАЛЬНЫЕ КОЭФФИЦИЕНТЫ В
ТОЖДЕСТВАХ ДЛЯ НАТУРАЛЬНЫХ ЧИСЕЛ

Ерусалимский Я.М. (Ростов-на-Дону)
dnjme@math.rsu.ru

Хорошо известна формула для количества сюръективных отоб-
ражений, действующих из X в Y :

∣∣surY X
∣∣ = nm −∑n−1

i=1 (−1)iCi
n(n− i)m, где n = |Y |, m = |X|.

(1)
Анализ доказательства этой теоремы показывает, что никаких
предположений о соотношении между n = |Y | и m = |X| не де-
лается и, следовательно, эта формула верна всегда. Ясно, что в
случае 1 6 m < n surY X = ® мы получаем тождества:

nm =
n−1∑

i=1

(−1)i−1Ci
n(n− i)m, 1 6 m < n. (2)

В случае, когда m = n множество сюрьективных отоб-
ражений совпадает с множеством биективных отображений(
surY X = biY X

)
. Из формулы (1) мы получаем равенство:

n! = nn−C1
n(n−1)n+C2

n(n−2)n−C3
n(n−3)n+· · ·+(−1)n−1Cn−1

n . (3)
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Равенство (2) мы назвали аддитивным представлением n!.
Из равенства (1) следуют тождества:

(
C1

n(n− 1)p − C2
n(n− 2)p + C3

n(n− 3)p − · · ·

· · ·+ (−1)n−2Cn−1
n · 1p

)q

= C1
n(n− 1)p·q − C2

n(n− 2)p·q+

+C3
n(n− 3)p·q − · · ·+ (−1)n−2Cn−1

n · 1p·q,

1 6 p · q < n, p, q ∈ N.

(4)
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ОЦЕНКИ СКАЛЯРНЫХ ПРОИЗВЕДЕНИЙ И
СТАЦИОНАРНЫЕ ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ В
НЕОДНОРОДНЫХ НЕОГРАНИЧЕННЫХ ОБЛАСТЯХ

Жидков А.А., Калинин А.В. (Нижний Новгород)
Artem.Zhidkov@telma.ru

При изучении различных задач электродинамики сплошных
сред традиционно рассматриваются пространства функций ~u ∈
{Lp (Ω)}3 с условиями rot~u ∈ {Lp(Ω)}3, div~u ∈ Lp(Ω). В этих слу-
чаях функция ~u(x) обладает определенной гладкостью и допускает
включения в соответствующие пространства Соболева.

При изучении вопросов корректности обобщенных формулиро-
вок задач, во многих работах, в частности [1] - [3], рассматриваются
оценки вида ‖~u‖{Lp(Ω)}3 6 C

(
‖rot~u‖{Lp(Ω)}3 + ‖div~u‖Lp(Ω)

)
.

В настоящей работе изучаются L2-оценки скалярных произве-
дений в неограниченных областях

(~u · ~v){L2(R3)}3 6C(α) ·
(∥∥∥

(
1 + |x|2)α/2

rot~u
∥∥∥
{L2(R3)}3

‖~v‖{L2(R3)}3+

+‖~u‖{L2(R3)}3
∥∥∥
(
1 + |x|2)α/2

div~v
∥∥∥

L2(R3)

)
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Аналогичные оценки в ограниченной области были получены в
работах [4], [5].

Оценки скалярных произведений важны, в частности, при изу-
чении различных моделей электромагнитных процессов, происхо-
дящих в неоднородных средах. В этих случаях постановка задачи
требует рассмотрения классов функций ~u ∈ {Lp (Ω)}3 таких, что
rot~u ∈ {Lp (Ω)}3, div (µ~u) ∈ Lp (Ω), где коэффициент µ не является,
вообще говоря, гладкой функцией, и в этом случае, вообще говоря,
не справедливо включение ~u ∈ {

W 1
2 (Ω)

}3.
В качестве примера применения полученных оценок, была до-

казана теорема о существовании и единственности обобщенного ре-
шения стационарной задачи для системы уравнений Максвелла в
неограниченной области, включающей в себя компактную подоб-
ласть, заполненную неоднородной средой.
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L1–УСТОЙЧИВОСТЬ РЕШЕНИЙ ЛИНЕЙНЫХ
ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ВОЛЬТЕРРА С

ПОЛОЖИТЕЛЬНЫМИ ЯДРАМИ
Завалей Е.Г., Пуляев В.Ф. (Краснодар)

alexzav@mail.ru

Pассматриваются вопросы L1–устойчивости системы линейных
интегральных уравнений Вольтерра с положительными ядрами

x(t) =
∫ t

a

Q(t, s)x(s)ds + f(t), t > a. (1)
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Пространства L1 ((a,∞) → Rn) и L1
loc ((a,∞) → Rn) вводятся

обычным образом.
В уравнении (1) n× n–матрица Q(t, s) определена и измерима

по совокупности переменных на множестве a < s < t 6 ∞, неотри-
цательна почти всюду и для любых b > a (b 6= ∞) удовлетворяет
условиям

vrai sup
a<s<b

∫ b

s

‖Q(t, s)‖ dt < ∞,

lim
h→0+

vrai sup
a<s<b

∫ min(s+h, b)

s

‖Q(t, s)‖ dt = 0.

Под решением уравнения (1), где f ∈ L1
loc ((a,∞) → Rn), будем

понимать функцию xf ∈ L1
loc ((a,∞) → Rn), которая удовлетворяет

почти всюду на (a,∞) уравненю (1).
Определение. Решение xf̄ называется L1-устойчивым, если

для любого ε > 0 найдется такое δ = δ(ε) > 0, что для любого
f ∈ L1

loc, такого, что f − f̄ ∈ L1 и
∥∥f − f̄

∥∥
L1 < δ, следует, что

xf − xf̄ ∈ L1 и
∥∥xf − xf̄

∥∥
L1 < ε.

Теорема. Для L1–устойчивости уравнения (1) необходимо и до-
статочно, чтобы vrai sup

s>a

∫∞
s
‖Q(t, s)‖dt < ∞ и при некотором k вы-

полнялось неравенство

sup
j
|λj (Bk)| < 1,

где Bk = lim
T→∞

vrai sup
s>T

∫∞
s

Qk(t, s) dt; λj (Bk) — собственные числа

матрицы Bk, Qk — k-тое итерированное ядро ядра Q.

ПРИМЕНЕНИЕ АСИМПТОТИЧЕСКОГО МЕТОДА
АЛГЕБРАИЧЕСКОЙ ПЕРЕСТРОЙКИ В МОДЕЛИ

СОЛОУ
Задорожная Н.С., Задорожный А.И. (Ростов-на-Дону)

simon@rsu.ru

Обобщенную неоклассическую задачу экономической динами-
ки с квазиоднородной производственной функцией Кобба-Дугласа
представим в виде следующей сингулярно возмущенной нелинейной
автономной системы обыкновенных дифференциальных уравнений

ε
du

dt
= sg(τ)uα − ν(τ)u, ε

dτ

dt
= ε; u(0) = u0, τ(0) = 0, (1)
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с которой связан линейный дифференциальный оператор первого
порядка с частными производными

X ≡ X0 + εX1 ≡ [sg(τ)uα − ν(τ)u]
∂

∂u
+ ε

∂

∂τ
.

Интегрирование системы (1) эквивалентно, как известно, интег-
рированию одного линейного уравнения с частными производными
∂G
∂t = XG. В (1) приняты обозначения: ε = znT << 1 - малый
безразмерный параметр, zn - нормативная фондоотдача, T - гори-
зонт планирования; u(t) = K(t)

Ll(t)
- обобщенная фондовооруженность,

K(t), L(t) - капитал и трудовые ресурсы в безразмерной форме,
соответственно; 0 < s < 1 - норма накопления, g(t) = Lm−l(t),m
- степень однородности (отдача на масштаб), l - вес [1], ν(t) =
µ + l L̇(t)

L(t) , где µ - коэффициент амортизации фондов.
Суть анонсированного в заглавии метода, изложенного в [2],

состоит в применении преобразований, максимально упрощающих
оператор X. Для преобразования оператора X0 рассмотрим задачу
на собственные значения

[sg(τ)uα − ν(τ)u]
dϕ

du
= λ(τ)ϕ(u),

заметив, что τ представляет собой так называемый инвариант.
Устанавливается, что λ(τ) = −(1 − α)ν(τ), где 0 < α < 1, ϕ =[
u1−α − sg(τ)

ν(τ)

]
. В базисных переменных ϕ(u), τ оператор X0 диаго-

нализуется, а именно: X0 = λϕ ∂
∂ϕ . В нулевом приближении получа-

ем задачу dτ
dt = 0, то есть τ = 0, εdϕ

dt = λ(τ)ϕ с очевидным решением
ϕ = C0exp

(− 1−α
ε ν(0)t

)
. Окончательно, главный член асимптотики

принимает вид

u(t) =
[
sg(t)
ν(t)

−
(

sg(0)
ν(0)

− u1−α
0

)
exp

(
−1− α

ε
ν(0)t

)] 1
1−α

+ O(ε). (2)

Формула, подобная (2), может быть получена методом регуля-
ризации сингулярных возмущений [3], но с помощью более трудо-
емкой техники.

Литература
1. Арнольд В.И. Дополнительные главы теории обыкновенных

дифференциальных уравнений. - М.: Наука, 1978. 304 с.
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2. Богаевский В.Н., Повзнер А.Я. Алгебраические методы в
нелинейной теории возмущений. - М.: Наука, 1987. 256 с.

3. Ломов С.А. Введение в общую теорию сингулярных
возмущений.- М.: Наука, 1981. 400 с.

НАЧАЛЬНО-КРАЕВАЯ И ОБРАТНАЯ ЗАДАЧА ДЛЯ
УРАВНЕНИЯ СМЕШАННОГО ТИПА С
ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ

Зарубин А.Н. (Орел)
aleks_zarubin@mail.ru

Пусть D = D+ ∪ D− ∪ J , где D+ = {(x, t) : x > 0, t > 0},
D− =

+∞⋃
k=0

D−
k , D−

k = {(x, t); kτ−t < x < (k+1)τ +t, −τ/2 < t < 0},
J = {(x, t) : x > 0, t = 0}.

В области D для краевой задачи




Ut(x, t) = Uxx(x, t) + H(t− h)U(x, t− h)−
−H(x− τ)U(x− τ, t) + F (x, t), (x, t) ∈ D+;

Utt(x, t) = Uxx(x, t)−H(x− τ)U(x− τ, t), (x, t) ∈ D−;

(1)

U(0, t) = 0, t > 0; U(x, kτ − x) = ψk(x), kτ 6 x 6 (2k + 1)τ/2, (2)

ψ0(0) = 0, lim
k→∞

max
[kτ,(2k+1)τ/2]

|ψk(x)| = 0, F (0, t) = F (+∞, t) = 0, (3)

когда U(x, t), F (x, t) ∈ C(D)∩C1(D)∩C2(D\J); ψk(x) ∈ C1[kτ, (2k+
1)τ/2] ∩C2(kτ, (2k + 1)τ/2); H(ξ) - функция Хевисайда; 0 < τ, h ≡
const, рассматривается

Задача. Найти функцию g(t) при известной функции f(x), за-
дающих плотность тепловых источников F (x, t) = f(x)g(t) систе-
мы, описываемой уравнением (1) в области D и условиями (2)-(3),
по наблюдаемому значению

Ux(xk, t) = α(t), t > 0, xk = kτ. (4)

Вопрос существования единственного решения краевой задачи
(1)-(3) сводится к разрешимости интегро - дифференциально - раз-
ностного уравнения

ω′′(x)− ω′(x) = H(x− τ)ω(x− τ)−
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−
k∑

m=1

γmH(x−mτ)

x−mτ∫

0

(x−mτ−η)2(m−1)ω(η)dη−f(x)g(0)−δk(x),

kτ < x < (k + 1)τ , где ω(x) = U(x, 0), γm ≡ const, δk(x) зави-
сит от ψk(x); а обратной задачи с условием (4) - к разрешимости
интеграьного уравнения Вольтерра первого рода.

УСЛОВИЕ ЭКСТРЕМУМА В ВАРИАЦИОННОЙ
ЗАДАЧЕ С РАЗРЫВНЫМИ ЭКСТРЕМАЛЬНЫМИ

РЕШЕНИЯМИ1

Зверева М.Б. (Воронеж), Ищенко А.С. (Белгород)
margz@rambler.ru, science@bupk.ru

Обсуждается возможность описания условия экстремума для
функционала

Φ(u) =

1∫

0

pu′2µ
2

dµ +

1∫

0

u2

2
d[Q]−

1∫

0

ud[F ], (1)

рассматриваемого в классе разрывных функций. Такой функци-
онал возникает, например, при моделировании деформации двух
упруго взаимодействующих в точке x = ξ кусков стилтьесовской
струны.

Мы предполагаем, что p, Q, F — функции ограниченной вариа-
ции на [0, 1], µ — строго возрастающая на [0, 1] функция. Функци-
онал (1) изучается в классе µ - абсолютно непрерывных функций,
производные которых u′µ ( в смысле Радона - Никодима) являются
функциями ограниченной вариации на [0, 1].

Функциям Q, F разрешено в точке x = ξ разрыва u иметь пра-
вый и левый скачки. Так, правый скачок ∆+Q(ξ) = Q(ξ +0)−Q(ξ)
определяет упругость пружины, подпирающей конец струны u(ξ +
0). Аналогично, левый скачок ∆−Q(ξ) = Q(ξ)−Q(ξ−0) определяет
упругость пружины, подпирающей u(ξ−0). Левый и правый скачки
функции F определяются сосредоточенными силами, приложенны-
ми в точках u(ξ − 0) и u(ξ + 0) соответственно. Наличие двойных
скачков у функций Q, F предопределяет непригодность описания
потенциальной энергии обычными интегралами Стилтьеса, в связи

1Работа выполнена при финансовой поддержке РФФИ (гранты № 04-01-
00049)
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с чем мы прибегаем к использованию более общего интеграла, пред-
ложенного Ю.В. Покорным [1]. Чтобы подчеркнуть, что речь идет
о таком интеграле, мы обрамляем функцию, стоящую под диффе-
ренциалом, квадратными скобками.

Литература
1. Покорный Ю.В. Интеграл Стилтьеса и производные по мере

в обыкновенных дифференциальных уравнениях // Докл. АН. –
1999. – Т.364, №2. – С.167-169.

АСИМПТОТИКА РЕШЕНИЙ ЗАДАЧИ F (t, x, x′) = 0,
x(0) = 0

Зернов А.Е., Кузина Ю.В. (Одесса)
zernov@ukr.net

В докладе рассматриваются сингулярные задачи Коши

P (t, x(t), x′(t)) + f(t, x(t), x′(t)) = 0, x(0) = 0, (1)

где x : (0, τ) → R – неизвестная функция переменной t, P – мно-
гочлен от своих переменных, f : D → R – непрерывная функция
(D ⊂ (0, τ)× R× R), которая в некотором смысле мала. Решени-
ем задачи (1) называется непрерывно дифференцируемая функ-
ция x : (0, ρ] → R, 0 < ρ < τ , которая тождественно удовлетворя-
ет при всех t ∈ (0, ρ] дифференциальному уравнению и при этом
lim

t→+0
x(t) = 0. В первой части доклада рассматриваются уравнения

m∑

k=1

(a10kt + a01kx(t)) (x′(t))k = a100 + a010x(t) + f(t, x(t), x′(t)),

∑

i+j=m,k>1

aijkti(x(t))j(x′(t))k =
∑

16i+j6m

aijkti(x(t))j +

+
∑

i+j>m+1,k>0

aijkti(x(t))j(x′(t))k + f(t, x(t), x′(t))

с начальным условием x(0) = 0, где m > 2 – натуральное, i, j, k – це-
лые неотрицательные, все aijk – постоянные, a100 6= 0, a010 6= 0. Во
второй части доклада рассматриваются задачи вида (1), где отсут-
ствуют линейные члены a100t + a010x(t). В третьей части доклада
рассматривается задача

tα(x(t))β(x′(t))γ = a100t + a010x(t) + f(t, x(t), x′(t)), x(0) = 0,
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где α, β, γ – целые неотрицательные, γ > 1, a100 и a010 – постоянные.
Исследуются вопросы о существовании у поставленных задач

непустых множеств решений x : (0, ρ) → R (ρ достаточно мало) со

свойствами x(t) =
r∑

k=1

cktk + o(tr), t → +0, (r > 2), или x(t) = (c1 +

+o(1)) t, t → +0, где все ck – постоянные, и о количестве решений с
такими свойствами. При этом проводятся рассуждения качествен-
ного характера. Рассматриваются конкретные примеры.

КАЧЕСТВЕННЫЙ АНАЛИЗ СИНГУЛЯРНЫХ
ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ
Зернов А.Е., Чайчук О.Р. (Одесса)

zernov@ukr.net

Рассматриваются следующие четыре задачи Коши:

α(t)x′(t)=a(t) + b1(t)x(t) + b2(t)x(g(t)) + b3(t)x′(h(t)), x(0) = 0,

α(t)x′(t) = a(t) + b1(t)x(t) + b2(t)x(g(t)) + b3(t)x′(h(t)) +

+ϕ
(
t, x(t), x(g(t)), x′(t), x′(h(t))

)
, x(0) = 0,

α(t)x′(t) = f(t, x(t), x(g(t)), x′(t), x′(h(t))), x(0) = 0,

α(t)x′(t) = f
(
t, x(t), x(g(t)), x′(t), x′(h(t))

)
+

+ϕ
(
t, x(t), x(g(t)), x′(t), x′(h(t))

)
, x(0) = 0.

Здесь x : (0, τ) → R — неизвестная функция переменной t,
a : (0, τ) → R, bi : (0, τ) → R, i ∈ {1, 2, 3}, g : (0, τ) → (0, +∞),
h: (0, τ) → (0,+∞), α : (0, τ) → (0, +∞) – непрерывные функ-
ции, lim

t→+0
α(t) = 0, lim

t→+0
a(t) = 0, 0 < g(t) 6 t, 0 < h(t) 6 t,

t ∈ (0, τ), f : D → R и ϕ : D → R – непрерывные функции,
D ⊂ (0, τ)× R× R× R× R, при этом ϕ в определенном смысле
мала.

Решением каждой из этих задач называется непрерывно диф-
ференцируемая функция x : (0, ρ] → R, 0 < ρ < τ , которая тожде-
ственно удовлетворяет при всех t ∈ (0, ρ] соответствующему урав-
нению и lim

t→+0
x(t) = 0

Для каждой из указанных задач найдены эффективные доста-
точные условия существования непустых множеств решений с из-
вестными асимптотическими свойствами при t → +0. Рассмотрен
вопрос о числе решений указанного вида. Обсуждается проблема
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близости решений возмущенных и невозмущенных задач. Исполь-
зованы рассуждения качественного характера. Рассмотрены кон-
кретные примеры.

НАБЛЮДАЕМОСТЬ УПРУГИХ КОЛЕБАНИЙ,
ОПИСЫВАЕМЫХ СИСТЕМОЙ ТЕЛЕГРАФНЫХ

УРАВНЕНИЙ1

Знаменская Л.Н. (Переславль), Потапова З.Е. (Москва)
lznam@lznam.pereslavl.ru

potapovaZ@yandex.ru
Рассматриваются колебания, описываемые следующей краевой

задачей: {
vx(t, x) + Lit(t, x) + Ri(t, x) = 0,

ix(t, x) + Cvt(t, x) + Gv(t, x) = 0,
(1)

v(0, x) = ϕ(x), i(0, x) = ψ(x), 0 6 x 6 `, (2)
v(t, 0) = 0, i(t, `) = 0, 0 6 t 6 T, (3)

где R и L — сопротивление и коэффициент самоиндукции, а C и G
— коэффициенты емкости и утечки. Предполагается, что сигнал по
линии распространяется без искажения, т. е. выполнено равенство
CR = LG. Пусть β = G/C = R/L.

З а д а ч а г р а н и ч н о г о н а б люд е н и я. Найти период наблю-
дения T и начальное состояние (2) объекта, процесс колебаний кото-
рого описывается системой (1), однородными краевыми условиями
(3), по результатам наблюдения

vx(t, 0) = y1(t), ix(t, `) = y2(t), 0 6 t 6 T.

Пре д л ожени е. Задача граничного наблюдения решается, ес-
ли период наблюдения T не меньше, чем `/a. При этом функции
начального состояния системы ϕ(x) и ψ(x) восстанавливаются с
помощью функций наблюдений y1(t) и y2(t) следующим образом:

ϕ(x)=
1
2

x∫

0

[
exp

(
βξ

a

)
y1

(
ξ

a

)
+ aL exp

(
β(`− ξ)

a

)
y2

(
`− ξ

a

)]
dξ,

ψ(x)=−1
2

`∫

x

[
exp

(
β(`− ξ)

a

)
y2

(
`− ξ

a

)
−aC exp

(
βξ

a

)
y1

(
ξ

a

)]
dξ.

1Работа выполнена при финансовой поддержке РФФИ, грант № 06-01-00279
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ОБ УПРАВЛЕНИИ ДВИЖЕНИЕМ С МЯГКОЙ
ПОСАДКОЙ РЕАКТИВНОГО АППАРАТА ПРИ

НАЛИЧИИ КОНТРОЛЬНОЙ ТОЧКИ
Зубова С.П., Ле Хай Чунг (Воронеж)

trungybvnvr@yahoo.com

Рассматривается движение объекта в вертикальной плоскости в
поле силы тяжести под действием реактивной силы, возникающей
в результате отделения от него частиц с элементарной массой (см.
[1]).

Задаются начальное и конечное положения объекта (горизон-
тальные и вертикальные составляющие), начальные и конечные
скорости объекта. Для мягкой посадки конечные составляющие
скорости как и управляющие воздействия реактивной точки по-
лагаются равными нулю.

Требуется, чтобы рассматриваемый объект в произвольно за-
данный момент времени находился в определенной точке.

Движение объект описывается линейной системой уравнения с
постоянными коэффициентами.

В докладе доказывается, что существуют управления, описы-
ваемые полиномиальными функциями от времени, под действиями
которых состояния системы также описывается полиномиальными
функциями от времени. В отличие от результатов [2], приводимый
метод нахождения управляющих функций и функций состояния
системы не требует каскадного расщепления уравнения управле-
ния на уравнения в подпространствах. Решения получаются в более
простом и удобном для исследований вида.

Литература
1. Красовский Н. Н., Теория управления движением. М.: Наука,

1968, 475 с.
2. Раецкая Е. В., Условная управляемость и наблюдаемость ли-

нейных систем: Дисс. . . . канд. физ.-мат. наук. Воронеж, 2004.
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О ПОЛИНОМИАЛЬНЫХ РЕШЕНИЯХ ЗАДАЧ
УПРАВЛЕНИЯ

Зубова С.П., Раецкая Е.В. (Воронеж)
raetskaya@inbox.ru

Рассматривается линейная динамическая система с постоянны-
ми коэффициентами

dx

dt
= Bx(t) + Du(t) (1)

(x(t) ∈ Rk, u(t) ∈ Rn, t ∈ [0, T ], B, D – матрицы соответствующих
размеров.

Исследуется возможность построения функции управления u(t)
и функции состояния x(t) в виде полиномов по степеням t с век-
торными коэффициентами для широкого круга задач управления:

для классической задачи с краевыми условиями

x(0) = x0, x(T ) = xT ; (2)

для задачи о мягкой посадке:

x(0) = x0, x(T ) = xT , x′(T ) = 0;

для задачи управления (1), (2) с дополнительными ограничени-
ями:

u(i)(0) = αi, i = 1, p, u(j)(T ) = βj , j = 1, q; (3)

для задачи с контрольными точками:

x(0) = x0, x(τi) = xi, x(T ) = xT , i = 1, m, 0 < τi < . . . < τm < T ;

с другими условиями:

x(t) > 0, |u(t)| < 1 . . . .

Степени полиномов определяются в зависимости от количества
ограничений на x(t) и u(t) и от количества матриц в ранговом кри-
терии управляемости Калмана, необходимых для совпадения ранга
матрицы управляемости с размерностью пространства состояний
системы.

В работе (2) были построены функции состояния и функции
управления системы (1) с условиями (2), (3) в виде произведений
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полиномов от t на экспоненциальные функции с матричными по-
казателями. Решения же чисто полиномиальные значительно упро-
щают исследования.

Литература
1. Андреев Ю.Н. Управление конечномерными линейными объ-

ектами / Ю.Н.Андреев. - М. : Наука, 1976. - 424 с.
2. Раецкая Е.В. Полная условная управляемость и полная на-

блюдаемость линейных систем: диссерт. на соиск. уч. ст. канд. физ.-
мат.наук. Воронеж, 2004. – 149с.

ИТЕРАЦИОННАЯ СХЕМА ВЫЧИСЛЕНИЯ
ГЕОМЕТРИЧЕСКОЙ КРАТНОСТИ НЕНУЛЕВЫХ

СОБСТВЕННЫХ ЗНАЧЕНИЙ ОПЕРАТОРА
ГИЛЬБЕРТА-ШМИДТА
Исламов Г.Г. (Ижевск)

gislamov@udm.ru

В цикле работ автора (см. библиографию в [1]) показано, что ве-
личина max

λ∈Ω
dimker(A−λI), A – линейный оператор, I – тождествен-

ный оператор, Ω – подмножество комплексной плоскости, возникает
при изучении различных проблем теории управления. Здесь опи-
сывается схема вычисления геометрической кратности ненулевого
собственного значения оператора Гильберта-Шмидта A, действую-
щего в сепарабельном гильбертовом пространстве H. Выберем од-
нозначные функции f и g, аналитические в окрестности спектра
оператора A и обращающиеся в нуль на спектре в нуле и только в
нуле. Обозначим P = f(A)−f(λ)I, L = 1

g(λ)g(A), P ∗ – сопряженный
оператор. Пусть {Qn} – последовательность операторов Гильберта-
Шмидта, порождённая итерационным процессом Q0 = 0, Qn =
(I − µP ∗P )Qn−1 − µP ∗L, n = 1, 2, . . . , где µ ∈ (0, 2/|P ∗P |), | · | –
норма ограниченного оператора. Тогда геометрическая кратность
dimker(A − λI) = minQ ‖PQ + L‖ = limn→∞ ‖PQn + L‖, где ми-
нимум берется по всем операторам Гильберта-Шмидта, ‖G‖2 =
trace(G∗G).

Литература
1. Islamov G.G. On the exact formula for eigenvalue geometric

multiplicity // Современные методы теории функций и смежные
проблемы: Материалы конференции. Воронеж: ВГУ, 2005. - с. 3.
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ЗАДАЧИ УПРАВЛЕНИЯ В ГИПЕРБОЛИЧЕСКИХ И
ПАРАБОЛИЧЕСКИХ СИСТЕМАХ1

Ишмухаметов А.З. (Москва)
aleks@ccas.ru

Рассматривается задача оптимального управления:

J(u, v) = Φ(w,wt, u) → inf

на решениях волнового уравнения с двумя управлениями u(t) и v(t)

wtt − (a(x)wx)x = d(x)u(t) + f(x, t), (x, t) ∈ Q,

wx(0, t) = v(t), wx(l, t) = 0, t ∈ (0, T ),

w(x, 0) = ϕ0(x), wt(x, 0) = ϕ1(x), x ∈ (0, l),

(u, v) ∈ U ⊂ H =L2×L2, U = {(u, v) ∈ H : ‖u‖L2 6 Ru, ‖v‖L2 6 Rv}
Здесь Φ - выпуклая функция,Q = (0, l)× (0, T ); a(x) ∈ C1[0, l],

a(x) > 0, x ∈ [0, l]; f ∈ L2(Q), d, y0, y1, ϕ1 ∈ L2(0, l), ϕ0 ∈ W 1(0, l)
Аналогично ставится задача для уравнения теплопроводности:

J(u, v) = Φ(w, u) → inf

wt − (a(x)wx)x = d(x)u(t) + f(x, t), (x, t) ∈ Q,

wx(0, t) = v(t), wx(l, t) = 0, t ∈ (0, T ),

w(x, 0) = ϕ(x), x ∈ (0, l), f ∈ L2(Q), d, y, ϕ ∈ L2(0, l),

(u, v) ∈ U ⊂ H =L2×L2, U ={(u, v) ∈ H : ‖u‖L2 6 Ru, ‖v‖L2 6 Rv}
Для решения этих задач применяются методы оптимизации

с конечношаговыми внутренними алгоритмами. Эти методы при
аппроксимации с помощью усечения бесконечных рядов сводятся
к последовательному решению систем линейных алгебраических
уравнений. Получены оценки скорости сходимости по функциона-
лу и условия сильной сходимости к нормальному оптимальному
управлению. Методы могут быть применены для решения более
общих задач с выпуклыми целевыми функционалами, а также для
многомерных уравнений и систем.

1Работа выполнена при поддержке РФФИ, проект № 04-01-00619.
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О ВОЗМОЖНОСТИ СВЕДЕНИЯ АНОРМАЛЬНОЙ
ЗАДАЧИ С НЕРАВЕНСТВАМИ К КВАДРАТИЧНОЙ1

Карамзин Д.Ю. (Москва)
dmitry_karamzin@mail.ru

Изучается экстремальная задача

f(x) → min, F (x) ∈ C. (1)

Функции f : Rn → R1 и F : Rn → Rk дважды непрерывно диффе-
ренцируемы; конус C = {y ∈ Rk : yj = 0, j ∈ J1, yj 6 0, j ∈ J2},
где J1, J2 – два набора индексов, отвечающих ограничениям типа
равенств и неравенств соответственно: J1 t J2 = {1, 2, ..., k}.

Предположим, что в задаче (1) существует локальный минимум
x̂, и F (x̂) = 0, f ′(x̂) = 0, F ′(x̂) = 0. Рассмотрим функцию Лагранжа
L(x, λ) = λ0f(x)+

〈
y, F (x)

〉
, λ = (λ0, y), λ0 ∈ R1, y ∈ Rk. Пусть Λ(x̂)

– множество векторов λ 6= 0 таких, что λ0 > 0, y ∈ NC . Обозначим
через Λr(x̂) множество векторов λ ∈ Λ(x̂), для которых существует
подпространство Π ⊆ Rn, codim Π 6 r и ∂2L

∂x2 (x̂, λ)[h, h] > 0 ∀h ∈ Π.
Ясно, что Λs(x̂) ⊆ Λr(x̂) при s < r.

Определение 1. Будем говорить, что задача (1) сводится к квад-
ратичной, если f ′′(x̂)[h, h] > 0 ∀h: F ′′(x̂)[h, h] ∈ C.

Пусть j ∈ J2, δ > 0. Задачу, полученную из (1) заменой огра-
ничения Fj(x) 6 0 на ограничение Fj(x) + δ|x|2 6 0, будем назы-
вать (j, δ)-возмущением задачи (1). Очевидно, что при любом (j, δ)-
возмущении исходной задачи локальный минимум не изменится.
Теорема 1. Пусть J2 6= ∅. Имеет место альтернатива:

а) либо для любых j ∈ J2, δ > 0 (j, δ)-возмущение задачи (1)
сводится к квадратичной задаче,

б) либо Λk−2(x̂) 6= ∅.
Простые примеры показывают, что может быть выполнено а),

но не выполнено б), и наоборот. Условие J2 6= ∅ является суще-
ственным. Изучению анормальных экстремальных задач посвяще-
на монография [1].

Литература
[1] Арутюнов А.В. Условия экстремума. М.: Факториал, 1997.

1Работа выполнена при поддержке РФФИ, проект № 04-01-00619 и Фонда
содействия отечественной науке.
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НЕКОТОРОЕ ТОЧНОЕ РЕШЕНИЕ
КВАЗИЛИНЕЙНОГО ВОЛНОВОГО УРАВНЕНИЯ

Карюк А.И., Редькина Т.В. (Ставрополь)
Karyuk@mail.ru

Нелинейное уравнение в частных производных

vx =
β

2αk
(lnu)tx +

a

2α2
[ut + (αk + β)ux] +

(
β +

β2

2αk

)
(lnu)xx, (1)

где a, k, α, β - const, u(x, t) - неизвестная функция, v(x, t) - функция,
описывающая некоторое возмущение, было получено в статье Редь-
киной Т.В. [1]. Оно обладает парой Лакса с дифференциальными
операторами первого порядка L и A с матричными коэффициента-
ми 2× 2, вида

L=
(

α 0
a −α

)
∂

∂x
+

(
β
2k (lnu)x u

a
2 ( β

αk + 1)(lnu)x + ( a
2α )2u −(α + β

2k )(lnu)x

)
,

A =
(

2αk + β 0
ak β

)
∂

∂x
+

(
v ku

k( a
2α )2u− a

2α (lnu)t v + (lnu)t

)
.

Выполнив в уравнении (1) подстановку u(x, t) = eq(ξ,η), где q(ξ, η) -
новая неизвестная функция, зависящая от новых переменных, вы-
раженных через старые в виде:

ξ(x, t) = t, η(x, t) =
(

β +
β2

2αk

)
t− β

2αk
x,

уравнение (1) сводится к неоднородному квазилинейному уравне-
нию гиперболического типа vη = β

2αk qξη − ak
α eq( 1

β qξ + 1
2qη), кото-

рое может описывать волновые процессы в средах с нелинейными
свойст- вами. Для нелинейного уравнения (1) найдено решение в
виде бегущей волны и доказана следующая

ТЕОРЕМА. Если в уравнении (1) u(x, t) = u(ζ), ζ = x + γt,
где γ - произвольная постоянная, а функция v(x, t), описывающая
некоторое возмущение - задана, и ее также можно представить в
виде v(x, t) = v(ζ), то уравнение (1) имеет точное решение

u(ζ) = eµ
R

(v+C1)dζ

C2+
aµ

2α2 [γ+αk+β]
R

eµ
R

(v+C1)dζ(v+C1)dζdζ
, где µ = 2αk

β(2αk+β+γ) .

Литература
[1] Редькина Т.В. Возможность построения солитонных 1+1 и

2+1 - мерных уравнений, имеющих общую задачу рассеяния //
Вестник СГУ, Ставрополь, 2005, 4 с.

78



ИССЛЕДОВАНИЕ ОДНОЙ ЗАДАЧИ
ОПТИМАЛЬНОГО УПРАВЛЕНИЯ1

Карюкина Ю.Г. (Москва)
Julieta_K@rambler.ru

Рассматривается задача оптимального управления, связанная с
экономическими моделями. А именно:

I(u) = x3(T ) → max, 0 < u1 6 u 6 u2, t ∈ [0, T ],

dx1/dt = u(t)− nc(Y − x2)x1, x1(0) = x0
1 > 0,

dx2/dt = nc(Y − x2)x1 − k1x2, x2(0) = x0
2 > 0,

dx3/dt = nc(Y − x2)x1 − u(t)− k2x1, x3(0) = x0
3 > 0,

Здесь u - темп производства, количество товара выпускаемое
в единицу времени; x1 - количество товара на рынке; x2 - количе-
ство товара у потребителей (не потребленного); x3 - доход (разность
между выручкой и затратами на единицу времени); Y > 0− const,
потенциальный спрос (полное количество товара, способное мгно-
венно удовлетворить спрос в условиях отсутствия ажиотажного
спроса ); k1 − const, темп потребления товара (относительный ко-
эффициент потребления купленного товара в единицу времени);
k2−const, плата за хранение единицы товара; c - цена товара (c > 1,
так как себестоимость товара считается равной 1); n(c) - коэффици-
ент скорости продаж. Считаем, что цена c товара постоянна, поэто-
му n(c) = const. Пусть n(c) = nc. Время T — фиксировано. Кроме
того, исходя из смысла задачи x0

2 < Y .
Для этой задачи доказывается теорема существования опти-

мальных управлений, выпуклость множества достижимости, а так-
же возможность наличия особого режима, который содержит бес-
конечное количество точек переключения.

Литература
[1] Понтрягин Л.С., Болтянский В.Г., Гамкридзе Р.В., Мищен-

ко Е.Ф. Математическая теория оптимальных процессов. М.: Нау-
ка. 1983.

[2] Ильин В.А., Позняк Э.Г.Математический анализ. М.: Наука.
1986, т.1.

[3] Зеликин М.И., Борисов Б.Ф. Режимы учащающихся пере-
ключений в задачах оптимального управления. 1991.

1Работа выполнена при поддержке РФФИ, проект № 04-01-00619.
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ОБ ОБРАЩЕНИИ ТРЕХДИАГОНАЛЬНОЙ МАТРИЦЫ
Катрахов В.В., Каретник В.О. (Владивосток)

katrakhov@mail.ru

Рассмотрим трехдиагональную матрицу M = aD− + bE + cD+,
где E – единичная матрица, элементы матриц (D−)kj = δj+1

k и
(D+)kj = δj−1

k , где δj
k – символ Кронекера. То есть D± представля-

ют собой однодиагональные матрицы, у которых единицы стоят на
первой наддиагонали или поддиагонали, соответственно, а осталь-
ные элементы нулевые.

Рассмотрим еще полиномы Чебышева второго рода Un, которые
определяются, например, по рекуррентной процедуре U0(x) = 1,
U1(x) = 2x, Un+2(x) = 2xUn+1 − Un(x).

Элементы M−1
kj обратной матрицы M−1 вычисляются по фор-

муле

M−1
kj =

−αj−k

βUN (x)

nkj∑

l=0

UN−1−|k−j|−2l(x),

где nkj = min{k−1, N−k, j−1, N−j}, x = −b/(2
√

ac), α =
√

c/a,
β =

√
ac, N – размер матриц.

Эта формула имеет место в невырожденном случае когда ac 6= 0
и x не является корнем многочлена UN . Она может быть выведена
из известной (см., например, [1]) формулы

M−1
kj =

2 c(j−k)/2

(N + 1) a(j−k)/2

N∑

l=1

sin(πkl/(N + 1)) sin(πjl/(N + 1))
b + 2

√
ac cos(πl/(N + 1))

.

Приведенная формула представляет интерес, как с теоретиче-
ской, так и вычислительной точек зрения, поскольку быстрое вы-
числение по рекуррентной формуле полиномов Чебышева приводит
и к быстрому вычислению обратной матрицы.

Литература
1. Катрахов В.В., Головко Н.И., Рыжков Д.Е. Введение в теорию

марковских дважды стохастических систем массового обслужива-
ния. Владивосток, изд-во ДВГУ, 2005, 212 стр.
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РЕШЕНИЕ ГРАНИЧНОЙ ЗАДАЧИ ДЛЯ
УПРАВЛЯЕМОЙ СИСТЕМЫ
Квитко А.Н. (Санкт-Петербург)

alkvit46@mail.ru

Объектом исследования является система

ż = ϕ(z, w, t) (1)

z ∈ Rn, w ∈ Rn, r 6 n, t ∈ [0, 1], f ∈ C3(Rn ×Rr ×R1; Rn) (2)

Пусть z0(t) ∈ C1[0, 1], w0(t) ∈ C1[0, 1] удовлетворяют системе (1).
Введем замену переменных z, w по формулам

z = x + z0(t), w = u + w0(t) (3)

Тогда система (1) в новых переменных примет вид

ẋ = f(x, u, t) (4)

f(0, 0, t) ≡ 0 (5)

Пусть rank(B,AB, . . . , An−1B) = n

A =
{

∂f

∂x
(0, 0, 1)

}
, B =

{
∂f

∂u
(0, 0, 1)

}
(6)

Задача — найти функции x(t) ∈ C1[0, 1), u(t) ∈ C1[0, 1), удовлетво-
ряющие условиям

||x|| < C1, ||u|| < C2 (7)

и системе (4) так, чтобы было выполнено

x(0) = 0, u(0) = 0, x(t) → x1, при t → 1. (8)

Литература
1. Квитко А.Н. Об одной задаче управления // Дифференци-

альные уравнения. Т.40. Вып. 6. 2004. С.740-746
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ПРИМЕНЕНИЕ ПРИНЦИПА МАКСИМУМА
ПОНТРЯГИНА ДЛЯ ОПРЕДЕЛЕНИЯ СТРУКТУРЫ

ОПТИМАЛЬНОГО УПРАВЛЕНИЯ
МАКРОЭКОНОМИЧЕСКОЙ СИСТЕМОЙ В СЛУЧАЕ
НЕСКОЛЬКИХ УПРАВЛЯЮЩИХ ПЕРЕМЕННЫХ

Кетова К.В., Сабирова О.Р. (Ижевск)
primat@istu.ru

Задача экономического роста формулируется как задача управ-
ления благосостоянием населения в определенный интервал време-
ни с использованием функции полезности.

Ежегодно валовый региональный продукт распределяется на
три составляющие: часть средств направляется на расширение ос-
новных производственных фондов, часть средств вкладывается в
инновационные технологии, оставшаяся часть расходуется на по-
требление. Доли инвестирования есть управляющие переменные за-
дачи.

Размеры выпуска определяются агрегированной производствен-
ной функцией типа функции Кобба-Дугласа-Тинбергена.

