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АННОТАЦИИ

Многоточечное штрафование симметричного процесса Леви

Абильдаев Темирлан
ПОМИ РАН, г. Санкт-Петербург,
Санкт-Петербургский государственный университет, г. Санкт-Петербург
t.abildaev23@gmail.com

Мы рассмотрим одномерный симметричный процесс Леви ξ(t), t ≥ 0, обладающий ло-
кальным временем L(t, x), и построим оператор A +

∑n
k=1 µk δ(x− ak), µk > 0, где A –

это генератор порождаемой ξ(t) полугруппы, а δ(x − ak) – дельта-функция Дирака в
точке ak ∈ R. Мы покажем, что построенный оператор – это генератор C0-полугруппы
{Ut}t≥0 в L2(R), действующей по формуле

(Utf)(x) = Ef(x− ξ(t))e
∑n

k=1 µkL(t,x−ak), f ∈ L2(R) ∩ Cb(R),

и обобщим формулу Фейнмана-Каца для потенциала типа линейной комбинации дельта-
функций с положительными коэффициентами.

Далее мы построим семейство штрафующих мер {Qµ
T,x}T≥0, определяемых формулой

Qµ
T,x =

e
∑n

k=1 µkL(T,x−ak)

Ee
∑n

k=1 µkL(T,x−ak)
PT,x,

где PT,x – мера процесса ξ(t), t ≤ T , и покажем, что при T → ∞ это семейство сла-
бо сходится к некоторому феллеровскому процессу. Мы опишем порождаемую этим
процессом полугруппу Фейнмана-Каца и приведём предельную теорему для ξ(T ) отно-
сительно Qµ

T,x.

Оператор Шредингера с самоподобными свойствами

Андронов Николай Иванович
Санкт-Петербургский государственный университет, г. Санкт-Петербург
nickandronick@gmail.com

В докладе рассматривается одномерное уравнение Шрёдингера с потенциалом, задан-
ным как бесконечная сумма дельта-функций, расположенных в точках, координаты
которых задаются квадратичным полиномом от номера. Задача сводится к анализу
семейства разностных уравнений, параметры которых зависят от спектрального пара-
метра исходной задачи. Для этого семейства установлена перенормировочная формула,
связывающая решения с большими номерами с решениями с номерами порядка едини-
цы. Эта формула открывает путь к дальнейшему исследованию спектральных свойств
исходного оператора.

1https://indico.eimi.ru/event/1948/



Вероятность невырождения критического ветвящегося процесса в случайной
среде при условии фиксации значения минимума сопровождающего случай-
ного блуждания

Анохина Мария Андреевна
МГУ имени М.В. Ломоносова, г. Москва
anokhina.mary1@gmail.com

Пусть η = (η1, . . . , ηn, . . . ) — последовательность независимых одинаково распределен-
ных случайных величин и {fy(s), y ∈ R} — семейство производящих функций. Рассмот-
рим Sn = X1+· · ·+Xn, n ∈ N, S0 = 0, гдеXi = ln f ′

ηi
(1). Ветвящимся процессом в случай-

ной среде (ВПСС) называют последовательность Z0 = 1, Zn+1 = Xn+1,1 + · · ·+Xn+1,Zn .
Будет рассмотрен случай арифметических случайных величин Xi с EX1 = 0, EX2

1 =
σ2 ∈ (0,∞). В данном докладе будет получено следующее асимптотическое соотноше-
ние

eknP

(
Zn > 0

∣∣∣∣min
i≤n

Si = −kn
)

→ C, n→ ∞,

где {kn} — некоторая целочисленная последовательность такая, что kn/
√
n → y > 0,

kn → ∞, n→ ∞, C — некоторая константа.

О невырождении пары ветвящихся процессов в общей случайной среде

Арапов Дмитрий Андреевич
МГУ имени М.В. Ломоносова, г. Москва
dmitrii.arapov@math.msu.ru

В докладе рассматривается модель пары ветвящихся процессов {Zn =
(
Zn,1, Zn,2

)
, n ∈

N0} с общей случайной средой (ПВПСС). При фиксации последней последовательности
случайных величин {Zn,1, n ∈ N0} и {Zn,2, n ∈ N0} предполагаются независимыми
ветвящимися процессами в изменяющейся среде.

Эта модель имеет довольно естественную биологическую интепретацию. Мы можем
представлять себе две популяции, довольно сильно изолированные друг от друга, на-
пример, бабочку махаон и павлиноглазку геркулес. Ареалы этих видов не пересекаются.
Несмотря на кажущуюся автономность друг от друга, и махаон, и павлиноглазка суще-
ствуют на одной планете. Процессы планетарного масштаба, например, температурный
режим, являются общей “средой” для этих видов живых организмов.

ПВПСС является частным случаем многотипного ветвящегося процесса, в котором,
однако, частицы одного типа могут порождать частицы другого, в нашем случае это
невозможно. Такое упрощение модели позволяет изучать процесс при гораздо менее
жестких условиях.

Мы будем рассматривать критическую ПВПСС {Zn}, то есть и процесс {Zn,1}, и про-
цесс {Zn,2} предполагаются критическими. Под невырождением процесса {Zn} мы по-
нимаем невырождение обоих типов частиц. Как и в случае ветвящегося процесса в слу-
чайной среде, оказывается, что асимптотически вероятность невырождения ПВПСС к
моменту n лишь на мультипликативную константу отличается от вероятности “поло-
жительности” двумерного сопровождающего блуждания при n→ ∞.