В отличие от классических постановок [1], в данной задаче при-
сутствуют две управляющие переменные. Фазовыми координатами
являются фондовооруженность и науковооруженность труда. По-
становка относится к классу задач оптимального управления с за-
крепленными концами фазовых траекторий.

Решение задачи управления определяется с использованием
принципа максимума Понтрягина [2], который строит оптимальное
управление как функцию времени. Оптимальная стратегия следу-
ет из максимизации функции Гамильтона, которая в случае числа
управляющих переменных более одной имеет ряд особенностей.

В результате решения поставленной задачи оптимального
управления исследованы параметры устойчивости задачи, найдены
квазистационарные траектории сбалансированного экономического
роста.

Литература
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О СВОЙСТВАХ РАЗНОСТНЫХ ОПЕРАТОРОВ,
ВОЗНИКАЮЩИХ В ТЕОРИИ ТЕПЛОВОГО ВЗРЫВА1

Китаева Е.В. (Самара)
el_kitaeva@mail.ru

Рассмотрим спектральную дифференциальную задачу

Lu ≡ u′′ − d(x)u = λu, u(−1) = u(1) = 0, u(−x) = u(x), (1)

и соответствующую разностную задачу

(Lhu)i ≡ ui+1 − 2ui + ui−1

h2
− d(xi)ui = λhui, (2)

u−m = um = 0, ui = u−i,−m + 1 6 i 6 m− 1, xi = ih, h =
1
m

,

где d(x) > 0 непрерывная на [-1,1] функция. Пусть

d0 = minx∈[−1,1] d(x), d1 = maxx∈[−1,1] d(x), d2 = 2
1∫
−1

d(x) cos2 π
2 xdx.

Теорема 1. Пусть выполнены условия
d1 − d0 < 2π2, 2

∫ 1

−1
d(x) cos2 π

2 xdx >
(

π
2

)2
.

Тогда найдется такое m0 ∈ N и константа λ0 > 0, не завися-
щая от m, что для всех m > m0 собственные значения λh,i задачи
(2) простые, вещественные, и справедливы неравенства λh,m−1 <
λh,m−2 < . . . < λh,2 < 0 < λh,1; |λh,i − λh,j | > C|i − j|2, λh,i =
O∗(i2), |λh,m−1| > λ0 > 0.

Теорема 2.Пусть выполнены условия C1C3−C2C4 > 0,где C1 =
d2− π2

4 , C3 = 9π2

4 −d1, C2 = C4 = 4
9π2

( ∫ 1

−1
((d(x) cos π

2 x)′′)2dx
)1/2

.
Тогда найдется такое m0 ∈ N, γ > 0, что для всех m > m0,
ε ∈ (0, ε0], τ 6 γε/m, алгоритм из [1] численного отыскания огра-
ниченного на всей оси решения задачи εun+1−un

τ = Lhun + fn явля-
ется сходящимся.

В докладе изучаются приложения полученных результатов к
моделированию критических условий теплового взрыва.
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1Работа выполнена при поддержке РФФИ (грант 04-01-96515).
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АКСИОМАТИЧЕСКИЙ И МАТЕМАТИЧЕСКИЙ
ФОРМАЛИЗМ ТЕОРИИ ПАРАЛЛЕЛЬНЫХ

ДЕЙСТВИЙ
Ключанцев М.И. (Воронеж)

kluchancev@pmemm.org.ru

Cистема A отождествляется с некоторым математическим опе-
ратором A : D(A) → R(A) . Требуем существование алгебры
некоммутирующих операторов. Дополняем это условие следующи-
ми тремя аксиомами. 1). Оператор A имеет свое пространство-
время DtR(A). 2). Оператор A имеет первый t = 0 и последний
t = T моменты времени t. 3). Для единичного оператора T = 0. Опе-
ратор A, удовлетворяющий аксиомам 1)-2), допускает единствен-
ное полное временное представление, для интерпретации которого
необходим операциональный формализм.

Без привлечения теории графов конструкции теории ста-
новятся труднообозримыми. Математический формализм, вклю-
чающий алгебру операторов - временных форм A...p..., A...r...
и теорию графов, будет неполным. Для описания самоэволю-
ции оператора A вводится эволюционирующееся пространство
Dtt1...tnR(AA1...An) элементов (x, t, t1, ..., tn, A,A1, ..., An). Про-
странство Dtt1...tnR(AA1...An)- топологическое пространство, но
не является векторным.

Теория пространства Dtt1...tnR(AA1...An) вместе с теорией ис-
числение будущих, т. е. теорией, предметом которой являются опе-
рации с прошедшими и будущими всех порядков, рассматриваемых
как абстрактные объекты некоторого множества, дополняет мате-
матическй формализм, интерпретирующий введенную систему ак-
сиом, понятий и определений теории параллельных действий.

ОБ ОЦЕНКЕ ПОГРЕШНОСТИ РАЗНОСТНЫХ
МЕТОДОВ РЕШЕНИЯ НЕКОРРЕКТНОЙ ЗАДАЧИ

КОШИ В БАНАХОВОМ ПРОСТРАНСТВЕ
Ключев В.В. (Йошкар-Ола)

kljuchevvv@yandex.ru

Рассматривается задача Коши dx(t)/dt = Ax(t), x(0) = f, где
A : D(A) ⊂ X → X — неограниченный замкнутый оператор, дей-
ствующий в банаховом пространстве X; D(A) = X, f ∈ D(A).
Предполагается, что для спектра σ(A) и резольвенты (ζE − A)−1

оператора A выполняется условие σ(A) ⊂ K(ϕ0), ϕ0 ∈ (0, π/2) и
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имеет место оценка ‖(ζE−A)−1‖ 6 C0(1+ |ζ|)−1 ∀ζ ∈ C\K(ϕ0), где
K(ϕ) = {ζ ∈ C\{0} : | arg ζ| < ϕ}. (Ci > 0 – постоянные). Рассмат-
риваемая задача поставлена, вообще говоря, некорректно.

Следуя [1], рассмотрим следующий класс разностных схем чис-
ленной аппроксимации функции x = x(t):

k∑
ν=0

ανxn+ν = ∆t

k∑
ν=0

βνAxn+ν , 0 6 n 6 N − k, ∆t =
T

N
; (1)

x0 = x1 = · · · = xk−1 = f.

Здесь k > 1 — фиксированное натуральное число, αν , βν , 0 6 ν 6
k — вещественные числа, выбор которых определяет конкретную
разностную схему. Ввиду некорректности рассматриваемой задачи,
для получения квалифицированных по ∆t оценок скорости сходи-
мости приближений xn к x(n∆t), равномерных по t = n∆t, необхо-
димо привлекать дополнительную информацию о решении задачи
Коши. Установлены условия на αν , βν , 0 6 ν 6 k и ограничения на
величину отрезка [0; T ], на котором ищется решение, при выпол-
нении которых для приближений xn, порождаемых схемой (1)

1) представление x(T ) = A−pw, p > 0, w ∈ X влечет оценку
‖xn − x(n∆t)‖ 6 C1(− ln ∆t)−p, 0 6 n 6 N − 1, ∆t ∈ (0, ε);

2) существование решения на отрезке [0; T1], T1 > gT > T
– оценку ‖xn − x(n∆t)‖ 6 C2(∆t)q, 0 6 n 6 N, ∆t ∈ (0, ε) для
∀q ∈ (0; p), где p = O(T1 − gT ), T1 → gT определяется выбранным
методом вида (1).

Литература
1. Бакушинский А.Б. Разностные методы решения некоррект-

ных задач Коши для эволюционных уравнений в комплексном В –
пространстве // Дифф.ур. – 1972. – Т.VIII, №9. – C.1661–1668.

УПРАВЛЕНИЕ КОЛЕБАНИЯМИ СОСТАВНОГО
ВЯЗКОУПРУГОГО СТЕРЖНЯ

Кобзев Г.К. (Иркутск)

Для составного стержня с кусочно постоянными характеристи-
ками наполнителя ρi и Ei (i = 1, 2) и одинаковой вязкой связую-
щей рассматривается задача управления движением с управляю-
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щей функцией W (x, t):

ρi
∂2Qi

∂t2
= Ei


∂2Qi

∂x2
−

t∫

0

K(t− τ)
∂2Qi

∂x2
dτ


 + W (x, t), (1)

Q(x, 0) = ϕ(x), Q̇(x, 0) = ψ(x), Q(0, t) = Q(l, t) = 0, (2)

финальными условиями Q(x, T0) = Q̇(x, T0) = 0 и условиями со-
пряжения при x = x0. Xn(x) и ωn – собственные функции и числа
соответствующей задачи Штурма-Лиувилля [1]. Приближенное ре-
шение задачи (1)-(2)

Q(x, t) =
∞∑

n=1
Tn(t)Xn(x), (3)

где Tn(t) – решения интегро-дифференциальных уравнений, полу-
чаемых методом усреднения [2], и Qt(x, t) используется вместе с фи-
нальными условиями для получения моментных равенств l-пробле-
мы моментов в Lp[0, T0] [3]:

T0∫

0

l∫

0

W (ξ, τ)eβkτ

{
sinΩk(T0 − τ)
cosΩk(T0 − τ)

}
Xk(ξ) dξ dτ =

{
Ak

Bk
(4)

Для пространства L2 построение W (ξ, τ) сводится к решению ли-
нейной алгебраической системы (k = 1, N).
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ОБ ИТЕРАТИВНОЙ РЕГУЛЯРИЗАЦИИ
ГРАДИЕНТНОГО МЕТОДА ПРИ НАЛИЧИИ

БОЛЬШИХ ПОГРЕШНОСТЕЙ
Кокурин М.Ю. (Йошкар–Ола)

kokurin@marsu.ru

Рассматривается операторное уравнение F (x) = 0, x ∈ H1, где
F : H1 → H2 – нелинейный дифференцируемый по Фреше оператор
с липшицевой производной, H1,H2 – гильбертовы пространства.
Нерегулярность исходного уравнения означает, что непрерывная
обратимость операторов F ′(x), F ′∗(x)F ′(x) для точек x из окрест-
ности ΩR(x∗) = {x ∈ H1 : ‖x − x∗‖ 6 R} искомого решения x∗ не
предполагается. Считаем, что вместо F доступно приближение F̃
такое, что F̃ (x) = F̂ (x)+ η, ‖F̂ (x∗)‖ 6 δ, ‖F̂ ′(x∗)−F ′(x∗)‖ 6 δ, опе-
ратор F̂ ′ удовлетворяет условию Липшица в ΩR(x∗) и кроме того
supx∈ΩR(x∗) ‖F̂ ′∗(x)η‖ 6 ω с малым значением ω. Последнее усло-
вие выполняется в том случае, когда η = ϕm (m À 1) – элемент
слабо сходящейся к нулю последовательности {ϕn} ⊂ H2, а опера-
тор F таков, что limn→∞ supx∈ΩR(x∗) ‖F̂ ′∗(x)hn‖ = 0 ∀{hn} : hn → 0
слабо в H2. Величина δ имеет смысл меры той части возмущения
оператора F , которая мала в смысле нормы, а ω является оценкой
компоненты возмущения, малой в слабом смысле. При этом слабое
возмущение η может не быть малым в смысле нормы H2. Пусть да-
лее Q – выпуклое замкнутое множество, содержащее x∗, и оператор
FQ : H1 → H1 таков, что ‖FQ(x) − y‖ 6 ‖x − y‖ ∀x ∈ H1, y ∈ Q. В
качестве примера укажем оператор метрического проектирования
на множество Q. Рассматривается итерационный процесс

x0 ∈ ΩR(x∗), xn+1 = FQ[xn − µn(F̃ ′∗(xn)F̃ (xn) + αn(xn − ξ))].

Здесь αn, µn > 0; ξ ∈ H1 – оценка решения x∗. Предполагается, что
начальная невязка допускает приближенное истокообразное пред-
ставление x∗ − ξ = F ′∗(x∗)v + w, ‖w‖ 6 ∆. Предлагается правило
останова итераций n = N(δ,∆, ω), обеспечивающее оценку погреш-
ности ‖xN(δ,∆,ω)−x∗‖ = O((δ+∆+ω2/3)1/2). В применении к методу
Тихонова для аффинного оператора F в случае δ = ∆ = 0, FQ = E
аналогичная оценка получена в [1].

Литература
1. Морозов В.А. Регуляризация при больших помехах // Ж.
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О НОРМАЛИЗАЦИИ КВАРТИЧНОЙ ФОРМЫ ТРЕХ
ПЕРЕМЕННЫХ

Колесникова И.В., Сапронов Ю.И. (Воронеж)
Inna384@yandex.ru

При исследовании бифуркаций решений в "реальных" краевых
задачах возникает вопрос приведения ключевой функции к нор-
мальной форме и в частности, для трехмерной сборки – в постро-
ении квартичной формы нормального вида. [2] Первые результаты
в этом направлении были получены еще в середине 19–го века (в
теории инвариантов) в работах А.Кэли, С.Аронхольда, А.Клебша
и др. [1]. В.И.Арнольдом была разработана общая схема нормали-
зации квазиоднородных особенностей [3], на основе которой можно
указать нормальный вид квартичной формы, но при этом оставал-
ся в тени вопрос "практического приведения" к нормальному виду
произвольной квартичной формы. В настоящем исследовании ис-
пользованы элементы теории G−пространств для изучения невы-
рожденных квартичных форм.

Рассматривается квартичная форма трех переменных

W (x1, x2, x3) = a1 x4
1 + a2 x4

2 + a3 x4
3 + b1 x2

2x
2
3 + b2 x2

1x
2
3 + b3 x2

1x
2
2+

+c1 x2
1x2x3 + c2 x1x

2
2x3 + c3 x1x2x

2
3,

где {ai, bj , ck} — фиксированный набор коэффициентов, задан-
ный с условием, что квартичная часть имеет конечнократную (27-
кратную) особенность в нуле.

Пусть W (x1, x2, x3) = N(x1, x2, x3) + R(x1, x2, x3)., где
N(x1, x2, x3) = a1 x4

1 + a2 x4
2 + a3 x4

3 + b1 x2
2x

2
3 + b2 x2

1x
2
3 + b3 x2

1x
2
2,

R(x) = c1 x2
1x2x3 + c2 x1x

2
2x3 + c3 x1x2x

2
3.

Делая замену x = y + Hy, где
H = (hjk), hjj = 0 ∀j,
получаем квартичную форму трех переменных

W̃ (y1, y2, y3) = Ñ(y1, y2, y3) + R̃(y1, y2, y3). (1)

Приведение квартичной формы к нормальному виду означает под-
бор такой матрицы H, что

R̃(y1, y2, y3) ≡ 0.
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КОМПЬЮТЕРНАЯ ВИЗУАЛИЗАЦИЯ ОБЛАСТЕЙ
СХОДИМОСТИ ИТЕРАЦИОННЫХ ПРОЦЕССОВ ДЛЯ

ОДНОГО СЛУЧАЯ СИСТЕМЫ
ГИПЕРКОМПЛЕКСНЫХ ЧИСЕЛ НА ДВУМЕРНОЙ

ПЛОСКОСТИ
Колодежнов В.Н. (Воронеж)

kvn@vgta.vrn.ru

Рассматривается система трехкомпонентных гиперкомплексных
чисел при дополнительном условии неотрицательности компонент.
Сформулированы основные определения и предложена аксиомати-
ка. Геометрически элементы такой системы интерпретируются точ-
ками на двумерной плоскости.

Постулируется два основных варианта задания матрицы умно-
жения базисных единиц. Гиперкомплексные числа, порождаемые
этими матрицами, для краткости терминологии называются далее
ансамблями третьего порядка, соответственно, первого и второго
родов. При этом множество из трех базисных единиц для ансам-
блей первого рода образуют группу. Множество же базисных еди-
ниц для ансамблей второго рода не имеет единичного элемента в
смысле групповой операции умножения.

Показано, что ансамбли первого рода представляют собой, по
сути, еще одну (наряду с координатной, тригонометрической и экс-
поненциальной) форму представления комплексных чисел. Ансам-
бли второго рода образуют самостоятельную числовую систему с
“равноправными” базисными единицами.
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Для наиболее простой нелинейной, квадратичной функции с
параметром, определенной на множестве ансамблей второго рода,
рассмотрена процедура итерирования. С помощью ПЭВМ прове-
дено качественное исследование отдельных участков фрактальных
границ области, для точек которой аттрактором является бесконеч-
ность. Показано, что в плоскости параметра квадратичной функ-
ции в окрестности границ основного множества в форме “трехлист-
ника” имеют место структуры типа множества Мандельброта, ха-
рактерные для комплексных чисел. Рассмотрены особенности неко-
торых спиральных структур в рамках исследуемого итерационного
процесса.

НЕСТАЦИОНАРНЫЙ ТЕПЛОПЕРЕНОС В ПЛОСКОМ
КАНАЛЕ КОНЕЧНОЙ ДЛИНЫ С УЧЕТОМ

ДИССИПАЦИИ И ЗАВИСИМОСТИ ВЯЗКОСТИ ОТ
ТЕМПЕРАТУРЫ

Колтаков А.В. (Воронеж)
teormech@vgta.vrn.ru

В работе [1] приведено решение задачи о стационарном тепло-
переносе в слое жидкости, текущей в ограниченном канале. При
решении этой задачи учитывалась диссипация механической энер-
гии и зависимость вязкости от температуры.

С учетом допущений представленных в работе [1] получена
математическая модель нестационарного теплопереноса, которая
включает в себя дифференциальное уравнение энергии с соответ-
ствующими начальными условиями. Решение этого дифференци-
ального уравнения было получено методом характеристик. Систе-
ма характеристических уравнений включала в себя три дифферен-
циальных уравнения. Первые два уравнения для продольной ко-
ординаты и времени решались прямым интегрированием. Третье
уравнение для температуры по форме записи совпадает с видом
уравнения, решаемого в [1] для стационарной постановки задачи.
При этом имеет место и аналогия в постановке граничных условий.
Поэтому для решения этого уравнения использовался метод малого
параметра, применение которого к данной задаче описано в [1] для
стационарной постановки.

Полученное решение позволило провести численные экспери-
менты, в ходе которых было изучено влияние критериев подобия
(чисел Фурье, Наме-Гриффетса и Био) на распределение темпера-
туры по длине канала, а так же на максимальное ее значение.
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Литература
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нале конечной длины с учетом диссипации и зависимости вязкости
от температуры [Текст] / В.Н. Колодежнов, А.В. Колтаков // Со-
временные проблемы механики и прикладной математики: Сб. тру-
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ВОЗНИКНОВЕНИЕ РЕЛАКСАЦИОННЫХ
КОЛЕБАНИЙ В ЗАВИСИМОСТИ ОТ ФОРМЫ

ИНТЕГРАЛЬНОГО МНОГООБРАЗИЯ1

Кононенко Л.И. (Новосибирск)
Volok@math.nsc.ru

Рассматривается сингулярно возмущенная система обыкновен-
ных дифференциальных уравнений

ẋ = f(x, y, ε),
εẏ = g(x, y, ε),

где x ∈ Rm, y ∈ Rn, ε — малый положительный параметр, f, g —
достаточно гладкие функции, ẋ, ẏ — производные по времени.

Продолжено исследование релаксационных колебаний данной
системы в случае m = n = 1, начатое в [1, 2]. Приведены условия на
функцию g, задающую интегральное многообразие рассматривае-
мой системы, при которых существуют релаксационные колебания.

Достаточное условие существования релаксационных колебаний.
Для существования релаксационных колебаний достаточно, чтобы
функция g имела вид g(x, y, ε) = (ϕ1(x) − y)(ϕ2(x) − y)(ϕ3(x) − y),
где ϕi : R→ R, ϕi ∈ C∞(R), i = 1, 2, 3, и удовлетворяют следующим
условиям:

I. ϕ3(x) 6 ϕ2(x) 6 ϕ1(x) ∀x ∈ [a, b];
II. ∂g

∂y (a, ϕ2(a), 0) = ∂g
∂y (a, ϕ3(a), 0) = 0, ∂g

∂y (b, ϕ1(b), 0) =
∂g
∂y (b, ϕ2(b), 0) = 0;

III. −(ϕ2 − ϕ1)(ϕ2 − ϕ1) < 0,−(ϕ3 − ϕ2)(ϕ1 − ϕ3) < 0,−(ϕ1 −
ϕ3)(ϕ2−ϕ3) < 0, где ϕ1 = ϕ1(x), ϕ2 = ϕ2(x), ϕ3 = ϕ3(x) ∀x ∈ [a, b].

Литература
1. Гольдштейн В. М., Соболев В. А. Качественный анализ сингу-

лярно возмущенных систем. Новосибирск: Изд. Ин-та математики
СО АН СССР, 1988.

1Работа выполнена при поддержке РФФИ (проект 05–01–00302).
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2. Кононенко Л.И. Релаксационные колебания в сингулярных
системах с медленными и быстрыми переменными // Сиб. журн.
индустр. математики. 2004. Т. VII. №3(19). С. 102–110.

ИНТЕРПОЛЯЦИОННАЯ ТЕОРЕМА ДЛЯ
ПРОСТРАНСТВА Lpq(b; R)

Копежанова А.Н., Тлеуханова Н.Т. (Казахстан, Астана)
er-nurs@yandex.ru

В работе вводится шкала пространств Lpq, являющиеся обобще-
ниеми пространств Лоренца. Доказывается интерполяционная тео-
рема для этих шкал.

Пусть f -определенная на R измеримая функция.Функцию

f∗(t) = inf{σ : m(σ, f) 6 t},
где m(σ, f) = µ{x : |f(x)| > σ} назовем невозрастающей переста-
новкой функций f .

Пусть 1 6 p 6 ∞, 1 6 q 6 ∞. Обозначим через Lpq(b), про-
странств всех измеримых функции f определенных в R для кото-
рых

‖f‖Lpq(b) =




+∞∑

k=−∞

(∫ bk+1

bk

(f∗(t))p
dt

) q
p




1
q

.

В случае, когда последовательность {bk}∞k=−∞ = {2k} , данные
пространства совпадают с классическими пространствами Лоренца
Lpq.

ТеоремаПусть 1 6 p0 < p1 < ∞, 1 6 q 6 ∞.
Пусть b = {bk}+∞k=−∞, {dm}+∞m=−∞-две последовательности удо-

влетворяющих условиям: при любыхα > 0
m∑

k=−∞
(bk − bk+1)α ∼ (dm − dm+1)α

при любыхβ < 0

+∞∑

k=−m

(bk+1 − bk)β ∼ (dm − dm+1)βи

если T -линейный оператор ограничен:

T : Lp01(d) → Lp0∞(b)
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T : Lp11(d) → Lp1∞(b)

тогда

T : Lpq(d) → Lpq(b), где0 < θ < 1,
1
p

=
1− θ

p0
+

θ

p1

Когда {bk}+∞k=−∞ = {2k} и {dk}+∞k=−∞ = {2k} удовлетворяющих
условиям теоремы, и следовательно из теоремы следует интерпо-
ляционная теорема для прострнств Лоренца Lpq({2k}).

Литература
1. Берг Й., Лефстрем Й. Интерполяционные пространства. Вве-

дение. Москва,“Мир“1980г.
2. Трибель Х. Теория функциональных пространств. Москва,

”Мир“ 1986г.

ОБ АБСОЛЮТНОЙ РАВНОМЕРНОЙ СХОДИМОСТИ
РАЗЛОЖЕНИЙ ПО СОБСТВЕННЫМ ФУНКЦИЯМ

ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ1

Корнев В.В. (Саратов)

Обозначим через L дифференциальный оператор:

Ly = y(n) + p2(x)y(n−2) + . . . + pn(x)y, x ∈ [0, 1], pk(x) ∈ C[0, 1]

с регулярными двухточечными краевыми условиями.
Предположим, что краевые условия регулярны, n–нечетное.

В работе [1] для разложений по собственным функциям опера-
тора L был доказан аналог теоремы Зигмунда об абсолютной схо-
димости тригонометриченских рядов Фурье. Следующая теорема
усиливает этот результат и является аналогом известной теоремы
Саса.

Теорема. Пусть f(x) удовлетворяет тем краевым условиям
в определении оператора L, которые не содержат производных, и
выполняются условия:

1) f(0) = f(1);

2) либо
∞∑

n=1

1√
n

(
1/n∫
0

|f(x)− f(0)|2 dx

)1/2

< ∞,

1Работа выполнена при финансовой поддержке РФФИ (проект № 06-01-
00003)
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либо
∞∑

n=1

1√
n

(
1/n∫
0

|f(1− x)− f(1)|2 dx

)1/2

< ∞;

3)
∞∑

n=1

1√
n
ω(2)(f, 1

n ) < ∞, где ω(2)(f, 1
n ) – квадратический модуль

непрерывности функции f(x), продолженной периодически.

Тогда
∞∑

n=1
max

06x61
|ϕn(x)| < ∞, где

∞∑
n=1

ϕn(x) – ряд Фурье функции

f(x) по собственным и присоединенным функуиям оператора L.
Замечание. Схожие результаты имеют место и для четного n.

Но в этом случае собственные значения не всегда являются одно-
кратными, и тогда абсолютная равномерная сходимость ряда Фу-
рье будет иметь место при некоторой группировке членов.

Литература
1. Корнев В.В., Хромов А.П. Об абсолютной сходимости раз-

ложений по собственным функциям дифференциальных операто-
ров // Интегральные преобразования и специальные функции. Ин-
форм. бюллетень, 2005. – Т. 5, No 1. – С. 13-23.

СТРОГОСТЬ ИЛИ ПОНЯТНОСТЬ?
Костенко И.П. (Краснодар)

В современной математической педагогике императивом явля-
ется строгое и логически систематизированное изложение.

В то же время фактом является непонимание математики абсо-
лютным большинством учащихся школы и вуза и, как следствие, –
отвращение к ней.

Эти два факта жёстко связаны: первый является основной при-
чиной второго.

К обсуждению предлагается тезис: строгое изложение матема-
тики всегда затрудняет её понимание и даже делает его для новичка
невозможным, потому что отдаляет от смыслов, если не уничтожа-
ет смысл вообще.

Несколько аргументов.
Слово “понимание” органически связано со словом “смысл”. По-

нимание есть всегда понимание смыслов, главных смыслов. Термин
“строгость” так же органически связан со термином “формальная”.
Как нельзя соединить “формальный смысл”, так же несоединимы
“строгость” и “понимание”.

Теория Гёделя и Гильбертовская аксиоматика доказали, что
“абсолютная строгость возможна только и благодаря отсутствию
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смысла” (Р. Том, 1972).
Преодолеть “строгость” и дойти до смыслов, т. е. до понимания

способен лишь искушённый профессиионал-математик.
Озабоченность преподавателя (автора учебной книги) строго-

стью “изложения” убивает в нём педагога. Он становится не спо-
собным стать на точку зрения ученика, понять его затруднения,
найти верные методические решения.

Строгость образцовой математической теории и пресловутая
“математическая культура” формируют в сознании математика
(преподавателя) жёсткий шаблон учебной дисциплины, который он
не в состоянии изменить. Тем самым, в преподавание не допуска-
ется методика и педагогика.

Вместе с тем, строгость (точность определений, логичность рас-
суждений) неотделима от математики-науки. Как быть?

Возникает проблема меры строгости в учебном курсе.
Предлагается обсудить и определить “нестрогости”, допустимые

в учебном математическом курсе, например, для студентов техни-
ческих вузов.

Допустимы неполные определения, т. е. определения, где опуще-
ны некоторые тонкие ограничения, объяснить необходимость кото-
рых новичку невозможно. Пример – определение общего решения
дифференциального уравнения, как формулы, содержащей произ-
вольную постоянную, вариация которой даёт бесконечно много раз-
ных решений. Другой пример – определение непрерывной случай-
ной величины, значения которой заполняют некоторый промежу-
ток “сплошь” (Е. С. Вентцель).

Допустимы доказательства не в полной общности и даже
на характерных примерах, а также с помощью чертежа (теорема
Лагранжа).

Методы решения математических задач (метод Гаусса решения
систем уравнений, вычисление интегралов, решение дифференци-
альных уравнений и др.) не всегда нужно обосновывать “в общем
виде”. Методом нужно владеть.

Что ещё??

ИНТЕРПОЛЯЦИЯ ПРОСТРАНСТВ БЕСОВА НА
ОБЛАСТИ

Крепкогорский В.Л. (Казань)

Рассматривается интерполяция пространств Бесова
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(Bs0
p0

(G), Bs1
p1

(G))θ,q в «недиагональном» случае,на области G ⊂ Rn

с сильным условием конуса [1].
Пусть N — множество натуральных чисел, N0 = N ⋃{0}.
При x, y ∈ Rn, a ∈ Rn, h ∈ R1, E ⊂ G ⊂ Rn, m ∈ N0 положим

∆m(y, E)f(x) :=
m∑

j=0

(−1)m−j m!
j! (m− j)!

f(x + jy)

при [x, x + my] ⊂ E и ∆m(y, E)f(x) := 0, если это не так;

∆m
i (h,E)f(x) := ∆m(hei, E)f(x), i = 1, 2, 3.., n;

ei - единичный вектор i-ая координата которого равна 1, а осталь-
ные 0.

Пусть Q0 = (−1; 1)n, при t > 0 рассмотрим множество Gt := {x :
x + tQ0 ⊂ G}.

При m > 0 через δ
(m)
i (f, x, t) =

∫ 1

−1
|∆m

i (tu,Gt)f(x)
∣∣ du обозна-

чим модуль непрерывности. При 1 < p < ∞, 1 6 q 6 ∞,−∞ < s <
∞,−∞ < k < ∞ определим норму интерполяционного простран-
ства

‖f |BLs,k
p,q(G)‖(2) = ‖f |Lp,q(G)‖+

+

(∫ ∞

0

(
t1/p

(
max

16i6n

(
δ
(m)
i (f, x, d−j)

)
· dj(s−k/p)

)∗

djkη⊗µ

)q
dt

t

)1/q

.

ТЕОРЕМА.Если для 1/p = (1− θ)/p0 + θ/p1, s = (1− θ)s0 + θs1.
Числа k и b – коэффициенты из уравнения прямой, проходящей
через точки (1/pi, si), то

(Bs0
p0

(G), Bs1
p1

(G))θ,q =
(
F s0

p0,p0
(G), F s1

p1,p1
(G)

)
θ,q

= BLs,k
p,q(G).

Литература
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МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
ТУРИСТСКОЙ ИНФРАСТРУКТУРЫ
Курбыко И.Ф., Левизов А.С. (Владимир)

sl@vpti.vladimir.ru

С помощью многомерных методов математической статистики
исследуется туристская инфраструктура регионов России. На осно-
ве данных Федеральной службы государственной статистики фор-
мируется и подвергается статистическому анализу матрица, состо-
ящая из 9 базисных показателей по 80 регионам. Показателями
(в процентном выражении по отношению к своему выборочному
среднему) выступают: Х 1 - число мест в средствах размещения,
Х 2- число мест в учреждениях питания, Х 3- число турфирм, Х 4-
число музеев, Х 5- число театров, Х 6 - число культурно-досуговых
учреждений, Х 7- число спортивных сооружений, Х 8- протяжен-
ность железных дорог, Х 9- протяженность автомобильных дорог.
Сформированы 4 группы (А, В, С, D) регионов, однородных по
степени инфраструктурной обустроенности. Анализируется зави-
симость числа туристов Y - результирующего признака от сопут-
ствующих факторов {Х i}(i=1,. . . ,9). Построена матрица парных
коэффициентов корреляции, позволяющая судить о линейной свя-
зи между факторами. Методом множественной линейной регрес-
сии для групп A, B, C, D получены следующие линейные моде-
ли: YA = −8, 23 + 0, 11X1 + 0, 13X2 + 0, 34X3 − 0, 30X4 − 0, 08X5 +
0, 36X6+0, 06X7−0, 07X8+0, 70X9, YB = −31, 01+0, 07X1+0, 15X2−
0, 34X3 − 0, 04X4 − 0, 03X5 + 0, 31X6 + 0, 34X7 + 0, 21X8 + 0, 92X9,
YC = −3, 60+0, 13X1−0, 04X2+0, 09X3+0, 18X4−0, 23X5−0, 05X6+
0, 57X7 − 0, 0006X8 + 0, 60X9, YD = −15, 25 + 0, 43X1 − 0, 14X2 −
0, 52X3−0, 23X4+0, 30X5+0, 44X6+0, 19X7+0, 27X8+0, 42X9. Вы-
числены коэффициенты детерминации d1=0,98; d2=0,81; d3=0,84;
d4=0,99, которые дают процент общей вариабельности количества
туристов за счет изменения исследуемых девяти факторов. Соот-
ветственно, для групп A, B, C, D имеем: 98%; 81%; 84%; 99%. Мо-
дели показывают, что рост каждого фактора инфраструктуры на 1
% по отношению к своему выборочному среднему значению приво-
дит к росту результирующего показателя по группе А - на 1,25 %;
по группе В - на 1,59 %; по группе С - на 1,24 %; по группе D - на
1,16 %. Модели позволяют выделить наиболее значимые факторы
по каждой группе регионов. Для группы A - факторы X 2, X 9; для
В - X 9, X 6, X 7; для С - X 9; для D - X 5, X 6, X 9.
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О БАЗИСАХ РИССА КОРНЕВЫХ ФУНКЦИЙ
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С

ОПЕРАТОРОМ ОТРАЖЕНИЯ И ИНТЕГРАЛЬНЫМИ
КРАЕВЫМИ УСЛОВИЯМИ1

Курдюмов В.П. (Саратов)

Обозначим через L оператор

ay′′(x) + y′′(1− x) + p1(x)y′(x) + p2(x)y′(1− x), x ∈ [0, 1],

1∫

0

y(t) dσi(t) = 0, i = 1, 2.

Предположим, что Varσi(t) < ∞, i = 1, 2, σi(+0) − σi(0) = αi,
σi(1) − σi(1 − 0) = βi, α1α2β1β2 6= 0, α1β2 − α2β1 6= 0, a2 6= 1 и
обозначим q1 = (a + 1)−1/2, q2 = (a− 1)−1/2.

Пусть λk - собственные значения оператора L. Зафиксируем
некотрую ветвь функции

√
λ и обозначим ρk =

√
λk. Тогда чис-

ла ρk расположены в некоторых полуполосах Pi = {ρ : |Re ρqi| 6
h, Jm ρqi > 0}, i = 1, 2, причем в любом прямоугольнике |Jm ρqi −
C| 6 1, где C ∈ R и произвольно, каждой полуполосы их чис-
ло ограничено. Каждую полуполосу Pi представим в виде объ-
единения конечного числа различных групп прямоугольников Πk,i,
границы которых Γk,i состоят из отрезков: Re ρqi = ±h, Ck,i 6
Jm ρqi 6 Ck+1,i; Jm ρqi = Ck,i, Jm ρqi = Ck+1,i, |Re ρqi| 6 h; так
что в некоторой δ–окрестности Γk,i нет чисел ρk. Каждая группа
состоит из равных между собой прямоугольников и для каждого
прямоугольника конкретной группы существует натуральное tk,i,
что Γk,i = Γi + iq−1

i tk,i, где Γi – некоторый фиксированный кон-
тур этой группы. Пусть Π0 – ограниченная односвязная область,
содержащая P1 ∩ P2 и в δ–окрестности границы Π0 нет числа ρk.

Теорема. Система корневых функций оператора L образует
базис Рисса со скобками в L2[0, 1]. При этом в скобки нужно
объединять те корневые функции, которые соответствуют соб-
ственным значениям, для которых числа ρk попали в Π0, Πk,i.

1Работа выполнена при финансовой поддержке РФФИ (проект № 06-01-
00003)
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МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА
ВЫСОКОСКОРОСТНОГО

УПРУГОПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ
Курохтин В.Т. (Москва)

vkt@rambler.ru

Еще в 1941 году E. Orovan писал: "Развитию динамики пла-
стического скольжения в течение многих лет сильно препятствова-
ла кажущаяся правдоподобной, но на самом деле ложная гипоте-
за, унаследованная из инженерной механики. Эта гипотеза утвер-
ждает, что пластические свойства материала могут быть описаны
кривой напряжение-деформация. Другими словами эта гипотеза
предполагает, что динамический закон пластического скольжения
содержит связь между напряжением и деформацией". Поэтому в
данной работе предлагается использовать зависимость величины
деформации от величины внешней энергии, расходуемой во время
процесса деформирования. Физическая суть пластического дефор-
мирования есть лавинообразный рост дефектов кристаллической
решётки, обусловленный притоком энергии извне. Причем эта энер-
гия выделяется главным образом вблизи поверхностей скольжения,
которые с позиций теории функций пространственных комплекс-
ных переменных можно трактовать как конусы фильтры делителей
нуля (см. В.И. Елисеев Введение в теорию функций пространствен-
ного комплексного переменного НИАТ 1990, с. 190). Кроме того
недавние исследования российских учёных под руководством В.Е.
Панина обнаружили феномен возникновения вихрей при зарожде-
нии пластических деформаций. Поэтому автором выдвигается ги-
потеза о возникновении в теле вихревых движений отдельных бло-
ков, образующихся в процессе импульсного деформирования. Про-
цесс образования блоков и их вихревого движения сопровождается
ростом энтропии и увеличением внутренней энергии. Рассматрива-
ется задача о распространении упругопластических волн в массив-
ном полубесконечном стержне круглого сечения.

О НЕРАВЕНСТВАХ ВЛОЖЕНИЯ МНОГОВЕСОВЫХ
АНИЗОТРОПНЫХ ПРОСТРАНСТВ СОБОЛЕВА

Кусаинова Л.К., Искакова Г.Ш. (Караганда)
kusainova@kargu.krg.kz

В работе получены неравенства вложения многовесого анизо-
тропного пространство Соболева W l̄ = W l̄

p̄(G; ω̄) в пространства
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Лоренца Lq∞
ρ (G) и Лебега Lq

ρ(G). Норма в W l̄
p̄(G; ω̄) задается ра-

венством

|f ; W l̄
p̄(G; ω̄)| = |f ; Lp

ω0
(G)|+

n∑

i=1

|Dli
i f ; Lpi

ωi
(G)|,

где l = (l1, l2, . . . , ln) - целый вектор с li > 1, p̄ = (p0, p1, . . . , pn), 1 <
pi < ∞, ρ, ωi (i = 0, 1, . . . , n)- весовые функции в области G ⊂ Rn,

|f ; Lq
ρ(G)| =

( ∫

G

|f(x)|qρ(x)dx

)1/q

,

|f ; Lq∞
ρ | = sup

t>0
t(ρ(|f | > t))1/q.

Пусть λ = (λ1, . . . , λn), 0 < λili = α < 1. Для t > 0 положим
Q(t,λ)(x) = {y ∈ Rn : |yi − xi| < tλi , i = 1, . . . , n}, δλQ = Q(δt,λ)(x).
Пусть далее v(x)- положительная ограниченная функция в области
G ⊂ Rn, удовлетворяющая условиям:
1) ∀x ∈ G 2λQ(x) ⊂ G,
2) ∃b > 1 : b−1 < v(y)/v(x) < b, если y ∈ Q(x),
где Q(x) = Q(v(x),λ)(x). Обозначим через Jv семейство всех парал-
лелепипедов Q(t,λ) ⊂ Q(x), x ∈ G, через M∗f максимальную функ-
цию

M∗f(x) def= sup
Q∈Jv,Q3x

1
|Q|

∫

Q

|f |.

Ниже будем полагать, что 1 < pi 6 q < ∞, p′i = pi/(pi − 1) (i =

0, 1, . . . , n), |1 : l̄| =
n∑

i=1

1/li, (1− 1/q)
n∑

i=1

1/li < 1.

Теорема 1.Пусть веса ρ, ωi (i = 0, 1, . . . , n) подчиняются усло-
виям:
a) A =

∫
G

(Mω1−p′
0 (x))q/p′v(x)−|λ|q/pρ(x)dx < ∞,

b) Bi = sup
Q∈Jv

|Q|−1+|1:l̄|
( ∫

Q

ρ(x)dx

)1/q( ∫
Q

ω1−p′
i (x)dx

)1/pi

< ∞, (i =

1, . . . , n).
Тогда справедливо неравенство

|f ; Lq∞
ρ (G)| 6 C|f ;W l̄

p̄(G, ω̄)|
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с наилучшей постоянной C 6 c(A +
n∑

i=1

Bi).

Теорема 2. Пусть веса ρ, ωi (i = 0, 1, . . . , n) подчиняются усло-
виям a), b) теоремы 1 и к тому же:

с) Di =
( ∫

G

ρ(x)
[ ∫

G\δλQ(x)

ω1−p′i (y)dy

|y−x|(|λ|−α)p′
i

λ

]q/p′i
dx < ∞

)1/q

(i = 1, . . . , n),

где δ = 2−n/16. Тогда справедливо неравенство

|u;Lq
ρ(G)| 6 C|u;W l̄

p̄(G; ω̄)|

с наилучшей постоянной C 6 c(A +
n∑

i=1

Bi +
n∑

i=1

Di).

ДВОЙСТВЕННАЯ РЕГУЛЯРИЗАЦИЯ В ОБРАТНОЙ
ЗАДАЧЕ ФИНАЛЬНОГО НАБЛЮДЕНИЯ ДЛЯ

АБСТРАКТНОГО ПАРАБОЛИЧЕСКОГО
УРАВНЕНИЯ1

Кутерин Ф.А., Сумин М.И. (Нижний Новгород)
msumin@sinn.ru

Доклад посвящен обсуждению алгоритма двойственной регуля-
ризации [1] для решения обратной задачи финального наблюдения
для абстрактного параболического уравнения. Пусть H – гильбер-
тово пространство, A : V → V ∗ – энергетическое расширение ли-
нейного неограниченного симметричного положительно определен-
ного оператора с плотной в H областью определения V . Рассмат-
ривается обратная задача определения правой части u ∈ U и на-
чального условия w ∈ W , где U ⊂ L2(0, T ;H), W ⊂ H – выпуклые
замкнутые множества, для абстрактной задачи Коши (см., напри-
мер, [2])

y′(t) + Ay(t) = u(t), y(0) = v t ∈ [0, T ]

по приближенно известному в финальный момент времени T зна-
чению h решения y[u,w](T ) ∈ H.

Двойственный алгоритм заключается в непосредственном реше-
нии на основе метода регуляризации Тихонова задачи

V (λ) ≡ min{‖u‖2 + ‖w‖2 + 〈λ, y[u,w](T )− h〉} → sup, λ ∈ H,

1Работа выполнена при финансовой поддержке РФФИ (код проекта 04-01-
00460)
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двойственной к задаче с операторным ограничением типа равенства

‖u‖2 + ‖w‖2 → min, y[u, w](T ) = h, u ∈ U, w ∈ W,

эквивалентной исходной обратной задаче. Обсуждается вопрос ите-
ративной регуляризации [1] этого двойственного алгоритма. Рас-
сматривается также приложение этих абстрактных результатов к
решению ряда конкретных обратных задач теплопроводности.

Литература
1. Сумин М.И. Регуляризованный градиентный двойственный

метод решения обратной задачи финального наблюдения для пара-
болического уравнения // Ж. вычисл. матем. и матем. физ. 2004.
Т. 44. № 11. С.2001-2019.

2. Осипов Ю.С., Васильев Ф.П., Потапов М.М. Основы метода
динамической регуляризации. М.: Изд-во МГУ, 1999.

НЕКОТОРЫЕ ЛОКАЛЬНЫЕ СВОЙСТВА ФУНКЦИИ
ВЛИЯНИЯ УПРУГОЙ СЕТИ
Ладченко Я.С. (Ставрополь)

Для упругой системы, имеющей форму связного графа Γ ⊂ R3

с потенциальной энергией

Φ(u) =
∫

Γ

pu′2

2
dx−

∫

Γ

ufdx,

функция влияния H(x, s) может быть определена как минималь
функционала

Φ(u) =
∫

Γ

pu′2

2
dx− u(s).

Здесь, как и выше, интеграл понимается как сумма интегралов
по всем ребрам Г. Оказывается, для того, чтобы H(x, s) была функ-
цией влияния исходной задачи, необходимо и достаточно, чтобы

∫
pH ′

x(x, s)h(x)dx− h(s) = 0

для любой допустимой h(x).
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ОБ ОПТИМАЛЬНОМ УПРАВЛЕНИИ
ТЕМПЕРАТУРНЫМ РЕЖИМОМ

Лашин Д.А. (Москва)
dalashin@gmail.com

Рассмотрим смешанную задачу для уравнения теплопроводно-
сти

ut = uxx, 0 < x < l, t > 0, (1)

u(0, t) = ϕ(t), ux(l, t) = ψ(t), t > 0, (2)

u(x, 0) = 0, 0 < x < l, (3)

где ϕ(t) ∈ W 1
2 (0, T ), ψ(t) ∈ W 1

2 (0, T ) для любого T > 0.
Будем рассматривать обобщенное решение задачи (1) – (3) из

энергетического класса, то есть функцию u(x, t) ∈ V 1,0
2 (QT ), где

QT = (0, l)× (0, T ) (см. [1], с.179).
Пусть T > 0, h(t) ∈ W 1

2 (0, T ). Обозначим U = {ϕ ∈ W 1
2 (0, T ),

ϕ1 6 ϕ(t) 6 ϕ2}, где ϕ1, ϕ2 – некоторые постоянные.
Для произвольного c ∈ (0, l] определим функционал

J [ϕ] =
∫ T

0
(u(c, t)− h(t))2dt.

Рассмотрим задачу минимизации данного функционала. Обо-
значим inf

ϕ∈U
J [ϕ] = m.

Физический смысл задачи заключается в том, что на одном кон-
це бесконечно тонкого стерженя длины l в течение времени T под-
держивают температуру ϕ(t) (управляющая функция), а на другом
конце задан тепловой поток ψ(t). Задача состоит в нахождении та-
кой управляющей функции ϕ0(t), при которой температура в опре-
деленной точке c была бы максимально близка к заданной темпера-
туре h(t). Оценка качества управления осуществляется с помощью
функционала J [ϕ]. Отметим, что подобные задачи расматривались,
например, в [2] (с. 28).

Теорема. Существует функция ϕ0(t) ∈ U , такая что m =
J [ϕ0].

Литература
[1]] Ладыженская О.А. Краевые задачи математической физики.

М.: Наука. 1973.
[2] Лионс Ж.-Л. Оптимальное управление системами, описыва-

емыми уравнениями с частными производными. М.: Мир. 1972.
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ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ
ПОСТРОЕНИЯ ФАЗОВОГО ПОРТРЕТА ДВУМЕРНОЙ
АВТОНОМНОЙ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ
Лашина И.Н. (Москва)

i-n-k@yandex.ru

Предлагаемая программа автоматизирует построение фазового
портрета двумерной автономной динамической линейной или нели-
нейной (допускающей линеаризацию) системы дифференциальных
уравнений. Входной информацией для программы является систе-
ма дифференциальных уравнений и область, в которой необходимо
построить фазовый портрет. Программа определяет особые точки
следующих типов: устойчивый и неустойчивый узел, в том числе
вырожденный и дикритический, седло, центр (для линейной систе-
мы), устойчивый и неустойчивый фокус. Правые части в исход-
ной системе могут быть сложными функциями следующих элемен-
тарных функций: тригонометрических, обратных тригонометриче-
ских, логарифмических, экспоненциальных и степенных.

Фазовый портрет строится в окрестности каждой особой точки
отдельно и на заданной области для всей системы в целом. При
этом масштаб и точность построения задает пользователь. Выход-
ной информацией программы являются: таблица особых точек си-
стемы с указанием типа особой точки, ее устойчивости, собствен-
ных значений, а также графиком траекторий решений в окрест-
ности каждой особой точки, процесс решения задачи с вычисле-
нием производных, отысканием собственных значений и векторов,
соответствующих особым точкам, фазовый портрет системы в ука-
занной пользователем области. После введения исследуемой систе-
мы программа выполняет синтаксический разбор введенных выра-
жений. При вычислении производных программа применяет алго-
ритм, позволяющий упрощать полученные выражения. При отлад-
ке программы использовались задачи из [1].

Предлагаемая работа представляет собой пример современной
активной формы обучения для очного, заочного, и дистанционно-
го обучения и может быть использована в научных исследовани-
ях. Первая редакция программы представлена на сайте www.fito-
agro.ru/soft/Portret.rar

Литература
. Филиппов А.Ф. Сборник задач по дифференциальным уравне-

104



ниям. Ижевск: НИЦ "Регулярная и хаотическая динамика". 2000.

О СОХРАНЕНИИ РАЗРЕШИМОСТИ "В ЦЕЛОМ"
ЗАДАЧИ ГУРСА-ДАРБУ1

Лисаченко И.В., Сумин В.И. (Нижний Новгород)
v_sumin@mail.ru

Рассматривается краевая задача Гурса-Дарбу

x′′t1t2(t) = g(t, x(t), x′t1(t), x
′
t2(t)), t ∈ Π ≡ [0, 1]2,

x(t1, 0) = ϕ1(t1), t1 ∈ [0, 1];x(0, t2) = ϕ2(t2), t2 ∈ [0, 1], (1)

где g(t, l) : Π×R3k → Rk вместе с g′l(t, l) измерима по t ∀l и непре-
рывна по l для п.в. t, ϕi (ti) : [0, 1] → Rk абсолютно-непрерывны,
ϕ1(0) = ϕ2(0) = 0. В [1] получены достаточные условия сохране-
ния глобальной разрешимости (1) при возмущении правой части
и граничных функций в случае решений с ограниченной смешан-
ной производной. В докладе обсуждается развитие результатов [1]
в случае, когда глобальное решение (1) естественно искать в клас-
се W функций со смешанной производной из Lk

p ≡ Lk
p (Π) , p ∈

(1,∞) . Пусть: ϕ′1, ϕ
′
2 ∈ Lk

p[0, 1]; f(t, l) ≡ g(t, l1 + ϕ1(t1) + ϕ2(t2), l2 +
ϕ′1(t1), l3 + ϕ′2(t2)); A [z] ≡ {A1 [z] , A2 [z] , A3 [z]} , A1[z](t) =

∫ t1
0

∫ t2
0

z(ξ1, ξ2)dξ1dξ2, A2[z](t) =
∫ t2
0

z(t1, ξ)dξ, A3[z](t) =
∫ t1
0

z(ξ, t2)dξ; за-
дана функция N (·) : R+ → R+; Ψ – класс всех троек ψ ≡ {g, ϕ1, ϕ2}
таких, что формула F [z](t) ≡ f(t, A[z](t)) определяет оператор F [·] :
Lk

p → Lk
p и

∥∥∥f
′
l (·, A[z](·))

∥∥∥
Lk×k

p ×(Lk×k
∞ )2 6 N (M) при ‖z‖Lk

p
6 M.

Каждой тройке из Ψ отвечает не более одного решения (1) из W.
Пусть Ψ0 — та часть Ψ, каждому элементу которой отвечает гло-
бальное решение (1) класса W. Для ψ = {g, ϕ1, ϕ2} из Ψ и ψ0 =
{g0, ϕ01, ϕ02} из Ψ0 положим ∆[ψ, ψ0](x0) = g(t, x0 + ∆ϕ1 + ∆ϕ2,
x′0t1+∆ϕ′1, x

′
0t2+∆ϕ′2)−g0(t, x0, x

′
0t1 , x

′
0t2), где ∆ϕ1 ≡ ϕ1(t1)−ϕ01(t1),

∆ϕ2 ≡ ϕ2(t2)− ϕ02(t2), x0 — глобальное решение (1) из W, отвеча-
ющее тройке ψ0.

Теорема.∀ ψ0 ∈ Ψ0 ∃ δ > 0, C > 0: ψ ∈ Ψ, ‖∆[ψ, ψ0]‖Lk
p

< δ ⇒
ψ ∈ Ψ0, ‖(x − x0)′′t1t2‖Lk

p
6 C‖∆[ψ, ψ0]‖Lk

p
, где x — решение (1),

отвечающее ψ.

1Работа поддержана грантом РФФИ (проект 04-01-00460).
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ДВОЙСТВЕННАЯ РЕГУЛЯРИЗАЦИЯ ДЛЯ
ЛИНЕЙНО-КВАДРАТИЧНОЙ ЗАДАЧИ

ОПТИМАЛЬНОГО УПРАВЛЕНИЯ С ФАЗОВЫМ
ОГРАНИЧЕНИЕМ1

Лисаченко М.И., Сумин М.И. (Нижний Новгород)
m.sumin@mm.unn.ru

Доклад посвящен обсуждению алгоритма двойственной регу-
ляризации [1] для приближенного решения задачи оптимального
управления с поточечным фазовым ограничением и с сильно вы-
пуклым целевым функционалом

I0(u) → min, g(t, x[u](t)) 6 0, t ∈ [0, T ], u ∈ D, (1)

где I0(u) ≡ ∫ T

0
(〈A0(t)x[u](t), x[u](t)〉 + 〈B0(t)u(t), u(t)〉) dt, g(t, x) ≡

g1(t) + 〈g2(t), x〉, D ≡ {u ∈ L2(0, T ) : u(t) ∈ U п.в. на (0, T )}, U ⊂
Rm - выпуклый компакт, x[u] - решение линейной системы

ẋ = A(t)x + B(t)u(t), x(0) = x0, x ∈ Rn.

Под двойственной регуляризацией задачи (1) понимается регуля-
ризация неустойчивого к ошибкам исходных данных классического
двойственного алгоритма Удзавы (см., например, [2]), заключаю-
щаяся в непосредственном решении на основе градиентного метода
регуляризованной по Тихонову двойственной к (1) задачи. Пока-
зывается, что при согласованном стремлении к нулю ошибки зада-
ния исходных данных δ и параметра регуляризации α имеет место
сильная сходимость в метрике L2(0, T ) приближенных решений к
решению исходной (невозмущенной) задачи вне зависимости от то-
го разрешима или нет двойственная к (1) задача. Рассматривает-
ся вопрос итеративной регуляризации обсуждаемого двойственного
алгоритма, а также вопрос останова итерационного процесса в слу-
чае конечной фиксированной ошибки задания исходных данных δ.

Литература
1. Сумин М.И. Регуляризованный двойственный метод реше-

ния обратной задачи финального наблюдения для параболического
1Работа выполнена при финансовой поддержке РФФИ (код проекта 04-01-

00460)
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уравнения // Ж. вычисл. матем. и матем. физ. 2004. Т.44. № 11.
С.2001-2019.

2. Мину М. Математическое программирование. Теория и алго-
ритмы. М.: Наука, 1990.

О ПРЕДСТАВЛЕНИИ ФУНКЦИИ КАРАТЕОДОРИ1

Лопушанская Е.В. (Воронеж)
kate_lopushanskaya@yahoo.com

В работе М. Г. Крейна, Г. Лангера [1] было найдено представ-
ление обобщенной функции Неванлинна в области Wν = {z ∈
C0, |argz − π

2 | 6 v}, где 0 6 v < π
2 . Обобщенная функция Кара-

теодори связана с обобщенной функцией Неванлинны с помощью
дробно-линейного преобразования аргумента.

Известно (см.,напр., [2, глава V,§3]), что функция f является
функцией Каратеодори тогда и только тогда, когда существует про-
странство Понтрягина Πκ , унитарный оператор V : Πκ → Πκ и
порождающий элемент v ∈ Πκ такие, что:

f(λ) = f(0) + 2λ[(V − λ)−1v, v], (λ ∈ Ων \ σp(V )). (1)

Для обобщенной функции Каратеодори доказан аналог теоремы
М.Г.Крейна, Г. Лангера для функций Неванлинны, основанный на
следующем результате:
Лемма. Пусть Ων = {λ : λ = α−i

α+i , α ∈ Wν}.
Функция f удовлетворяет свойствам:

(1) f(λ) ∈ Cκ;
(2) lim

λ→1
λ∈Ων

Ref(λ)
|1−λ| < ∞;

(3) lim
λ→1
λ∈Ων

f(λ) = 0,

тогда и только тогда, когда порождающий элемент v ∈ Πκ в пред-
ставлении (1) принадлежит dom(V −I)−1 и представление (1) функ-
ции f принимает вид:

f(λ) = −2(λ− 1)[(V − λ)−1v, (V − I)−1v] (λ ∈ Ων \ σp(V )).

Литература
1. Krein M.G., Langer H.K. Uber einige Forsetzungsprobleme

die eng mit der Theorie hermitescher Operatoren in Raume Πκ
1Исследование поддержано грантом РФФИ 05-01-00203-а.
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zusammenhangen, I: Einige Funktionenklassen und ihre Darstellungen.-
Math. Nachr., 1977, 77, S. 193-206.

2. Азизов Т.Я., Иохвидов И.С. Основы теории линейных опера-
торов в пространствах с индефинитной метрикой.-М.:Наука (1986)

О БАЗИСАХ РИССА ИЗ СОБСТВЕННЫХ И
ПРИСОЕДИНЕННЫХ ФУНКЦИЙ ОДНОГО

ДИФФЕРЕНЦИАЛЬНО-РАЗНОСТНОГО ОПЕРАТОРА
С ИНТЕГРАЛЬНЫМ ГРАНИЧНЫМ УСЛОВИЕМ1

Луконина А.С. (Саратов)

Рассматривается оператор L, порожденный диффернциальным
выражением

l(y) = βy′(x) + y′(1− x) + p1(x)y(x) + p2(x)y(1− x), x ∈ [0, 1],

где β2 6= 1, pi(x) ∈ C1[0, 1] (i = 1, 2) и интегральным граничным
условием

U(y) =
∫ 1

0

p(t) y(t) dt = 0, p(t) =
k(t)

tα(1− t)α
, 0 < α < 1

На k(t) накладываются условия:

1) k(t) ∈ C[0, 1] ∩ V [0, 1],

2) k2(1)− γ2k2(0) 6= 0, k2(0)− γ2k2(1) 6= 0, γ = β −
√

β2 − 1

Теорема. Система собственных и присоединенных функций
оператора L образуют базис Рисса со скобками в L2[0, 1].

Литература
1. Курдюмов В.П., Хромов А.П. О базисах Рисса из собствен-

ных функций интегрального оператора с переменным пределом ин-
тегрирования // Матем. заметки – 2004 – Т. 76, № 1 – С. 97–110.

2. Хромов А.П. Об аналоге теоремы Жордана-Дирихле для раз-
ложений по собственным функциям дифференциально-разностного
оператора с интегральным граничным условием // Докл. РАЕН –
2004 – № 4 – С. 80–87.

1Работа выполнена при финансовой поддержке РФФИ (проект № 06-01-
00003)
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ОБ ОДНОЙ КРАЕВОЙ ЗАДАЧЕ С ПРЯМЫМ
СДВИГОМ В ОБЛАСТЬ В КЛАССЕ
АНАЛИТИЧЕСКИХ ФУНКЦИЙ

Лысенко З.М., Матвиюк Л.В., Нечаев А.П. (Одесса)

Построена теория Нётера [1] задачи об отыскании аналитиче-
ской в односвязной области D с простой ляпуновской границей Γ
функции ϕ(z), представимой интегралом типа Коши с плотностью
из Lp(Γ) (1 < p < ∞) по следующему условию:

c(ξ)ϕ(ξ) = a(ξ)ϕ[θ(ξ)] + b(ξ)ϕ[ω(ξ)] + h(ξ), (1)

ξ ∈ γ. Здесь γ — простой разомкнутый контур, лежащий в D и
такой, что Γ ∩ γ = {t1, . . . , tm}, при этом Γ = Γ1 ∪ Γ2, где Γ1 =
∪m−1

i=1 [ti, ti+1], Γ2 = [tm, t1] ([τ, t] — дуга контура Γ, пробегаемая
от τ к t в положительном направлении); сохраняющие ориентацию
сдвиги θ : γ → [t1, tm] и ω : γ → [tm, t1] имеют отличные от нуля
производные; a, b, c — кусочно–непрерывные функции (a(ξ) 6= 0,
b(ξ) 6= 0, c(ξ) 6= 0, ξ ∈ γ); h ∈ Lp(γ).

Построение теории Нётера задачи (1) сводится к построению
теории Нётера некоторого сингулярного интегрального оператора
с карлемановским [1] сдвигом α и сдвигом β контура Γ в область
D. Отметим, что, в силу условия Γ ∩ γ 6= ∅, возникают операторы
с точечными особенностями.

С помощью операторного подхода найдены необходимые и до-
статочные условия нётеровости и формула вычисления индекса за-
дачи (1) в терминах символа [1] некоторой операторной матрицы
2m × 2m, элементы которой принадлежат хорошо изученной в [2]
банаховой алгебре сингулярных интегральных операторов с непре-
рывными коэффициентами в Lp([0, 1]).

Литература
1. Литвинчук Г.С. Краевые задачи и сингулярные интегральные

уравнения со сдвигом.— М.: Наука, 1977.
2. Гохберг И.Ц., Крупник Н.Я. Сингулярные интегральные

уравнения с непрерывными коэффициентами на составном конту-
ре. // Математические исследования. 1970. Т.5, №2, С. 89–103.
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АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ГРАНИЧНОЙ
ЗАДАЧИ МАКСВЕЛЛА О ТЕПЛОВОМ

СКОЛЬЖЕНИИ ДЛЯ КВАНТОВЫХ ГАЗОВ
Любимова Н.Н. (Елец)

natlove@inbox.ru

В настоящее время изучение влияния квантовых эффектов на
кинетические процессы в газах и плазме является предметом на-
учного интереса. Имеется ряд исследований, посвященных данной
проблеме (см., например, [1], [2]).

В настоящей работе впервые получено аналитическое решение
граничной задачи для кинетического уравнения, описывающее по-
ведение кватовых ферми–газов в полупространственной задаче о
тепловом скольжении, восходящей к Максвеллу.

Аналитическое решение получено в виде разложения по соб-
ственным сингулярным обобщенным функциям дискретного и
непрерывного спектров соответствующего характеристического
уравнения. Доказательство этого разложения сводится к решению
сингулярного интегрального уравнения с ядром Коши. Последнее в
результате решения приводится к краевой задаче Римана — Гиль-
берта теории функций комплексного переменного.

Литература
1. Латышев А.В., Юшканов А.А.// Теоретическая и математи-

ческая физика.1997. Т. 111. № 3. С. 462–472.
2. Латышев А.В., Юшканов А.А.// Теоретическая и математи-

ческая физика. 2001. Т. 129. № 3. С. 491–502.

ОБ ОДНОМ ПОДХОДЕ К ИССЛЕДОВАНИЮ
ДИНАМИЧЕСКИХ МОДЕЛЕЙ С ИМПУЛЬСНЫМ

ВОЗДЕЙСТВИЕМ1

Максимов П.В., Румянцев А.Н. (Пермь)
mpv12@rambler.ru, ran56@mail.ru

Исследование динамики развития многопродуктовых производ-
ственных систем приводит к постановке ряда задач управления
(ЗУ) с использованием различных режимов управления и спосо-
бов реализации управляющих воздействий. В докладе рассматри-
вается ЗУ, в которой в качестве управляющих воздействий высту-
пают банковские кредиты, при этом предполагается возможность

1Работа поддержана грантами РФФИ (04-06-96002) и Программы "Универ-
ситеты России"
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выбора сроков, ставок и планов возврата кредитов. Как замечено
в [1], удобным и естественным инструментом моделирования рас-
сматриваемого класса задач являются динамические модели в ви-
де функционально-дифференциальных уравнений с импульсными
воздействиями. Сложность ЗУ для таких моделей приводит к необ-
ходимости разработки конструктивных методов исследования, до-
пускающих эффективную компьютерную реализацию. Реализация
конструктивных методов и теоретическое обоснование возможно-
сти их применения основываются на теории доказательного вычис-
лительного эксперимента (ДВЭ) [2]. Основные этапы ДВЭ, ори-
ентированного на исследование задачи управления для линейной
системы управления с линейными ограничениями на управляю-
щие и фазовые переменные, включают аппроксимацию операторов
и функционалов в классе так называемых вычислимых объектов;
конструктивныую оценку параметров точности аппроксимации; ре-
дукцию "вычислимой"задачи к конечномерной задаче, допускаю-
щей эффективную и достоверную проверку теоретических крите-
риев разрешимости; проверку условий специальных конструктив-
ных теорем о наследовании свойства разрешимости исходной зада-
чей управления.

Литература
1. Максимов В.П., Румянцев А.Н. Краевые задачи и задачи им-

пульсного управления в экономической динамике// Известия ву-
зов. Математика, 1993, N 5, с.56-71.

2. Румянцев А.Н. Доказательный вычислительный эксперимент
в исследовании краевых задач, Пермь, Изд-во Перм. ун-та, 1999.

КРАЕВАЯ ЗАДАЧА ДЛЯ СИСТЕМЫ УРАВНЕНИЙ С
ЧАСТНЫМИ ДРОБНЫМИ ПРОИЗВОДНЫМИ ПО

КАПУТО1

Мамчуев М.О. (Нальчик)
niipma@mail333.com

В области Ω = {(x, y) : 0 < x < a, 0 < y < b} рассмотрим
систему дифференциальных уравнений

∂α
0xu(x, y) + ∂β

0yu(x, y) = Au(x, y) + f(x, y), (1)

1Работа выполненна при поддержке Российского фонда фундаментальных
исследований (проект 06-01-96625-p_ юг_ а).
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где ∂γ
0t – дробная производная по Капуто порядка γ [1], α, β ∈ (0, 1),

f(x, y) = ||f1(x, y), ..., fn(x, y)|| и u(x, y) = ||u1(x, y), ..., un(x, y)||, –
соответственно заданный и искомый n-мерные векторы, A – задан-
ная постоянная матрица размера n× n.

Рассматривается следующая
Задача. Найти решение u = u(x, y) системы (1) в области Ω

такое, что u ∈ C(Ω̄), ∂α
0xu, ∂β

0yu ∈ C(Ω), удовлетворяющее следу-
ющим краевым условиям:

u(0, y) = ϕ(y), 0 6 y 6 b, (2)

u(x, 0) = ψ(x), 0 6 x 6 a, (3)

где ϕ(y), ψ(x) – заданные непрерывные n-мерные вектор-функции.
Имеет место
Теорема. Пусть 0 < α, β 6 1, α · β < 1, ϕ(y) ∈ C[0;T ], ψ(x) ∈

C[0; l], f(x, y) ∈ C(Ω̄)∩C1(Ω), и выполняется условие согласования
ϕ(0) = ψ(0). Тогда существует единственное решение задачи (1)
– (3).

Литература
1. Нахушев А.М. Дробное исчисление и его применение. — М.:

Физматлит, 2003. —272 с.

УСЛОВИЯ ИДЕНТИФИЦИРУЕМОСТИ ЛИНЕЙНЫХ
АВТОНОМНЫХ АЛГЕБРО-ДИФФЕРЕНЦИАЛЬНЫХ

СИСТЕМ
Минюк С.А., Метельский А.В. (Гродно)

Пусть задана алгебро-дифференциальная (АДС) система на-
блюдения

A0ẋ(t) = Ax(t), t ∈ T = [0, t1], A0x(0) = A0a, a ∈ Rn, (1)

с выходом
y(t) = Gx(t), t ∈ T. (2)

Здесь A0, A и G – постоянные m×n- и r×n-матрицы; x(t), t ∈ T
– непрерывная функция, а A0x(t), t ∈ T – непрерывно дифферен-
цируемая функция, t1 > 0 – фиксированный момент времени. Счи-
таем, что в (1) начальный вектор A0a, a ∈ Rn, является согласо-
ванным, то есть система (1) имеет решение.
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Если m = n, detA0 = 0 и det[A0λ − A] 6= 0 ∃λ ∈ C, где C
– множество комплексных чисел, то систему (1) – (2) называют
регулярной.

Определение. Систему (1) – (2) назовем идентифицируемой
по Калману, если по выходу y(t), t ∈ T, можно восстановить
единственным образом любой n−вектор x(t1), совместимый с си-
стемой (1) – (2). Систему (1) – (2) назовем идентифицируемой
по Красовскому, если операция восстановления линейна и непре-
рывна:

x(t1) =

t1∫

0

V (t)y(t)dt, (3)

где V (t), t ∈ T – некоторая n× r-матричная кусочно-непрерывная
функция.

Теорема. Для идентифицируемости по Калману системы (1)
– (2) необходимо и достаточно, чтобы

rank
[

A0λ−A
G

]
= n ∀λ ∈ C, (4)

где C – множество комплексных чисел. Для регулярной системы
(1) – (2) условие (4) необходимо и достаточно для идентифици-
руемости по Красовскому.

Доказательство второго утверждения теоремы основано на яв-
ном построении восстанавливающей операции (3).

Замечание. Идентифицируемая по Калману система (1) – (2)
может быть не идентифицируема по Красовскому.

Пример. Рассмотрим систему (1) – (2) вида
{

ẋ2(t) = x1(t),
y(t) = x2(t), t ∈ T.

(5)

Такая система, очевидно, идентифицируема по Калману, так
как выполнено условие (4). Однако она не идентифицируема по
Красовскому, поскольку непрерывная операция восстановления не
существует. Действительно, из системы (5) находим x2(t1) = y(t1),
x1(t1) = ẏ(t1).

Таким образом, не для всякой идентифицируемой по Калману
АДС существует непрерывная операция восстановления (даже в
форме интеграла Лебега-Стилтьеса).
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ОДНОКАНАЛЬНАЯ СИСТЕМА ОБСЛУЖИВАНИЯ С
N-НАКОПИТЕЛЯМИ

Михайлова И.В., Смирнова Е.А. (Воронеж)

Рассмотрим систему массового обслуживания с одним обслужи-
вающим прибором, в которую поступают N независимых пуассо-
новских потоков требований с интенсивностями λj , j = 1, N . Каж-
дый из потоков поступает в свой накопитель и все накопители име-
ют неограниченное число мест для ожидания. Будем считать, что
обслуживание требований происходит по следующей схеме. Начи-
ная обслуживать требования j-ого потока, прибор не переключится
на другой поток до тех пор, пока не опустеет накопитель этого по-
тока. Времена обслуживания требований j-ого потока и суть неза-
висимые одинаково распределенные случайные величины с функ-
цией распределения Bj(t), t ∈ R. Естественно предположить, что
времена обслуживания требований различных потоков независимы
между собой и не зависят от входящих потоков. Если прибор закон-
чил обслуживать j-ый поток, то с вероятностью Fjk(t) не позднее,
чем через t временных единиц, он начнет обслуживать k-ый поток.
Тогда fjk =

∫∞
0

tdFjk(t) есть среднее время переключения с j-ого
на k-ый поток и fj =

∑
kf

fjk – среднее время переключения с j-ого

потока. Для исследования описанной выше системы рассмотрим в
моменты начала обслуживания j-ого потока, j = 1, N , вложенную
цепь Маркова, состояние которой есть вектор −→x = (x0, x1, . . . , xN ),
где x0 - номер обслуживающего потока, а xj – количество заявок в
j-ом накопителе, j = 1, N . Пусть

Pj(−→u ) = P{x0 = j, x1 = u1, . . . , xN = uN}, uK = 0, 1, 2 . . . k = 1, N ;

Pj(−→z ) =
∑

uk=0,1,...

k=1,N

Pj(−→u )zu1
1 , . . . , zuN

N , |zk| 6 1, k = 1, N

При помощи метода дополнительных событий можно выписать си-
стему уравнений для Pjn(−→z ) и затем перейти к пределу при n →∞.
Тогда при условии существования стационарного режима получим
систему уравнений

Pj(−→z ) =

=
∑

k

Pk(z1, . . . , Πk(
∑

m6=k

(λm − λmzm)), . . . , zN )fkj(
∑
m

(λm − λmzm));
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где j = 1, N ; Πk(s), Res > 0 – преобразование Лапласа-Стильтьеса
функции распределения длины периода занятости системы M |GI|1
с характеристиками λk и Bk, а fkj(s) =

∞∫
0

e−stdFrj(t), Res > 0.

Литература
1. Клейнрoк Л. Теория массового обслуживания /Л. Клейнрок.

– М.: Машиностроение, 1979. – 432 с.

СИСТЕМНЫЙ АНАЛИЗ МАТЕМАТИЧЕСКИХ
КОНЦЕПЦИЙ И ТЕОРИЙ ОБОСНОВАНИЯ

Михайлова Н.В. (Минск)
erovenko@bsu.by

Математике изначально присуща фундаментальная двойствен-
ность: с одной стороны, ее суждения выглядят как абсолютно до-
стоверные, а с другой стороны, ее объекты не существуют как пред-
меты внешнего мира или как внутренние ощущения. С точки зре-
ния методологии математики существенной составляющей систем-
ного анализа является моделирование изучаемых процессов. Си-
стемный анализ пытается понять диалектику целостности системы
и относительную самостоятельность образующих ее элементов.

Любая непротиворечивая система аксиом не устанавливает пре-
делов для интерпретаций или моделей в том смысле, что соответ-
ствующие интерпретации могут быть неизоморфны, то есть отли-
чаться не только терминологией, но и не совпадать по существу.
Это связано с существованием дополнительных неопределяемых
понятий, содержащихся в каждой аксиоатической системе. Саму
неопределенность можно трактовать в контексте дополнительных
понятий как недостаток информации о некотором явлении и как
свойство самой информации. Замысел системного обоснования со-
стоит в том, чтобы связать непротиворечивость аксиоматики с ее
фактологической истинностью.

В математических приложениях первостепенное значение при-
обретает концепция двойственности функциональных пространств.
В современной теории дифференциальных уравнений в частных
производных используются "дуализации"в виде сопряженных про-
странств и сопряженных уравнений. С точки зрения математиче-
ского формализма корреляция взаимно дополнительных характе-
ристик проявляется в отсутствии коммутируемости соответствую-
щих операторов.
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Заметим, что алгоритмическую неразрешимость некоторых
арифметических высказываний можно рассматривать как допол-
нение к известным результатам Геделя о неполноте [1]. Убеждение
о том, что теоретико-множественные понятия — это лишь спосо-
бы выражения, опирающиеся на программу обоснования Гильбер-
та, и поэтому соответствующие трудности могут быть устранены, в
каком-то смысле дополнительно к гипотезе об окончательном реше-
нии, поскольку она опровергнута второй теоремой Геделя о непол-
ноте.

На всех этапах развития математической теории в ней всегда
присутствовали как дополнительные понятия дедуктивная состав-
ляющая, включающая рассуждения и доказательства, и алгорит-
мическая составляющая, связанная с вычислениями и методами ре-
шения задач. Теория доказательств с самого начала возникала на
стыке двух концепций — интуиционизма и формализма, каждая
из которых пользовалась своей логикой, допустимой в математи-
ческих рассуждениях. В различные периоды истории математики
предпочтение отдавалось то методам вычисления, то проблемам
обоснования математических теорий, поэтому системный анализ
включает методы исследования как составную часть методологи-
ческого аппарата.

Литература
1. Еровенко В.А., Михайлова Н.В. Проблема Ферма в контексте

Геделевских теорем // Математическое образование. — 2003. — №4.
— С.97-103.

ОБ ЭЛЕМЕНТАХ ЛОКАЛЬНО-ВЫПУКЛОГО
ПРОСТРАНСТВА Hβ

α

Можарова Т.Н. (Орел)

Пусть H — банахово пространство и A : D(A) → H,D(A) ⊂ H,
— замкнутый линейный неограниченный оператор; D(A) — инва-
риантно относительно A. Если характеристическая функция ϕ ∈[

1
β , β

αe

)
, то оператор

ϕ(A)(x) ≡
∞∑

k=0

ckAk(x), {ck} ⊂ C,

определен и непрерывен на некотором подпространстве Hβ
α про-

странства H (α > 0, β > 0 — фиксированные числа) [1].
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Пусть ψϕ(λ; t) = ϕ(λ)−ϕ(t)
λ−t , где t — фиксированный комплексный

параметр. Как функция λ, ψϕ(λ; t) ∈
[

1
β , β

αe

)
. При фиксированном t

такая функция определяет на Hβ
α линейный непрерывный оператор

ψϕ[A; t0](x) =
∞∑

n=1

cn[An−1(x) + t0A
n−2(x) + ... + tn−1

0 x], t0 ∈ C.

С использованием свойств интерполирующей функции ψϕ[A; t](x)
доказано следующее утверждение:

Теорема. Для любого вектора x ∈ Hβ
α и любой функции ϕ ∈[

1
β , β

αe

)
справедлива формула:

x =
1

2πi

∫

|t|=r

ψϕ[A; t](x)
ϕ(t)

dt + Rr(A)(x),

где Rr(λ) ∈
[

1
β , β

αe

)
и для |λ| < r определяется как

Rr(λ) =
ϕ(λ)
2πi

∫

|t|=r

dt

(t− λ)ϕ(t)
.

(Здесь r > 0 – любое, но такое, что окружность |t| = r не проходит
через нули функции ϕ(t).)

Литература
[1] Можарова Т.Н. Об условиях существования и непрерывности

оператора ϕ(A) с переменными коэффициентами в случае неогра-
ниченного оператора A. — Современные методы теории краевых
задач. Материалы Воронежской весенней математической школы
"Понтрягинские чтения XVI". — Воронеж: ВГУ, 2005. - C. 110-111.

О ГРАНИЧНЫХ ЗНАЧЕНИЯХ ГАРМОНИЧЕСКИХ
ФУНКЦИЙ ИЗ ПРОСТРАНСТВА ГЕЛЬДЕРА

Мухамадиев Э.М., Назимов А.Б. (Вологда)
muhamerg@mail.vstu.edu.ru, n.akbar54@mail.ru

Пусть G = {(x, y) : 0 < x, y < 1} - квадрат, Γ - граница G, Hα(G)
и Hα(Γ) - гельдеровы пространства функций соответственно на G
и Γ. Гармоническая функция u(x, y), принадлежащая пространству
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Hα(G), порождает след Ψ = u|Γ на границе Γ, принадлежащий про-
странству Hα(Γ). Возникает вопрос: все ли функции пространства
Hα(Γ) являются следом гармонической функции из Hα(G)? Отве-
том является следующая

Теорема 1. Для того, чтобы каждая функция из Hα(Γ) была
следом некоторой гармонической функции из Hα(G), необходимо
и достаточно выполнение условия 0 < α < 2/3.

Доказательство теоремы основано на анализе возможности
представления гармонической функции в виде потенциала двойно-
го слоя [1, 2]

u(M) = − 1
π

∫

Γ

d

dnP

(
ln

1
RMP

)
Φ(P )dsP , (1)

где Φ(P ) - плотность, M = M(x, y) ∈ G, P = P (ξ, η) ∈ Γ, R2
MP =

(x − ξ)2 + (y − η)2, nP - внешняя нормаль в точке P (кроме уг-
ловых точек). Основные этапы анализа содержатся в следующих
теоремах.

Теорема 2. Если Φ(P ) из Hα(Γ), то потенциал (1) принадле-
жит Hα(G) и его след Ψ = u|Γ удовлетворяет равенству

Φ(N)− 1
π

∫

Γ

d

dnP

(
ln

1
RNP

)
Φ(P )dsP = Ψ(N), N ∈ Γ. (2)

Теорема 3. Для того, чтобы интегральное уравнение (2) было
разрешимо в Hα(Γ) для любой функции Ψ ∈ Hα(Γ), необходимо и
достаточно выполнение условия 0 < α < 2/3.

Литература
[1] Тихонов А.Н., Самарский А.А. Уравнения математической

физики. М.: Наука, 1966.
[2] Петровский И.Г. Лекции об уравнениях с частными произ-

водными. М.: Физматгиз, 1961.
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О ПЕРИОДИЧЕСКИХ РЕШЕНИЯХ ОДНОГО
КЛАССА СИСТЕМ НЕЛИНЕЙНЫХ

ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ
УРАВНЕНИЙ НА ПЛОСКОСТИ1

Наимов А.Н. (Вологда)
nan67@rambler.ru

Рассматривается вопрос об априорной оценке и существовании
ω-периодических решений для систем вида

z′′ = (z′ −A1(z))(z′ −A2(z)) + f(t, z, z′), (1)

где ω > 0, z = x1 + ix2 ∈ C, C - пространство комплексных чисел,
верхняя черта означает комплексное сопряжение, A1, A2 : C 7→ C -
непрерывные отображения, положительно однородные порядка 1,
f(t, z1, z2) непрерывно действует из R×C×C в C, ω-периодическое
по t и удовлетворяет условию f(t, z1, z2)/(|z1|+ |z2|)2 ⇒ 0 при |z1|+
|z2| → ∞ равномерно по t . Главная нелинейная часть системы
(1) обращается в ноль на двух поверхностях z2 = Aj(z1), j = 1, 2.
Ранее автором были исследованы априорная оценка и существова-
ние периодических решений для систем более общего вида, главная
нелинейность которых обращается в ноль на одной поверхности.

Обозначим: H(A1, A2) - множество всех непрерывных вектор-
ных полей на единичной окружности S = {y ∈ C : |y| = 1}, сов-
падающих в каждой точке y ∈ S с одним из значений A1(y), A2(y),
γ(B) - вращение невырожденного непрерывного векторного поля
B : S 7→ C .

Справедливы следующие теоремы.
Теорема 1. Пусть выполнены условия: 1) для любого ненуле-

вого y ∈ C Aj(y) 6= 0, j = 1, 2 , Im(A1(y) − A2(y))3 6= 0 ; 2)
для любого B ∈ H(A1, A2) γ(B) 6= 1 . Тогда для ω-периодических
решений системы (1) имеет место априорная оценка

max
06t6ω

(|z(t)|+ |z′(t)|) < C1,

где C1 = C1(A1, A2, f)) .
Теорема 2. Пусть выполнены условия теоремы 1 и γ(A1) +

γ(A2) 6= 0 . Тогда существует хотя бы одно ω-периодическое ре-
шение системы (1).