При этом вопросы, связанные с асимптотическим поведением вероятности “положи-



тельности” многомерных случайных блужданий подробно исследованы В. Вахтелем и
Д. Денисовым в работе [1].

[1] Denisov D., Wachtel V., Random walks in cones revisited, Ann. Inst. Henri Poincaré
Probab. Stat. – 2024. – Vol. 60, No. 1. – P. 126–166.

Вероятностное представление решения задачи Коши для дискретного неста-
ционарного уравнения Шрёдингера

Байтеев Руслан Илмирович
ММИ имени Эйлера, г. Санкт-Петербург
altermapper@gmail.com

Изучается одномерное уравнение Шрёдингера на Z, описывающее квантовую эволю-
цию дискретной волновой функции u(n, t) с непрерывным временем. Задано начальное
состояние φ(n), и волновая функция имеет стандартную интерпретацию, |u(n, t)|2 яв-
ляется вероятностью наблюдения свободной частицы в момент времени t в точке n.
Развивается новый подход к решению эволюционного уравнения, основанный на ис-
пользовании дискретных аналитических функций и симметричных случайных блуж-
даний.

Energy-сasimir метод и нелинейная устойчивость в задачах физики плазмы

Беляева Юлия Олеговна
Российский университет дружбы народов, г. Москва,
Институт прикладной математики и механики, г. Донецк
yilia-b@yandex.ru

Доклад посвящен исследованию некоторых классов стационарных решений уравнений
Власова-Пуассона на нелинейную устойчивость. Данная система является моделью ки-
нетики высокотемпературной плазмы. Energy-Casimir метод применяется для случая
стационарных решений в полупространстве под действием однородного внешнего маг-
нитного поля.

Об одной гипотезе де Бранжа

Береза Игорь Дмитриевич
Санкт-Петербургский государственный университет, г. Санкт-Петербург
ibereza@disroot.org

Доклад посвящён аксиоматическому описанию пространств де Бранжа. Сначала будет
представлена процедура «искажения» пространств де Бранжа из специального класса,
после чего с помощью данной конструкции будет опровергнута гипотеза Л. де Бранжа
1963г. о зависимости аксиомы непрерывности от остальных аксиом де Бранжа, выска-
занная в [1]. Доклад подготовлен по материалам статьи [2].

[1] L. de Branges, Some Hilbert spaces of analytic functions, Trans. Amer. Math. Soc. –
1963. – Vol. 106. – P. 445–468.



[2] Bereza I., On a conjecture of de Branges, arXiv:2507.12576.

Смешанные объёмы выпуклых оболочек случайных процессов

Болотин Артём Сергеевич
Санкт-Петербургский государственный университет, г. Санкт-Петербург
bolotin2003@yandex.ru

Пусть K1, K2, ..., Ks — выпуклые тела в пространстве Rd. Минковский доказал, что d-
мерный объём Vold(λ1K1 + λ2K2 + ...+ λsKs) при λ1, λ2, ..., λs ⩾ 0 является однородным
многочленом степени d:

Vold(λ1K1 + λ2K2 + ...+ λsKs) =
s∑

i1=1

...

s∑
id=1

λi1 ...λidVd(Ki1 , ..., Kid),

где функции Vd(Ki1 , ..., Kid) считаются симметричными и называются смешанными объ-
ёмами.

Мы рассмотрим выпуклые оболочки независимых случайных блужданий с перестано-
вочными приращениями и вычислим их смешанный объём. В качестве следствия по-
лучим аналогичный результат для независимых симметричных устойчивых процессов
Леви.

Синус-процесс и гауссов мультипликативный хаос

Буфетов Александр Игоревич
Математический институт имени В.А. Стеклова РАН, г. Москва
bufetov@mi-ras.ru

Мультипликативный хаос рождается в работах Андрея Николаевича Колмогорова: 17
дек. 1940 г. Колмогоров подает в ДАН СССР краткое сообщение "О логарифмически
нормальном законе распределения размеров частиц при дроблении". Через несколько
дней, 28 декабря 1940 г., Колмогоров подает в ДАН СССР знаменитую заметку "Ло-
кальная структура турбулентности в несжимаемой вязкой жидкости при очень боль-
ших числах Рейнольдса". Теорию Колмогорова однородной изотропной турбулентности
подверг критике Ландау, указавший на необходимость учета сильно хаотического пове-
дения диссипации энергии в турбулентном потоке. В 1961 году в Люмини Колмогоров
представил доклад "Уточнение представлений о локальной структуре турбулентности в
несжимаемой вязкой жидкости при больших числах Рейнольдса где ответил на то воз-
ражение Ландау, что (в формулировке самого Колмогорова) "изменчивость диссипации
энергии должна неограниченно возрастать". Колмогоров и Обухов сформулировали
новую гипотезу — о "нормальности распределения логарифма"диссипации энергии в
турбулентном потоке.

Лог-нормальной гипотезой Колмогорова и Обухова – сформулированной на физическом
уровне строгости – вдохновлены работы Мандельброта о мультипликативных каскадах,
а, вслед за ними, Перьера и Жана-Пьера Кахана, давшего теорему существования гаус-
сова мультипликативного хаоса.