1Работа выполнена при финансовой поддержке гранта МД-2828.2005.1 Пре-
зидента Российской Федерации.
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РАЗРЕШИМОСТЬ УРАВНЕНИЙ С ОПЕРАТОРОМ
СУПЕРПОЗИЦИИ В ПРОСТРАНСТВАХ ГЁЛЬДЕРА

ФУНКЦИЙ ДВУХ ПЕРЕМЕННЫХ
Насонов С.Н. (Липецк)

nasonov1@mail.ru

Пусть H(ϕ, ψ) = {x ∈ C : |x(t, s) − x(τ, σ)| 6 h(x)(ϕ(|t − τ |) +
ψ(|s− σ|))}, где ϕ,ψ : [0, 1] → R – непрерывные функции класса Φ
[1, 2]. H(ϕ,ψ) банахово пространство относительно нормы ‖x‖H =

‖x‖C + sup
(t,s) 6=(τ,σ)

|x(t, s)− x(τ, σ)|
ϕ(|t− τ |) + ψ(|s− σ|) . В H(ϕ,ψ) рассматривается

уравнение с оператором суперпозиции

f(t, s, x(t, s))h(t, s) ≡ Fx = x. (1)

Допустим, F дифференцируем по Фреше ∀x ∈ B(θ, R), B(θ,R) =
{x ∈ H(ϕ, ψ) : ‖x‖H 6 R} и ∀h ∈ H(ϕ,ψ)

F ′(x)h(t, s) = f ′(t, s, x(t, s))h(t, s), (2)

где f ′(t, s, u) =
∂f(t, s, u)

∂u
– непрерывная функция. Положим Px =

Fx− x, x0 ∈ B(θ, R), a = ‖(P ′(x0))−1P (x0)‖, b = ‖(P ′(x0))−1‖.
Теорема 1. Если производная по Фреше оператора F имеет пред-
ставление (2), |f ′(t, s, u) − f ′(τ, σ, v) − f ′(t, s, z) + f ′(τ, σ, w)| 6
k(r)|u− v− z + w|, при |u|, |v|, |w|, |z| 6 r 6 R, P ′(x0) обратим, r∗ –

единственный корень уравнения r = a + 2b
r∫
0

(r − t)k(t)dt на [0;R],

то уравнение (1) имеет единственное решение x∗ в B(θ, R).
Теорема 2. Если производная по Фреше оператора F имеет

представление (2), |f ′(t, s, u)− f ′(τ, σ, v)− f ′(t, s, z) + f ′(τ, σ, w)| 6
k|u − v − z + w|γ(|u − v|1−γ + |z − w|1−γ), |f ′(t, s, u) − f ′(t, s, v)| 6
k|u − v|γ при |u|, |v|, |z|, |w| 6 ‖x0‖H(ϕ,ψ) + R, P ′(x0) обратим, r∗

– единственный корень уравнения
bK

1 + γ
r1+γ − r + a = 0 на [0;R],

0 < γ 6 1, K = k(2 + 2(‖x0‖ + R)1−γ), то уравнение (1) имеет
единственное решение x∗ в шаре B(x0, R).

Литература
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ОБ ОДНОЙ МЕТОДИКЕ РАЗВИТИЯ ТВОРЧЕСТВА
УЧЕНИКОВ И СТУДЕНТОВ
Нгуен Ван Лой (Воронеж)

loitroc@yahoo.com

Важнейшей проблемой в современном обучении для школьни-
ков и студентов является проблема развития их творчества. Мы хо-
рошо привыкли решать задачи, которые требовали доказать какое-
нибудь свойство или найти величину с указанными другими вели-
чинами. Однако иногда вы сами себя спрашиваете о том, откуда
приводятся такие задачи, такие свойства или такие условия? Хо-
тя вы умеете решать даже трудные задачи, но в этом случае вы
только тренировали способ решения проблемы, а не тренировали
способ постановки проблем. В данной работе рассматривается но-
вый тип задач, в которых вам не только надо доказать , а нужно и
еще проводить изыскания. Такой тип задач включает в себя

1. Задача "Обобщение".
2. Задача "Высказывание".
Общей чертой таких задач является то, что результат неизве-

стен и неоднозначен. Главной целью является развитие творчества
учеников и студентов, поэтому оценка не только опирается на ре-
зультаты, но и еще на логическое размыщление.

Литература
[1] Фихтенгольц Г.М. Курс дифференциального и интегрального

исчислениея: Вз т. Т.I/ пред. и прим. А.А.Флоринского 8-е изд. -М.
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ФОРМАЛИЗМ ПОСТРОЕНИЯ АСИМПТОТИКИ
РЕШЕНИЯ ОДНОЙ ДИСКРЕТНОЙ НЕЛИНЕЙНОЙ

ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ
Некрасова Н.В. (Воронеж)

nekrasovanv@mail.ru

Рассматривается следующая дискретная нелинейная задача оп-
тимального управления

Pε : Jε(u) = FN (y(N)) +
N−1∑

k=0

Fk(y(k), z(k), u(k)) → min
u

, (1)
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y(k + 1) = fk(y(k), z(k), u(k)),

εz(k + 1) = gk(y(k), z(k), u(k)), (2)

y(0) = y0, z(0) = z(N), (3)

где y(k) ∈ Rn, z(k) ∈ Rm (k = 0, N), u(k) ∈ Rr (k = 0, N − 1),
Fk (k = 0, N) - скалярные функции, fk (k = 0, N − 1) - функции
со значениями в Rn, gk (k = 0, N − 1) - функции со значениями в
Rm, число шагов N фиксировано, ε > 0 - малый параметр. Функ-
ции Fk, fk, gk предполагаются достаточное число раз непрерывно
дифференцируемыми по своим аргументам.

Решение задачи ищется в виде следующих рядов

y(k) =
∑

j>0

εjyj(k), z(k) =
∑

j>0

εjzj(k), u(k) =
∑

j>0

εjuj(k). (4)

Подставляя разложения (4) в (1)-(3) и приравнивая коэффи-
циенты при одинаковых степенях малого параметра, получим, что
минимизируемый функционал запишется в виде ряда

Jε(u) =
∑

j>0

εjJj ,

а из (2), (3) получим уравнения для коэффициентов yi, zi разложе-
ния (4).

Положив в задаче (1)-(3) ε = 0, получим однозначно разреши-
мую при некоторых условиях вырожденную задачу, решив кото-
рую, найдем коэффициенты y0, z0, u0 разложения (4). После неко-
торых преобразований для нахождения коэффициентов yi, zi, ui,
i > 0, разложения (4) получим однозначно разрешимые при неко-
торых условиях линейно-квадратичные задачи.

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ГРАНИЧНОЙ
ЗАДАЧИ О БАРНЕТТОВСКОМ СКОЛЬЖЕНИИ ДЛЯ

КВАНТОВЫХ БОЗЕ — ГАЗОВ
Нефедов А.Г. (Подольск)

itbrains@gmail.com

В настоящее время процессы в квантовых бозе – газах являют-
ся предметом активного исследования. Имеется ряд публикаций,
посвященных данной проблеме (см., например, [1] – [2]).
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В настоящей работе впервые получено аналитическое решение
задачи для уравнения, описывающего поведение квантовых бозе–
газов в полупространственной задаче о барнеттовском скольжении.

Решение получено в виде разложения по собственным сингу-
лярным обобщенным функциям дискретного и непрерывного спек-
тров соответствующего характеристического уравнения. Доказа-
тельство сводится к решению сингулярного интегрального уравне-
ния с ядром Коши. Последнее в результате решения приводится к
краевой задаче Римана — Гильберта теории функций комплексного
переменного.

Литература
1. Латышев А.В., Юшканов А.А. // Известия вузов. Сер. Фи-
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2. Латышев А.В., Юшканов А.А. // Математическое модели-

рование. 2003. №5. С. 80–94.

СООТНОШЕНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ОБЪЕМНЫХ
ДЕФОРМАЦИЙ В ЗАДАЧАХ ТЕОРИИ УПРУГОСТИ

АНИЗОТРОПНЫХ ТЕЛ
Огарков В.Б., Тарасов Д.И. (Воронеж)

Проектирование и расчет одномерных и двумерных изделий из
анизотропных композиционных материалов имеет большое практи-
ческое значение в машиностроении и деревообрабатывающей про-
мышленности.

Примером одномерной задачи служит равномерное внутреннее
и внешнее воздействие на анизотропную втулку (подшипник сколь-
жения). Для определения потенциала напряжений имеем уравне-
ние:

d2ϕ

dr2
+

d

r

dϕ

dr
+

b

r2
ϕ = 0 (1)

Получено уравнение для функции L1, пропорциональной объ-
емному напряжению (заклинивание вала):

dL1

dx
+ [e +

√
|d|]L1 = 0 (2)

L1(x) = eαx · w(σr + σθ); r = eαx (3)

Уравнение (2) имеет первый порядок производной.
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В качестве двумерной рассмотрена задача об изгибе прямо-
угольной пластинки (древесно-стружечные плиты, пoлупроводни-
ки и т.д.) Для определения прогиба имеем бигармоническое урав-
нение:

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
=

q(x, y)
D

(4)

Для объемной информации Q = Ex + Ex получено гармониче-
ское уравнение второго порядка:

∂2Q

∂x2
+

∂2Q

∂y2
= −z · q(x, y)

D
(5)

АБСОЛЮТНЫЙ ГИСТЕРЕЗИС ДЛЯ УРАВНЕНИЯ
СВОБОДНЫХ КОЛЕБАНИЙ МАТЕРИАЛЬНОЙ

ТОЧКИ
Огарков В.Б., Шегеда В.А. (Воронеж)

Рассматривается задача свободного колебания материальной
точки в среде с сопротивлением, которое описывается дифферен-
циальным уравнением второго порядка

d2u

dt2
+ d

du

dt
+ bu = 0 (1)

С использованием комплексной функции перемещения уравне-
ние (1) может быть записано в следующем виде:

du

dt
+ (c + i

√
d)u = L1(t) (2)

c =
a

2
; d = b− a2

4
(3)

L1 = l1e
−(c−

√
d)t (4)

В случае малого сопротивления при b−a2

4 > 0 имеем комплексно-
сопряженные корни:

p1,2 = −a

2
± i

√∣∣∣∣
a2

4
− d

∣∣∣∣ (5)
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В этом случае функция L1(t) с использованием формул Эйлера
может быть представлена через сумму тригонометрических функ-
ций.

В этом случае решение уравнение (2) может быть записано так:

u = ε0 sin(ωt + ϕ) (6)

Величина ϕ представляет угол сдвига фазы колебаний относи-
тельно фазы колебаний функции L1(t). Построен график измене-
ния ϕ в зависимости от ωn. Выведено уравнение соответствующего
эллипса, площадь которого представляет петлю гистерезиса. При-
ведена соответствующая зависимость площади от ωn.

Поскольку решение однородного уравнения (1) пропорциональ-
но резольвенте, то полученные результаты могут быть обобщены
на вынужденные колебания точки.

НЕРАВЕНСТВО РАЗНЫХ МЕТРИК ДЛЯ ЦЕЛЫХ
ФУНКЦИЙ ЭКСПОНЕНЦИАЛЬНОГО ТИПА ПО

СЛАБОМУ ПАРАМЕТРУ ПРОСТРАНСТВА
ЛОРЕНЦА Lpθ(R)

Омарова А.Т., Смаилов Е.С. (Караганды)
esmailov@kargu.krg.kz

Для целых функций экспоненциального типа С.М.Никольским
[1] установлено, так называемое, неравенство разных метрик:

‖gν‖Lq(R1) 6 c · ν 1
p− 1

q · ‖gν‖Lp(R1),

где 1 6 p < q 6 +∞ , ν - тип целой функции. Это неравенство и
его аналог для тригонометрических полиномов существенную роль
сыграл в гармоническом анализе. Данное неравенство в дальней-
шем, многими авторами, было рассмотрено и в других простран-
ствах и для других объектов, например, для линейных агрегатов
различных ортогональных систем. Для тригонометрических поли-
номов, в частности, Л.А.Шерстнева [2] неравенство разных метрик
установила по слабому параметру пространства Лоренца. В насто-
ящем тезисе приведено подобное неравенство для целых функций
экспоненциального типа ν.

Теорема. Пусть 1 < p < +∞, 1 6 s < θ 6 +∞, gν(x) - це-
лая функция экспоненциального типа ν, на действительной оси
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принадлежащая пространству Lpθ(R). Тогда справедливо неравен-
ство

‖gν‖Lps(R) 6 cpθs ·
{

log2(2 + ν)
} 1

s− 1
θ · ‖gν‖Lpθ(R),

где константа c = c(p, θ, s) > 0 не зависит от gν(x) и ν > 1
3 .

Литература
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О ПАРАМЕТРИЧЕСКОМ ПРЕДСТАВЛЕНИИ
ОДНОГО КЛАССА СУБГАРМОНИЧЕСКИХ В КРУГЕ

ФУНКЦИЙ
Охлупина О.В. (Брянск)

Пусть D = { z : |z| < 1} - единичный круг, Γ - его граница.
Для α > −1 введем в рассмотрение класс SHα(D) функций u(z),
субгармонических в D, для которых справедлива оценка:

T (r, u) 6 C
(1−r)α , 0 6 r 6 1, где T (r, u) = 1

2π

π∫
−π

u+(reiϕ)dϕ− харак-

теристика Неванлинна функции u(z).
В работе описан этот класс в терминах представляющей меры

Рисса. Обозначим через B1,∞
γ (γ > 0) стандартный класс Бесова на

единичной окружности Γ.
Построим потенциал типа Грина Vβ(z, µ) =

∫
D

log |Aβ(z, ζ)| dµ(ζ)

в круге D на основе элементарных факторов М. М. Джрбашяна:

Aβ(z, ζ) =
(

1− z

ζ

)
exp



−

β

π

∫

D

(1− |t|2)β ln
∣∣∣1− t

ζ

∣∣∣
(1− t̄z)β+2

dm2(t)





Теорема.Функция u(z) принадлежит классу SHα(D) тогда и толь-
ко тогда, когда u(z) допускает следующее представление:

u(z) =
∫

D

ln |Aβ(ζ, z)| dµ(ζ) +
1
2π

π∫

−π

Re
ψ(eiθ)

(1− e−iθz)β+1
dθ, z ∈ D,
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где ψ(eiθ) - произвольная вещественнозначная функция из класса
B1,∞

1 , α > −1, β > α, µ(ζ) - представляющая мера Рисса в D,
удовлетворяющая условию:

∫
D

(1− |ζ|)α+2
dµ(ζ) < +∞.

При u(z) = ln |f(z)|, аналогичное представление получено в [2].
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ОРГАНИЗАЦИЯ ПРОСТРАНСТВ СОСТОЯНИЙ ДЛЯ
ГАРМОНИЧЕСКИХ СРЕД

Пеньков В.Б., Харитоненко А.А. (Липецк)
svetl@stu.lipetsk.su

Рассматриваются физические среды, состояние которых описы-
вается уравнением Лапласа. Пусть гармоническая среда занимает
область пространства, ограниченную гладкой границей. Любой на-
бор полевых характеристик, удовлетворяющих определяющим со-
отношениям среды безотносительно к граничным условиям, назы-
вается внутренним состоянием среды. Для гармонической среды
это суть сама гармоническая в области функция и ее градиент. Это
состояние индуцирует на границе тела след - граничное состояние
(его составляют граничные значения упомянутых гармонических
функций и их производные по нормали и касательной к границе).
Множество различных состояний среды определяет пространства
внутренних и граничных состояний, линейное относительно опе-
раций сложения состояний и умножения состояния на число. По
граничному состоянию однозначно (с точностью до нулевого эле-
мента) восстанавливается внутреннее. Таким образом, устанавли-
вается взаимно-однозначное соответствие между элементами обоих
(линейных) пространств.

Для построения скалярного произведения воспользуемся теоре-
мой Гаусса - Остроградского, связывающей объемный интеграл от
дивергенции вектора - градиента некоторой функции и поток это-
го вектора через замкнутую поверхность - границу области. Опре-
деляющую скалярное произведение функцию следует "организо-
вать"через характеристики элементов пространств состояний так,
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чтобы формула Гаусса - Остроградского превратилась в пару рав-
ных между сосбой скалярных произведений, определяемых на соот-
ветствующих пространствах. Простейшим вариантом, обеспечива-
ющим выполнимость всех свойств скалярного произведения (ком-
мутативность, аддитивность, однородность, положительная опре-
деленность) в пространстве внутренних состояний, является про-
изведение гармонических функций, отнесенных к двум различным
состояниям. Таким образом, оба пространства являются бесконеч-
номерными евклидовыми (предгильбертовыми).

Стандартная процедура пополнения пространств посредством
присоединения к ним пределов всех фундаментальных последова-
тельностей состояний делает их полными, гильбертовыми. Наличие
счетного базиса у гармонических функций, представленного, на-
пример, системой гармонических многочленов, характеризует про-
странства как сепарабельные. Следовательно, имеет место изомор-
физм сепарабельных гильбертовых пространств и изучение внут-
реннего состояния сводится к исследованию соответствующего по
изоморфизму граничного состояния.

Конструктивная теорема Гильберта - Шмидта позволяет счи-
тать оба изоморфных базиса пространств ортонормированными.
Произвольное состояние представляется рядом Фурье по элемен-
там ортонормированного базиса. В общем случае решение краевой
задачи сводится к регулярной бесконечной системе уравнений от-
носительно коэффициентов Фурье. В простейших случаях вычис-
ление коэффициентов Фурье связано с рутинным вычислением ска-
лярных произведений.

Основная трудность метода граничных состояний определя-
ется необходимостью массового вычисления кратных интегралов
как на стадии формирования базисов состояний, так и в процессе
подготовки разрешающей системы уравнений, либо при непосред-
ственном вычислении коэффициентов Фурье. Численные процеду-
ры здесь бессильны из-за их высокой погрешности. Опыт показал
высокую эффективность применения компьютерной алгебры (ал-
гебры полиномов); при этом вычисления производятся не только с
высочайшей точностью, но и выполняются с большой скоростью.

Изложенное может быть эффективно применено для решения
краевых задач электростатики, задач кручения призматических
стержней, задач теории фильтрации и др.
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МОДЕЛЬ ОПЕРАТИВНОГО
ГИДРОДИНАМИКО-СТАТИСТИЧЕСКОГО

ПРОГНОЗА НЕБЛАГОПРИЯТНЫХ И ОПАСНЫХ
ЛЕТНИХ ПОЛУСУТОЧНЫХ ОСАДКОВ И ВЕТРА С

ЗАБЛАГОВРЕМЕННОСТЬЮ 12, 24 и 36Ч ДЛЯ
ТЕРРИТОРИИ ЕВРОПЕЙСКОЙ ЧАСТИ СНГ И

СИБИРИ
Переходцева Э.В.
perekhod@mecom.ru

Прогнозирование неблагоприятных и опасных конвективных
явлений – полусуточных осадков количеством Q>14мм/12ч и
Q>49мм/12ч, дневного и ночного сильного ветра, включая шквалы
и смерчи, с порывами скоростью свыше 18м/с и свыше 25м/с, оста-
ется одной из труднейших задач прогноза погоды и в значитель-
ной степени зависит от интуиции синоптика. Имеющиеся в опера-
тивной практике графические и расчетные методы прогноза этих
явлений, зависящих от большого количества параметров атмосфе-
ры, не в состоянии отразить эту зависимость во всей полноте. Наи-
более успешными методами объективизации и автоматизации про-
гноза явлений, зависящих от большого количества параметров ат-
мосферы, для которых не имеется адекватной гидродинамической
модели, являются статистические методы. Для распознавания (ди-
агноза) и прогноза явлений осадков и ветра двух градаций были
разработаны соответственно для каждой градации свои статисти-
ческие решающие правила прогноза. Они были получены на вы-
борках данных объективного анализа (фактических полях метео-
элементов, прошедших контроль на ошибки) на архиве ситуаций
наличия и отсутствия соответствующих явлений. Разработке ста-
тистических решающих правил диагноза и прогноза явлений пред-
шествовала задача отбора (без значительной потери информации)
наиболее информативных мало зависимых параметров из большо-
го (n=40) количества потенциальных физически обоснованных па-
раметров атмосферы, способствующих возникновению указанных
явлений. Отбор информативного вектора признаков (параметров
атмосферы) для каждого класса явлений проводился методом диа-
гонализации средней матрицы корреляции соответствующих клас-
сов и выбора наиболее информативных представителей от каждо-
го диагонального блока связанных признаков в средней матрице
корреляции. В качестве критериев информативности использова-
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лись критерии Махаланобиса и критерий минимальной энтропии
Вапника-Червоненкиса. Размерность вектора информативных при-
знаков (параметров атмосферы) для разных классов явлений соста-
вила n=6-8.

При оперативном автоматизированном расчете прогноза (два
раза в сутки) каждого из четырех явлений прогностические зна-
чения дискриминантных функций соответствующих явлений и за-
висящие от них вероятности прогноза рассчитываются в узлах сет-
ки 150х150км, покрывающей европейскую территорию СНГ (или
Сибири), в зависимости от прогностических значений полей полу-
сферной гидродинамической модели (автор- Беркович Л.В.). Для
каждого класса явлений при переходе от вероятностного к катего-
рическому прогнозу в поле значений вероятностей изолинией поро-
говой вероятности Pпор выделяется прогнозируемая область кате-
горического прогноза конкретного явления. Прогнозы передаются
по каналам связи и по электронной почте в шесть УГМС евро-
пейской части России, в Минск и в Киев. Прогнозы с заблаговре-
менностью 12 и 24ч дневных ветров со скоростью более 18м/с и
ливневых осадков количеством более 14мм/12ч (критерий Пирси-
Обухова (Т) составил Т=0,47-0,68) в течение 15 лет передаются в
шесть Управлений по каналам связи в виде телеграмм и ретранс-
лируются на сеть. В 2000-01гг. методы прогноза по данной моде-
ли с заблаговременностью 12 и 24ч опасных ветров скоростью бо-
лее 25м/с были приняты в трех УГМС в качестве основных рас-
четных методов. В настоящее время, после трехлетних испытаний
эти методы прогноза опасных ветров с заблаговременностью 36ч
в трех Управлениях европейской части России техсоветами соот-
ветствующих УГМС (Верхне-Волжского, Северо-Западного и Та-
тарстана) были рекомендованы для использования в оперативном
режиме. Для уточнения прогнозируемой в пунктах скорости ветра
при шквалах и смерчах используется полученное нами уравнение
регрессии для прогноза скорости ветра, превышающей 20м/с ( и ме-
нее 50м|с). Среднеквадратическая ошибка прогноза скорости вет-
ра на независимой выборке составила 2,7м/с при средней скорости
ветра 29м/с. Если прогнозируемая в пункте скорость достаточно
высокая (более 30м/с), то с большой вероятностью в пункте или
в его окрестности можно ожидать появления смерчей. Для уточ-
нения прогноза явлений смерчей в умеренных широтах нами была
разработана экспертная система прогноза смерчей умеренных ши-
рот. Система постоянно пополняется новыми правилами и способна
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к самообучению в процессе прогнозирования. Прогноз опасных лив-
ней свыше 49мм|12ч рекомендован как основной расчетный метод
по территории Волго-Вятского района (Т=0,58), и в других райо-
нах его успешность достаточно высока. В 2004-05гг разработанная
модель была адаптирована к территории Западной и Восточной
Сибири и показала достаточно высокую успешность.

ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ НЕЛИНЕЙНЫХ
ДИФФЕРЕНЦИАЛЬНО – РАЗНОСТНЫХ

УРАВНЕНИЙ
Перов А.И., Полякова Л.А. (Воронеж)

mhitaryanl@mail.ru

Рассмотрим нелинейное дифференциально – разностное уравне-
ние

Lx(t) ≡
m∑

i=0

n∑

j=0

aijx
(j)(t + hi) = f(t, x(j)(t + hi)),

где коэффициенты aij – постоянные комплексные числа, отклоне-
ния аргумента hi – постоянные попарно различные вещественные
числа, m и n – некоторые натуральные числа. Нелинейная функция
f(t, xij) непрерывна и ω – периодична по времени t и удовлетворяет

условию Липшица |f(t, xij) − f(t, yij)| 6
m∑

i=0

n−1∑
j=0

lij |xij − yij |, где lij

– некоторые неотрицательные постоянные, lj = l0j + ... + lmj .
Рассмотрим характеристический квазимногочлен и характери-

стическое уравнение

L(λ) ≡
m∑

i=0

n∑

j=0

aijλ
jeλhi = 0.

Предположим, что L(ikθ) 6= 0 при k = 0,±1, ..., где θ = 2π/ω, и
|(ikθ)p/L(ikθ)| 6 cp, p = 0, 1, ..., n − 1, n; k = 0,±1, ... . Определим
периодическую функцию Грина и ее производные, положив

G(p)
ω (t) =

1
ω

∑

k

(ikθ)p

L(ikθ)
eikθt, p = 1, 2, ..., n− 1.

Мы видим, что G(p)(t) непрерывна при 0 6 p 6 n − 2. Произ-
водная G(n−1)(t) на отрезке [0, ω] является функцией ограничен-
ной вариации и допускает каноническое разложение G(n−1)(t) =
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G
(n−1)
c (t) + G

(n−1)
a (t), где первое слагаемое есть функция скачков,

а второе – абсолютно непрерывная функция.
Периодическое решение x(t) уравнения Lx = f , где f(t) из C, и

его производные допускают интегральное представление

x(p)(t) =

ω∫

0

G(p)(t− s)f(s)ds, p = 0, 1, ..., n− 1;

x(n)(t) =

ω∫

0

dG(n−1)(t− s)f(s)ds,

где последний интеграл понимается в смысле Стильтьеса. Обозна-
чим через C банахово пространство непрерывных ω – периодиче-
ских функций с равномерной нормой. Если обозначить через Kp

соответственные интегральные операторы, действующие в банахо-
вом пространстве C, то

‖Kp‖ =

ω∫

0

|G(p)(t)|dt, p = 0, 1, ..., n− 1;

‖Kn‖ =
∑

s

|bsn|+
ω∫

0

|[G(n−1)
a (t)].|dt.

Здесь 1/
m∑

s=0
asneikθhs =

∑
s

bsneikθps ,
∑
s
|bsn| < +∞ Положим для

краткости κp = ‖Kp‖, p = 0, 1, ..., n− 1, n.
Теорема. Пусть выполнено основное условие

q ≡
n∑

p=0

κplp < 1.

Тогда исходное нелинейное уравнение имеет единственное ω – пе-
риодическое решение x(t). Для этого решения справедливы оценки

‖x(p)‖ 6 κp

1− q
‖f0‖, p = 0, 1, ..., n− 1, n

(здесь f0(t) ≡ f(t, 0)). Периодическое решение может быть полу-
чено обычным методом последовательных приближений Lx[k] =
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f(t, x[k−1](j)(t+hi)), отправляясь от произвольной n раз непрерыв-
но дифференцируемой ω – периодической функции x[0](t), причем
имеют место следующие оценки погрешности ‖x(p) − x[k](p)‖ 6
qk−1

1−q κp

n∑
j=0

lj ‖x[1](j) − x[0](j)‖, p = 0, 1, ..., n− 1, n; k = 1, 2, ... .
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ОГРАНИЧЕННЫЕ РЕШЕНИЯ НЕЛИНЕЙНЫХ
ДИФФЕРЕНЦИАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ

Перов А.И., Фетисов Р.Б. (Воронеж)
romeo_romch@mail.ru

Рассмотрим нелинейное дифференциально-разностное уравне-
ние:

Lx(t) ≡
m∑

i=0

n∑

j=0

aijx
(j)(t + hi) = f(t, x(j)(t + hi)),

где коэффициенты aij – постоянные комплексные числа, отклоне-
ния аргумента hi – постоянные вещественные числа, m и n- некото-
рые натуральные числа. Нелинейная функция f(t, xij) непрерывна
по t и удовлетворяет условию Липшица

|f(t, xij)− f(t, yij)| 6
m∑

i=0

n∑

j=0

lij |xij − yij |,

где lij- некоторые неотрицательные постоянные и lj = l0j + ...+ lmj .
Рассмотрим характеристический квазимногочлен и характери-

стическое уравнение

L(λ) ≡
m∑

i=0

n∑

j=0

aijλ
j expλhi = 0.
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Предположим, что L(λ) не обращается в нуль на мнимой оси и
|(iσ)p/L(iσ)| 6 cp, p = 0, 1, ..., n − 1, n;−∞ < σ < +∞. Определим
ограниченную функцию Грина и её производные, положив,

G(p)(t) =
1
2π

+∞∫

−∞

(iσ)p

L(iσ)
expitσ dσ, p = 0, 1, ..., n− 1.

Производная G(n−1)(t) является функцией ограниченной вариа-
ции и допускает канонические разложения G(n−1)(t) = G

(n−1)
c (t) +

G
(n−1)
a (t), где первое слагаемое есть функция скачков, а второе–

абсолютно непрерывная функция.
Ограниченное решение x(t) уравнения Lx = f , где f(t) непре-

рывная ограниченная функция, и его производные допускают ин-
тегральное представление.

x(p)(t) =

+∞∫

−∞
G(p)(t− s)f(s)ds, p = 0, 1, ..., n− 1;

x(n)(t) =

+∞∫

−∞
dG(n−1)(t− s)f(s)ds,

где последний интеграл понимается в смысле Стильтьесса. Обозна-
чим через С банахово пространство непрерывных ограниченных
функций с супремум-нормой. Если обозначить через Kp соответ-
свующие интегральные операторы, действующие в банаховом про-
странстве С, то

‖Kp‖ =

+∞∫

−∞
|G(p)(t)|dt, p = 0, 1, ..., n− 1;

‖Kn‖ =
∑

s

|bsn|+
+∞∫

−∞
|G(n−1)

a (t)|dt.

Здесь

1/

m∑
s=0

asn expiσhs =
∑

s

bsn expiσps ,
∑

s

|bsn| < +∞.
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Положим для краткости æp = ‖Kp‖, p = 0, 1, ..., n− 1, n.
Теорема. Пусть выполнено основное условие

q ≡
n∑

p=0

æplp < 1.

Тогда исходное нелинейное уравнение имеет единственное ограни-
ченное решение x(t). Для этого решения справедливы оценки

‖x(p)‖ 6 æp

1− q
‖f0‖, p = 0, 1, ..., n− 1, n

(мы предполагаем, что f0(t) ≡ f(t, 0) есть ограниченная функция).
Ограниченное решение может быть полученно обычным методом
последовательных приближенний Lx[k] = f(t, x[k−1](j)(t− hi)), от-
правляясь от ограниченной функции x[0](t), имеющей непрерывные
и ограниченные производные до n-го порядка включительно, при-
чем имеют место следующие оценки погрешности

‖x(p) − x[k](p)‖ 6 qk−1

1− q
æp

n∑

j=0

lj‖x[1](j) − x[0](j)‖,

где p = 0, 1, ..., n − 1, n; k = 1, 2, ... Если все корни характеристи-
ческого уравнения лежат в левой полуплоскости, единственное
ограниченное решение ассимптотически усторйчиво в целом.
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РАСЧЁТ СПЕКТРОВ КРАЕВЫХ ЗАДАЧ ДЛЯ
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО

ПОРЯДКА НА ГЕОМЕТРИЧЕСКОМ ГРАФЕ-ЗВЕЗДЕ
Пискунова А.О. (Борисоглебск)

stamina85@rambler.ru

Рассмотрена спектральная задача:

−u′′(x) = λu(x) (x ∈ Γ), u′
∣∣
∂Γ

= 0, (1)

где Γ - геометрический граф-звезда с тремя рёбрами, длины каж-
дого из которых равны π. Условия трансмиссии предлагались при
этом следующими: ∑

γ

du

dγ
(a) = 0, (2)

где a – единственная внутренняя вершина Γ, а суммирование ве-
дется по рёбрам γ; du

dγ (a) – крайняя производная (см. [1, стр. 51]).
Кроме задачи (1), (2) рассмотрены спектральные задачи:

−u′′(x) = λu(x) (x ∈ γ), u(a) = 0, u′ (bγ) = 0, (3γ)

где bγ – конец ребра γ, отличный от a.
Предложение. Пусть Λ = {λn}∞n=0 – неубывающая последова-

тельность, составленная из собственных значений задачи (1), (2),
причём каждое собственное значение λ задачи (1), (2) совпадает
со столькими членами последовательности Λ, какова геометриче-
ская кратность λ. Пусть N = {νn}∞n=0 – неубывающая последова-
тельность, состоящая из собственных значений задач (3γ), причём
каждое число ν входит в N столько раз, чему равна сумма гео-
метрических кратностей ν, как собственного значения задач (3γ).
Тогда

λ0 < ν0 6 λ1 6 ν1 6 λ2 6 ν2 < λ3 < ν3 6 λ4 6 ν4 6 λ5 6 ν5 < . . . .

Замечание. Данное предложение поставляет пример, когда име-
ет место перемежаемость спектра задачи на геометрическом графе
со спектрами задач на его подграфе. Такого рода результат был

доказан в [1] (см. там стр. 118) для уравнения − d

dΓ
(pu′)+ qu = λρu

при краевых условиях другого типа: u
∣∣
∂Γ

= 0.
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О СВОЙСТВЕ ХИКСА ЦЕПОЧКИ УПРУГИХ
КОНТИНУУМОВ

Покорный Ю.В., Перловская Т.В., Гулынина Е.В.
(Воронеж)

Рассматривается последовательность упругих стержней, распо-
ложенных вдоль отрезка [0, l], в точках ξ1<ξ2<. . .<ξm они непре-
рывно сочленены упругими шарнирами. Точное описание может
быть дано потенциальной энергией

Φ(u) =

l∫

0

u′′2

2
dP −

l∫

0

udF , (1)

где F (x) величина внешней нагрузки, приложенной на отрезке [0, x]
и P (x) — строго возрастающая функция со скачками в точках
ξ1, ξ2, . . . , ξm. Интеграл понимается по Стильтьесу. Скачки F (x) ∈
BV[0,l] соответствуют сосредоточенным внешним усилиям, скачки
P (x) в точках ξ могут быть выделены с помощью внеинтегральных
слагаемых вида

∑ γk

2
(u′(ξk + 0)− u′(ξk))2,

где γk — коэффициенты упругого люфта.
Если F (x) = Θ(x − s), где Θ(x) — функция Хевисайда, то ми-

нималь H(x, s) функционала (1) есть функция влияния исходной
системы. Это определение, оказываясь корректным математиче-
ски, позволяет показать, что форма u(x), определяемая внешней
нагрузкой F (x), выражается формулой

u(x) =

l∫

0

H(x, s)dF (s).

Оказывается, что если F и P достаточно гладкие, то для u(x)
может быть описана хорошо известная краевая задача

(pu′′)′′ = f(x) (x 6= ξi)
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при p(x) = P ′(x), f(x) = F ′(x), причем в точках ξi будут, помимо
условий непрерывности, выполняться условия

pu′′(ξi − 0) = pu′′(ξi + 0) = 0,

(pu′′)′(ξi + 0)− (pu′′)′(ξi − 0) = γu(ξi).

Если внешнее усилие локализовать в одной из точек ξi, то де-
формация системы именно в этой точке примет максимальное зна-
чение, что вполне соответствует принципу Хикса.

ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ
ПАРАБОЛИЧЕСКОГО ТИПА1

Покровский А.Н. (Санкт-Петербург)
anpokr@petrodvorets.spb.ru

Прямая задача. Для m = 1,M заданы компоненты, состоящие
из функций gm(t) > 0, Tm−1 < t < TM ; gm ≡ 0, t < Tm−1 и чисел

Vm ∈ R, zj ∈ R и aj,m > 0,

N∑

j=1

a2
j,m = 1 .

Требуется найти решение u(z, t) системы алгебраических и диффе-
ренциального уравнений:

Ij(t) =
M∑

m=1

aj,mgm(t)[u(zj , t)− Vm]; Lu =
N∑

j=1

δ(z − zj)Ij(t) (1)

при L = ( ∂
∂t − ∂2

∂z2 + 1), u(±∞, t) = 0 и при u(z, t) ≡ 0 при
t 6 0 . Задача сводится к системе интегральных уравнений Рикка-
ти и имеет при zj+1 > zj единственное решение.

Обратная задача. Заданы только функции u(zj , τ t) = uj(t),
числа τ > 0 и zj неизвестны. Требуется найти число компонентов
и сами компоненты.

При τ = 1 и известных zj+1 − zj найден обратный оператор
(для вычисления Ij(t) ) линейной части задачи (1); используется
обычная регуляризация при вычислении производных. Алгебраиче-
ская система в (1) решается последовательно на интервалах (0, T1),
(T1, T2), . . . , (TM−1, TM ) .

1Работа поддержана РФФИ проект 04-01-00048-а
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При неизвестных τ и zj решение обратной задачи заведомо не
единственно. Ошибки в задании этих параметров приводят к за-
вышению числа M вычисляемых компонентов и к ошибочным зна-
чениям этих компонентов. Поэтому при решении обратной задачи
необходимо дополнительно использовать условие минимума числа
компонентов M на каждом этапе вычисления решения.

ПРИЗНАКИ СУЩЕСТВОВАНИЯ И УСТОЙЧИВОСТИ
ПЕРИОДИЧЕСКИХ РЕШЕНИЙ НЕЛИНЕЙНЫХ

РАЗНОСТНЫХ УРАВНЕНИЙ
Полякова Л.А. (Воронеж)

mhitaryanl@mail.ru

Рассмотрим нелинейную систему с дискретным временем

x(n + 1) = Ax(n) + f [n, x(n)]. (1)

Здесь "время" n принимает всевозможные целые значения, n ∈ Z
(множество целых чисел), а вектор x(n) принадлежит N - мерному
пространству CN , рассматриваемому с евклидовой матрицей. Пред-
положим, что спектр матрицы A в комплексной плоскости C не пе-
ресекается с единичной окружностью T = {λ ∈ C : |λ| = 1}. Опреде-
лим постоянную σ = max

λ∈T
‖(λI−A)−1‖, где I есть единичная матри-

ца N ×N - матрица. Нелинейная функция f(n, x) : Z×CN −→ CN

периодична по времени f(n + p, x) = f(n, x), где p есть некото-
рое натуральное число. Нас интересуют условия существования и
устойчивости периодических решений системы (1) с тем же самым
периодом x(n + p) = x(n). Будем считать, что равномерно по n
выполнено условие ‖f(n, x)− f(n, y)‖ 6 ρ(‖x− y‖), где ρ(u), n > 0,
полуаддитивная функция, т.е. она непрерывна, ρ(0) = 0, не убывает
и ρ(u+v) 6 ρ(u)+ρ(v) при u, v > 0. Предположим, что нелинейная
функция подчинена линейной в том смысле, что

σρ(u) < u, u > 0.

Теорема 1. Пусть выполнены все перечисленные выше огра-
ничения. Тогда нелинейная дискретная система (1) имеет един-
ственное периодическое решение x(n). Это решение удовлетворя-
ет оценке

‖x(n)‖ 6 τ−1(σa),
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где τ−1(v) - функция , обратная к v = τ(u) ≡ u − σρ(u) при n >
0, а ‖f(n, 0)‖ 6 a. Периодическое решение x(n) можно получить
методом последовательных приближений

x[k](n + 1) = Ax[k](n) + f [n, x[k−1](n)], k = 1, 2, ..., (2)

причем за нулевое приближение x[0](n) может быть принята
произвольная p - периодическая последовательность; в качестве
x[k](n) выбирается единственное p - периодическое решение линей-
ной дискретной системы (2) (при известно x[k−1](n)).

При доказательстве теоремы 1 используется дискретное преоб-
разование Фурье и равенство Парсеваля для периодических функ-
ций, а также принцип обобщенного сжатия М.А.Красносельского.

В приводимой ниже теореме 2 x(n) - это полученное в теореме
1 периодическое решение, y(n) - произвольное решение нелинейной
системы (1), рассматриваемое при n = 0, 1, 2, ...; r - произвольное
положительное число; p и q - суммы кратностей собственных значе-
ний матрицы A, лежащих внутри и, соответственно вне единичного
круга, p + q = N .

Теорема 2. Пусть выполнены все перечисленные ограничения.
Тогда:

если спектр матрицы A лежит внутри единичного круга
(sprA < 1), то периодическое решение абсолютно устойчиво, т.е.

lim
n→+∞

sup
‖x(0)−y(0)‖6r

‖x(n)− y(n)‖ = 0; (3)

если спектр матрицы A лежит вне единичного круга (sprA−1 <
1), то периодическое решение абсолютно неустойчиво, т.е.

lim
n→+∞

inf
‖x(0)−y(0)‖>r

‖x(n)− y(n)‖ = +∞; (4)

если спектр матрицы A имеет точки как внутри, так и вне
единичного круга, то существуют такие многообразия Mi и Me

размерности p и q соответственно в пространстве CN , что при
дополнительном предположении y(0) ∈ Mi имеет место (3), а
при дополнительном предположении y(0) ∈ Me имеет место (4).
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К ВОПРОСУ ОБ ОЦЕНКЕ СПЕКТРАЛЬНОГО
РАДИУСА НЕОТРИЦАТЕЛЬНЫХ МАТРИЦ

Полякова Л.А. (Воронеж)
mhitaryanl@mail.ru

Пусть Q = (qij) есть вещественная неотрицательная матрица
n × n -матрица: qij > 0 при i, j = 1, 2, ..., n. Пусть положительны
последовательные главные миноры матрицы I −Q, где I есть еди-
ничная n× n - матрица,

εp ≡ (I −Q)
(

1 2 ... p
1 2 ... p

)
> 0, p = 1, 2, ..., n.