Оказалось, что построенный Каханом гауссов мультипликативный хаос возникает в
самых разных задачах и, в том числе, как заметил это санкт-петербургский физик
Ян Валерьевич Федоров, в задачах теории случайных матриц. Сходимостью к гаус-
сову мультипликативному хаосу в различных матричных моделях занимались многие
математики, в частности (список далеко не полон) — Berestycki, Chhaibi, Lambert, ,
Nikeghbali, Ostrovsky, Simm, Webb.

В лекциях мы начнем с краткого рассмотрения теории Колмогорова и лог-нормальной
гипотезы Колмогорова-Обухова, продолжим обсуждением теории Мандельброта-Перь-
ера-Кахана, и перейдем к рассмотрению сходимости к гауссову мультипликативному
хаосу случайных голоморфных функций – стохастических произведений Эйлера, отве-
чающих синус-процессу.

Времена встречи, коалесценции и консенсуса случайных блужданий на слу-
чайных графах

Васильев Роман Алексеевич
МГУ имени М.В. Ломоносова, г. Москва
r.a.vasiliev1998@gmail.com

Работа посвящена исследованию времён встречи, коалесценции и консенсуса случайных
блужданий на неориентированных случайных графах. Рассматриваются три класса
моделей: случайные d-регулярные графы, графы Эрёдша–Рэни G(n, p) и конфигура-
ционные модели со степенными распределениями степеней. Для регулярных и G(n, p)
графов доказан экспоненциальный предел для нормированного времени встречи двух
независимых блужданий, стартующих из стационарного распределения:

Tmeet

E[Tmeet]

d−→ Exp(1), E[Tmeet] ∼
n

d
.

В случае тяжёлых хвостов показано ускорение E[Tmeet] = o(n). Из полученных резуль-
татов следуют оценки для времени коалесценции и консенсуса: E[Tcoal] ∼ n

d
logm и

E[Tcons] ∼ n
d
log n. Сравнение с известными работами (Avena et al., Benjamini–Kozma–

Wormald, Oliveira) показывает согласование с ранее установленными порядками и уточ-
нение асимптотик для неориентированных моделей.

[1] Avena L., Capannoli F., Hazra R. S., Quattropani M., Meeting, coalescence and con-
sensus time on random directed graphs, 2024.

[2] Benjamini I., Kozma G., Wormald N., The mixing time of the giant component of a
random graph, 2016.

[3] Oliveira R. I., Mean field conditions for coalescing random walks, 2013.

Центральная предельная теорема для кулоновского газа при больших тем-
пературах



Горбунов Сергей Михайлович
МФТИ, г. Москва

Круговым β-ансамблем называют следующую меру на n-точечных подмножествах еди-
ничной окружности

dPnβ(θ1, . . . , θn) = Z−1
∏

1≤m<l≤n

∣∣∣eiθm − eiθl
∣∣∣β n∏

k=1

dθk, θj ∈ (−π, π).

С физической точки зрения данная мера представляет собой распределение Гиббса
системы частиц, взаимодействующих с парным потенциалом U(θ1, θ2) = − ln

∣∣eiθ1 − eiθ2
∣∣

при обратной температуре β. Килип и Стоичу показали [5], что при скейлинге углов
θj → nθj и устремлении n → ∞ данные меры имеют предел — синус-β процесс Pβ —
меру на бесконечных локально конечных подмножествах прямой.

Теорема. Пусть β ≤ 2. Пусть функция f на действительной оси и ее производная
квадратично-интегрируемы. Тогда сумма

∑
x∈X f(x/R) значений функции в точках

случайного подмножества X ∼ Pβ за вычетом математического ожидания сходится
к гауссовому распределению при R → ∞. Если функция действительно-значная, то
сходимость имеет место по метрике Колмогорова-Смирнова со скоростью 1/

√
lnR.

При β = 2 круговой ансамбль совпадает с радиальной частью меры Хаара на унитарной
группе. Соответствующий предельный процесс P2 является синус-процессом Дайсона.
При β = 1, 4 точечные процессы Pnβ, Pβ являются пфаффианными. В общем случае,
однако, не существует выражений для корреляционных функций синус-β процесса.

В 1970 году Генри Джек, рассматривая матричные интегралы, ввел семейство симмет-
рических функций [3], параметризуемых разбиениями и параметром β. Макдональд
позже дал их алгебро-комбинаторное описание [7], вывел для них аналог формулы Ко-
ши и показал их ортогональность относительно кругового β-ансамбля. Цзян и Мацу-
мото использовали [4] результаты Макдональда для поиска точных оценок на моменты
сумм степеней координат частиц под круговым β-ансамблем. Наш метод продолжает их
рассуждения. В частности, следуя Бородину и Окунькову [1], мы получаем разложение
ожиданий мультипликативных функционалов в многочлены Джека, обобщающее тео-
рему Гесселя [2], и используем формулу для математического ожидания размера диа-
граммы по мере Джека. Полученная оценка выдерживает скейлинговый предел Килипа
и Стоичу.

Удивительным образом требование на температуру β ≤ 2 следует из экспоненциаль-
ного роста норм многочленов Джека при β > 2. Это комбинаторное проявление фа-
зового перехода исследуемых мер при β = 2, замеченного еще Валко и Вирагом [8].
Другое его проявление, предположенное Ламбертом [6], это достаточность конечности
1/2-соболевской полунормы для выполнения обобщения теоремы Сеге лишь при β ≤ 2.
В конструкции Валко и Вирага [8] синус-β процесса спектром случайного дираковского
оператора значение β = 2 разделяет случаи предельной точки и предельной окружно-
сти соответствующего оператора.

[1] Borodin A., Okounkov A., A Fredholm determinant formula for Toeplitz determinants,
Integral Equations Operator Theory – 2000. – Vol. 37. – P. 386–396.



[2] Gessel I. M., Symmetric functions and P-recursiveness, J. Comb. Theory, Ser. A –
1990. – Vol. 53. – P. 257–285.

[3] Jack H., A class of symmetric polynomials with a parameter, Proc. Roy. Soc. Edinburgh,
Sect. A – 1970. – Vol. 69. – P. 1–18.

[4] Jiang T., Matsumoto S., Moments of traces of circular beta-ensembles, Ann. Probab.
– 2015. – Vol. 43. – P. 3279–3336.

[5] Killip R., Stoiciu M., Eigenvalue statistics for CMV matrices: From Poisson to clock
via random matrix ensembles, Duke Math. J. – 2009. – Vol. 146. – P. 361–399.

[6] Lambert G., Mesoscopic central limit theorem for the circular β-ensembles and appli-
cations, Electron. J. Probab. – 2021. – Vol. 26. – P. 1–33.

[7] Macdonald I. G., Symmetric functions and Hall polynomials, The Clarendon Press,
2nd ed.(1995).

[8] Valkó B., Virág B., Continuum limits of random matrices and the Brownian carousel,
Invent. Math. – 2009. – Vol. 177. – P. 463–508.

Решение спектральной задачи модели Кронига-Пенни с помощью алгоритма
Шура

Губкин Павел Васильевич
ПОМИ РАН, г. Санкт-Петербург,
Санкт-Петербургский государственный университет, г. Санкт-Петербург
gubkinpavel@pdmi.ras.ru

Релятивистская модель Кронига-Пенни описывает одномерный оператор Дирака DQ на
полупрямой R+ вида DQ : X 7→ JX ′+QX, где постоянная матрица J – это квадратный
корень из минус единичной матрицы, а потенциал Q =

∑
k≥0Qkδhk является мерой с

носителем на решетке hZ+ при некотором h > 0. Как и в более классических случа-
ях, например, Q ∈ L2(R+), для такого оператора Дирака можно определить функцию
Вейля mQ и соответствующую функцию Шура fQ =

mQ−i
mQ+i

. Две следующие теоремы поз-
воляют свести спектральную теорию модели Кронига-Пенни к теории ортогональных
многочленов на единичной окружности.

Теорема. Нагрузка Q0 потенциала Q в нуле выражается через значение fQ(∞) =
limy→∞ fQ(iy).

Теорема. Функции Шура fQ и fQh
, соответствующие потенциалам Q =

∑
k≥0Qkδhk

и Qh =
∑

k≥0Qk+1δhk связаны шагом классического алгоритма Шура

e2ihzfQh
(z) =

fQ(z)− fQ(∞)

1− fQ(∞)fQ(z)
, z ∈ C+.

В докладе будет показано, как с помощью этого сведения получить явную двусторон-
нюю оценку устойчивости для отображения Q 7→ mQ. Доклад основан на совместной
работе [1] с Романом Бессоновым.



[1] Bessonov R., Gubkin P., Direct and inverse spectral continuity for Dirac operators,
arXiv:2505.00485.

Пространственно-временная структура простого симметричного ветвящего-
ся случайного блуждания по Z

Гусаров Александр Сергеевич
МГУ имени М.В. Ломоносова, г. Москва
aleksandr.gusarov@math.msu.ru

Рассматривается простое симметричное ветвящиеся случайное блуждание с непрерыв-
ным временем по одномерной решетке Z. В этом случае случайное блуждание описы-
вается разностным лапласианом с коэффициентом диффузии κ > 0. Также предпо-
лагается, что единственный источник ветвления (т. е. точка, в которой частицы могут
размножаться и гибнуть) находится в нуле, и его интенсивность (т. е. первая производ-
ная производящей функции потомков) предполагается равной 0 < β <∞. В начальный
момент времени t = 0 на решетке находится одна частица в точке x. Результаты для
численностей частиц в некоторой фиксированной точке y ∈ Z при t → ∞ хорошо из-
вестны, см., например в [1] и [2]. В докладе показано, как в явном виде установить
изменение поведения численностей частиц в зависимости от степенного соотношения
между временной и пространственной координатами одномерной решетки.

[1] Яровая Е. Б., Ветвящиеся случайные блуждания в неоднородной среде, МЦНМО
(2025).

[2] Смородина Н. В., Яровая Е. Б., Об одной предельной теореме для ветвящихся
случайных блужданий, Теория вероятн. и ее примен. – 2023. – Т. 68, № 4. – С.
779–795.