Тогда спектральный радиус матрицы Q меньше единицы (см. [1, с.
368-370], [2]),q ≡ sprQ < 1. Требуется, зная величины ε1, ε2, ..., εn,
дать оценку сверху величины q, причем желательно, чтобы оценка
была точная. Отметим, что оценке спектрального радиуса неотри-
цательных матриц посвящено достаточно много работ [3].

В полном объеме поставленная выше задача (А.И. Перов) пока
не решена. Приведем некоторые полученные при исследовании этой
проблемы результаты.

Совсем просто получается
Теорема 1. Для треугольной матрицы Q справедлива форму-

ла sprQ = 1 −min{ε1, ε2/ε1, ..., εn/εn−1}. С помощью теоремы для
матриц типа M из [4, с.51] устанавливается справедливость этого
утверждения.

Теорема 2. Имеет место следующая цепочка неравенств 1 >
ε1 > ε2 > · · · > εn−1 > εn > 0.

Теорема 3. Для n = 2 имеет место точная оценка

sprQ 6 1− ε1

2
+

√
(1 + ε1)2

4
− ε2 < 1− ε2

1 + ε1
.
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МЕТОД ОБРАТНОЙ СПЕКТРАЛЬНОЙ ЗАДАЧИ ДЛЯ
ВЕКТОРНОГО МОДИФИЦИРОВАННОГО

УРАВНЕНИЯ КдФ НА ПОЛУОСИ
Поплавский Д.В. (Саратов)

PoplavskiVB@mail.ru

Рассматривается следующая смешанная задача

ut + 2ux(3u2 + v2) + 4uvvx + uxxx = 0,

vt + 2vx(3v2 + u2) + 4vuux + vxxx = 0, x > 0, t > 0,

}
(1)

u(x, 0) = u0(x), v(x, 0) = v0(x),

u(0, t) = u1(t), ux(0, t) = u2(t), uxx(0, t) = u3(t),

v(0, t) = v1(t), vx(0, t) = v2(t), vxx(0, t) = v3(t).





(2)

Здесь uk, vk (k = 0, 3)— непрерывные комплекснозначные функции.
Cистема (1) допускает эквивалентное представление нулевой кри-
визны (см. [1]), что дает возможность применения метода обратной
спектральной задачи, в котором решение нелинейной задачи (1)-(2)
сводится к обратной задаче на полуоси по так называемой матрице
Вейля (см. [2],[3]) для следующей системы

Y
′ − i




0 u v
u 0 0
v 0 0


Y = iλ



−1 0 0
0 1 0
0 0 1


Y,

где Y = (Y1, Y2, Y3)T , а λ— спектральный параметр.
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Получены эволюционные уравнения по переменной t для эле-
ментов матрицы Вейля и конструктивная процедура решения за-
дачи (1)-(2).
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ПОЛНОТА СИСТЕМЫ СОБСТВЕННЫХ ФУНКЦИЙ
ЗАДАЧИ ШТУРМА-ЛИУВИЛЛЯ С

ОСОБЕННОСТЯМИ
Провоторов В.В. (Воронеж)

В прикладных задачах для систем с распределенными парамет-
рами [1,2] актуальна ситуация, когда информация об измеряемых
параметрах системы определяется в точке (или конечном числе то-
чек) интервала изменения пространственной переменой. Это приво-
дит к изучению задач типа Штурма-Лиувилля на отрезке, в конеч-
ном числе точек которого дифференциальное уравнение заменено
некоторыми соотношениями.

Пусть ξk = k π
m , k = 0, 1, 2, . . . , m. Обозначим Γ =

m⋃
k=1

γk, где

γk = (ξk−1, ξk), k = 1, 2, . . . ,m; очевидно Γ = [0, π]. Пусть Nm —
множество функций y (x) ∈ C[0,π]∩C2

Γ, производная которых имеет
скачки в точках ξk пропорциональные значениям y (ξk):

y′ (ξk − 0)− y′ (ξk + 0) = αky (ξk) , k = 1, 2, . . . , m

(здесь αk — фиксированная постоянная). На множестве Nm рас-
смотрим краевую задачу

−y′′ + q (x) y = λy (1)

U (y) ≡ y′ (0)− hy (0) = 0, V (y) ≡ y′ (π) + Hy (π) = 0, (2)

Теорема. 1). Система собственных функций {ψn (x)}n>0 краевой
задачи (1),(2) полна и образует ортогональный базис в L2 (0, π).
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2). Для любой абсолютно непрерывной функции f (x) , x ∈ [0, π],
имеет место разложение в обобщенный ряд Фурье

f (x) =
∞∑

n=0

anψn (x) , an =
1

$n

π∫

0

f (t)ψn (t) dt,$2
n =

π∫

0

ψ2
n (t) dt,

(3)
причем ряд сходится равномерно на [0, π]. 3). Для f (x) ∈ L2 (0, π)
ряд (3) сходится в L2 (0, π), причем имеет место равенство Пар-
севаля

π∫

0

f2 (x) dx =
∞∑

n=0

anω2
n.
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ЗАДАЧА ГАШЕНИЯ ПРОДОЛЬНЫХ КОЛЕБАНИЙ
СТЕРЖНЯ С ОСОБЕННОСТЯМИ

Провоторова Е.Н. (Воронеж)

В основе задач управления продольными колебаниями стержня
лежит следующая задача с начальными и финальными условиями:
найти функцию u (x, t) , x ∈ [0, `]× [0, T ], удовлетворяющую уравне-
нию

u′′tt (x, t) = a2u′′xx (x, t) (1)

начальным условиям в момент времени t = 0

u (x, 0) = ϕ (x) , u′t (x, 0) = ϕ (x) , (2)

финальным условиям в момент времени t = T :

u (x, T ) = ϕ1 (x) , u′t (x, T ) = ϕ1 (x) ; (3)

граничные условия для функции u (x, t) имеют вид

u (0, t) = µ (t) , u (`, t) = ν (t) . (4)
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Рассмотрим важную в прикладных аспектах ситуацию, когда
стержень в конечном числе точек отрезка [0, `] имеет точечные
неоднородности: непрерывность решения u (x, t) в этих точках со-
храняется, а производные u′x (x, t) имеют скачки пропорциональные
значениям u (x, t) в этих точках:

u′x

(
k

`

m
− 0, t

)
− u′x

(
k

`

m
+ 0, t

)
= αku

(
k

`

m
, t

)
, k = 1, 2, ...,m− 1,

(5)
здесь m − 1 - число точек неоднородностей отрезка [0, `]. Такие
неоднородности моделируют вставки датчиков в тело стержня при
контроле (мониторинге) колебательного процесса.

Обозначим < - множество функций u (x, t) непрерывных в пря-
моугольнике R̄, имеющие непрерывные вторые производные по пе-
ременным x, t в области R\{

k `
m , k = 1, 2, ...,m− 1

}× [0, T ], а в точ-
ках k `

m (k = 1, 2, ..., m− 1) удовлетворяющих соотношениям (5).
Основою задачи управления продольными колебаниями стерж-

ня является задача гашения колебаний - задача перевода колебле-
щегося стержня в состояние покоя, управляющими функциями яв-
ляются функции µ (t) , ν (t) пространства C2

[0,π]. Показана полнота
системы собственных функций задачи Штурма-Лиувилля соответ-
ствующей задаче (1),(2),(4); для определения функций µ (t) , ν (t)
построены уравнения, аналогичные моментным уравнениям при
разложении по собственным функциям задачи (1),(2),(4).

ПОЛОЖИТЕЛЬНОСТЬ ЭВОЛЮЦИОННОГО
ОПЕРАТОРА ОБОБЩЕННОГО УРАВНЕНИЯ

ПАРАБОЛИЧЕСКОГО ТИПА
Прозоров О.А. (Ростов-на-Дону)

kvm@math.rsu.ru

Известно, что существуют процессы с участием величин, ко-
торые должны быть неотрицательными по физическому смыслу.
Необходимым условием правильности математической модели та-
кого процесса является положительность ее эволюционного опе-
ратора. При некоторых предположениях, линейные положитель-
ные операторы обладают специальными спектральными свойства-
ми, эти свойства имеют большое значение в теории устойчивости,
теории ветвления решений нелинейных уравнений в частных про-
изводных [2].
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В докладе рассматривается задача Коши на прямой для уравне-
ния с псевдодифференциальным оператором, который определяет-
ся своим преобразованием Фурье — рациональной функцией вида

−ξ2k + R(iξ)/P (iξ), k ∈ N, (1)

где k > 1 и полином P (iξ) не имеет вещественных корней. Уравне-
ние (1) является обобщением параболических уравнений, рассмот-
ренных в [5]. Вопрос о положительности эволюционного оператора
задачи (1) решается при помощи теоремы Бохнера [1] переходом
к условиям, которым удовлетворяет образ Фурье положительной
функции. Данная задача, а также идея использовать теорему Бох-
нера предложены в [4]. Оказывается, что положительность возмож-
на только при k = 1. Получены достаточные условия положитель-
ности эволюционного оператора, а также многомерные обобщения.

Литература
1. Бохнер С. Лекции об интегралах Фурье. Физматгиз. 1962.
2. Красносельский М. А. Оператор сдвига по траекториям ре-

шений дифференциальных уравнений. "Наука".1966.
3. Юдович В. И. Лекции об уравнениях математической физи-

ки. Ростов-на-Дону, “Экспертное бюро”, 1998. 240 с.
4. Прозоров О. А. Положительность эволюционного оператора

задачи Коши для параболических уравнений // Изв. Вузов Сев.-
Кавк. регион. Естественные науки. 2004. № 3. С. 12–17.

КОЛЛЕКТИВНЫЙ СЕТЕВОЙ ИНТЕЛЛЕКТ, КАК
НОВАЯ ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ
ТЕСТИРОВАНИЯ ЗНАНИЙ СТУДЕНТОВ ПО

МАТЕМАТИКЕ
Протасов В.И. (Москва)

protonus@yandex.ru

В настоящей работе исследована возможность использования
коллективного разума студентов в компьютерной сети для тести-
рования знаний студентов по математике с применением новой ин-
формационной технологии.

Цель данной работы — исследовать возможности применения
нового метода в системе образования, как для обучения студентов,
так и для оценки знаний. Новым является то, что предлагаемый
подход базируется на применении известного классического генети-
ческого алгоритма и позволяет оценить вклад каждого участника
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как генератора идей, «комбинатора» или эксперта, выставляя им
соответствующие рейтинги. Образованный таким образом генети-
ческий консилиум [1] обладает рядом преимуществ по сравнению с
известными методами коллективного творчества.

Предложены простые правила функционирования коллективно-
го интеллекта, апробированные автором на ряде разных задач, как
в компьютерной сети, так и в «безмашинной» среде.

По данной методике было проведено занятие по проверке навы-
ков интегрирования и последующей их оценки в процессе коллек-
тивного тестирования группы студентов из шести человек. После
самостоятельного изучения раздела и получения дополнительной
консультации студентам было предложено пройти тестирование с
использованием генетического консилиума по методике, описанной
выше. После проведения четырех итераций популяция решений вы-
родилась к общему коллективному ответу. Для оценки вклада каж-
дого из участников в общий ответ из него вычленялись ответы каж-
дого участника на первой и второй итерациях.

Литература
1. Протасов В.И. Генерация новых знаний сетевым человеко-

машинным интеллектом. Нейрокомпьютеры, разработка и приме-
нение. М. № 7-8, 2001.

ФОРМУЛА РЕШЕНИЯ НАЧАЛЬНОЙ ЗАДАЧИ ДЛЯ
ОДНОГО КЛАССА ГИПЕРБОЛИЧЕСКИХ

УРАВНЕНИЙ С ДВУМЯ НЕЗАВИСИМЫМИ
ПЕРЕМЕННЫМИ1

Прядиев В.Л., Прядиев А.В. (Воронеж)
pryad@mail.ru

Рассмотрим начальную задачу:
{

uxx(x, t) + r(x)ux(x, t)− q(x)u(x, t) = utt(x, t)
(
x ∈ R, t > 0

)
u(x, 0) = ϕ(x), ut(x, 0) = 0 (x ∈ R) ,

(1)
в которой r ∈ C1(R), q ∈ C(R), ϕ ∈ C2(R). Пусть Ly = p0y

′′ +
p1y

′ + p2, где pi непрерывны, p0 > 0. Пусть G - какое-либо фун-
даментальное решение уравнения Ly = f . Пусть функция g(x, t, s)
такова, что для любого s ∈ R 1) g( · , · , s) непрерывна на R×[0; +∞),
2) на множестве Π(s) =

(
R× [0;+∞)

)\{
(x, t)

∣∣ t = |x− s|} функция

1Работа поддержана грантом РФФИ (04-01-00049).
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g( · , · , s) удовлетворяет уравнению uxx +rux−qu = utt, 3) gxx, gxt и
gtt непрерывны на каждой из компонент связности множества Π(s)
и непрерывно доопределяемы с каждой из этих компонент на их
замыкания, 4) g( · , 0, s) = G( · , s).

Теорема. Решение задачи (1) существует и представимо в виде

u(x, t) =
∫ +∞

−∞
g(x, t, s)(Lϕ)(s) ds. (2)

Замечание. Аналогичный результат для начально-краевой зада-
чи на отрезке установлен в [1].

Следствие. Для любой точки (x, t) ∈ R × [0;+∞) функция
g(x, t, · ) удовлетворяет на s ∈ (−∞; x − t) ∪ (x + t; +∞) уравне-
нию (p0y)′′ − (p1y)′ + p2y = 0, а решение задачи (1) может быть
записано в виде:

u(x, t) =
x+t∫
x−t

g(x, t, s)(Lϕ)(s) ds+

+
(
ϕ(s)

(
p0(s)g(x, t, s)

)
s
−

−ϕ′(s)p0(s)g(x, t, s)− ϕ(s)p1(s)g(x, t, s)
)∣∣∣

s=x+t

s=x−t
.

(3)

Замечание. Из (3) вытекает представление (1.14) из [2, Гл. VI,
§ 1], установленное там для r ≡ 0.

Литература
1. Прядиев В. Л., Прядиев А. В. Формула решения для некото-

рых классов начально-краевых задач для гиперболического урав-
нения с двумя независимыми переменными // Автоматика и теле-
механика (отправлено в печать).

2. Левитан Б. М., Саргсян И. С. Введение в спектральную тео-
рию (самосопряжённые обыкновенные дифференциальные опера-
торы). - М.: Наука, 1970.
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КРАЕВАЯ ЗАДАЧА ДЛЯ МНОГОМЕРНОГО
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ДРОБНОГО

ПОРЯДКА С ПРОИЗВОДНЫМИ КАПУТО1

Псху А.В. (Нальчик)
pskhu@mail333.com

Рассмотрим уравнение

n∑

k=1

λk∂αk
0xk

u(x) + λu(x) = f(x), (1)

где

∂αk
0xk

u(x) =
1

Γ(1− αk)

xk∫

0

[(∂/∂xk)u(x)]xk=t

(xk − t)αk
dt

– дробная производная Капуто порядка αk по переменной xk

([1, с.11]), αk ∈ (0; 1), x = (xk) ∈ Rn, λk > 0, k = 1, n, λ ∈ R.
Рассматривается краевая задача: в области D = (0; a1) × · · · ×

(0; an) найти решение уравнения (1), u(x) ∈ C(D̄), ∂αk
0xk

u(x) ∈ C(D),
удовлетворяющее краевым условиям

lim
xk→0

u(x) = τ
(
x(k)

)
, 1 6 k 6 n, (2)

где x(k) = (x1, . . . , xk−1, xk+1, . . . , xn).
В работе решена задача (1), (2). В терминах специальной функ-

ции Райта построен явный вид решения.
Литература

1. Нахушев А.М. Дробное исчисление и его применение. -М.:
Физматлит, 2003. 272 с.

1Работа выполнена при финансовой поддержке Российского Фонда Фунда-
ментальных Исследований (гранты № 06–01–96625, № 06–01–96627) и Фонда
содействия отечественной науке.
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НЕЛОКАЛЬНАЯ ЗАДАЧА С ИНТЕГРАЛЬНЫМ
УСЛОВИЕМ ДЛЯ УРАВНЕНИЯ

ГИПЕРБОЛИЧЕСКОГО ТИПА С n
ПРОСТРАНСТВЕННЫМИ ПЕРЕМЕННЫМИ

Пулькина Л.С., Дмитриев В.Б. (Самара)
louise@valhalla.sama.ru, dmitriev_v.b@mail.ru

Рассмотрим уравнение

utt −
n∑

i,j=1

∂

∂xi

(
aij(x, t)uxj

)
+

n∑

i=1

ai(x, t)uxi+

+an+1(x, t)ut + a(x, t)u = f(x, t) (1)

в цилиндре QT = {(x, τ) : x ∈ Ω ⊂ Rn, 0 < τ < T}, где Ω - огра-
ниченная область в Rn с гладкой границей, и поставим для него
задачу с начальными условиями Коши

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (2)

и нелокальным условием

n∑

i,j=1

aij(x, t)
∂u

∂xj
cos(n, xi)|ST

=
∫

Ω

K
(
x, y, t, u(y, t)

)
dy, (3)

где ϕ(x), ψ(x),K
(
x, y, t, u(y, t)

)
заданы, а ST = {(x, t) : x ∈ ∂Ω,

0 < t < T} - боковая поверхность цилиндра QT . При этом

aij = aji, νξ2 6
n∑

i,j=1

aij(x, t)ξiξj 6 µξ2, ν > 0.

В работе доказывается, что при выполнении некоторых условий
на функции aij , ai, a,K задача (1)-(3) имеет единственное обобщен-
ное решение из W 1

2 (QT ) для f ∈ L2,1(QT ), ϕ ∈ W 1
2 (Ω) и ψ ∈ L2(Ω).

Доказательство единственности решения базируется на полу-
ченной априорной оценке.

Существование решения доказывается методом Галеркина.
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ОБ ОДНОЙ НЕЛОКАЛЬНОЙ ЗАДАЧЕ ДЛЯ
НЕЛИНЕЙНОГО ГИПЕРБОЛИЧЕСКОГО

УРАВНЕНИЯ
Пулькина Л.С., Климова Е.Н. (Самара)

elena_klimova@mail.ru

Рассматривается нелинейное гиперболическое уравнение

uxt(x, t) = F (x, t, u, ux, ut)

в области
Ω = {(x, t) : 0 < x < l, 0 < t < T},

для которого поставлена нелокальная задача со следующими усло-
виями:

u(0, t) = µ(t),

u(x, 0) +
∫ T

0

h(x, τ)u(x, τ)dτ = g(x),

где µ(t), h(x, t), g(x) - заданные функции. Доказана справедливость
следующего утверждения:

если µ(t) ∈ C1([0, T ]), g(x) ∈ C1([0, l]), F (x, t, u, p, q) непрерывна
по всем переменным, |F | 6 M и удовлетворяет условию Липшица:

|F (x, t, u, p, q)− F (x, t, u, p, q)| 6 L(| u− u | + | p− p | + | q − q |),
то существует единственное решение поставленной задачи, принад-
лежащее классу функций C1(Ω), имеющих в Ω непрерывную сме-
шанную производную.

Для доказательства справедливости этого утверждения показа-
но, что поставленная задача при выполнении условия согласования

µ(0) +
∫ T

0

h(0, t)µ(t)dt = g(0)

эквивалентна операторному уравнению u = Tu, где

Tu = µ(t)− µ(0) + g(x)−
∫ T

0

h(x, τ)u(x, τ)dτ +
∫ t

0

∫ x

0

Fdξdτ.

Найдены условия на входные данные, при выполнении которых опе-
ратор T является сжимающим и, следовательно, существует един-
ственное решение уравнения u = Tu. В силу эквивалентности этого
уравнения и поставленной задачи тем самым доказана ее однознач-
ная разрешимость.
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ОБ ОДНОЙ ВАРИАЦИОННОЙ ЗАДАЧЕ
Раев К.Т., Раев А.К. (Кыргызстан)

raev_k@rambler.ru

В области D = {(x, y) : 0 6 x < l, 0 < y < h} рассмотрим следу-
ющую задачу: требуется найти функцию u (x, y) , доставляющую
экстремальное значение функционалу

L [u (x, y)] =
∫ ∫

D

[
u2

x − a (x, y)u2
y − b (x, y)u2 + 2f(x, y)u

]
dxdy (1)

удовлетворяющую условию

u(0, y) = ϕ(y), 0 6 y 6 l (2)

Запишем уравнение Остроградского

Lu − (Lux
)x − ∂Lux

∂u
ux − ∂Lux

∂ux
uxx − ∂Lux

∂uy
uxy−

−(Luy )y −
∂Luy

∂u
uy −

∂Luy

∂ux
uxy −

∂Luy

∂uy
uyy = 0

Вычислив соответствующие производные, получим следующую за-
дачу

uxx − a(x, y)uyy − b1(x, y)uy + c(c, y)u = f(x, y) (3)

u(x, 0) = ϕ(x) (4)

Решение задачи (3), (4) ищем в виде

u(x, y) = ϕ(x) +
∫ x

0

∫ y

0

exp(−α(x− s + y − ν)Q(s, ν)dsdν, (5)

где α - некоторая постоянная, Q(x, y) - новая неизвестная функция.
Подставляя (5) в уравнение (3) получим интегральное уравне-

ние Вольтерра второго порядка в следующем виде

Q(x, y) = (α− a(x, y))
∫ x

0

exp(−α(x− s)Q(s, y)ds−

−a(x, y)
∫ y

0

exp(−α(y − ν)Q(x, ν)dν−

−(α2 − 2αa(x, y)− b(x, y))u + α2ϕ(y)− 2αa(x, y)ϕ(y) + f(x, y)

Как известно это уравнение имеет единственное решение и тем са-
мым мы получим решение поставленной задачи.
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МЕТОДИКА ИЗУЧЕНИЯ ЗАКОНА БОЛЬШИХ
ЧИСЕЛ

Раев К.Т., Раева М.Т. (Кыргызстан)
raev_k@rambler.ru, mraeva06@rambler.ru

В настоящее время начались практические мероприятия по
включению в школьный курс математики нового раздела: ”элемен-ты статистики, комбинаторики и теории вероятностей“. В данном
этапе недостаточны методические рекомендации, призванные об-
легчить процесс преподавания этого раздела в средней школе и
многие учителя испытывают значительные затруднения при рас-
крытии сущности и решении задач по новой тематике. Это свя-
зано в первую очередь с отсутствием соответствующего опыта у
учителей, так как новый учебный материал отсутствовал в школь-
ных программах. Главная цель нашего доклада - помочь учителям
в преподавании методики изучения темы закона больших чисел.

Окружающий нас мир, это бесконечное многообразие различ-
ныз явлений. Общаясь с миром мы приходим к мысли, что в пер-
вом приближении все явления разделяется на два вида: необходи-
мые и случайные. Необходимые явления кажутся нам явлениями
неизбежно происходящими и изучение, описание, предсказание и
установление закономерностей необходимых явлений представля-
ется закономерным. Случайные явления кажутся могущими как
произойти, так и непроизойти. Они в обыденном представлении ка-
жутся нам крайне редкими, не имеющими закономерностей, непод-
чиняющими человеческой силе и нарушающими естественный ход
развития.

Сущность закона больших чисел излагается учителем, который
рассказывает ученикам о непредсказуемости отдельного конкретно-
го события, которое может произойти или непроизойти при данном
испытании. Однако при неоднократном повторении испытаний мо-
гут наблюдаться определенные закономерности, т. е. математиче-
ские законы теории вероятностей получены в результате абстраги-
рования реальных статистических закономерностей, свойственных
массовым случайным явлениям.

Следует обратить внимание учащихся на то, что эти законо-
мерности обладают свойством устойчивости и под законм больших
чисел не следует понимать какой-то один общий закон, связанный
с большими числами, а обобщенное название нескольких теорем, в
которых выясняются условия того, что совокупное действие многих
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случайных величин приводит к результату, почти не зависящему
от случая, т. е. при неограниченном увеличении числа испытаний
средние величины стремятся к некоторым постоянным. Таким об-
разом, случайность и необходимость неотделимы друг от друга.

Следует обратить внимание учащихся, что основные теоремы
закона больших чисел опираются на известное неравенство знаме-
нитого русского математика П. Л. Чебышева. В форме

P (|X −M(X)| > ε) 6 D(X)
ε2

оно устанавливает верхнюю границу, а в форме

P (|X −M(X)| 6 ε) 6 1− D(X)
ε2

оно устанавливает нижнюю границу вероятности рассматриваемого
события.

В докладе расскажем один вариант изложения, который будет
доступен школьнику.

НЕПРЕРЫВНАЯ ЗАВИСИМОСТЬ РЕШЕНИЯ
НЕЛОКАЛЬНОЙ КРАЕВОЙ ЗАДАЧИ ОТ

ГРАНИЧНОГО ОПЕРАТОРА
Ратыни А.К. (Иваново)

ratyni@isuct.ru

Рассматриваются задачи (j = 0, 1):

∆u + c(x)u = f(x) (x ∈ D), u(x)− βj(x)u(σjx) = ψ(x) (x ∈ S).
(1j)

Здесь и далее: x = (x1, . . . , xn) – точка Rn(n > 2); |x| =√
x2

1 + . . . + x2
n; D — ограниченная область Rn с границей ∂D =

S ∈ C2; D̄ = D ∪ S; ∆ – оператор Лапласа в Rn; σj– однозначные
непрерывные отображения S в D̄;
c(x) ∈ Cα(D) и βj(x) ∈ C(S)– заданные функции. В работе ис-
пользуются пространства Гельдера, определенные в монографии А.
Фридмана "Уравнения с частными производными параболического
типа".

Обозначим z(x; P, µ) решение задачи Дирихле (P– область Rn, µ
– число)

∆z + µz = 0 (x ∈ P ), z(x) = 1 (x ∈ ∂P ).
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Теорема. Пусть существуют числа a ∈ (0, 1), µk 6 0
и открытые n-мерные шары Pk (k = 1, . . . , m) такие, что:

σjS ⊂ Q ≡
m⋃

k=1

P̄k ⊂ D̄; c(x) 6 0 в D \ Q; c(x) 6 µk в

Pk; |βj(x)|Z(σjx) 6 a при x ∈ S (j = 0, 1), где Z(x) =
min{z(x; µ1, P1), . . . , z(x; µm, Pm}, x ∈ Q. Тогда для любых f ∈
Cα(D), ψ ∈ C(S) каждая из задач (1j) имеет единственное ре-
шение uj(x) ∈ C2+α(D) (j = 0, 1). Если же, кроме перечисленных
условий, справедливо включение σ0S ⊂ D, то для любого числа
ε > 0 найдется такое число δ > 0, зависящее от ε, a, n, α, норм
c, f в Cα(D), норм β0, ψ в C(S) и расстояния σ0S от S, что при
выполнении неравенства ‖β0(x)−β1(x)‖C(S) +‖|σ0x−σ1x|‖C(S) 6 δ
будет справедливо неравенство ‖u0(x)− u1(x)‖C2+α(D) 6 ε.

ОБ ОДНОЙ ВЕКТОРНО-АДДИТИВНОЙ
РАЗНОСТНОЙ СХЕМЕ
Романова Н.С. (Минск)
natalaromanova@yahoo.com

Ранее в [1,2] был предложен метод многокомпонентного расщеп-
ления полной аппроксимации, который снимает ряд недостатков
метода суммарной аппроксимации. Эти схемы не вписываются в
канонические структуры и поэтому общая теория для этих алгорит-
мов мало пригодна. Метод многокомпонентного расщепления имеет
ряд преимуществ, например, он обладает полной аппроксимацией
и является асимптотически устойчивым, что свидетельствует о его
высокой точности, и дает возможность использовать для построе-
ния итерационных методов решения стационарных задач. В данном
сообщении для нестационарных задач математической физики рас-
сматривается векторно-аддитивный алгоритм:

ŷα − 1
p

p∑
β=1

yβ

τ
+

α∑

β=1

Aβ ŷβ +
p∑

β=α+1

Aβyβ = f, yα(0) = u0, α = 1, p.

Следуя работе [3], где обсуждается принцип векторно-аддитивного
моделирования дифференциального уравнения при помощи одно-
типных задач с последующим применением для их решения раз-
ностных схем, исследуется устойчивость указанного выше метода.
Доказательство удалось провести только для p = 2.
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Теорема. Если Aα - положительно определенные операторы, то
алгоритм при p = 2 безусловно устойчив и при любых τ < τ0 спра-

ведлива оценка ‖υ(n+1)‖23 6 τ2(1 + τc0)−n‖
2∑

α=1
Aαyα(0)‖2, см обо-

значения в [3].
Проведен вычислительный эксперимент и сравнительный ана-

лиз с другими экономичными методами.
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О СВОЙСТВАХ ХАРАКТЕРИСТИЧЕСКИХ
МНОГОУГОЛЬНИКОВ1

Рыхлов В.С. (Саратов)
RykhlovVS@info.sgu.ru

Пусть L(λ) есть пучок `(y, λ) =
∑

s+k=n pskλsy(k)(x), Uj(y, λ) ≡
Uj0(y, λ) + Uj1(y, λ) :=

∑
s+k=σj

λs(αjsky(k)(0) + βjsky(k)(1)) = 0,
j = 1, n, где psk, αjsk, βjsk ∈ C, σj 6 n− 1. Пусть σ = σ1 + · · ·+ σn.
Предположим корни {ωk}n

k=1 уравнения
∑

s+k=n pskωk = 0 попар-
но различны и отличны от нуля. Положим yk(x, λ) = exp(λωkx),
k = 1, n. Обозначим Vk(λ) =

(
1

λσ1 U10(yk, λ), . . . , 1
λσn Un0(yk, λ)

)T ,
Wk(λ) = e−λωk

(
1

λσ1 U11(yk, λ), . . . , 1
λσn Un1(yk, λ)

)T . Предположим,
что rank(V1, V2, . . . , Vn) = s, rank(W1,W2, . . . , Wn) = t, 1 6 s, t 6 n,
s + t > n. Для Γ = (γ1, . . . , γn)T пусть g(x, λ, Γ) есть решения урав-
нения `(y, λ) = 0, введенные в [1]. Положим χJk

=
∑

α∈Jk
ωα, где

Jk, k = 1, 2, . . . , N , – произвольный набор из k различных натураль-
ных чисел от 1 до n, χJ0 = 0. Тогда характеристический определи-
тель (х.о.) пучка L(λ) можно записать ∆(λ) = det (Uj(yk, λ))n

j,k=1 =
λσ

∑
Jk

P JkeλχJk . Через M∆ обозначим выпуклую оболочку тех то-
чек χJk

, для которых P Jk 6= 0. M∆ назовем характеристическим
многоугольником (х.м.) функции ∆(λ). Аналогично введем х.м.
Mg(x,λ,Γ) функции g(x, λ, Γ) при любом фиксированном x ∈ [0, 1].

1Работа выполнена при финансовой поддержке РФФИ (проект 06-01-00003)
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Назовем х.м. вектора Γ (обозначаем M(Γ)) выпуклую оболочку
всех Mg(x,λ,Γ) при x ∈ [0, 1]. При исследовании полноты системы
с.п.ф. пучка L(λ) использовались леммы о х.м. векторов Vj и Wj

([1]). Эти леммы можно уточнить.
Лемма 1. Для фиксированного j (1 6 j 6 n) х.м. M(Vj) содер-

жится в выпуклой оболочке M∆ и тех точек χJk
, для которых

j ∈ Jk и n− s 6 card Jk 6 t + 1.
Лемма 2. Для фиксированного j (1 6 j 6 n) х.м. M(Wj) содер-

жится в выпуклой оболочке M∆ и тех точек χJk
, для которых

j 6∈ Jk и n− s− 1 6 card Jk 6 t.
Литература
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ОЦЕНКА АСИМПТОТИКИ ПРИ t →∞ РЕШЕНИЯ
НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ

ТЕПЛОПРОВОДНОСТИ В ПОЛОСЕ
Рябенко А.С. (Воронеж)

В работе рассматривается дифференциальное уравнение

∂v

∂t
− a2 (x3)∆v = g (x, t) (1)

с начальными и граничными условиями:

v (x, t) |t=0 = 0, (2)

v|x3=0 = v|x3=d = 0, (3)

где t > 0, (x1, x2) ∈ R2, x3 ∈ [0; d] , a2 (x3) ∈ C [0; d] , 0 < ε1 6
|a(x3)| 6 ε2, при некоторых ε1, ε2.

Для изучения поведения решения задачи (1)-(3) при t →∞ при-
менен принцип локализации, позволяющий свести изучение этого
поведения к исследованию контуров потери аналитичности образов
Фурье-Лапласа Lt→γFx1,x2→s1,s2 решения задачи (1)-(3) в окрестно-
сти точки поворота.

Выделение зон аналитичности основано на априорных оценках
образа Фурье-Лапласа задачи (1)-(3) решения.

Тот факт, что аргумент x3 изменяется на отрезке [0; d], позво-
ляет при параметре γ, изменяющемся во множестве комплексной

157



плоскости вида

{|γ| 6 δ1} ∪ {γ| 0 6 | arg γ| 6 π − ε0}, ε0 > 0, δ1 > 0

получить следующую априорную оценку решения
∥∥∥∥

∂2u

∂x2
3

∥∥∥∥ +
√
|γ|+ |s|2

∥∥∥∥
∂u

∂x3

∥∥∥∥ + (|γ|+ |s|2) ‖u‖ 6 c ‖f‖ ,

где u(γ, s1, s2, x3) и f(γ, s1, s2, x3) это образы Фурье-Лапласа
Lt→γFx1,x2→s1,s2 функций v(x1, x2, x3, t) и f(x1, x2, x3, t) соответ-
ственно. Отметим также, что в окрестности нуля |γ| 6 δ1 удалось
получить априорную оценку вида (|γ| + δ2) ‖u(x3, γ, 0)‖ 6 c ‖f‖ с
некоторой положительной постоянной δ2 > 0.

Введем необходимое функциональное пространство.
Определение. Пусть δ > 0. Функция u(x1, x2, x3, t) принадле-

жит пространству H+
2,1,δ = {u|u(x1, x2, x3, t) exp [δt] ∈

∈ L2(t > 0; (x1, x2) ∈ R2;x3 ∈ [0; d])
}
с нормой

‖u‖2,1,δ = ‖u exp [δt]‖+
∥∥∥∥

∂u

∂t
exp [δt]

∥∥∥∥ +
3∑

j=1

∥∥∥∥
∂2u

∂2xj
exp [δt]

∥∥∥∥,

где ‖·‖ — норма в L2(t > 0; (x1, x2) ∈ R2; x3 ∈ [0; d]).
Сформулируем основной результат работы.
Теорема. Пусть g(x, t) ∈ H+

2,1,δ, а v(x1, x2, x3, t)- решение задачи
(1)-(3), тогда справедлива следующая оценка: |v(x1, x2, x3, t)| 6 c ·
exp[−δ3t], где δ3 > 0.

О НЕОСЦИЛЛЯЦИИ ОБЩЕЙ ВАРИАЦИОННОЙ
ЗАДАЧИ НА СЕТИ

Рябцева Н.Н. (Белгород)
science@bupk.ru

При анализе условий экстремума функционала на простран-
ственной сети

Φ(u) =
∫

Γ

F (x, u, u′)dx (1)

достаточно естественно получается, как необходимое условие, ана-
лог уравнения Эйлера

Fu(x, u0(x), u′0(x))− d

dx
Fu′(x, u0(x), u′0(x)) = 0 (2)
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в сочетании с условиями трансмиссии во внутренних вершинах
∑

γi∈Γ(a)

Mi(a)z′i(a) = 0, (3)

где M(x) = Fu′u′(x, u0(x), u′0(x)).
Привлечение второй вариации исходного функционала приво-

дит к проблеме изучения общего квадратичного функционала, ви-
да

δ2Φ(u0)h =
∫

Γ

(Mh′2 + 2Qhh′ + Nh2) dx, (4)

где условие неотрицательности этого функционала оказывается
связано, аналогично классическому скалярному случаю, с предпо-
ложением об отсутствии нулей у некоторого решения следующего
уравнения

−(Mh′)′ + 2Qhh′ − (
Q2

M
+ N)h = 0. (5)

Оказывается, что уравнение (5) обладает свойствами, вполне
аналогичными каноническим свойствам уравнений второго поряд-
ка, описанным в [1].

Литература
1. Покорный Ю.В., Пенкин О.М., Прядиев Л.В., Боровских

А.В., Лазарев К.П., Шабров С.А. Дифференциальные уравнения
на геометрических графах. - М.: ФИЗМАТЛИТ, 2004. - 272 с.

МУЛЬТИПЛИКАТОРЫ РЯДОВ ФУРЬЕ
Сарыбекова Л.О., Тлеуханова Н.Т. (Казахстан, Астана)

er-nurs@yandex.ru

Данная работа посвящена исследованию мультипликаторов три-
гонометрических рядов Фурье в пространствах Лоренца Lpq.

Пусть (Ω, µ)-пространство с положительной мерой. Для µ- изме-
римой функций f , принимающей почти всюду конечные значения,
введем функцию распределения

m(σ, f) = µ{x : |f(x)| > σ}.

Обозначим через f∗(t) невозрастающую перестановку функций f

f∗(t) = inf{σ : m(σ, f) 6 t}.
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Пусть 1 6 p, q 6 ∞, пространством Лоренца называется множе-
ство функций для которых

‖f‖Lpq(Ω) = (

+∞∫

0

(t
1
p f∗(t))q dt

t
)

1
q < ∞.

Пусть 1 < p < ∞, 1 6 q1 < q0 6 ∞ и функция f ∈ Lpq0 [0, 2π] с
рядом Фурье

∑
k∈Z

f̂(x)eikx. Будем говорить, что последовательность

комплексных чисел λ = {λk}k∈Z является мультипликатором три-
гонометрических рядов Фурье из Lpq0 в Lpq1 если найдется функция
fλ ∈ Lpq1 [0, 2π] ряд Фурье которого равен

∑
k∈Z

λkf̂(x)eikx.

Множество всех мультипликаторов Mpq1
pq0

является нормирован-
ным пространством с нормой

‖λ‖M
pq1
pq0

= sup
f 6=0

‖fλ‖Lpq1

‖f‖Lpq0

.

Теорема. Пусть 1 < p < ∞, 1 6 q1 < q0 6 ∞. Если λ =
{λk}k∈Z удовлетворяет условию

+∞∑

k=−∞

(|λk − λk+1| · |k| · (ln(|k|+ 2))
1

q1
− 1

q0
+1)q

′
0

|k| ln(|k|+ 2)
< ∞,

sup
k∈Z

|λk| ln |k|
1

q1
− 1

q0 < ∞,

то λ ∈ Mpq1
pq0

.

Следствие. Пусть λ = { 1
ln(|k|+2)α }k∈Z , тогда λ ∈ Mpq1

pq0
тогда

и только тогда, когда α > 1
q1
− 1

q0
.

РЕЗОНАНСНЫЕ СВОЙСТВА ОДНОГО УРАВНЕНИЯ
С ГИСТЕРЕЗИСНОЙ НЕЛИНЕЙНОСТЬЮ

Семенов М.Е., Канищева О.И., Толоконников П.В.
(Воронеж)

mkl150@mail.ru, olesya@lib.vsu.ru

В работе изучаются резонансные свойства уравнений, подобных
уравнениям Матье, содержащих гистерезисные нелинейности:

ẍ + (δ + ε cos(2t))x + u(t) = 0, (1)
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u(t) = L[ω0]x(t), (2)

x(0) = x0, ẋ(0) = x1, (3)

где x(t) – скалярная функция, δ, ε – скалярные параметры. Урав-
нение (2) описывает входно-выходные соответствия гистерезисного
преобразователя, подробное описание которого будет приведено ни-
же. Уравнения (1)–(2) описывают колебания ферромагнитного ма-
ятника в переменном магнитном поле, являются математической
моделью некоторых биологических и экономических систем.

Здесь и далее начальные состояния x0 и ω0 предполагаются со-
гласованными, в том смысле, что для преобразователя L[ω0] , на-
ходящегося в начальном состоянии ω0 , вход x(t), (t > 0) является
допустимым.

Система (1)–(2) называется диссипативной, если существуют та-
кие константы d, r, что для любых начальных значений x(0) = x0

и ẋ(0) = x1, удовлетворяющих условиям |x0| < r, |x1| < r, решение
уравнений (1)-(2), им отвечающее, будет удовлетворять неравен-
ству |x(t)| < d (t > 0).

Приведем описание гистерезисного преобразователя, фигуриру-
ющего в системе (1)–(2). Пару неубывающих функций u = v−(x) и
u = v+(x) назовем правильной, если, во-первых, существуют такие
x−, x+ и u−, u+, что

v−(x) = v+(x) = u−, (x 6 x−)

v−(x) = v+(x) = u+, (x > x+) (4)

и, во-вторых,
v−(x) 6 v+, x ∈ (−∞; +∞)

и
+∞∫

−∞
(v+(x)− v−(x))dx = v0 > 0. (5)

Оператор L назовем согласованным с парой v−(x), v+(x), если при
некотором M > 0 для функции x(t), невозрастающей на промежут-
ке [t0; t1] из соотношений x(t0) > M , x(t1) 6 −M вытекает справед-
ливость равенств u(t) = v+(x(t)). Аналогично для неубывающей
функции x(t) из соотношений x(t0) < −M , x(t1) > M вытекает
равенство u(t) = v−(x(t)). Операторы, соответствующие неидеаль-
ному реле, обобщенному люфту с насыщением, преобразователю
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Прейсаха с финитным носителем меры [1,2], являются согласован-
ными с некоторыми парами функций.

Теорема: Пусть гистерезисный преобразователь согласован с
правильной парой тогда, для любого любого δ > 0, существует
ε1 > 0, что для любого ε, удовлетворяющего неравенству |ε| < ε1,
система (1)-(2) диссипативна.

Отметим, что для классического уравнения Матье (без гистере-
зисной нелинейности) в любой окрестности точки (n2, 0) на плос-
кости (δ, ε) можно указать такие (δ̃, ε̃), что уравнение (1) недисси-
пативно.

Литература
1. М.А. Красносельский, А.В. Покровский. Системы с гистере-

зисом. // М. Наука, 1985. 327 с.
2. Семенов М.Е. Математическое моделирование устойчивых пе-

риодических режимов в сис-темах с гистерезиснными нелинейно-
стями / М.Е. Семенов // Воронеж. – Издательство ВГУ. – 2002. –
104 С.

О ЛОКАЛЬНОЙ ДОСТИЖИМОСТИ
Семенов Ю.М. (Чебоксары)

SemJuM@chuvsu.ru

Пусть C — управляемая система ẋ = f(x) + u с линейным фа-
зовым пространством V и ограничивающим множеством Ω. Через
tloc(C) обозначается нижняя грань моментов времени t для кото-
рых множество достижимости K(C, t) содержит окрестность точки
0. Естественно возникает вопрос об оценке момента времени tloc(C).

Через tca(C) обозначается нижняя грань моментов времени t
для которых множество K(C, t) = V . Через C ′ обозначается систе-
ма ẋ = ḟ(0) x + u с ограничивающим множеством Ω.

С одной стороны известно, что tloc(C) = tloc(C ′), если f(0) = 0
и det ḟ(0) 6= 0. С другой стороны, если C ′ — линейная управляемая
система с постоянными коэффициентами с ограничивающим мно-
жеством Ω, содержащим точку 0, то tloc(C ′) = tca(ConC ′). Здесь
через ConC ′ обозначается система, полученная из системы C ′ за-
меной ее ограничивающего множества на замыкание конуса ConΩ,
натянутого на Ω. Эти замечания позволяют свести задачу отыска-
ния момента tloc(C) к отысканию момента времени tca(ConC ′).

Теорема 1. Если C = (V, α, Ω) — линейная управляемая си-
стема с фазовым пространством V , оператором α и коническим
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ограничивающим множеством Ω, то

K(C, t) =
∑

0<τ<t

eατΩ.

Теорема 2. Если C = (V, α, Ω) и α-инвариантное линейное под-
пространство V ′ ⊆ K(C, t0), то для всех t > t0

K(C, t) = ϕ−1K(C/V ′, t).

На основе этих двух теорем для линейных управляемых систем
с постоянными коэффициентами с коническими ограничивающими
множествами с конечным числом образующих предлагается проце-
дура поиска момента tca(C). Рассматриваются некоторые примеры
вычисления момента tca(C).

Литература
1. Семенов Ю.М. Об остовах линейных управляемых

систем//Диф. уравнения. — 2005. — Т.41, № 8. — C. 1145–1146.

ПРИНЦИП МАКСИМУМА ДЛЯ ЛИНЕЙНЫХ
УПРАВЛЯЕМЫХ СИСТЕМ С ОТКЛОНЕНИЕМ

АРГУМЕНТА И ПОЛИЭДРАЛЬНЫМИ
ОГРАНИЧЕНИЯМИ

Сибирякова О.В. (Ижевск)
sibolv@rambler.ru

В пространстве D абсолютно непрерывных функций x : [0, T ] →
Rn с производной ẋ ∈ Ln

p рассмотрен линейный управляемый про-
цесс с отклонением аргумента

ẋ(t) +
∑r

j=1 Aj(t)x(hj(t)) = B(t)u(t), t ∈ [0, T ],
x(s) = 0, s /∈ [0, T ].

(1)

Здесь Aj(t) – n × n-матрицы со столбцами из Ln
p , hj : [0, T ] → R –

измеримые функции, j = 1, r, B(t) – n×m-матрица с элементами из
Lp, u : [0, T ] → Rm – вектор-функция, значения которой при почти
всех t ∈ [0, T ] принадлежат компакту Ω ⊂ Rm.

Непустые полиэдры пространства состояний заданы в виде

αk
l x(tl) > βk

l , k = 1, νl, l = 1, µ. (2)
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Здесь αk
l – постоянные вектор-строки длины n, βk

l ∈ R, tl(0 < tl <
tl+1 < T, l = 1, µ− 1) – фиксированные точки интервала [0, T ]. Тео-
рема 1. Система (1) имеет решение x ∈ D, удовлетворяющее сов-
местной системе неравенств (2) тогда и только тогда, когда для
каждого неотрицательного решения {λk

l } алгебраической системы
∑µ

l=1

∑νl

k=1
λk

l Zk
l (0) = 0 (3)

выполняется неравенство
µ∑

l=1

νl∑
k=1

λk
l

(
βk

l −
T∫
0

Zk
l (s)B(s)u(s) ds

)
6 0

где Zk
l (s) – единственное решение уравнения

Z(s) =
r∑

j=1

∫

h−1
j [0,T ]

Z(t)Aj(t) dt + αk
l χ(tl − s), s ∈ [0, T ].

Теорема 2. Для некоторого неотрицательного решения {ξk
l } сис-

темы (3) найдется допустимое управление u∗(t), удовлетворяющее
при почти всех s ∈ [0, T ] принципу максимума
∑µ

l=1

∑νl

k=1
ξk
l Zk

l (s)B(s)u∗(s) = max
u∈Ω

∑µ

l=1

∑νl

k=1
ξk
l Zk

l (s)B(s)u.

ТЕПЛОПЕРЕНОС В НЕНЬЮТОНОВСКИХ СРЕДАХ
ПРИ ФАЗОВЫХ ПЕРЕХОДАХ

Сидоренко А.С. (Воронеж)
teormech@vgta.vrn.ru

Рассмотрена математическая модель фазового перехода поли-
мерных материалов в цилиндрических каналах с учетом диссипа-
ции, учитывающая линейную зависимость вязкости рабочей сре-
ды от температуры в [1]. Модель представлена уравнениями нераз-
рывности, гидродинамики, конвективного теплопереноса с учетом
диссипации и баланса фаз. Дополнительно предполагали, что те-
чение является одномерным, осесимметричным и ламинарным. За-
дача рассматривалась с граничными условиями первого рода для
температуры.

В цилиндрический канал поступает однофазный поток, кото-
рый, перемещаясь в нем, разогревается вследствие диссипации. На-
чиная с некоторого момента саморазогрев рабочей среды достига-
ет температуры фазового перехода, в результате происходит фор-
мирование двухфазового потока. Необходимым условием фазового
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перехода было принято термодинамическое равновесие между ком-
понентами рабочей среды.

В работе на основе численных экспериментов с моделью при по-
мощи ПЭВМ проводился анализ формы границы начала фазового
перехода и влияния на нее основных параметров системы.

Полученные результаты показывают, что в исследованных диа-
пазонах изменения этих параметров форма границы начала фазо-
вого перехода в зависимости от радиальной координаты не носит,
вообще говоря, монотонного характера. Показано, что наиболее су-
щественная трансформация границы наблюдалась при варьирова-
нии чисел Эйлера и Рейнольдса.

Литература
1. Сидоренко, А. С. Математическое моделирование начальной

стадии формирования пористой структуры полимеров в цилиндри-
ческих каналах [текст] / А.С. Сидоренко // Диссер. . . . канд. техн.
наук. Воронеж. гос. технол. акад. – 2005. – 209 с.

О НЕОБХОДИМЫХ УСЛОВИЯХ
ПРИНАДЛЕЖНОСТИ СУММЫ

ТРИГОНОМЕТРИЧЕСКОГО РЯДА ПРОСТРАНСТВУ
ОРЛИЧА-ЛОРЕНЦА1

Симонов Б.В. (Волгоград)
dvr@vstu.ru

Пусть Φ — совокупность неотрицательных на [0, +∞) почти воз-
растающих функций, удовлетворяющих ∆2- условию; W− совокуп-
ность измеримых, неотрицательных почти всюду на (0, 2π) функ-
ций. Пространством Орлича-Лоренца Λ(ϕ, w), где ϕ ∈ Φ, w ∈ W, на-
зывается множество 2π- периодических измеримых функций f(x),

для которых ‖ f ‖ϕ,w=
2π∫
0

w(t)ϕ(f∗(t))dt < +∞, где f∗(t)- невозрас-

тающая на [0, 2π] функция, равноизмеримая с | f | . Будем рассмат-
ривать тригонометрические ряды вида

a0
2 +

∞∑
n=1

an cos nx (1),
∞∑

n=1
an sinnx (2).

У т в е р ж д е н и е . Пусть r ∈ N ; an → 0 при n →∞, где
an- коэффициенты рядов (1) и (2); ϕ ∈ Φ; w ∈ W и такова, что или

w(t) = 0 при почти всех t ∈ [π2−12−2r, 2π], или
π2−12−2r∫

0

w(t)dt > 0.

1Работа выполнена при финансовой поддержке РФФИ (проект 06-01-00268).
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а). Если ∆1,ran > 0 для всех n = 1, 2, . . . , то
2π∫
0

w(t)ϕ(g∗(t))dt > C1

∞∑
n=0

2π
(n+1)r∫

2π
(n+2)r

w(t)dt
r∑

k=1

ϕ(ak+nr(n + 1)).

б). Если ∆2,ran > 0 для всех n = 0, 1, . . ., 2(a0−ar) >
r−1∑
m=0

∆1,ram

и при r > 2 последовательность {an} дополнительно удовлетворя-
ет условию: ∆1,r(ar(n+1)−k − ar(n+1)+k) > 0 для всех n = 0, 1, . . .

и k = 1, . . . , [ r−1
2 ], то

2π∫
0

w(t)ϕ(f∗(t))dt > C2(
2π
r∫

π
r

w(t)dtϕ(a0 − ar) +

+
∞∑

n=0

2π
(n+1)r∫

2π
(n+2)r

wr(t)dt(
r∑

k=1

ϕ((n + 1)2∆1,rak+nr) +

+ [ r−1
2 ]

[ r−1
2 ]∑

k=1

ϕ((n + 1)(ar(n+1)−k − ar(n+1)+k))),

где C1, C2 не зависят от {an}, ∆1,ran = an − an+r,∆2,ran =
∆1,r(∆1,ran).

О ДОСТАТОЧНЫХ УСЛОВИЯХ
ПРИНАДЛЕЖНОСТИ СУММЫ

ТРИГОНОМЕТРИЧЕСКОГО РЯДА ПРОСТРАНСТВУ
ОРЛИЧА-ЛОРЕНЦА1

Симонов Б.В. (Волгоград)
dvr@vstu.ru

Пусть Φ- совокупность неотрицательных на [0, +∞) почти воз-
растающих функций, удовлетворяющих ∆2- условию; W− совокуп-
ность измеримых, неотрицательных почти всюду на (0, 2π) функ-
ций. Будем рассматривать тригонометрические ряды вида

a0
2 +

∞∑
n=1

an cos nx (1),
∞∑

n=1
an sinnx (2).

У т в е р ж д е н и е . Пусть r ∈ N ; an → 0 при
n → ∞, где an- коэффициенты рядов (1) и (2); ϕ ∈ Φ; w ∈ W

и такова, что
δ∫
0

wr(x)dx 6 C1

δ∫
δ
2

wr(x)dx для любого δ ∈ (0, 2π
r ),

где wr(x) =
r−1∑
m=0

w(x + m 2π
r ). а). Если ∆1,ran > 0 для всех n =

1Работа выполнена при финансовой поддержке РФФИ (проект 06-01-00268).
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1, 2, . . . , то
2π∫
0

w(t)ϕ(g∗(t))dt 6 C2

∞∑
n=0

2π
(n+1)r∫

2π
(n+2)r

wr(t)dt
r∑

k=1

ϕ(ak+nr(n +

1)). Если ∆1,ran > 0 для всех n = 0, 1, 2, . . . , то
2π∫
0

w(t)ϕ(f∗(t))dt 6

C3(
2π
r∫

π
r

wr(t)dtϕ(a0) +
∞∑

n=0

2π
(n+1)r∫

2π
(n+2)r

wr(t)dt
r∑

k=1

ϕ(ak+nr(n + 1))).

б). Если ∆2,ran > 0 для всех n = 0, 1, . . . , ar 6 ak 6 a0

для 0 6 k 6 r и при r > 2 последовательность {an} дополни-
тельно удовлетворяет условию: ∆1,r(ar(n+1)−k − ar(n+1)+k) > 0

для всех n = 0, 1, . . . , и k = 1, . . . , [ r−1
2 ], то

2π∫
0

w(t)ϕ(f∗(t))dt 6

C4(
2π
r∫

π
r

wr(t)dtϕ(a0−ar)+
∞∑

n=0

2π
(n+1)r∫

2π
(n+2)r

wr(t)dt(
r∑

k=1

ϕ((n+1)2∆1,rak+nr)+

[ r−1
2 ]

[ r−1
2 ]∑

k=1

ϕ((n + 1)(ar(n+1)−k − ar(n+1)+k))).

О СХОДИМОСТИ МНОГОМЕРНЫХ
ТРИГОНОМЕТРИЧЕСКИХ РЯДОВ1

Симонов Б.В., Симонова И.Э. (Волгоград)
dvr@vstu.ru

Пусть i = 1, . . . , n; mi = 0, 1, . . . ; si ∈ N ; li = 1, . . . , si;
cos(0 · xi) = 1

2 ; ri равно 1 или 2;

Ari
ni

(xi) =
{

cos(nixi), если ri = 1,
sin(nixi) если ri = 2;

∆s1,0,...,0am1,m2,...,mn = am1,m2,...,mn − am1+s1,m2,...,mn ;
∆0,s2,0,...,0am1,m2,m3,...,mn

= am1,m2,m3,...,mn
−am1,m2+s2,m3,...,mn

; . . . ;
∆0,...,0,sn−1,0am1,...,mn−2,mn−1,mn = am1,...,mn−2,mn−1,mn −
am1,...,mn−2,mn−1+sn−1,mn ;
∆0,...,0,sn

am1,...,mn−1,mn
= am1,...,m(n−1),mn

− am1,...,mn−1,mn+sn ;
∆s1,s2,s3,...,mn−2,mn−1,mnam1,m2,m3,...,mn−2,mn−1,mn =
∆s1,0,0,...,0,0,0(∆0,s2,0,...,0,0,0(. . . (∆0,0,0,...,0,mn−1,0

(∆0,0,0,...,0,0,mn
am1,m2,m3,...,mn−2,mn−1,mn

))))

1Работа выполнена при финансовой поддержке РФФИ (проект 06-01-00268).

167



Скажем, что последовательность {am1,...,mn}∞,...,∞
m1=0,...,mn=0

сохраняет знак, если am1,...,mn
> 0 для всех m1, . . . ,mn

или am1,...,mn 6 0 для всех m1, . . . , mn.
У т в е р ж д е н и е . Если последовательность чисел

am1,...,mn
такова,что am1,m2,...,mn−1,mn

→ 0 при m1 → ∞ и любых
фиксированных m2, . . . ,mn−1,mn, , . . . , , при mn →∞ и любых
фиксированных m1, . . . ,mn−1, а также последовательность

{∆s1,...,snal1−r1+1+m1s1,...,ln−rn+1+mnsn}∞,...,∞
m1=0,...,mn=0

сохраняет знак отдельно для каждого l1, . . . , ln, то любой из мно-
гомерных тригонометрических рядов

∞∑
m1=0

· · ·
∞∑

mn=0

am1−r1+1,...,mn−rn+1A
r1
m1

(x1) · · ·Arn
mn

(xn) (1)

сходится по Прингсхейму всюду , кроме, может быть, n− мерной
меры нуль, то есть существуют функции fr1,...,rn(x1, . . . , xn)− сум-
мы соответствующих рядов (1).

ПРИНЦИП ФУНКЦИОНАЛЬНОЙ ПОЛНОТЫ И
ПРОБЛЕМЫ МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ

ГУМАНИТАРИЕВ
Сиренко С.Н. (Минск)

SSN27@mail.ru

Новые образовательные стандарты стимулировали обсуждение
проблем математического образования гуманитариев в контексте
ценностей научного знания. Одна из проблем математического об-
разования нематематиков связана с содержанием теоретической и
практической составляющей обучения. В соответствии с принци-
пом функциональной полноты любая система не может эффек-
тивно функционировать, если набор ее составляющих не являет-
ся функционально полным. Поэтому вполне естественной выгля-
дит современная тенденция на повышение общекультурного уровня
студентов-гуманитариев через фундаментализацию образования.

Среди современных социокультурных тенденций и научно-тех-
нических закономерностей развития можно выделить: рост науко-
емких производств, увеличение объемов научной, технической и со-
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циальной информации, смену информационных технологий, разви-
тие межпредметных научных исследований, активное использова-
ние вычислительных средств и многое другое. В настоящее вре-
мя образование как главный источник умножения и потребления
интеллектуального и культурного потенциала общества становится
важнейшим фактором развития государства.

Поэтому задача повышения качества гуманитарно-математи-
ческого образования в современных условиях массовости высше-
го образования и экспоненциального роста информации, подлежа-
щей усвоению студентами, становится актуальной проблемой совре-
менной методологии образования. Многие специалисты связывают
проблему качества университетского образования с его фундамен-
тализацией, под которой понимается разностороннее гуманитарное,
естественнонаучное и математическое образование на основе овла-
дения фундаментальными знаниями.

Сегодня не вызывает сомнений тот факт, что специалист, огра-
ничивающий свои интересы только профессиональной сферой,
обедняет свое творческое профессиональное мышление. Изучение
основ высшей математики важно для гуманитариев потому, что
им необходимо уметь грамотно вводить новые понятия, правильно
строить непротиворечивые классификации, уметь отделять суще-
ственные признаки от несущественных и многое другое, связанное
с их профессиональными запросами [1]. Математическое знание по-
могает понять научную картину мира студентам нематематических
специальностей.

Курс "Основы высшей математики" — важнейшая составляю-
щая содержания высшего гуманитарного образования, поскольку
он прививает конкретные методологические навыки использования
современных математических и статистических методов в практи-
ческой деятельности. Главной целью обучения математике явля-
ется не только формирование научной картины мира, адекватной
современному знанию, но и воспитание личностного отношения к
полученным знаниям, трансформируемым в профессиональные на-
выки и умения.

Литература
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ИСТОРИЧЕСКИЕ АСПЕКТЫ ДОКАЗАТЕЛЬСТВА И
ОБОБЩЕНИЙ НЕКОТОРЫХ НЕРАВЕНСТВ

Ситник В.С., Ситник С.М. (Воронеж)
mathsms@yandex.ru

Неравенство Коши - Буняковского является классическим нера-
венством Анализа. Для конечных сумм и рядов оно было доказано
О.Коши в 1821 году [1], а для интегралов - В.Я.Буняковским в
1859 году [2]. Отметим, что в 2004 году в Киеве состоялась между-
народная конференция, посвященная двухсотлетию со дня рожде-
ния академика Виктора Яковлевича Буняковского. Интегральное
неравенство Буняковского было переоткрыто через двадцать пять
лет Г.А.Шварцем в 1884, однако им впервые была дана теперь при-
вычная всем формулировка в терминах скалярного произведения.

Классические результаты, связанные с неравенством Коши - Бу-
няковского и его обобщениями, приведены в ряде известных книг
и статей. Отметим также три монографии Севера Драгомира, спе-
циально посвященные неравенству Коши - Буняковского [3 – 5].

Рассматриваются исторические аспекты данного неравенства.
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37 – 45.

170
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ВОСПИТАТЕЛЬНАЯ КОМПОНЕНТА В
ПРОФЕССИОНАЛЬНОМ ОРИЕНТИРОВАНИИ

УЧАЩЕЙСЯ МОЛОДЕЖИ
Ситник В.С., Телкова С.А.

mathsms@yandex.ru

В последние годы в связи с введением профильного обучения в
общеобразовательных школах, значительного расширения спектра
профессионально - образовательных услуг: появления новых про-
фессий и специальностей, образовательных учреждений, дистанци-
онного обучения и т. п., возросло значение профессионального ори-
ентирования учащейся молодежи. Для преподавания математики
данный вопрос также имеет важное значение, особенно в связи с
наметившимся в последнее время общим кризисом образования и в
том числе образования в области естественных наук.

Профессиональное ориентирование рассматривается в контек-
сте "Профориентологии" как нового подхода, способствующего по-
вышению эффективности выбора профессии учащейся молодежи.
Профессиональное ориентирование человека - это сложный и мно-
гоплановый процесс, охватывающий значительный период жизни;
выражается согласованностью биологических и психологических
особенностей человека с содержанием и требованиями професси-
ональной деятельности, а также сформированностью способности
адаптироваться к изменяющимся социально - экономическим усло-
виям. В профессиональном ориентировании человек выступает как
субъект собственной деятельности в выборе профессии, професси-
онализации, формировании карьеры.

Одной из компонент в профессиональном ориентировании яв-
ляется воспитательная компонента. Она включает в себя разви-
тие и закрепление интереса к профессиям, формирование обще-
ственно - ценных мотивов выбора профессии, выявление и разви-
тие профессионально важных качеств. Реализация воспитательной

171



компоненты профессионального ориентирования в процессе обуче-
ния осуществляется силами преподавателей всех учебных дисци-
плин средствами своего предмета. Они развивают профессиональ-
ное мышление; учат принимать творческие решения в различных
учебных ситуациях, и, следовательно, в будущей профессиональной
деятельности; формируют мировоззрение; развивают социальную
активность каждого обучаемого, устанавливают взаимоотношения
сотрудничества и демократизма, уважения друг к другу и старшим;
формируют высоконравственные, профессионально важные каче-
ства личности: целеустремленность, настойчивость, чувство лич-
ной ответственности, профессионального долга, аргументированно
отстаивать свои взгляды и убеждения; организуют процесс обуче-
ния на основе высокой требовательности. Воспитывающая деятель-
ность преподавателя имеет смысл только в том случае, если она
побуждает обучаемых к самостоятельной работе, направленной на
формирование себя как личности будущего специалиста.

Профессиональное ориентирование в области математики
должно, разумеется, в обязательном порядке использовать исто-
рические сведения и биографии известных математиков.

О БИФУРКАЦИЯХ ПЕРИОДИЧЕСКИХ РЕШЕНИИЙ
УРАВНЕНИЯ БЕЛЕЦКОГО

Смольянова Т.И., Сапронов Ю.И. (Воронеж)
yusapr@mail.ru, tata_sti@rambler.ru

Известно, что колебания спутника в плоскости эллиптической
орбиты описываются уравнением В.В. Белецкого [1],[2] :

(1 + e cos ν)
d2ν

dν2
− 2e sin ν

dδ

dν
+ µ sin δ = 4e sin ν, (1)

где e — эксцентриситет орбиты, µ — параметр, характеризующий
распределение массы спутника, δ — угол между фокальным ради-
усом и осью симметрии спутника, ν — угловая (полярная) коорди-
ната центра масс спутника.

Уравнение Белецкого имеет вариационное происхождение: ес-
ли умножить левую и правую часть уравнения (1) на (1 + e cos ν),
то получится уравнение, определяющее экстремали функционола
действия V (q) =

=

2π∫

0

(
1
2
(1 + e cos ν)2q̇2 + 2(1 + e cos ν)2q̇ + (1 + e cos ν)µ cos q

)
dt
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(уравнение Эйлера–Лагранжа экстремалей V ).
Нетрудно убедиться, что к данному уравнению можно приме-

нить нелокальный метод Ляпунова–Шмидта и основанные на нем
новые вычислительные технологии [3].

Литература
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О ЗАДАЧЕ УПРАВЛЕНИЯ С ФИНАЛЬНЫМ
НАБЛЮДЕНИЕМ ДЛЯ ГИПЕРБОЛИЧЕСКОГО

УРАВНЕНИЯ
Солдатенков А.О. (Москва)

a_sold@mail.ru

Рассмотрим в области Q = {(x, t), 0 < x < π, t > 0} смешанную
задачу для уравнения свободных колебаний струны:

utt = uxx,

u(0, t) = u(π, t) = 0, u(x, 0) = 0, ut(x, 0) = ϕ(x),

где ϕ(x) ∈ L2(0, π). Будем рассматривать обобщенное решение дан-
ной задачи, которое при каждом τ > 0 принадлежит пространству
H1(Qτ ), Qτ = (0, π)× (0, τ) ([1]).

Пусть T > 0. Определим функционал

J [ϕ] = ‖u(x, T )− u0(x)‖2L2(0,π) ,

где u0(x) ∈ L2(0, π). Рассмотрим задачу нахождения экстремумов
данного функционала: infϕ∈U J [ϕ], supϕ∈U J [ϕ], где U = {ϕ(x) ∈
L2(0, π), ϕ(x) = h(Θ(x− z + l)−Θ(x− z− l)), l 6 z 6 π− l}, Θ(x) —
функция Хевисайда; h ∈ (0, +∞), l ∈ (0, π/2) — постоянные. Для
случая u0(x) = sin x получено следующее утверждение.
Теорема. Пусть h 6 2 sin2 l

πl . Тогда:

1) при 2πk < T < π + 2πk, k = 0, 1, 2, . . . функционал J [ϕ] до-
стигает точной нижней грани при z = π/2, точной верхней
грани при z = l и при z = π − l;
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2) при π + 2πk < T < 2π + 2πk, k = 0, 1, 2, . . . функционал J [ϕ]
достигает точной нижней грани при z = l и при z = π − l,
точной верхней грани при z = π/2.

Отметим, что задачи нахождения экстремумов квадратичных
функционалов для гиперболических краевых задач рассматрива-
лись в [2].

Литература
[1] Михайлов В.П. Дифференциальные уравнения в частных
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[2] Лионс Ж.Л. Оптимальное управление системами, описывае-
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К ВОПРОСУ ОБ ОБОБЩЕННЫХ РЯДАХ
ЭКСПОНЕНТ С КОМПЛЕКСНЫМИ

ПОКАЗАТЕЛЯМИ
Соломатин О.Д. (Орел)

Пусть H — полное отделимое локально-выпуклое пространство
над полем комплексных чисел, топология которого задается систе-
мой полунорм {‖ · ‖p}, p ∈ P . Рассмотрим ряд вида

∞∑
n=1

xnf(λnz), xn ∈ H, 0 < |λ| ↑ ∞, lim
n→∞

ln n

|λn|ρ = 0, z ∈ C, (∗)

где f(z) =
∑∞

n=0 anzn — целая функция порядка ρ, 0 < ρ < ∞
и типа σ 6= 0,∞, причем an 6= 0(n = 1, 2, ...) и существует предел
lim

n→∞
n1/ρ n

√
|an| = (σeρ)1/ρ.

Ряд вида (∗) называем обобщенным рядом экспонент в про-
странстве H, xn ∈ H — коэффициентами, а λn ∈ C — показателями
ряда. Следующая теорема характеризует круг сходимости ряда (∗).

Теорема. Пусть

lim
n→∞

|λn|ρ
− ln ‖xn‖p

=
1

σRρ
p
; R = inf Rp.

Тогда ряд (∗) сходится абсолютно и равномерно внутри круга |z| <
R. В любом круге |z| < R1, R1 > R имеются точки, где ряд рас-
ходится.

Число R = inf Rp называется радиусом сходимости ряда (∗).
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Например, для ряда u(t, z)=
∞∑

n=0
dnznf(λnt), где f(z)=Eρ(σ1/ρz),

Eρ(z) – функция Миттаг-Леффлера, радиус сходимости в простран-
стве Hr — функций аналитических в круге |z| < r, равен

R =
(

τ

σ
ln

R1

r

)1/ρ

, r 6 R1

(τ — плотность последовательности {λn}).
Если ρ = σ = 1, то f(z) = ez, в этом случае радиус сходимости

ряда u(t, z) =
∞∑

n=0
dnzneλnz равен R = τ ln(R1/r).

Литература
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ОБ ОДНОЙ СИСТЕМЕ УПРАВЛЕНИЯ С
ГИСТЕРЕЗИСНОЙ НЕЛИНЕЙНОСТЬЮ

Степанов А.В. (Санкт-Петербург)
stepanov17@yandex.ru

Рассматривается система дифференциальных уравнений вида

ẋ = Ax + cu, u(t) = f(σ(t)), σ(t) = γ ′x(t), (1)

где x ∈ En, t > t0, γ ∈ En, ‖γ‖ 6= 0, нелинейность f — гистерезис-
ного типа, с насыщением [1]:

f(σ(t)) =





m1,

{
σ(t) < m1

κ + l1,

l1 6 σ(t)− m1
κ < l2, u(t− 0) = m1,

m2,

{
σ(t) > m2

κ + l2

l1 < σ(t)− m2
κ 6 l2, u(t− 0) = m2,

κ(σ(t)− l1), m1 < κ(σ(t)− l1) 6 m2, u(t− 0) > m1,

κ(σ(t)− l2), m2 6 κ(σ(t)− l2) < m1, u(t− 0) < m2,
(2)

κ > 0, m1 < 0, m2 > 0, обход гистерезисной петли происходит
против часовой стрелки.

По аналогии с [1], получены достаточные условия существова-
ния и единственности периодического режима системы (1). Если
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точки переключения управления периодического решения систе-
мы (1) известны, то периодический режим может быть исследован
на предмет орбитальной асимптотической устойчивости методами,
аналогичными изложенным в [2].

Если пара (A, c) полностью управляема, l1 < 0, l2 > 0, и зна-
чения |l1|, l2 достаточно малы, а значения |m1|,m2 — достаточно
велики, то существует управление вида (2), решающее задачу ре-
лейной стабилизации системы (1) [3].
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ПАРАМЕТРИЧЕСКАЯ ЗАДАЧА ОПТИМАЛЬНОГО
УПРАВЛЕНИЯ СИСТЕМАМИ С ПРИБЛИЖЕННО

ИЗВЕСТНЫМИ ИСХОДНЫМИ ДАННЫМИ1

Сумин М.И., Трушина Е.В. (Нижний Новгород)
m.sumin@mm.unn.ru

Потребности многочисленных приложений неизбежно приводят
к необходимости изучения задач оптимального управления в си-
туациях, когда их исходные данные известны лишь приближенно.
Однако, в этом случае само понятие классического оптимального
управления в значительной степени "теряет смысл т.к. в "возму-
щенной" задаче его может и не существовать, а в случае существо-
вания не вполне понятно какое "отношение" оно имеет к исходному
оптимальному управлению невозмущенной задачи. Ситуация кар-
динально меняется, если в качестве "искомого" элемента теории
рассматривать минимизирующие последовательности допустимых
управлений.

В докладе рассматривается параметрическая задача оптималь-
ного управления

I0(u) → inf, I1(u) ∈ M + q, u ∈ D, q ∈ Rk − параметр, (Pq)

1Работа выполнена при финансовой поддержке РФФИ (код проекта 04-01-
00460)
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где D ≡ {u ∈ Lm
∞(0, T ) : u(t) ∈ U п.в. на (0, T )}, U ⊂ Rm - компакт,

I0(u) ≡ ϕ0(x[u](T )), I1(u) ≡ (ϕ1(x[u](T )), . . . , ϕk(x[u](T ))), M ⊂ Rk

- выпуклое замкнутое множество, x[u] - решение задачи Коши

ẋ = A(t)x + B(t)u(t), x(0) = x0, t ∈ [0, T ], x ∈ Rn.

Исходные данные задачи (Pq) удовлетворяют традиционным для
теории оптимального управления условиям и считаются известны-
ми приближенно. В данной ситуации обсуждаются следующие ос-
новные вопросы: 1) необходимые и достаточные условия для ми-
нимизирующих последовательностей; 2) регуляризирующие свой-
ства принципа максимума Понтрягина и минимизирующих после-
довательностей; 3) конечно-разностная аппроксимация задачи (Pq)
и минимизирующие последовательности; 4) устойчивость значения
задачи (Pq) по возмущению параметра q. Рассматриваются иллю-
стративные примеры.

ОБ ОДНОМ ДОСТАТОЧНОМ УСЛОВИИ
ГАРМОНИЧНОСТИ ФУНКЦИИ ДВУХ

ПЕРЕМЕННЫХ1

Теляковский Д.С. (Москва)
Dtelyakov@mail.ru

Известно, что непрерывная в области функция u(x1, x2, . . . , xn),
удовлетворяющая уравнению Лапласа, является гармонической. В
случае функции двух переменных условие непрерывности можно
ослаблять. Г.П. Толстов [1] заменил это условие на условие огра-
ниченности функции. В работе [2] условие ограниченности было
заменено на условие суммируемости (относительно плоской меры
Лебега). Как показывают примеры, условие суммируемости функ-
ции существенно ослабить нельзя. В настоящей работе уравнение
Лапласа понимается в обобщенном смысле.

Пусть прямая проходит l через точку ξ области. Точку на l будем
обозначать через z, ее координату на l через h (|h| = |z− ξ|). Пусть
вдоль l выполнено условие

u(z) = u(ξ) + alh +
1
2
blh

2 + o(h2). (1)

Теорема. Пусть функция u(x1, x2) суммируема в области G,
через каждую точку G проходят две ортогональные прямые l1 и l2,

1Работа выполнена при финансовой поддержке РФФИ (проект 05-01-00962).
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вдоль каждой из которых выполнено условие дифференцируемости
(1) и bl1 + bl2 = 0. Тогда функция u(x1, x2) гармонична в G.

В этой теореме отказаться от условия ортогональности прямых
нельзя.

Литература
1. Толстов Г.П. Об ограниченных функциях, удовлетворяющих

уравнению Лапласа. — Матем. сб., 1951, т. 29, с. 559–564.
2. Теляковский Д.С. Об одном обобщении теоремы Лумана–

Меньшова. — Матем. заметки, 1986, т. 39, вып. 4, с. 539–549.

ОБ ОДНОМ ОПЕРАТОРЕ ВОССТАНОВЛЕНИЯ
МУЛЬТИПЛИКАТИВНЫХ ПРЕОБРАЗОВАНИЙ

ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
Тлеуханова Н.Т. (Казахстан, Астана)

er-nurs@yandex.ru

В работе рассматривается задача приближения периодических
функций из пространств с доминирующими смешанными производ-
ными и их мультипликативных преобразований.

Пусть f ∈ L1[0, 1]n, λ = {λk}k∈Zn некоторая последовательность
комплексных чисел. Определим мультипликативное преобразова-
ние fλ =

∑
k∈Zn λkf̂(k)eikx.

Пусть (X, Y ) пара функциональных пространств 1-периодиче-
ских функций, X вложено в C[0, 1]n, последовательность комплекс-
ных чисел λ = {λk}k∈Zn является мультипликатором из простран-
ства X в пространство Y .

Задача заключается в нахождении узлов {tk}M
k=1 и функ-

ций {ϕk(x, λ)}M
k=1, чтобы скорость убывания погрешности

sup‖f‖X=1 ‖fλ − ∑M
k=1 f(tk)ϕk(x, λ)‖Y в метрике Y была воз-

можно большей, при возрастании M .
В работе вводится оператор восстановления мультипликатив-

ных преобразований

F2m(f, λ; x) =
∑

k1+...+kn=m+n

ki>1

∑

06r<2k

f(
r

2k
)ϕkr(x +

r

2k
; λ), (1)

здесь ϕkr(x) = 1
2m+n

∑
ν1+...+νn6m

06νi6ki−1

(−1)

n−1P
j=1

(rj+sgn(kj−ν−1)) ∑
µ∈ρ(ν)

λµe2πiµx.
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Данный оператор восстановления является точным для полино-
мов со спектором из соответствующего гиперболического креста. В
работе получены оценки погрешности этого аппарата в парах про-
странств (Wα

p , Lq) и (Bα
pr, Lq).

Теорема. Пусть 1 < p 6 2 6 q 6 ∞, f ∈ Wα
p [0, 1]n, α > 1

p ,
1
r = 1

p − 1
q > 0, последовательность {λk}k∈Zn такова, что ряд∑

µ∈Zn |λµµ̄−α|r сходится. Тогда имеет место оценка:

‖fλ − F2m(f, λ; ·)‖Lq
6 Cq,α

[
1

2αm

(
m∑

s=0

(m− s)
(n−1)r

p ×

×
∑

ν1+...+νn=s

2ν1−1∑

k1=2ν1−1

...

2νn−1∑

kn=2νn−1

|λk|r



1/r

+

+


 ∑

µ∈Zn\Gm

|λµµ−α|r



1/r

 ‖f‖W α

p
.

Часть результатов данной работы анонсирована в статьях [1],
[2].

Литература
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МЕТОДИКА МОДЕЛИРОВАНИЯ В ЗАДАЧАХ
ОРГАНИЗАЦИИ АВТОМАТИЗИРОВАННОГО

ПРОИЗВОДСТВА ЛЕТАТЕЛЬНЫХ АППАРАТОВ
Тлустенко С.Ф. (Самара)

Формулирование и решение задач организации производства ле-
тательных аппаратов в настоящее время связано, в частности, с
исследованиями в области формализации неопределенности и раз-
вития теории нечетких множеств и нечеткой логики. Предлагае-
мый подход связан с объектно-ориентированным моделированием

179



предметной области как системы с отношениями “тип-прототип” и
“часть-целое”. Множество областей состояний отображается мно-
жеством мультивекторов S пар событий в различных базисах, а их
взаимосвязь и переход из базиса в базис обеспечивается примене-
нием тензоров преобразований базисов событий. Предположим, в
пространстве моделируемой ситуации по технологическим марш-
рутам необходимо переместить три объекта Р1, Р2, Р3. нечеткость
каждого события состоит в том, что имеется множество точек или
интервалов в опорном базисе, где может произойти событие, но вы-
бор должен быть оптимальным. Например, уточнение неопределен-
ности между Р1 и Р2 за счет Р2 производится по выбранному зако-
ну преобразования параметров ситуации, исключающем противоре-
чие между Р2 и Р3. Поставим в соответствие Р2 мультивектор SR
αβχ(2), P3 – SR αβχ(3), а результаты преобразований покажем на
схеме ρ-интерпретации опорного базиса событий, где пунктирными
линиями показаны вход и выход SR αβχ(3). Области допустимых
значений получаемых решений для Р2 и Р3 представлены штрих -
пунктирными линиями, соответственно точка S (z)(2) = S (z)(3) на
оси Z – точка конфликта.

Рис. 1: Иллюстрация к примеру – Сдвиг области конфликта для
проверки имитационной модели.

В точке конфликта на оси z необходимо обеспечить отличая
s(p)(2) и s(p)(3), за счет которого обеспечивается нормативный ин-
тервал между Р2 и Р3, нарушение которого при попадании s(p)(2)

в область конфликта Т(S) (показано жирной линией) приведет к
конфликтному событию в пространстве системы. Теперь предпо-
ложим, что при разрешении конфликта между Р1 и Р2 требуется
осуществить сдвиг sα(2)(p)(2) на d (при этом, очевидно, параметр
между s(p)(2) и s(p)(3) сократится, что показано изогнутой пунк-
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тирной стрелкой влево). Во избежании нового конфликта между
Р2и Р3 осуществляем преобразование, приводящие экземпляр к бес-
конфликтной ситуации путем сдвига области Т(S) согласно схемы
(изогнутая стрелка вправо) с величиной сдвига в требуемой интер-
претации:

∆(ν) = ρ
(
Sα(2)(ν)(3), s(ν(3))

)
.

При этом в опорном базисе моделируемого пространства вво-
дятся ограничения в соответствии с программой оптимизации по-
лучаемых решений.