Гладкость минимальных локально вогнутых функций

Добронравов Егор Петрович
Санкт-Петербургский государственный университет, г. Санкт-Петербург
yegordobronravov@mail.ru

В теории уравнений в частных производных интересен вопрос о решениях вырожденно-
го уравнения Монжа-Ампера. Вогнутыми решениями вырожденного уравнения Монжа-
Ампера являются минимальные локально вогнутые функции. Минимальные локаль-
но вогнутые функции так же возникают как функции оптимизирующие интегральные
функционалы в теории функций Беллмана. В связи с этим интересен вопрос о струк-
туре и гладкости минимальных локально вогнутых функций. Существенным ограни-
чением существующих работ по данному вопросу — отсутствие свободной границы —
куска границы, на котором граничное значение не задаётся, а так же предполагали
существование гладкой строго вогнутой мажоранты. Мы разберём, что даже в случае
отсутствия данных ограничений минимальная локально вогнутая функция C1,1 глад-
кая внутри области и вплоть до жёсткой границы, а так же обсудим, насколько гладкой
может быть минимальная локально вогнутая функция вплоть до свободной границы.



Размерность мер с малым преобразованием Фурье

Добронравов Никита Петрович
Санкт-Петербургский государственный университет, г. Санкт-Петербург
dobronravov1999@mail.ru

Принцип неопределённости в математическом анализе — это совокупность фактов,
утверждающих: функция и её преобразование Фурье не могут быть одновременно ма-
лыми. Одним из вариантов принципа неопределённости является теорема о том, что не
существует ненулевой функции в Lp(Rd), если носитель её преобразования Фурье это
множество конечной α-хаусдорфовой меры с α < 2d/p. Мы доказали, что этот прин-
цип не выполняется в предельном случае. Мы доказали, что для любых 2 < p < ∞
и d ∈ N существует вероятностная мера с компактным носителем µ в Rd, такая, что
H 2d

p
(supp(µ)) = 0 и µ̂ ∈ Lp(Rd).

Здесь Hα — хаусдорфова мера размерности α.

Стохастическая динамика вблизи критических точек в стохастическом гра-
диентном спуске

Дудукалов Дмитрий Витальевич
Институт математики имени С.Л. Соболева СО РАН, г. Новосибирск
d.dudukalov@g.nsu.ru

Доклад посвящён предельным теоремам для аддитивного стохастического градиентно-
го спуска при стремлении шага к нулю. Будут выделены условия, при которых имеет
место сходимость (почти наверное или по вероятности) к минимуму функции, из обла-
сти притяжения которого был запущен процесс, а также условия, при которых такой
сходимости не наблюдается. Кроме того, будет рассмотрена стохастическая динамика
в случае запуска градиентного спуска из окрестности негладкого максимума.

Асимптотический анализ некоторых интегралов с сильно вырождающимися
знаменателями

Елохин Алексей Анатольевич
Национальный исследовательский университет Высшая школа экономики, г. Москва,
Математический институт им. В. А. Стеклова РАН, г. Москва
aelokhin@hse.ru

В задаче строго обоснования теории теплопроводности Пайерлса возникает необходи-
мость получения асимптотики для интегралов, имеющих вид

∫
Fdx

Ω2+ν2
, при стремлении

параметра ν к нулю. Существование такой асимптотики определяется свойствами функ-
ции Ω, в частности её поведением в окрестности своих критических точек. В своем до-
кладе я планирую в общих чертах изложить схему получения такой асимптотики для
случая, когда критические точки Ω вырождены, а также обсудить связанные с этим
трудности.

[1] Elokhin A., Asymptotics for a class of singular integrals of quotients with highly dege-
nerate denominators, arXiv:2509.21604.



О ветвящихся случайных блужданиях в однородных и неоднородных слу-
чайных средах

Ивлев Олег Евгеньевич
МГУ имени М.В. Ломоносова, г. Москва
olivlegerr@gmail.com

Рассматриваются две модели непрерывных по времени симметричных ветвящихся слу-
чайных блужданий по многомерной целочисленной решетке Zd в случайных средах. В
первой модели представлена однородная ветвящаяся среда, где интенсивности гибели
и деления частиц в каждой x ∈ Zd определяются парой неотрицательных случайных
величин (ξ−(x) = ξ−(x, ω), ξ+(x) = ξ+(x, ω)), определенных на некотором вероятност-
ном пространстве (Ω,F ,P). Таким образом, cреда (т.е. набор характеристик ветвления
в источниках) в первой модели представляет собой совокупность пар случайных вели-
чин (ξ−(x), ξ+(x)), где x ∈ Zd. Будем предполагать, что пары (ξ−(x), ξ+(x)) независи-
мы и одинаково распределены. Математическое ожидание относительно меры P будем
обозначать ⟨·⟩. Во второй модели изучается неоднородная ветвящаяся среда, которая
определяется единственной парой неотрицательных случайных величин (ξ−(0), ξ+(0)),
задающими интенсивности гибели и деления частиц в нуле соответственно. Цель рабо-
ты — изучение так называемых ”отоженных” моментов ⟨mp

n⟩, p ≥ 1 локальных и общих
численностей частиц для обеих моделей. Получены соответствующие асимптотики для
моментов, подтверждающие гипотезу о их виде, выдвинутую в работе [1].