Разработанная базовая модель оптимизации создает условия
для реализации адекватных алгоритмов методов моделирования и
принятия решения на основе преобразования примеров решений в
системах поддержки принятия решений.

Литература
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ОБ ОГРАНИЧЕННОСТИ АВТОРЕГРЕССИОННЫХ
МОДЕЛЕЙ ПРИ ИССЛЕДОВАНИИ

НЕСТАЦИОНАРНЫХ ВРЕМЕННЫХ РЯДОВ
Тырсин А.Н. (Челябинск)

at2001@yandex.ru

При анализе временных рядов широкое распространение полу-
чили стохастические модели авторегрессии (AR) и авторегрессии-
скользящего среднего (ARMA). Рассмотрим случай, когда задан
не-стационарный временной ряд {yk}. Пусть для него построена
сто-хастическая модель AR(p)

yk =
p∑

i=1

aiyk−i + εk, (1)

где εk – белый шум. Поставим в соответствие модели (1) разностную
схему с аддитивным шумом [1]

xk =
p∑

i=1

aixk−i, yk = xk + ξk, (2)

где {xk} – неслучайная последовательность, {ξk} – дискретный слу-
чайный процесс.
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Утверждение. Модели (1) соответствует модель (2), в которой

ξk =
∞∑

l=0

l∑

j=0

αl,j(a)εk−l−j ,

где αl,j(a) – слагаемые многочлена (
∑p

i=1 ai)l, a = (a1, . . . , ap).
Например, для p = 1, ξk =

∑∞
l=0 al

1εk−l. Очевидно, что утвержде-
ние остается справедливым и для модели ARMA(p, q).

Разностная схема конечного порядка описывает общее решение
линейного однородного дифференциального уравнения с постоян-
ными коэффициентами. Поэтому стохастические модели описыва-
ют узкий класс нестационарных процессов, задаваемых полино-
миально-экспоненциальными зависимостями.

Литература
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К ОБРАТИМОСТИ ЛИНЕЙНЫХ
ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ В

НЕКОТОРЫХ ПРОСТРАНСТВАХ ФУНКЦИЙ НА ОСИ
Тюрин В.М. (Липецк)

tuvm@stu.lipetsk.ru

Пусть X- банахово комплексное пространство; Lp = Lp (R, X)
(1 6 p < ∞) — лебеговы пространства сильно измеримых (по Бох-
неру) функций u : R → X; V p = V p (R,X) — линейное нормиро-
ванное пространство функций u ∈ Lp, для которых

‖u‖V p =
∞∑

j=1


2j−1

∫

Rj

‖u (t)‖p
dt




1/p

< ∞,

R1 = {x : x ∈ R, 0 < |t| < 1 }, Rj =
{
x : x ∈ R, 2j−2 < |x| < 2j−1

}
,

j = 2, 3, . . .; L = L (R, X) — пространство всех сильно измеримых
функций u : R → X, интегрируемых по Бохнеру на каждом конеч-
ном интервале, с топологией сходимости в среднем; C = C (R, X)
— пространство непрерывных ограниченных функций u : R → X с
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sup-нормой. Предполагается, что пространство V p инвариантно от-
носительно линейного оператора A : L → L и оператор A : V p → V p

является dr-оператором, т. е. носитель sup (Aϕu− ϕAu), где u :
R → R — гладкая финитная функция, расположен в ограничен-
ной окрестности носителя sup ϕ функции ϕ.

Пусть F = {C, Lp,Mp, V p} , где Mp = Mp = Mp (R, X) —
пространство Степанова. Определим дифференциальный оператор
£ : D (£,F) → F формулами £u = du

dt − Au, D(£, F)= {u : u ∈ F,
£u ∈ F}.

Предполагается существование N > 0 и m ∈ N таких, что

‖u (t)‖ 6 N ‖u (to)‖+N
to+1∫

t0−m

‖£u (s) ‖ ds, ‖·‖ норма в X, to−m 6

t 6 to + 1. При некоторых условиях на оператор £:D(£,F) → F
справедливо следующее утверждение.

Теорема. £ : D (£,С) → С , £ : D (£,Mp) → Mp, £ : D
(£,Lp) → Lp, £: D (£,V p) → V p непрерывно обратима од-
новременно.

Рассматриваются приложения приведенной теоремы.

АНАЛИТИЧЕСКАЯ РАЗРЕШАЮЩАЯ ГРУППА
СИСТЕМЫ УРАВНЕНИЙ СОБОЛЕВА
Уразаева А.В., Федоров В.Е. (Челябинск)

kar@csu.ru

Рассмотрим начально-краевую задачу

v(x, 0) = v0(x), x ∈ Ω, (1)

v(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (2)

для системы Соболева [1]

vt(x, t) = [v(x, t), w]− r(x, t), (x, t) ∈ Ω× [0, T ], (3)

∇(∇ · v) = 0, (x, t) ∈ Ω× [0, T ]. (4)

Здесь Ω ⊂ R3 – ограниченная область с границей ∂Ω класса C∞,
[·, w] – векторное произведение на вектор w = (0, 0, w3) ∈ R3, r =
r(x, t) = ∇p – градиент давления. Кроме того, уравнением (4) за-
менено эквивалентное ему в данной ситуации уравнение несжима-
емости ∇ · v = 0. Фоpмулой B : v → [v, w], w = (0, 0, w3), зададим
линейный непpеpывный опеpатоp B : (L2(Ω))3 → (L2(Ω))3. Пусть
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L = {w ∈ (C∞0 (Ω))3 : ∇ · w = 0}, замыкание линеала L по норме
пространства (L2(Ω))3 обозначим через Hσ. Существует расщепле-
ние (L2(Ω))3 = Hσ ⊕Hπ, где Hπ – оpтогональное дополнение к Hσ.
Обозначим чеpез Π : (L2(Ω))3 → Hπ ассоциированный с этим pас-
щеплением оpтопpоектоp, Σ = I −Π. Положим U = Hσ ×Hπ ×Hr,
Hr = Hπ. Используя методы теории вырожденных полугрупп опе-
раторов [2], получим следующее утверждение.

Теорема 1. Существует аналитическая разрешающая группа
задачи (2) – (4), операторы которой имеют вид

U(t) =




exp(tΣBΣ) 0 0
0 0 0

ΠBexp(tΣBΣ) 0 0


 ∈ L(U), t ∈ C.
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О ПОЧТИЧЕБЫШЕВСКИХ ПОДПРОСТРАНСТВАХ В
ПРОСТРАНСТВАХ C(Q)

Устинов Г.М. (Екатеринбург)
Vladimir.Balaganskii@imm.uran.ru

Вопрос о том, содержит ли произвольное сепарабельное
пространство C(Q) чебышевское подпространство L, dim L =
codim L = +∞ известен давно, но пока не решен. Справедлива
следующая

Теорема. Если метризуемый компакт Q содержит бесконеч-
ное множество изолированных точек, то C(Q) содержит такое
замкнутое подпространство L, dim L = codim L = +∞, что
множество элементов C(Q), имеющих в L единственный бли-
жайший элемент, содержит линейное подпространство E, всюду
плотное в C(Q).

Отметим, что в [1] в частности доказано, что если Q содержит
совершенное множество, то C(Q) содержит такие рефлексивные
подпространства L, dim L = codim L = +∞, для каждого из ко-
торых всюду плотно в C(Q) множество M элементов, имеющих в
L единственный ближайший элемент.
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ИМПУЛЬСНАЯ ДИФФЕРЕНЦИАЛЬНАЯ ИГРА НА
ЗАДАННОМ ПРОМЕЖУТКЕ ВРЕМЕНИ С

ИНТЕГРАЛЬНЫМ ОГРАНИЧЕНИЕМ НА ВЫБОР
УПРАВЛЕНИЯ ВТОРОГО ИГРОКА1

Ухоботов В.И. (Челябинск)
ukh@csu.ru

Управляемый процесс описывается системой дифференциаль-
ных уравнений

dz = A(t)du + B(t)vdt, z ∈ Rn, u ∈ Rk, v ∈ Rl, t 6 p. (1)

Здесь A(t) и B(t) — непрерывные матрицы соответствующих раз-
мерностей; p - момент окончания игры. Задан начальный момент
времени t0 < p и начальное положение z0. Управление u перво-
го игрока является функцией с ограниченной вариацией. Величи-
на её вариации характеризует количество ресурсов, истраченное на
формирование этого управления [1, 2, 3]. Количество ресурсов, по-
траченное на формирование управления второго игрока, задается
интегралом

∫ t

t0
|v(r)|2 dr, |v| - норма в Rl. Решение системы (1) за-

писывается с помощью обобщенной формулы Коши [2].
Для начального состояния t0, z0 и для заданных начальных за-

пасов ресурсов игроков выписаны условия, при выполнении кото-
рых первый игрок сможет осуществить окончание z(p) = 0 при
любом управлении второго игрока. Приводится алгоритм построе-
ния управления первого игрока, не использующий информацию об
оставшихся запасах ресурсов второго игрока.

Приведены классы игр (1), в которых невыполнение приведен-
ных условий позволяет построить управление второго игрока, га-
рантирующего условие z(p) 6= 0. Разобраны конкретные примеры.

Литература
1. Красовский Н.Н. Об одной задаче преследования // Прикл.

матем. и мех. 1963. Т. 27. Вып. 2. С. 244–254.
2. Красовский Н.Н. Теория управления движением. М.: Наука.

1968. 475 с.
1Работа выполнена при поддержке РГНФ (грант № 05-02-85203 а/У).
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3. Ухоботов В.И. Линейная дифференциальная игра с ограни-
чениями на импульсы управлений // Прикл. матем. и мех. 1988.
Т. 52. Вып. 3. С. 355–362.

АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ РЕШЕНИЙ В
ЗАДАЧАХ, МОДЕЛИРУЕМЫХ УРАВНЕНИЯМИ

ПЕРЕМЕННОГО ТИПА
Феоктистов В.В. (Москва)

Разработанный метод [1] — метод непрерывных групп для рас-
чета преобразований координат и функций - позволяет свести урав-
нения движения жидкости и газа к уравнениям переменного типа.
Они обобщают ряд уравнений для ранее известных задач, постро-
енных на основе дифференциальных уравнений переменного типа
(уравнение Трикоми; Кортевега - де Фриза и другие). Здесь уста-
навливаются две области, из которых в одной используются урав-
нения эллиптического типа, а в другой, например, гиперболическо-
го типа. Весьма продуктивным оказался метод, базирующийся на
уравнениях со сменой направления параболичности в теории неста-
ционарных пограничных слоёв.

В уравнении работы [1] (модельное уравнение которого имеет
вид:

u2 ∂2u

∂x2
+ t(t− x)

∂u

∂t
+

1
2
xu = 0)

наличие при производной по t коэффициента, который может ме-
нять знак, приводит к развитию неустойчивости, к появлению ме-
ханизмов заострения и усиления волновых структур. Особенность
этого уравнения заключается в том, что наряду с классическими
краевыми условиями, необходимо формировать условия на подвиж-
ной границе и условия согласования решений на линии вырождения
уравнения. В соответствии с этим для дифференциального уравне-
ния получена приближенная система

x−s dY

dx
= A(x)Y, g > 1.

A(x) - матричная функция , голоморфная для x > x0, обладает
асимптотическим разложением по степеням x−1, когда x →∞ в S,
S- сектор с вершиной в начале координат. Тогда в каждом, доста-
точно узком, подсекторе S система дифференциальных уравнений
имеет матричное решение вида:

Y (x) = exp G(x) · xQ · Ŷ (x),
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G(x) — диагональная матрица, диагональные элементы которой
являются полиномами от x, Q — постоянная матрица, Ŷ (x) —
имеет асимптотическое разложение по степеням x−1. Полученная
асимптотика решения задачи Коши в иррегулярной особой точке
дает принципиальную возможность построить во многих случаях
асимптотическое разложение решения краевой задачи с другими
дополнительными условиями и доказать теоремы существования
для этих задач.

Литература
1. Феоктистов В.В., Феоктистов П. В. Инвариантные решения

нестационарных пограничных слоёв и их связь с нелинейными
уравнениями переменного типа // Вестник МГТУ им. Н. Э. Ба-
умана. Серия "Машиностроение 1997 , N 1. - с. 14 - 22.

ОБ ОЦЕНКАХ ПРОИЗВОДНОЙ ПО
СПЕКТРАЛЬНОМУ ПАРАМЕТРУ РЕШЕНИЙ

УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА1

Филиновский А.В. (Москва)
flnv@yandex.ru

Пусть Ω ⊂ Rn, n > 2, — неограниченная область, замыкание
которой не содержит начало координат, с гладкой границей Γ. Рас-
смотрим первую краевую задачу для уравнения Гельмгольца

∆v + k2v = −h(x), x ∈ Ω, (1)

v|Γ = 0, (2)

которая при h ∈ L2(Ω) имеет единственное решение v(x, k) ∈
o

W1
2(Ω) для всех k = ω + iµ ∈ {Im k > 0}. Будем предполагать, что

поверхность Γ звездна относительно начала координат, то есть

(ν, x) 6 0, x ∈ Γ, (3)

где ν — единичный вектор внешней нормали к Γ. Как установлено
в работе (1), при n > 2 справедлива оценка

∫

Ω

∣∣∣∣
dv

dk

∣∣∣∣
2

dx

rγ
6 C

ω2 + 1
|k|2

∫

Ω

|h|2rγ dx, γ > 4, Im k > 0.

1Работа выполнена при поддержке РФФИ (грант N 04-01-00618)
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Теорема 1. Пусть n > 4 и область Ω удовлетворяет условию
(3). Тогда для решения задачи (1), (2) справедлива оценка

∫

Ω

(∣∣∣∣∇
dv

dk

∣∣∣∣
2

+
1

r2 ln2q r

∣∣∣∣
dv

dk

∣∣∣∣
2
)

dx

r2
6 C

∫

Ω

(
ω2

µ2
+ r2

)
|h|2r2 dx,

Im k > 0, где q = 1 при n = 4 и q = 0 при n > 5.
Теорема 2. Пусть n > 6 и область Ω удовлетворяет условию

(3). Тогда для решения задачи (1), (2) справедлива оценка

∫

Ω

(∣∣∣∣∇
dv

dk

∣∣∣∣
2

+
1

r2 ln2q r

∣∣∣∣
dv

dk

∣∣∣∣
2
)

dx

r4
6 C

∫

Ω

|h|2r4 dx, Im k > 0.

где q = 1 при n = 6 и q = 0 при n > 7.
Литература

1. Filinovskii A.V. Stabilization of solutions of wave equation in do-
mains with star-shaped boundaries // Russian J. of Math. Phys. 2001.
V. 8. N 4. P. 433 – 452.

ОБ УРАВНЕНИИ ВОЛЬТЕРРА – ФРЕДГОЛЬМА С
ЧАСТНЫМИ ИНТЕГРАЛАМИ В ОДНОМ

ПРОСТРАНСТВЕ С ВЕСОМ
Фролова Е.В. (Липецк)

lsn@lipetsk.ru

Различные задачи механики сплошных сред приводятся к урав-
нению Вольтерра - Фредгольма с частными интегралами x = Kx+
f, где оператор K определяется равенством

(Kx)(t, s) =
∫ t

0

l(t, s, τ)x(τ, s) dτ +
∫ 1

0

m(t, s, σ)x(t, σ) dσ

+
∫ t

0

∫ s

0

n(t, s, τ, σ)x(τ, σ) dσ dτ.

В заметке уравнение x = Kx+f рассматривается в пространстве
Ch(D) = Ctαsβ (D) (0 < α, β ∈ R). Здесь Ch(D) - множество измери-
мых на D = [0, 1]×[0, 1] функций x, таких, что hx – непрерывная на
D функция. Ch(D) – банахово пространство относительно нормы
‖x‖Ch(D) = ‖hx‖C(D), пространство C(D) вложено в Ch(D). Отме-
тим, что оператор Харди-Литтльвуда с частными интегралами не
действует в C(D), однако действует в Cts(D).
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Пусть Ω ∈ {[0, 1], [0, 1], D} и ω ∈ {τ, σ, (τ, σ)}. Измеримая на D×
Ω функция u(t, s, ω) называется непрерывной в целом, если ∀ε > 0
∃δ > 0 такое, что ‖u(t1, s1, ·)− u(t2, s2, ·)‖L1(Ω) < ε при |t1 − t2| < δ,
|s1 − s2| < δ, и интегрально ограниченной, если ‖u(t, s, ·)‖L1(Ω) 6
U < ∞.

Теорема. Пусть l(t, s, τ) = ταsβl1(t, s, τ), m(t, s, σ) = tασβ ×
m1(t, s, σ), n(t, s, τ, σ) = τασβn1(t, s, τ, σ) (0 < α, β ∈ R), где
l1,m1, n1 — непрерывные в целом и интегрально ограниченные фун-
кции. Тогда оператор K действует из Ch(D) в C(D), а уравнение
x = Kx+f однозначно разрешимо в Ch(D) и его решение допускает
представление в виде

x(t, s) = f(t, s) +
∫ t

0

rl(t, s, τ)f(τ, s) dτ +
∫ 1

0

rm(t, s, σ)f(t, σ) dσ

+
∫ t

0

∫ s

0

r(t, s, τ, σ)f(τ, σ) dσ dτ,

где rl, rm, r — непрерывные в целом и интегрально ограниченные
резольвентные ядра оператора K.

О РЕШЕНИИ ЗАДАЧ ОПТИМАЛЬНОГО
ПЛАНИРОВАНИЯ В СРЕДЕ 1С:Предприятие

Фукин И.А. (Казань)
Igor.Fukin@ksu.ru

К настоящему времени разработано достаточно много методов
решения экстремальных задач вида

f(x) → min, (1)

fi(x) 6 0, i = 1,m, (2)

где f(x), fi(x) - непрерывные функции. Такая постановка задачи
имеет множество экономических приложений, из которых наиболее
известным является задача об оптимальном использовании ресур-
сов. Применение для ее решения методов условной оптимизации
сопряжено с необходимостью построения модели (1)-(2), что явля-
ется самостоятельной проблемой.

В данной работе производственная функция f(x) строится при
помощи корреляционно-регрессионного анализа данных учета ма-
териально-производственных запасов, готовой продукции, заработ-
ной платы. Для этого удобно использовать встроенный язык про-
граммирования среды 1С:Предприятие, так как вся необходимая
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информация легко может быть получена из информационной базы.
Функции fi(x) строятся похожим образом на основании показате-
лей расхода ресурсов.

С течением времени объем информаци о хозяйственной деятель-
ности предприятия растет и формулировка задачи (1)-(2) уточня-
ется.

Для решения задачи (1)-(2) используются методы внутренних
и внешних штрафов с аппроксимацией допустимого множества [1].
Эти методы позволяют находить решение с заданной по функцио-
налу точностью.

В результате программа предлагает оптимальный с заданной
точностью план производства, позволяет провести анализ чувстви-
тельности модели, скорректировать запасы.

Литература
1. Я.И. Заботин, И.А. Фукин О принципе аппроксимации до-

пустимого множества в методах внутренних и внешних штра-
фов// Вестник СПбГУ. Сер. 10, 2006, вып.1. С. 22-29

СУММИРУЕМОСТЬ ПО РИССУ СПЕКТРАЛЬНЫХ
РАЗЛОЖЕНИЙ ДЛЯ КОНЕЧНОМЕРНЫХ

ВОЗМУЩЕНИЙ ОДНОГО КЛАССА ИНТЕГРАЛЬНЫХ
ОПЕРАТОРОВ1

Халова В.А. (Саратов)

В пространстве L[0, 1] рассматривается оператор

Af(x) = (α1E + α2S)Inf(x) +
m∑

k=1

(f, vk)gk(x), x ∈ [0, 1], (1)

где Inf(x) =
x∫
0

(x−t)n−1

(n−1)! f(t) dt, (f, vk) =
1∫
0

f(t)vk(t) dt, vk(t), gk(x) ∈

∈ Cn[0, 1], системы функций {g(n)
k (x)}m

1 и {vk(t)}m
1 линейно незави-

симые, β = α2
1 − α2

2 6= 0, Sf(x) = f(1 − x), E – единичный опера-
тор. Обозначим через Rλf резольвенту Фредгольма оператора A и
пусть g(λ, r) – функция, удовлетворяющая следующим условиям:
а) g(λ, r) непрерывна по λ в круге |λ| 6 r и аналитична по λ в кру-
ге |λ| < r при любом r > 0; б) существует такая константа C > 0,

1Работа выполнена при финансовой поддержке РФФИ (проект № 06-01-
00003)
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что |g(λ, r)| 6 C при всех r > 0 и |λ| 6 r; в) существуют поло-
жительные β, β1 и h такие, что g(reiϕ, r) = O(|ϕ|β), если |ϕ| 6 h,
n = 4n0, или O(|ϕ − π|β), если |ϕ − π| 6 h, n = 4n0 + 2, или (при
нечетном n) O(|ϕ − π

2 |β), если |ϕ − π
2 | 6 h, или O(|ϕ + π

2 |β1), если
|ϕ + π

2 | 6 h (оценки равномерны по r); г) g(λ, r) → 1 при r → ∞ и
фиксированном λ.

Тогда при некоторых предположениях относительно оператора
(1) спрведлива следующая

Теорема. Для того чтобы выполнялось соотношение
lim

r→∞
Ωr(f) = lim

r→∞

∥∥∥f(x) + 1
2πi

∫
|λ|=r

g(λ, r)Rλf(x) dλ
∥∥∥ = 0,

необходимо и достаточно, чтобы f(x) ∈ D0, где D0 – множество
всех непрерывных на [0, 1] функций, удовлетворяющих всем крае-
вым условиям, не содержащим производных.

Данная работа обобщает результат [1] на случай произвольно-
го n.

Литература
1. Гуревич А.П., Хромов А.П. Суммируемость по Риссу спек-

тральных разложений для конечномерных возмущений одного кла-
сса интегральных операторов // Известия вузов. Математика. 2001.
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К ВОПРОСУ О НЕУСТОЙЧИВОСТИ
ИНТЕГРАЛЬНЫХ И

ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
Хворост О.Ю., Цалюк З.Б., Цалюк М.В. (Краснодар)

hary70@mail.ru

Изучается неустойчивость тривиального решения систем

x =

t∫

0

K (t− s) [x (s) + g (s, x (s))] ds + f (t) , (1)

x′ = Ax +

t∫

0

K (t− s) x (s) ds + f (t, x (t)) +

t∫

0

G [t, s, x (s)] ds. (2)

Обозначим через K̂ (z) преобразование Лапласа ядра K, а через
I единичную матрицу.
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Теорема 1. Пусть матрица I − K̂(z) не обратима в точках λj ,
Reλj > 0, α = max Reλj > 0 и m + 1 - максимальный порядок

полюсов
(
I − K̂ (z)

)−1

, лежащих на прямой Rez = α. Пусть, далее,

‖g (t, x)‖ 6 q1 (t) o (‖x‖) + q2 (t) ‖x‖1+a, t > 0, ‖x‖ 6 r, a > 0, где

(1 + t)m
q1 ∈ L1 [0;∞), а sup

t

t∫
0

e−aα(t−s) (s + 1)m(1+a)
q2 (s) ds < ∞.

Тогда тривиальное решение системы (1) неустойчиво.
Теорема 2. Пусть матрица zI −A− K̂(z) не обратима в точках

λj , Reλj > 0, α = max Reλj > 0 и m + 1 - максимальный порядок

полюсов
(
zI −A− K̂ (z)

)−1

, лежащих на прямой Rez = α. Пусть

‖f (t, x)‖ 6 q1 (t) o (‖x‖) + q2 (t) ‖x‖1+a
,

‖G (t, s, x)‖ 6 Q1 (t, s) o (‖x‖) + Q2 (t, s) ‖x‖1+a
,

причем

q1 (t) (t + 1)m+
t∫
0

Q1 (t, s) e−α(t−s) (s + 1)m
ds ∈ L1 [0;∞), а функ-

ция q2 (t) (t + 1)m(1+a)+
t∫
0

Q2 (t, s) e−α(1+a)(t−s) (s + 1)m(1+a)
ds огра-

ничена. Тогда тривиальное решение системы (2) неустойчиво.

О РЕЗОЛЬВЕНТЕ ОПЕРАТОРА
ДИФФЕРЕНЦИРОВАНИЯ НА ПРОСТЕЙШЕМ ГРАФЕ

ИЗ ДВУХ РЕБЕР, СОДЕРЖАЩЕМ ЦИКЛ1

Хромов А.П. (Саратов)
KhromovAP@info.sgu.ru

Обозначим через Γ граф, состоящий из двух ребер, причем кон-
цы одного ребра и один конец другого ребра связаны в один узел
(ориентация свободного ребра от узла). Зададим оператор диффе-
ренцирования Ly = y′(x), x ∈ Γ и при этом считаем, что y(x) непре-
рывна на Γ, включая и узел, а на каждом ребре дифференцируема.
Тогда уравнение Ly = λy(x)+f(x), x ∈ Γ, эквивалентно следующей
краевой задаче:

y′1(x) = λy1(x)+f1(x), y′2(x) = λdy2(x)+f2(x), d > 0, x ∈ [0, 1], (1)

1Работа выполнена при финансовой поддержке РФФИ (проект № 06-01-
00003)
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y1(0) = y1(1) = y2(0). (2)

Краевые условия (2) нерегулярны по Биркгофу и резольвента
Rλ имеет экспоненциальный рост по λ. Но в нашем случае ча-
стичная сумма ряда Фурье по собственным функциям Sr(f, x) =
= − 1

2πi

∫
|λ|=r

Rλf dλ, где Rλ – резольвента и f = (f1, f2)T (т – знак

транспонирования), не зависит от f2(x). Поэтому за счет выбора
f2(x) можно добиться того, что Rλf уже не имеет экспоненциаль-
ного роста по λ. Именно имеет место

Теорема. Пусть N0 – неотрицательное целое число такое,
что N0 < d 6 N0 + 1. Если f2(x) = f1(dx − j) при x ∈ [jd−1,
(j + 1)d−1] (j = 0, . . . , N0), то для второй компоненты (Rλf)2
вектор-функции Rλf имеет место формула:

(Rλf)2 =
eλ(dx−j+1)

1− eλ

{ dx−j∫

0

e−λ(1+t)f1(t) dt +

1∫

dx−j

e−λtf1(t) dt
}

,

x ∈ [jd−1, (j +1)d−1] (при этом считаем, что (N0 +1)d−1 заменя-
ется на 1).

Тем самым открывается возможность исследования сходимости
разложений по собственным функциям методом контурного инте-
грирования Rλ по λ.

ЗАДАЧА КОШИ ДЛЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ
ДРОБНОГО ПОРЯДКА
Чадаев В.А. (Грозный)

niipma@mail333.com

Рассмотрим нелинейное уравнение

Dα
0xy(t) = f(x,Dβ

0xy(t)), (1)

где Dα
0x – оператор дробного дифференцирования порядка

0 < α 6 1 с началом в точке 0 и с концом в точке x ∈]0, l[ [1], [2]
β < α.

Задача Коши. Найти решение уравнения (1), удовлетворяю-
щее условию:

lim
x→0

x1−αy(x) = y0. (2)
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Обозначим через D множество точек (x, y) из области G, лежа-
щей в R2:

D =
{

(x, y) ∈ G : 0 6 x 6 l,

∣∣∣∣x1−αy(x)− b1

Γ(α)

∣∣∣∣ 6 a

}
, (3)

a > lM/Γ(α + 1), b1 = y0Γ(α), l, M – постоянные, Γ(α) – гамма-
функция Эйлера.

Доказана
Теорема. Пусть f(x, z) – вещественнозначная, непрерывная в

области G функция, удовлетворяющая условию Липшица по z:

|f(x, z1)− f(x, z2)| 6 N(|z1 − z2|) (4)

и ограничению
max
06x6l

|f(x, z)| = M < ∞. (5)

Тогда решение задачи Коши в области D ⊂ G существует, непре-
рывно и единственно.

Литература
1. Нахушев А.М. Дробное исчисление и его применение. М.:

Физматлит, 2003. – 272 с.
2. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и про-

изводные дробного порядка и некоторые их приложения. - Минск:
Наука и техника, 1987. - 688 с.

ОБ ОДНОМ СЛЕДСТВИИ ТЕОРЕМЫ ЛЕБЕГА О
ПРАВИЛЬНЫХ ТОЧКАХ1

Чернов А.В. (Нижний Новгород)
v_sumin@mm.unn.ru

Определение. Систему
{

H[m, τ ] : m ∈ N, τ ∈ Π
}

измеримых
множеств будем называть равномерно регулярно сжимаемой
на измеримом ограниченном множестве Π ⊂ Rn, если 1) τ ∈ H[m, τ ]
∀m ∈ N; 2)sup

τ∈Π
diam(H[m, τ ]) → 0 при m → +∞; 3) ∀τ ∈ Π ∃L > 0:

∀m ∈ N ∃ куб Q(τ, r) ⊃ H[m, τ ]: rn 6 Lmes (H[m, τ ]).
Далее система {H[m, τ ]} удовлетворяет данному определению,

Π[m, τ ] ≡ H[m, τ ] ∩ Π; числа q, q′ ∈ [1,∞], p′ ∈ [1,∞) произвольны,
а H – любое множество параметров h.

1Работа выполнена при поддержке РФФИ, грант 04-01-00460.
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Теорема. Пусть Φ(t, y) : Π × Rl → R измерима по t и непре-
рывна по y, и кроме того, 1)

{
y[m,h](.) : m ∈ N, h ∈ H

}
⊂ Ll

q(Π) и

∃{rm(.)} ⊂ Lq(Π): ‖rm(.)‖ → 0 при m → +∞, и
∣∣∣y[m,h](t)

∣∣∣ 6 rm(t),

∀m ∈ N, h ∈ H, для п.в. t ∈ Π; 2) ∀y ∈ Ll
q(Π) Φ(., y(.)) ∈ Lq′(Π),

причем:
∥∥∥Φ(., y(.))

∥∥∥ → 0 при ‖y‖ → 0; 3) F : Lq′(Π) → Lp′(Π) –
положительный линейный ограниченный оператор.

Тогда ∃ {mk} → +∞ и Π0 ⊂ Π, mes(Π \Π0) = 0: ∀τ ∈ Π0, h ∈ H

1
mes(H[mk, τ ])

∫

Π[mk,τ ]

(
F

[∣∣∣Φ(., y[mk, h](.))
∣∣∣
])p′

dt → 0 при k → +∞.

Данная теорема является следствием теоремы Лебега и [1]. Фак-
тически в ней развивается и обобщается конструкция, использован-
ная в [2] при вычислении вариаций функционалов, определенных на
решениях начально-краевых задач, описываемых функциональным
вольтерровым уравнением в Lm

∞(Π), на случай Lm
p (Π), p ∈ [1,∞).

Литература
1. А.В. Чернов // "Понтрягинские чтения-XVI": Тезисы докла-

дов. - Воронеж: ВГУ. 2005. С.167-168.
2. В.И. Плотников, В.И. Сумин. Оптимизация распределенных

систем в лебеговом пространстве // Сиб. матем. журн.-1981.-Т.22,
N 6.-С. 142-161.

СВОЙСТВА ЯДЕР ОПЕРАТОРА ЛАПЛАСА НА СЕТИ1

Чернышев В.Л. (Москва)
vchern@bmstu.ru

Для компактных гладких многообразий без края известна связь
ядра оператора Лапласа, действующего на k-формах с топологиче-
скими характеристиками многообразия (см. книгу [1] и ссылки в
ней).

Естественно возникает задача: верны ли аналогичные свойства
для стратифицированных множеств, в частности для геометриче-
ских графов. На последний вопрос дают ответ приведенные ни-
же утверждения. Функции предполагаются непрерывными на сети.
Граф компактен и не содержит висячих вершин.

1Работа выполнена при поддержке программы "Развитие научного потен-
циала высшей школы (2006 - 2007 г) проект РНП 2.1.1.2381
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Утверждение 1. Размерность ядра оператора Лапласа, действу-
ющего на 0-формах, определенных на геометрическом графе, равна
числу связных компонент графа.

Утверждение 2. Для оператора Лапласа с краевыми условия-
ми в вершинах, которые соответствуют самосопряженному случаю,
размерность ядра, при действии на 1-формы, равна первому числу
Бетти.

Доказательство в первом случае непосредственно следует из ре-
зультатов изложенных в [2], а во втором основано на комбинатор-
ных свойствах графа.

Нужно отметить, что утверждение, аналогичное Утверждению
1 было получено в недавно вышедшей работе [3] (см., также ис-
правление к ней [4]) для частного случая так называемых "нату-
ральных"условий трансмиссии.

Литература
[1] Цикон Х., Фрёзе Р., Саймон Б. — Операторы Шрёдингера

с приложениями к квантовой механике и глобальной геометрии.
М.: Мир, 1990.

[2] Покорный Ю.В., Пенкин О.М., Прядиев В.Л., Боровских
А.В., Лазарев К.П., Шабров С.А.. — Дифференциальные уравне-
ния на геометрических графах. - М.: Физматлит, 2004.

[3] Kurasov — P. Inverse spectral problem for quantum graphs. J.
Phys. A: Math. Gen. 38 p. 4901-4915, 2005

[4] Kurasov P. — J. Phys. A: Math. Gen. 39 p. 993, 2006

РАСПАД МЕТАСТАБИЛЬНОГО СОСТОЯНИЯ В
СЛУЧАЕ КРИСТАЛЛИЧЕСКОЙ ПЛЕНКИ

Чубурин Ю.П. (Ижевск)
chuburin@otf.pti.udm.ru

Рассматриваются операторы Шредингера вида H0(k) = −∆ +
V (x), Hε(k)+εW (x), где ε – вещественный параметр, определенные
в L2(Ω) на блоховских по переменным x1, x2 функциях. Здесь Ω =
[0, 1)2 × R – ячейка, k – двумерный квазиимпульс, V (x),W (x) –
вещественные функции, удовлетворяющие условиям:

|W (x)| 6 C|V (x)| 6 C1e
−a|x3|, |V (x)| 6 C2|W (x)|eε0|x3|,

где a > 0, а ε0 достаточно мало. (Такие операторы возникают при
разложении операторов H0 = −∆+V (x), Hε+εW (x), определенных
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в L2(R3), с периодическими по переменным x1, x2 потенциалами
V (x),W (x) в прямом интеграле по k пространств L2(Ω)).

Оператор H0(k) может иметь собственные значения на сущест-
венном спектре [k2,∞). Пусть ψ0 – нормированный собственный
вектор (метастабильное состояние), отвечающий невырожденному
собственному значению λ0 > k2 оператора H0. Справедлива оценка:
|ψ0(x)| 6 Ce−σ|x3|, где σ > 0 зависит лишь от λ0. Будем предпола-
гать, что |V (x)| > Ce−b|x3|, где C > 0, 0 < b/2 < a 6 b < 2σ.

Обозначим через λ(ε) квазиуровень (собственное значение или
резонанс) оператора Hε(k), являющийся возмущением λ0. Справед-
ливо неравенство: Imλ(ε) 6 0 для всех достаточно малых ε.

Теорема.Пусть Imλ(ε) < 0 для всех достаточно малых ε > 0.
Тогда

(e−iHεtψ0, ψ0) = e−iλ(ε)t + O(ε2)

равномерно по t > 0.
В доказательстве используется явное выражение (допускаю-

щее продолжение в окрестности точек существенного спектра)
резольвенты оператора Hε через главную и регулярную части
невозмущенного оператора H0. (Используемый обычно при дока-
зательстве подобных формул метод спектральной деформации не
применим для операторов в ячейке).

В некоторых случаях подобное утверждение справедливо и для
вырожденного собственного значения λ.

О СХОДИМОСТИ СПЕКТРАЛЬНЫХ РАЗЛОЖЕНИЙ
ОДНОЙ КРАЕВОЙ ЗАДАЧИ1

Шалтыко Д.Г. (Саратов)

Рассмотрим на отрезке [0, 1] краевую задачу:

l[y] = y(n) − λy = 0, (1)

y(0) = . . . = y(k−1)(0) = y(α) = y(1) = . . . = y(k−1)(1) = 0, (2)

где n = 2k + 1, k = 2æ, 0 < α < 1.
Теорема 1.Краевая задача (1) - (2) имеет бесконечное мно-

жество собственных значений, которые можно разложить в две
серии:

λj,1 = −
(

jπ

α sin 2æ+1
n π

+ O

(
1
j

))n

1Работа выполнена при финансовой поддержке РФФИ (проект 06-01-00003)
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λj,2 = −
(

(2j + 1)πei π
n

2(1− α) sin 2æ
n π

+ O

(
1
j

))n

При этом все собственные значения, достаточно большие по мо-
дулю, простые.

Предположим, что ϕj,1(x), ϕj,2(x) - системы собственных функ-
ций, соответствующие этим собственным значениям, а ψj,1(s),
ψj,2(x) - биортогональные к ним системы функций.

Теорема 2. Предположим, что f(x) из L2[0, 1] и f(x) = f1(x)+
f2(x),причем f1(x) удовлетворяет условиям: а) f1 аналитична на
[0, b] (α < b); б) f1, l[f1], . . . удовлетворяют условиям в 0 и α; в) f1

ортогональна {ψj,2(x)}; г) справедливо

dp

dxp
lq[f1] = O




(
1 + ε

(b− ε− x) cos k
nπ

)nq+p

(nq + p)!




а f2(x) удовлетворяет условиям: д) f2 аналитична на [a, 1] (a <
α); е) f2, l[f2], . . . удовлетворяют условиям в 1 и α; ж) f2 ортого-
нальна {ψj,1(x)} и выполняется г).Тогда f(x) разлагается на (a, b)
в равномерно сходящийся ряд Фурье.

О ПОЛУГЛОБАЛЬНОЙ РАЗРЕШИМОСТИ ОДНОГО
КЛАССА ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ1

Шананин Н.А. (Москва)
nashananin@inbox.ru

В открытом множестве Ω ⊆ Rn рассмотрим уравнение с бес-
конечно дифференцируемыми коэффициентами

(P (x,D) u =)
∑

〈%,α〉6m

aα(x) Dαu = f, Dj =
1
i

∂

∂xj
. (1)

Здесь α = (α1, α2, . . . , αn) - неотрицательный целочисленный муль-
тииндекс, 〈%, α〉 = %1α1 + %2α2 + . . . + %nαn,- взвешенный порядок
Dα, веса %k - натуральные числа k = 1, 2, . . . , n. Пусть µ = minj %j .
Предположим, что ξ-квазиоднородные порядков l = m, . . . , m−µ+1
составляющие pl(x, ξ) =

∑
〈%,α〉=l aα(x) ξα полного символа опера-

тора P вещественнозначны.
1Работа выполнена при поддержке Российского фонда фундаментальных

исследований, проект 06-01-00253.
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Положим Λ(ξ) = 1 +
∑n

j=1 |ξj |1/%j . Пусть Hs(Rn) - простран-
ство обобщённых функций u ∈ S′(Rn), преобразование Фурье ũ(ξ)
которых Λsũ ∈ L2(Rn) и Hs

loc(Ω) - соответствующее локальное про-
странство функций на (Ω). Пусть K - компакт в Ω. Тогда

Теорема. Если K не содержит проекции ни одной полной ин-
тегральной кривой векторного поля

∑
j|%j=µ

(
∂pm

∂xj
∂ξj − ∂pm

∂ξj
∂xj

)
,

принадлежащей множеству {(x, ξ) | pm(x, ξ) = 0, ξ 6= 0}, то
(I) множество обобщённых решений с компактным носителем

однородного сопряжённого уравнения N(K) = {v ∈ E ′(K) | P ∗v =
0} есть конечномерное подпространство в C∞0 (K), ортогональное
образу PD′(Ω);

(II) для любой f ∈ Hs
loc(Ω) , ортогональной к N(K), существу-

ет функция u ∈ Hs+m−µ
loc (Ω), которая является решением уравне-

ния (1) в некоторой окрестности K.
Литература

[1] Н. А. Шананин, О разрешимости на компактных подмноже-
ствах дифференциальных уравнений с вещественнозначным глав-
ным пучком символов. Матем. сб., т. 197, вып. 2, 2006, 137-160.