[1] Yarovaya E., Symmetric branching walks in homogeneous and non homogeneous ran-
dom environment, Communications in Statistics-Simulation and Computation – 2012.
– Vol. 41, No. 7. – P. 1232–1249.

[2] Albeverio S. et al., Annealed moment Lyapunov exponents for a branching random
walk in a homogeneous random branching environment, Markov Process. Relat. Fields
– 2000. – Vol. 6, No. 4. – P. 473–516.

Детерминантные процессы и интерполяция функций по значениям в точках
случайной конфигурации

Клименко Алексей Владимирович
Математический институт имени В.А. Стеклова РАН, г. Москва,
Национальный исследовательский университет Высшая школа экономики, г. Москва
klimenko@mi-ras.ru

Доклад основан на совместной работе с А. А. Боричевым, А. И. Буфетовым и Ж.
Лином.

Детерминантные процессы — это класс случайных точечных полей, то есть вероятност-
ных мер на множестве дискретных подмножеств (их называют конфигурациями) неко-
торого фазового пространства E, выделяемый особым видом корреляционных функ-
ций. Детерминантный процесс может быть построен по сжимающему оператору на
пространстве L2(E). В большинстве известных примеров этот оператор является проек-
тором на некоторое подпространство H ⊂ L2(E), причём это подпространство состоит
из достаточно регулярных функций, так что корректно определены значения функ-
ции в каждой точке пространства E. Тогда можно связать детерминантный процесс



(случайную конфигурацию X) с пространством H вопросом об интерполяции функ-
ций: определяется ли функция f ∈ H однозначно по своим значениям в точках (почти
любой) конфигурации X? Обсуждению этого вопроса и будет посвящён доклад.

Баланс сил как механизм формирования сообществ в случайных графах

Кобзев Иван Сергеевич
МГУ имени М.В. Ломоносова, г. Москва
kobzev.cmc@yandex.ru

Экспоненциальные модели случайных графов (ERGM) часто страдают от вырожден-
ности при моделировании сетей с сообществами, приводя к формированию либо разре-
женного графа, либо одной сверхплотной компоненты.

В докладе предлагается механизм, объясняющий спонтанное возникновение сообществ
как результат конкуренции двух сил: локального притяжения, формирующего плотные
группы, и стабилизирующего отталкивания, препятствующего их слиянию. Этот прин-
цип исследуется на примере минимальной ERGM, где притяжение моделируется через
поощрение треугольников, а отталкивание — через штраф за пути длины три.

Формулируется основная теорема о фазовом переходе к состоянию с несколькими ста-
бильными сообществами. Обсуждаются ключевые идеи доказательства и приводятся
результаты численного моделирования, подтверждающие теоретические выводы.

Стационарный частично асимметричный простой процесс исключения через
призму одномерных магнитных случайных блужданий: фазовые переходы
и смежные аспекты

Коваленко Елизавета Дмитриевна
МФТИ, г. Москва
kovalenko.elizavebeth@gmail.com

Рассматривается модель частично асимметричного простого процесса исключений -
PASEP. Из матричного анзаца для стационарного состояния получена алгебра, пред-
ставляющая собой q-деформацию матричной алгебры полностью асимметричного про-
стого процесса исключений (TASEP). Стационарное решение может быть выражено
через q-полиномы Эрмита, допускающие интерпретацию в терминах магнитных слу-
чайных блужданий. Ожидается, что фазовый переход в модели PASEP будет соответ-
ствовать локализации магнитных случайных блужданий на границе.

[1] Derrida B., Evans M. R., Hakim V., Pasquier V., Exact solution of a 1D asymmetric
exclusion model using a matrix formulation, J. Phys. A: Math. Gen., 1493-1517 (1993).

[2] Valov A., Gorsky A., Nechaev S., Equilibrium mean-field-like statistical models with
KPZ scaling, Phys. Part. Nucl. – 2021. – Vol. 52, No. 2. – P. 185–201.

[3] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and
their q-analogues, Springer, (2010).



Вероятностно-статистические свойства случайного графа с независимыми
весами вершин

Котова Анна Александровна
Санкт-Петербургский государственный университет, г. Санкт-Петербург
kotann2710@mail.ru

В работе исследуется модель случайного графа, построенного по следующему принципу.
Каждой вершине присваивается случайный вес wi, где wi — независимые одинаково
распределённые случайные величины. Затем, когда веса вершин уже зафиксированы,
независимо между каждой парой вершин i, j проводится ребро с вероятностью f(wi, wj),
где f — заранее выбранная функция (см. [1], [2]).

Для данной модели получены предельные теоремы для распределения степеней вершин
и в случае билинейной функции ребра f построены статистические оценки функции
распределения весов вершин.

[1] Caldarelli G., Capocci A., Rios P., Muñoz M., Scale-free networks from varying vertex
intrinsic fitness, Phys. Rev. Lett. – 2002. – Vol. 89, No. 25., 258702.

[2] Stegehuis C., Zwart B., Scale-free graphs with many edges, Electron. Commun. Probab.
– 2023. – Vol. 28. – P. 1–11.

О методе Л. В. Фирсова определения длины аттического стадия

Краковский Михаил Алексеевич
МГУ имени М.В. Ломоносова, г. Москва
krakovskiyma@my.msu.ru

Работа посвящена статистическому анализу метода Л. В. Фирсова определения длины
стадия – базовой единицы расстояний, применявшейся античными географами. Метод
Фирсова был подвергнут критике Engels’om, указавшим на существование “больших
выбросов” в данных. Наша цель— статистическая проверка гипотезы Л. В. Фирсова
о существовании устойчивой меры длины, приблизительно равной 157–158 м, которая
могла быть принята в эллинистической научной традиции, с использованием критерия
Стьюдента и корреляционного анализа. Полученные результаты подтверждают точ-
ность метода Фирсова.

Связь структуры спектра эволюционного оператора ветвящегося блуждания
по Z c конфигурацией источников ветвления

Кротов Михаил Даниилович
МГУ имени М.В. Ломоносова, г. Москва
mikhail.krotov@math.msu.ru

Рассматривается непрерывное по времени ветвящееся случайное блуждание (ВСБ) по
одномерной решетке Z. В начальный момент времени t = 0 в произвольной точке Z



имеется одна частица. Детальный подход к описанию моделей ВСБ см., напр., в [1]. На-
ми рассматриваются конфигурации конечного числа источников ветвления, т.е. таких
точек на Z, в которых частицы могут производить конечное число потомков или гиб-
нуть. Предполагается равная интенсивность ветвления частиц в источниках ветвления.
Исследуется надкритическое ВСБ, которое характеризуется экспоненциальным ростом
численностей частиц в каждой точке решетки. Для него верны предельные теоремы
о сходимости нормированных численностей частиц почти наверное, см. [2]. Фазовые
переходы в надкритическом ВСБ определяются структурой дискретного положитель-
ного спектра эволюционного оператора, т.е. оператора, возникающего в правой части
уравнения, описывающего эволюцию первых моментов численностей частиц, см. [3]. В
работе изучаются условия существования положительных изолированных собственных
значений, а также их поведение в зависимости от некоторых конфигураций источников
ветвления и их интенсивностей. В отличие от аналогичных моделей ВСБ по многомер-
ным решеткам, для ВСБ по Z вычисления представлены в явном виде, что значительно
облегчает возможность применения методов численного моделирования.

[1] Яровая Е. Б., Ветвящиеся случайные блуждания в неоднородной среде, Центр
прикл. исслед. мех.-матем. ф-та МГУ, M., 104с. (2007).

[2] Смородина Н. В., Яровая Е. Б., Об одной предельной теореме для ветвящихся
случайных блужданий, Теория вероятн. и ее примен. – 2023. – Т. 68, № 4. – С.
779–795.

[3] Яровая Е. Б., Спектральная асимптотика надкритического ветвящегося слу-
чайного блуждания, Теория вероятн. и ее примен. – 2017. – Т. 62, № 3. – С. 518–541.

Средние расстояния между случайными точками внутри и на границе вы-
пуклого тела

Лотников Алексей Сергеевич
ММИ имени Эйлера, г. Санкт-Петербург,
ПОМИ РАН, г. Санкт-Петербург
alex.lotnikov@gmail.com

В 2019 году А.С. Тарасов и Д.Н. Запорожец выдвинули гипотезу, согласно которой сред-
нее расстояние между двумя случайными точками на границе выпуклого тела не мень-
ше среднего расстояния между двумя случайными точками внутри него. В докладе бу-
дет рассмотрен частный случай этой гипотезы для центрально-симметричных плоских
тел. Будут представлены полученные в этом направлении результаты, включая точные
соотношения между средними расстояниями для описанных фигур, которые являются
аналогами формулы Кингмана, связывающей средние расстояния между внутренними
точками с длиной случайной хорды. В заключение будут обсуждаться возможные пути
ослабления исходной гипотезы для произвольных плоских тел.

[1] Kingman J., Random secants of a convex body, J. Appl. Probab. – 1969. – Vol. 6, No.
3. – P. 660–672.

[2] Moseeva T., Random sections of convex bodies, Zap. Nauchn. Semin. POMI – 2019. –
Vol. 486. – P. 190–199.



[3] Bonnet G., Gusakova A., Thäle C., Zaporozhets D., Sharp inequalities for the mean
distance of random points in convex bodies, Adv. Math., 326, (2021).

[4] Gorshkov A., Nikitin I., Mean distance between random points on the boundary of a
convex figure, J. Math. Sci. – 2024. – Vol. 286, No. 5. – P. 798–806.

Математические основы фильтра Калмана

Максимов Владислав Владимирович
МГУ имени М.В. Ломоносова, г. Москва
vladislav.maksimov@math.msu.ru

Фильтр Калмана, безусловно, является одним из самых важных открытий в области
прикладной математики в прошлом веке. Про него написано множество инженерных
книг, но не так много именно математических. Мы рассмотрим строгую математиче-
скую постановку задачи и докажем теорему о существовании и единственности решения
задачи оптимального оценивания с помощью аппарата матричнозначных скалярных
произведений. Если останется время, то мы обсудим вопросы эффективной численной
реализации алгоритма фильтрации.

[1] Kailath T., Sayed A. H. and Hassibi B., Linear Estimation, Prentice Hall, Englewood
Cliffs, (2000).

[2] https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

[3] Матасов А.И., Основы теории фильтра Калмана.