ИНВАРИАНТНЫЕ ПРОСТРАНСТВА И ДИХОТОМИИ
ДЛЯ ОДНОГО УРАВНЕНИЯ СОБОЛЕВСКОГО ТИПА

Шафранов Д.Е. (Челябинск)
shafr@math.susu.ac.ru

Пусть Ωn- n-мерное риманово компактное ориентированное мно-
гообразие без края. Рассмотрим для фиксированного k = 0, 1, . . . , n
пространство H0

k пополненое по норме, соответствующей скаляр-
ному произведению (α, β)0 =

∫
Ωn

α ∧ ∗β, где α, β ∈ Hk– линейные

гладкие k-формы определенные на Ωn. Зададим так же H1
k и H2

k.
Обозначив U = H2

k, F = H0
k и определив формулами L = λ−∆,

M = α∆, где ∆-оператор Лапласа-Бельтрами, операторы L,M ∈
L(U ,F) редуцируем, тем самым, уравнение Баренблатта-Желтова-
Кочиной

(λ−∆)ut = α∆u, (1)

к линейному уравнению соболевского типа

Lu̇ = Mu. (2)

Пространство U = U0 ⊕ U1 и U1 фазовое пространство, т.е. за-
дача Коши u(0) = u0 для уравнения (2) разрешима, если u0 ∈ U1.
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Как показано в [2], в зависимости от λ ∈ R \ {0} оно имеет вид
U1 = {u ∈ U : (u, ϕl)0 = 0, λ = λl}, если λ ∈ σ(∆) \ {0}; U1 = U ,
если λ /∈ σ(∆). Здесь λl собственные значения, а ϕl собственные
функции оператора ∆. Проводя аналогии с [1] можно доказать:

Теорема 1. Множества Ur = {u ∈ U1 : u =
∑

λ<λk

ukϕk, uk ∈ R} и

U l =
{
u ∈ U1 : (u, ϕk)0 = 0, λ < λk

}
являются соответственно устой-

чивым и неустойчивым инвариантными пространствами уравнения
(1), причем Ur конечномерно.

Теорема 2. Для любых λ ∈ R \ {0} и α ∈ R+ решения уравнения
(1) имеют экспоненциальную дихотомию.

Литература
1. Свиридюк, Г.А. Инвариантные пространства и дихотомии ре-

шений одного класса линейных уравнений типа Соболева/Г.А. Сви-
ридюк, А.В. Келлер//Изв. ВУЗ. Математика.- 1997.- № 5.- С.60-68.

2. Свиридюк, Г.А. Задача Коши для уравнения Баренблатта-
Желтова-Кочиной на гладком многообразии/Г.А. Свиридюк, Д.Е.
Шафранов//Вестн. Челяб. ун-та. Сер. мат., мех., информ.- 2003.-
№ 3.- С.171-177.

ИНТЕГРИРОВАНИЕ ПО КОШИ ОТОБРАЖЕНИЙ
K- ПРОСТРАНСТВ С РЕГУЛЯТОРОМ

Щербин В.М. (Воронеж)

Определим интеграл методом Коши от отображения f : [a, b] →
X, где [a, b] – порядковый отрезок в кольце X. По поводу термино-
логии K-пространств см. [1].

Возьмем элементы a = x
(n)
0 < x

(n)
1 < x

(n)
2 < · · · < x

(n)
n = b.

Такие элементы всегда существуют и точку ξ
(n)
i ∈ [x(n)

i−1, x
(n)
i ]

составим сумму Sn(f, Tn)ξ(n)) =
n∑

i=1

f(ξ(n)
i )(x(n)

i − x
(n)
i−1); Здесь T (n)

набор элементов xi, i = 0, 1, 2, . . . , n. Если при n →∞ Sup(x(n)
i −

x
(n)
i−1) → 0 с регулятором ”u”, Sn(f, T (n)ξ(n)) → S(f) с регулятором

”v”, тогда S(f) назовем (u, v) - интеграл Коши от f(x) по отрезку
[a, b] и обозначим (u, v)

∫ b

a
f(x)dx. Можно показать, что (u, v) инте-

грал Коши существует, если f(x) равномерно непрерывна на [a, b],
т.е. ∀ε > 0 ∃δ > 0 такие, что | f(x′)− f(x′′) |< ε при | x′ − x′′ |< δ
и независимо от положения точек x′, x′′ на [a, b].

Для таких функций и интегралов Коши легко показать, что
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(u, v) – производная от (u, v)
∫ x

a
f(t)dt = f(x). По поводу (u, v)-

производной см. [2].
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АСИМПТОТИЧЕСКИЕ ПРИБЛИЖЕНИЯ
МЕДЛЕННЫХ ИНТЕГРАЛЬНЫХ МНОГООБРАЗИЙ

СО СМЕНОЙ УСТОЙЧИВОСТИ
Щетинина Е.В. (Самара)

schetinina_k@mail.ru

Разнотемповые системы обыкновенных дифференциальных
уравнений используются для моделирования процессов различной
природы. Поэтому создание различных методов качественного ис-
следования такого рода систем является в настоящее время акту-
альной задачей.

Работа посвящена исследованию неавтономных быстро-медлен-
ных систем, у которых соответствующая линейная быстрая под-
система не удовлетворяет условию экспоненциальной дихотомии.
Было показано, что если ввести в систему дополнительную управ-
ляющую функцию медленных переменных, то система имеет мед-
ленное интегральное многообразие [1].

В работе исследуются свойства полученного медленного инте-
грального многообразия. Показано, что в окрестности этого мно-
гообразия наблюдается эффект, близкий к эффекту затягивания
потери устойчивости в сингулярно возмущенных системах [2]. Изу-
чаются задачи приближенного построения функции управления
и медленного интегрального многообразия. Построены алгорит-
мы нахождения коэффициентов асимптотических разложений этих
функций и найдены оценки погрешностей асимптотических при-
ближений.

Литература
1. Щетинина Е.В. Интегральные многообразия и затягивание
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2. Нейштадт А. И. О затягивании потери устойчивости при ди-
намических бифуркациях. Дифференциальные уравнения. — 1987.
— Т. 23, № 12. — С. 2060–2067.

КРАЕВЫЕ ЗАДАЧИ С СИНГУЛЯРНЫМИ
КРАЕВЫМИ УСЛОВИЯМИ1

Юрко В.А. (Саратов)
yurkova@info.sgu.ru

Исследуются сингулярные дифференциальные уравнения вида

− d

dt

(
p2(t)

dz

dt

)
+ p1(t)z(t) = λp0(t)z(t), t ∈ (a, b). (1)

Здесь λ – спектральный параметр, а комплекснозначные функции
pk(t) имеют нули и/или особенности на концах интервала (a, b).
Точнее,

pk(t) = (t− a)sk0(b− t)sk1pk0(t),

где skm – вещественные числа, pk0(t) ∈ C2[a, b], p00(t)p20(t) 6= 0,
p00(t)/p20(t) > 0 при t ∈ [a, b]. Пусть s2m < s0m + 2, s2m 6 s1m + 2,
m = 0, 1, т.е. мы рассматриваем случай так называемых регуляр-
ных особенностей. Так как решения уравнения (1) могут иметь осо-
бенности на концах интервала, и так как значения решений и их
производных на концах интервала вообще говоря не определены,
то важным является вопрос о том, как ввести сингулярные двухто-
чечные краевые условия в общем виде.

Мы описываем общий метод построения двухточечных сингу-
лярных краевых условий и даем постановки соответствующих кра-
евых задач. Установлены свойства спектра краевых задач для урав-
нения (1) с сингулярными краевыми условиями. Доказана теорема
о полноте собственных и присоединенных функций этого класса
краевых задач в соответствующих весовых банаховых простран-
ствах. При исследовании обратной задачи используется метод спек-
тральных отображений, изложенный в [1]. Предлагаемый подход к
постановке и исследованию краевых задач с сингулярными краевы-
ми условиями является достаточно универсальным и может быть
применен и для других классов сингулярных операторов, напри-
мер, для дифференциальных операторов высших порядков и си-
стем, для случая наличия особенностей и точек поворота внутри
интервала, для пучков дифференциальных операторов.

1Работа выполнена при поддержке гранта РФФИ 04-01-00007.
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ТЕПЛИЦЕВЫ ОПЕРАТОРЫ В ПРОСТРАНСТВАХ
ХАРДИ-СОБОЛЕВА В ШАРЕ
Антоненкова О.Е. (Брянск)

anto-olga@yandex.ru

Пусть Bn = {z = (z1, ..., zn) ∈ Cn :
( n∑

j=1

|zj |2
) 1

2 < 1}, Sn - гра-

ница шара Bn, H(Bn) - множество голоморфных в Bn функций,
Hp(Bn), 0 < p < +∞ - класс Харди в шаре. Пусть далее f(z) =
+∞∑
k=0

fk(z) - однородное разложение функции f ∈ H(Bn), обозначим

R̃αf(z) =
+∞∑
k=0

(k + 1)αfk(z). Hp
α(Bn), 0 < α < +∞ - пространство

Харди-Соболева в Bn, т.е. Hp
α(Bn) = {f ∈ H(Bn) : ‖R̃αf‖Hp(Bn) <

+∞}, 0 < p 6 +∞. Оператор Теплица с символом h: Th(f)(z) =∫
Sn

f(ζ)h(ζ)
(1−<z,ζ>)n dσ(ζ), где ζ ∈ Sn, z ∈ Bn. Верно утверждение

Теорема 1. Пусть h ∈ H1(Bn), 1 < p < +∞, тогда следующие
утверждения равносильны: 1) Th̄ действует в пространстве Hp

α(Bn);
2) h ∈ H∞(Bn).

Утверждение о том, что если h ∈ H∞(Bn), то Th̄ действует в
пространстве Hp

α(Bn) доказано ранее Александровым А.Б. [1].
Пусть 0 < p, q < +∞, α > −1, Ap,q(α) = {f ∈ H(Bn) :

‖f‖Ap,q(α) =
[ 1∫

0

(1− r)α
( ∫

Sn

|f(rζ)|pdσ(ζ)
) q

p

dr
] 1

q

< +∞}, где dσ(ζ) -

нормированная мера Лебега на Sn. Пусть Ap,q
α (Bn) = {f ∈ H(Bn) :

‖R̃αf‖Ap,q(α) < +∞}, где 0 6 α < +∞, 0 < p, q < +∞.
Теорема 2. Пусть h ∈ H1(Bn), 1 < p, q < +∞, тогда следу-

ющие утверждения равносильны: 1) Th̄ действует в пространстве
Ap,q

α (Bn); 2) h ∈ H∞(Bn).
В случае поликруга аналогичные результаты получены в [2], [3].
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ОБ ОДНОЙ АЛГЕБРЕ ОПЕРАТОРОВ
Балабошкина О.С., Пуляев В.Ф. (Краснодар)

BalOles@mail.ru

Пусть w > 0 — фиксированное число. Обозначим через W про-

странство функций вида K(t, s) =
∞∑

n=−∞
e

i2πnt
w Kn(t− s), где

Kn(t) ∈ L1(R) и ‖K‖W =
∞∑

n=−∞

∞∫
−∞

|Kn(t)| dt < ∞.

Теорема 1. Пусть измеримая функция P (t, s) удовлетворяет
следующим условиям:

1) P (t + w, s + w) = P (t, s) для любых t, s ∈ R;
2) при каждом t ∈ R функция P (t, s) суммируема по s на R и

lim
h→0

∫ ∞

−∞
|P (t + h, s)− P (t, s)| ds = 0;

3) для любых t, s ∈ R существуют P ′t (t, s), P ′s(t, s), удовлетво-
ряющие условию 2).

Тогда P (t, s) принадлежит пространству W .
Интегральные операторы вида

(K̃x)(t) =
∫ ∞

−∞
K(t, s)x(s) ds, t ∈ R, (1)

где K(t, s) ∈ W , переводят пространства Lp(R), 1 6 p 6 ∞, в
себя и являются линейными непрерывными операторами. Произве-
дение K̃ ◦ D̃ таких операторов с ядрами K(t, s) ∈ W , D(t, s) ∈ W
представляет собой интегральный оператор, ядро которого опре-

деляется формулой F (t, s) =
∞∫
−∞

K(t, τ)D(τ, s) dτ и принадлежит

пространству W , причем ‖F‖W 6 ‖K‖W ‖D‖W .
Теорема 2. Множество Ω = {cI + K̃, c ∈ R}, где K̃ оператор

вида (1), с естественными операциями и нормой ||cI + K̃||Ω = |c|+
+ ‖K‖W является (некоммутативной) банаховой алгеброй.
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На S1 = {ξ ∈ C : |ξ| = 1} определим операторнозначную функ-

цию K(ξ) =
∞∑

p=−∞
ξpK̃p, где (K̃px)(t) =

w∫
0

K(t, s − pw)x(s) ds дей-

ствуют в пространстве C[0, w].
Теорема 3. Пусть функция K(t, s) ∈ W удовлетворяет условию

3) теоремы 1. Тогда если функция K(ξ) не имеет собственных чисел
на S1, то оператор (I − K̃) ∈ Ω обратим во всех пространствах
Lp(R), 1 6 p 6 ∞, и (I − K̃)−1 ∈ Ω.

ОЦЕНКА ТРУДОЕМКОСТИ ВЫЧИСЛЕНИЯ
ИТЕРАЦИОННОГО ШАГА ПО

θ-НОРМИРОВАННОМУ НАПРАВЛЕНИЮ СПУСКА
Габидуллина З.Р. (Казань)

Zulfia.Gabidyllina@ksu.ru

В области разработки методов выпуклого программирования
всегда особое внимание уделяется созданию эффективных методов
с пошаговой адаптацией различных параметров.

В адаптивных методах ([1], [2]) величина шагового множителя
регулируется прежде всего за счет θ-нормированности направления
спуска.

Определение 1 [2]. Вектор s 6= 0 назовем θ-нормированным
направлением спуска (θ > 0) для функции f в точке x ∈ D, если
выполняется неравенство: 〈f ′(x), s〉+ θ‖s‖2 6 0.

Определение 2 [1]. Пусть функция f(x) определена на выпук-
лом множество D ⊆ Rn и существует такая константа κ > 0, что
для всех x, y ∈ D, α ∈ [0, 1] выполняется неравенство

f(αx + (1− α)y) > αf(x) + (1− α)f(y)− α(1− α)κ‖x− y‖2.

Тогда будем говорить, что функция f(x) удовлетворяет на D усло-
вию A.

В [1], [2] показано, что класс функций, удовлетворяющих усло-
вию A, достаточно широк, в частности, шире класса C1,1(D).

Пусть β ∈ (0, 1), η = 1 − β, s — θ-нормированное направление
спуска, î — первый индекс 1 = 1, 2, . . ., при котором выполняется
неравенство

f(x)− f(x + ηis) > ηiβθ‖s‖2. (1)

Положим µ = ηî. Следующая лемма доказывает численную реали-
зуемость метода выбора шага из условия (1).
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Лемма 1. Если s — θ-нормированное направление спуска функ-
ции f в точке x, то для каждого β∈(0, 1) существует µ̄=µ̄(β) > 0

(µ̄ = (1 − β)ξ, ξ =

{
θκ−1, если θ < κ,

1, если θ > κ
) такое, что для всех µ ∈

(0, µ̄] выполняется f(x)− f(x + µs) > µβθ‖s‖2.
Следующая лемма доказывает не только ограниченность снизу

величины шага, но и позволяет оценить трудоемкость ее вычисле-
ния.

Лемма 2. Пусть 1) 0 < θ < κ, β ∈ (0, 1), 2) î — первый
индекс i = 1, 2, . . ., при котором выполняется неравенство (1),
µ = ηî; тогда имеет место оценка µ > θκ−1(1− β)2 > 0.

Из леммы 2 следует, что (1−β)î−2 > θκ−1 ⇒ î < 2+log1−β θκ−1.
Тогда неравенство (1) будет выполненно не более чем за конечное
число дроблений параметра η.
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О СИСТЕМАХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ
ВОЛЬТЕРРА С ОДНОМЕРНЫМИ ЧАСТНЫМИ

ИНТЕГРАЛАМИ И ОГРАНИЧЕННЫМИ ЯДРАМИ
Калитвин А.С. (Липецк)

kalitvin@mail.ru

При исследовании систем с существенно распределенными па-
раметрами могут быть использованы системы интегро-дифферен-
циальных уравнений Барбашина вида

∂xi

∂t
=

n∑

j=1

[
aij(t, s)xj(t, s) +

∫ d

c

kij(t, s, σ)xj(t, σ) dσ

]
+ fi(t, s) (1)

(i = 1, . . . , n), где t ∈ [a, b], s ∈ [c, d], а интеграл понимается в смыс-
ле Лебега [1]. Система (1) с начальным условием xi(t0, s) = ϕi(s)
(i = 1, . . . , n) сводится подстановкой xi(t, s) =

∫ t

t0
yi(τ, s) dτ + ϕi(s)
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(i = 1, . . . , n) к частному случаю системы интегральных уравнений
Вольтерра с одномерными частными интегралами

yi(t, s) = gi(t, s) +
n∑

j=1

[∫ t

t0
lij(t, s, τ)yj(τ, s) dτ+

+
∫ s

s0
mij(t, s, σ)yj(t, σ) dσ +

∫ t

t0

∫
G

nij(t, s, τ, σ)yj(τ, σ) dτdσ
]

≡ gi(t, s) +
n∑

j=1

(Lij + Mij + Nij)yj(t, s)

(2)

(i = 1, . . . , n), где t ∈ [a, b], s ∈ [c, d], G = [c, d] или G = [s0, s],
lij , mij , nij — заданные измеримые по совокупности переменных
вещественные функции, g1, . . . , gn — заданные непрерывные веще-
ственные функции, а интегралы понимаются в смысле Лебега.

Пусть D = [a, b] × [c, d] и Cn(D) — пространство непрерывных
на D вектор-функций со значениями в Rn.

Теорема. Если функции lij, mij, nij (i, j = 1, . . . , n) ограничены
и операторы Lij, Mij, Nij (i, j = 1, . . . , n) действуют в простран-
стве непрерывных на D функций, то при любых непрерывных на
D функциях g1, . . . , gn система (2) имеет единственное решение
в Cn(D) и оно может быть получено методом итераций.
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ОПЕРАТОРЫ ПРЕОБРАЗОВАНИЯ НА ГЛАДКИХ
ФУНКЦИЯХ

Катрахов В.В., Емцева Е.Д. (Владивосток)
emtseva@mail.ru, katrakhov@mail.ru

При натуральных и дробных значениях соответственно рассмат-
ривается оператора вида

Sλg(r) =
(−1)λ

(λ− 1)!
Dλ

r

1∫

r

(chρ− chr)λ−1g(ρ)shρdρ, (1)

где λ ∈ N,

Sλg(r) =
(−1)[λ]

Γ(λ′)Γ(λ)
D[λ]

r

ρ∫

r

shρ

ρ∫

r

(t− r)λ′−1(chρ− cht)λ−1dtdρ, (2)
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где λ = [λ]− λ′, 0 < λ < 1, λ ∈ N.
Для введенных операторов получено разложение

Sλ = (E + K)shλ,

где E – тождественный оператор, и доказана лемма
Лемма 1.Оператор Sλ, определенный при целых λ по форму-

ле (1), а при дробных λ по формуле (2), допускает расширения
по непрерывности со множества Ċ∞[0, 1) до ограниченного опе-
ратора, действующего из пространства L2,λ(0, 1) в пространство
L2(0, 1), причем имеет место оценка вида

‖Sλf‖L2(0,1) 6 aλ‖f‖L2,λ(0, 1),

где a > 0 – некоторая абсолютная постоянная.
Здесь через L2,λ(0, 1) обозначено весовое лебегово пространство

с нормой
‖f‖L2,λ(0,1) ≡ ‖fshλ‖L2(0,1).

Более подробное изложение введенных операторов и некоторые
их приложения представлены в работах [1,2].

Литература
1. Катрахов. T.T., Емцева Е.Д. Об одном классе операторов пре-

образования// Препринт № 5. – 2005. – 8 с.
2. Катрахов T.T., Емцева Е.Д. Некоторые операторы преобра-

зования и функциональные пространства // Препринт (в печати) .
– 2006. – 10 с.

ПЕРСПЕКТИВЫ РАЗВИТИЯ ДИСТАНЦИОННЫХ
ТЕХНОЛОГИЙ

Климова Е.Н. (Самара)
elena_klimova@mail.ru

Тестирование, обучение с использованием глобальной сети Ин-
тернет - актуальная, бурно развивающаяся, перспективная фор-
ма образования. Использование технологий дистанционнго обра-
зования позволяет создать электонные интерактивные учебники и
сложные тестинговые системы.

В Самарской государственной академии путей сообщения, яв-
ляющейся официальным региональным представителем Центра те-
стирования в МГУ "Гуманитарные технологии планируется созда-
ние Центра тестирования. На базе этого центра предполагается
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проведение компьютерных тестов трех видов: предметных (образо-
вательных) тестов по основным предметам школьной программы,
профориентационных тестов - результаты в форме ранжирования
профессий по близости к склонностям испытуемого, психологиче-
ских тестов - интеллектуальных и личностных. Также планирует-
ся проведение компьютерного репетиционного и демонстрационно-
го тестирования Единого Государственного Экзамена. Тесты обла-
дают высокими психометрическими свойствами: репрезентативно-
стью норм (широкой базой для калибровки шкалы), надежностью,
валидностью, достоверностью.

Используются особые возможности компьютерных тестов: ран-
домизация вариантов, регистрация времени реакции, управление
временем, возможность адаптивного тестирования, он-лайн кон-
троль достоверности, имитационные тесты. Благодаря созданию
подобных центров значительно расширяется спектр предоставля-
емых образовательных услуг.

СУЩЕСТВОВАНИЕ РЕШЕНИЙ ПОЛУЛИНЕЙНЫХ
КРАЕВЫХ ЭЛЛИПТИЧЕСКИХ ЗАДАЧ С
НЕОГРАНИЧЕННЫМИ РАЗРЫВНЫМИ

НЕЛИНЕЙНОСТЯМИ
Лепчинский М.Г. (Челябинск)

mmyth@mail.ru

Рассматривается полулинейная эллиптическая краевая задача

Lu(x) + g0(x, u(x)) = 0, x ∈ Ω (1)

u|∂Ω = 0, (2)

где нелинейность g0 борелева и может иметь разрывы первого рода
по фазовой переменной, причем g0 удовлетворяет условию подли-
нейного роста

|g0(x, u)| 6 b|u|r + a(x), 0 6 r < 1, b > 0, a ∈ Lq(Ω).

Предполагается, что ядро N(L) оператора L нетривиально и 0 –
наименьшее его собственное значение.

Обобщенным решением задачи (1)-(2) будем называть функцию
u ∈ W 2

q (Ω), удовлетворяющую граничному условию (2) и для почти
всех x ∈ Ω включению

−Lu(x) ∈ [g−(x, u(x)), g+(x, u(x))],
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g−(x, u) = lim inf
s→u

g0(x, s), g+(x, u) = lim sup
s→u

g0(x, s).

Мы предлагаем условие, гарантирующее существование обоб-
щенных решений, которое естественным образом распространяет
условие K.C. Chang [1] на случай неограниченных нелинейностей.

Теорема 1. Пусть нелинейность g0 удовлетворяет соотношению

lim
||ψ||→∞,ψ(x)∈N(L)

1
||ψ||2r

∫

Ω

dx

∫ ψ(x)

0

g0(x, s)ds = +∞.

Тогда при некоторых дополнительных ограничениях на точки раз-
рыва g0 краевая задача (1)-(2) имеет обобщенное решение u0 ∈
W 2

q (Ω).
Литература

[1] Chang K.C. Variational Methods for non-differentiable
functionals and their applications to partial differential equations //
J. Math. Anal. and Appl. - 1981. - v.80. - №1. - p.102-129

ОБ УРОВНЯХ ОПЕРАТОРА ШРЕДИНГЕРА С
НЕЛОКАЛЬНЫМ ПОТЕНЦИАЛОМ

Сметанина М.С. (Ижевск)
chuburin@otf.pti.udm.ru

В пространстве L2(R) рассматривается одномерный оператор
Шредингера H = −d2/dx2 + V с нелокальным потенциалом V =
εW (x)+λ1(·, ϕ1)ϕ1+λ2(·, ϕ2)ϕ2, где ε, λ1, λ2 вещественные парамет-
ры, функции W (x), ϕ1 = ϕ1(x), ϕ2 = ϕ2(x) экспоненциально убы-
вают при | x |→ ∞. В работе [1] изучался более простой случай
одномерного возмущения потенциала W (x).

Под резонансом E оператора H будем понимать полюс ядра ре-
зольвенты данного оператора на втором листе соответствующей ри-
мановой поверхности. Уровнем E назовем собственное значение или
резонанс оператора H.

Введем обозначения

∆ = (1 + λ1(R0(E)ϕ1(y), ϕ1(x))(1 + λ2(R0(E)ϕ2(y), ϕ2(x))−

−λ1λ2(R0(E)ϕ1(y), ϕ2(x))(R0(E)ϕ2(y), ϕ1(x)),

bi = (ϕi(x),
√

W (x)), i = 1, 2, d = 1/2
∫

R

W (x)dx.
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Теорема. Пусть ∆ 6= 0. Для всех достаточно малых ε существу-
ет единственный уровень E оператора H в окрестности нуля, для
которого справедлива следующая формула:

√
E = ε(d +

λ1a11b1 + λ2a12b2

2ic
) + O(ε2).

Здесь a11, a12, c - это явно выписываемые интегралы, содержащие
функции ϕ1(x), ϕ2(x) и W (x) (выражения не приводятся из-за их
громоздкости).

Литература
1. Сметанина М.С., Чубурин Ю.П. Об уровнях оператора Шре-

дингера для кристаллической пленки с нелокальным потенциалом.
Теор. и матем. физика. Т. 140. N 2. 2004. С. 297-302.

ПРИМЕНЕНИЕ СОВРЕМЕННЫХ
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ДЛЯ

ПОЛУЧЕНИЯ, ИЛЛЮСТРИРОВАНИЯ И ПРОВЕРКИ
МАТЕМАТИЧЕСКИХ РЕЗУЛЬТАТОВ

Томова А.В. (Варна, Болгария)
mailto:anna_bg_2000@yahoo.com

Предлагается для обсуждения короткая аннотация научно – ис-
следовательского труда объема 300 страниц под упомянутым уже
заголовком "Применение современных информационных техноло-
гий для получения, иллюстрирования и проверки математических
результатов". Труд содержит 12 глав, включая Ввод и Литерату-
ру на болгарском языке. В докладе предполагается обзор данной
книги.

ДЕКОМПОЗИЦИЯ И РЕКОНСТРУКЦИЯ
ДИСКРЕТНОГО ЦИФРОВОГО СИГНАЛА НА

ОСНОВЕ БАЗИСОВ ВСПЛЕСКОВ И
ФОРМИРОВАНИЕ ФИЛЬТРОВ С ЗАДАННЫМИ

СВОЙСТВАМИ
Феоктистов В.В., Феоктистова О.П. (Москва)

apmath@bmst.ru

Кратномасштабный анализ (КМА) — это последовательность
{Vj}j∈Z замкнутых в L2(R) подпространств, удовлетворяющая
условиям [1]:

1. . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . ,
⋃

j∈Z Vj = L2(R),
⋂

j∈Z Vj = {0};
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2. f(t) ∈ Vj ⇔ f(2−jt) ∈ V0, f(t) ∈ V0 ⇔ f(t− k) ∈ V0, k ∈ Z;
3. ∃ϕ, ϕ ∈ V0, такая, что последовательность {ϕ(t − k)}k∈Z об-

разует ортонормированный базис в пространстве V0.
Из определения следует, что последовательность {ϕjk}j,k∈Z ,

ϕjk = 2j/2ϕ(2jt − k), образует ортонормированный базис в про-
странстве Vj .

Генератором, который приводит в действие алгоритмы декомпо-
зиции и реконструкции дискретного цифрового сигнала, является
уравнение масштабирования:

ϕ(t) =
√

2
∑

k∈Z

hkϕ(2t− k), hk =

+∞∫

−∞
ϕ(t) · ϕ(2t− k) dt,

∑

k∈Z

h2
k = 1.

Представим Vj+1 в виде ортогональной суммы Vj+1 = Vj ⊕Wj ,
где Wj - пространство всплесков. Зная КМА, порождаемый мас-
штабирующей функцией ϕ, построим для Wj ортонормированный
базис всплесков [1]: ψjk = 2j/2ψ(2jt− k).

Для декомпозиции сигнала f из L2 построим проекцию f на V0:
f̃ =

∑
k∈Z ckϕ(t− k) =

∑
k∈Z ckϕ0k(t).

В качестве всплеска ψ, определяющего базисы сдвигов ψjk =
2j/2ψ(2jt− k) в пространствах Wj , возьмем функцию

ψ(t) =
∑

k∈Z(−1)k−1h1−kϕ(2t− k).
Используя условие ортонормированности базисов, определим коэф-
фициенты декомпозиции

cjk =
∑

n∈Z c(j+1),nhn−2k, djk =
∑

n∈Z c(j+1),nh1−n+2k

и формулу реконструкции
cj+1,k =

∑
n∈Z(−1)1−kcjnh1−k+2n +

∑
n∈Z cjnhk−2n.

В работе проведен одновременный анализ временных и частот-
ных свойств сигнала.

Литература
[1] Новиков И. Я., Стечкин С. Б. Основы теории всплесков. //

УМН. 1998, т. 53, вып. 6(324), С.53–127.

О МЕТОДИКЕ ИЗЛОЖЕНИЯ ТЕОРЕМЫ О
ЗАМКНУТОСТИ ОБЪЕДИНЕНИЯ КОНЕЧНОГО

ЧИСЛА ЗАМКНУТЫХ МНОЖЕСТВ
Фомин В.И. (Тамбов)

В целях экономии времени предлагается после доказательства
свойства M1 ∪M2 = M1 ∪M2 [1, с. 58] распространить его методом
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математической индукции на конечное число множеств:
n∪

i=1
Mi =

n∪
i=1

Mi. (1)

Тогда теорема о замкнутости объединения M =
n∪

i=1
Mi замкнутых

множеств Mi (1 6 i 6 n) превращается в простое следствие свой-

ства (1): M =
n∪

i=1
Mi =

n∪
i=1

Mi =
n∪

i=1
Mi = M ⇒ M замкнуто, и нет

необходимости проводить доказательство этой теоремы [1, с. 61].
Доказательство свойства (1) можно предложить в качестве упраж-
нения для домашнего задания, ибо к моменту изучения элементов
функционального анализа студенты уже ознакомлены с применени-
ем метода математической индукции в школьном курсе математики
или в других разделах вузовского курса математики, например, в
математическом анализе.

Литература
1. Колмогоров А. Н., Фомин С. В. Элементы теории функций и

функционального анализа. - М.: Наука, 1976. - 544 с.

О СЛУЧАЕ СПЕЦИАЛЬНОЙ ПРАВОЙ ЧАСТИ
ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

n-ГО ПОРЯДКА В БАНАХОВОМ ПРОСТРАНСТВЕ
Фомин В.И. (Тамбов)

В банаховом пространстве E рассматривается уравнение

u(n) + A1u
(n−1) + . . . + An−1u

′ + Anu = f (t) , 0 6 t < ∞, (1)

где Ai ∈ L (E), 1 6 i 6 n; f (t) ∈ C ([0,∞) ; E). Если пра-
вая часть уравнения (1) имеет специальный вид, то, как и в ска-
лярном случае, можно указать его частное решение, не прибе-
гая к методу Лагранжа. Пусть f (t) = eΛ0tSm (t), где Λ0 ∈ L (E),

Sm (t) =
m∑

i=0

sit
m−i – многочлен действительной переменной t с век-

торными коэффициентами si ∈ E, 0 6 i 6 m, s0 6= Θ, и выполняют-
ся следующие условия: а) AkΛ0 = Λ0Ak, 1 6 k 6 n; б) оператор Λ0

не является корнем характеристического операторного многочлена

P (Λ) =
n∑

k=0

AkΛn−k, где A0 = I; в) оператор P (Λ0) =
n∑

k=0

AkΛn−k
0

имеет ограниченный обратный. Тогда уравнение (1) имеет част-

ное решение вида u∗ = eΛ0tQm (t), где Qm (t) =
m∑

i=0

qit
m−i, q0 =
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[P (Λ0)]
−1

s0, qi = [P (Λ0)]
−1

[
si −

i∑
j=1

Cj
m−i+jP

(j) (Λ0) qi−j

]
, i =

1, 2, . . . , m; P (j) (Λ0) = j!
n−j∑
k=0

Cj
n−kAkΛn−j−k

0 , 0 6 j 6 n; P (j) (Λ0) =

0, j > n. Если оператор Λ0 является корнем кратности r много-
члена P (Λ): в формуле для u∗ нужно записать дополнительный
множитель tr.

О ЯДРАХ ПУАССОНА ДЛЯ ОДНОЙ КРАЕВОЙ
ЗАДАЧИ

Ярославцева В.Я. (Липецк)

Пусть E+
n+2 = {x = (x′, xn+1, t), x′ = (x1, x2, ..., xn), xn+1 > 0,

t > 0}. L
(
x,D, Pxn+1

)
и Mj

(
x′, D, Pxn+1

)
— линейные диф-

ференциальные операторы порядков 2m и mj соответственно,
в которых по переменной xn+1 действует оператор. Pxn+1 =

1
sh2νxn+1

∂
∂xn+1

sh2νx ∂
∂xn+1

+ν2, где ν — фиксированный действитель-
ный параметр.

Рассматривается краевая задача

L
(
x, t, D, Pxn+1

)
u(x) = 0, x ∈ E+

n+1, (1)

Mj

(
x′, D, Pxn+1

)
u(x′, xn+1, t) |t=0 = gj (x′, xn+1) , j = 1, 2, ..., m.

(2)
Предполагается, что дифференциальный оператор L является соб-
ственно p-эллиптическим, а операторы Mj , j = 1, 2, ...,m образуют
нормальную дополнительную по отношению к L систему. Функции
gj(x′, xn+1) — бесконечно дифференцируемы и имеют компактный
носитель.

Теорема. Функция

u(x′, xn+1, t) =
m∑

j=1

Φυ

∞∫

∞

∼
Kj(x′ − y, xn+1 − α, t)Φ−1

υ gj(y, α)dydα

является решением задачи (1)− (2) в пространстве C∞,υ
чет.,0, где K̃j

— четная комбинация ядер Пуассона регулярной эллиптической за-
дачи в полупространстве, а Φυ и Φ−1

υ - операторы преобразования
[1].

Строятся ядра Пуассона краевой задачи (1)-(2), а также анало-
ги так называемых присоединённых ядер Пуассона Hjg(x′, xn+1, t).
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Показывается, что функции Hjq(x′, xn+1, t) при xn+1 > 0 и t > 0
всюду, кроме начала координат, удовлетворяют неравенству

∣∣Dk P r
xn+1

Hjq| <

< C
(
sh2 xn+1

2

)υ

·
(
|x′|2 + x2

n+1 + t2
)mj+q−k−2r

2 · (1 + |log(P )|) .

Здесь P обозначает точку области E+
n+2, а константа С зависит

от k, r, υ, q и постоянной эллиптичности.
Литература

1. Ярославцева В.Я. Операторы преобразования на полупря-
мой//Понтрягинские чтения –XIII. Тез. докл., Воронеж, 2002. С.
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НОВЫЕ ПРИЗНАКИ СУЩЕСТВОВАНИЯ
НЕПОДВИЖНЫХ ТОЧЕК ВЫПУКЛЫХ И

ВОГНУТЫХ ОПЕРАТОРОВ
Бахтин И.А. (Воронеж)

В вещественном банаховом пространстве E с конусом K при-
водятся новые теоремы существования положительных неподвиж-
ных точек вогнутых и выпуклых операторов. Не предполагается,
что конус K ⊂ E обладает свойством нормальности.

1. Определение. Положительный, монотонный, u-
измеримый на конусе K оператор A называется u-вогнутым,
если для любых элементов x ∈ K\0 и числа t ∈ (0, 1) существует
число η = η(x, t) > 0, такое, что Atx > (1 + η)tAx.

Теорема 1. Пусть
1) u-вогнутый оператор A вполне непрерывен на конусе K;
2) существуют элементы x0 > 0, y0 > 0, такие, что

Ax0 6 x0, Ay0 6 y0;
3) выполняется равенство

lim
x∈W,‖x‖→∞

‖x‖u = +∞,

где ‖x‖u – u-норма элемента x, а W – множество положитель-
ных собственных векторов оператора A.

Тогда существует элемент x∗ > 0, такой, что Ax∗ = x∗.
2. Определение. Положительный, монотонный, u-

измеримый на конусе K оператор A называется u-выпуклым,
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если для любых элементов x ∈ K\0 и числа t ∈ (0, 1) существует
число η = η(x, t) > 0, такое, что Atx 6 (1− η)tAx.

Теорема 2. Пусть
1) u-выпуклый оператор A вполне непрерывен на конусе K;
2) существуют элементы x0, y0 ∈ K(u), такие, что Ax0 6

x0, Ay0 > y0, где K(u) – множество элементов, соизмеримых с
u;

3) множество W положительных собственных векторов опе-
ратора A образует замкнутую непрерывную ветвь бесконечной
длины;

4) выполняются равенства:

lim
x∈W,‖x‖→0

‖x‖u = 0; lim
x∈W,‖x‖→0

‖x‖∗u = +∞;

где ‖x‖∗u = sup{t > 0|x > tu}.
Тогда существует элемент x∗ > 0, такой, что Ax∗ = x∗.

Литература
1. Красносельский М.А. Положительные решения операторных
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О НЕКОТОРЫХ НЕСТЕПЕННЫХ РАЗЛОЖЕНИЯХ
РЕШЕНИЙ ТРЕТЬЕГО УРАВНЕНИЯ ПЕНЛЕВЕ1

Гриднев А.В. (Москва)
gridnev_a@mail.ru

Рассматривается третье уравнение Пенлеве

ẅ =
ẇ2

w
− ẇ

t
+

aw2 + b

t
+ cw3 +

d

w
, bd 6= 0, (1)

где t — комплексная переменная, w(t) — неизвестная функция, a,
b, c и d — комплексные параметры.

Решается следующая задача.
З а д а ч а. В случае общего положения (когда все параметры

a, b, c и d не равны нулю) в окрестности особой точки t = 0 найти
все нестепенные разложения решений вида

w = γrt
r +

∑
s

γst
s, r ∈ R, s > r, s ∈ K, (2)

1Работа выполнена при поддержке РФФИ (грант N 06-01-00715)
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где γr, γs — ряды по убывающим степеням ln t, K — дискретное
множество на вещественной прямой без точек накопления.

Результатом исследования является следующая теорема.
Т е о р е м а. Уравнение (1) в окрестности точки t = 0 имеет

два семейства формальных разложений решений вида (2):

w = t

[
− b

2
(ln t)2 + c1 ln t +

∞∑
s=0

c−s (ln t)−s

]
+

∞∑

k=1

γ2k+1t
2k+1,

где c1 — произвольная постоянная, остальные c−s однозначно
определены, γ2k+1 — ряды по убывающим степеням ln t;

w =
1
t

[
2
a

(ln t)−2 + c−3 (ln t)−3 +
∞∑

s=4

c−s (ln t)−s

]
+

∞∑

k=0

γ2k+1t
2k+1,

где c−3 — произвольная постоянная, остальные c−s однозначно
определены, γ2k+1 — ряды по убывающим степеням ln t.

Литература
1. А.Д. Брюно. Сложные разложения решений обыкновенного

дифференциального уравнения // Доклады академии наук, Т. 406,
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ДОСТАТОЧНОЕ УСЛОВИЕ ОГРАНИЧЕННОСТИ
ОПЕРАТОРОВ КЛАССА Γ∗1

Иохвидов Е.И. (Воронеж)

Рассматриваются линейные операторы, действующие в про-
странстве Крейна H:

H = H+ ⊕H−, H± = P±H, P 2
± = P ∗± = P± P+ + P− = I

с индефинитной метрикой [x, y] = (Jx, y), J = P+−P−, x, y ∈ H.

Определение 1 Говорят, что линейный оператор A принадле-
жит классу Γ, если ker (P+ + P−A) = {0}.

Для всякого оператора A ∈ Γ имеет смысл преобразование
Потапова-Гинзбурга B = δ(A) = (P− + P+A)(P+ + P−A)−1, при
этом B ∈ Γ.

1Исследование поддержано грантом РФФИ 05-01-00203
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Определение 2 Символы ε−(M) и ε+(M) обозначают инфимум
и супремум линеала M ⊂ H, т.е. величины:

ε−(M) = inf{ [x, x]
||x||2 | x ∈ M, x 6= 0},

ε+(M) = sup{ [x, x]
||x||2 | x ∈ M, x 6= 0}.

Эти величины всегда удовлетворяют условиям

−1 6 ε−(M) 6 1 и −1 6 ε+(M) 6 1.

Теорема 1 Пусть выполнены условия:
1) A ∈ Γ.
2)Оператор B = δ(A) ограничен.
3) ε−(RA) > ||B||2−1

||B||2+1
(≡ σ) .

Тогда, во-первых, имеет место неравенство ε+(DA) + σ > 0, во-
вторых, исходный оператор A ограничен, и при этом имеет ме-
сто оценка:

||A|| 6
√

ε+(DA) + σ

ε−(RA)− σ
.

Замечание 1. Один из двух крайних случаев ε−(RA) = −1 ис-
ключается самим условием 3. Если же ε−(RA) = 1, то условие
3 выполняется автоматически. В общем случае ε−(RA) ∈ (−1; 1)
смысл условия 3 заключается в том, что норма оператора B не
должна быть слишком большой.
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