О законе повторного логарифма для случайных блужданий по многомерной
решётке

Низамова Элина Ильсуровна
МГУ имени М.В. Ломоносова, г. Москва
elina.nizamova@math.msu.ru

В работе устанавливается функциональный закон повторного логарифма для симмет-
ричного непрерывного по времени случайного блуждания по многомерной решетке.
Описание модели случайного блуждания с конечной дисперсией скачков см., напр., в [2].
Нами данный закон доказан в чуть более сильном предположении, чем существование
конечной дисперсии скачков случайного блуждания, а, именно, при существовании мо-
мента порядка 2 + ϵ, ϵ > 0. При доказательстве основного результата используются
функциональные законы повторного логарифма для дискретных случайных блужда-
ний и винеровского процесса в сочетании с теоремой о сильной аппроксимации винеров-
ским процессом из [1] и [3]. Предложенный подход позволил преодолеть трудности, воз-
никающие при переходе от дискретного времени к непрерывному. Основной результат
является обобщением классического закона повторного логарифма для непрерывных
по времени случайных блужданий.



[1] Булинский А. В., Новый вариант функционального закона повторного логарифма,
Теория вероятн. и ее примен. – 1980. – Т. 25, № 3. – С. 502–512.

[2] Яровая Е. Б., Ветвящиеся случайные блуждания в неоднородной среде, Центр
прикл. исслед. мех.-матем. ф-та МГУ, М. (2007).

[3] Bashtova E., Shashkin A., Strong Gaussian approximation for cumulative processes,
Stoch. Proc. Appl. – 2022. – Vol. 150. – P. 1–18.

О минимальной интегральной энергии мажорант винеровского процесса

Никитин Сергей Евгеньевич
ПОМИ РАН, г. Санкт-Петербург
nikitin97156@mail.ru

В докладе рассматривается асимптотическое поведение (на длинных интервалах вре-
мени) минимальной интегральной энергии

|h|ψT :=

∫ T

0

ψ(h′(t))dt

для мажорант винеровского процесса W (·), удовлетворяющих ограничениям h(0) = r,
h(t) ≥ W (t), 0 ≤ t ≤ T .

Результаты значительно обобщают асимптотические оценки, полученные ранее для слу-
чая кинетической энергии ψ(u) = u2, причём оказывается, что этот случай, где мини-
мальная энергия растёт логарифмически, является пограничным между двумя другими
режимами.

Мартингальные преобразования и минимальные бивогнутые функции

Новиков Михаил Игоревич
ПОМИ РАН, г. Санкт-Петербург,
Работа выполнена при поддержке гранта РНФ №24-71-10011
Novikov.3.14@yandex.ru

Доклад будет посвящен точным оценкам математического ожидания величины f(ψ∞),
где f — произвольная функция, а ψ∞, опуская детали, можно описать, как предельное
значение мартингального преобразования индикатора события. Мы обсудим, как такого
рода задача может быть полностью сведена к вычислению минимальной бивогнутой
функции, расскажем про связь с пространством BMO и приведём примеры конкретных
неравенств, которые можно получить таким образом. В качестве основного результата
будет представлен точный критерий минимальности бивогнутой функции, заданной в
полосе {(x, y) ∈ R2 : |x− y| ≤ 1}.

Финальный продукт случайной рекуррентной последовательности



Оберган Фёдор Владимирович
Математический институт имени В.А. Стеклова Российской академии наук, г. Москва
oberganfedor@mail.ru

Рассмотрим модель случайной рекуррентной последовательности (Yn, n ≥ 0), которая
задается соотношением Yn+1 = AnYn + Bn, где коэффициенты An – положительные
независимые одинаково распределенные случайные величины, а Bn может зависеть от
(Ak, Bk, 0 ≤ k < n) при любом n > 0. Эта модель была введена и активно исследова-
лась А.В. Шкляевым ([1]). Изучение подобных последовательностей вызывает интерес,
поскольку некоторые типы ветвящихся процессов, такие как ветвящийся процесс в слу-
чайной среде с иммиграцией и без, двуполый ветвящийся процесс в случайной среде,
представимы в виде таких последовательностей. Вероятности больших уклонений для
таких ветвящихся процессов в случайной среде исследовались с помощью случайных ре-
куррентных последовательностей в [2] и [3]. В докладе будет представлена полученная
автором теорема о больших уклонениях для n-ой частичной суммы Un ряда, членами
которого являются элементы случайной рекуррентной последовательности.

Также в докладе будут рассмотрены модели финальных продуктов случайной рекур-
рентной последовательности. Отметим, что для ветвящихся процессов финальный про-
дукт исследовался в [4]. Пусть (Yn, n ≥ 0) – определенная выше целочисленная, неот-
рицательная рекуррентная последовательность, а ζ = (ζ1, ζ2, . . .) – последовательность
независимых одинаково распределенных случайных величин, которую назовем случай-
ной средой. При фиксации среды рассмотрим последовательность независимых вели-
чин Ci,j, распределенных согласно gζi , где

{
gy(s), y ∈ R

}
– некоторое семейство веро-

ятностных производящих функций. Потребуем также, чтобы при любом фиксирован-
ном k ≥ 0 случайные величины

(
Ck+1,i, i > 0

)
не зависели от

(
Yj, j ≤ k

)
. Локальным

финальным продуктом случайной рекуррентной последовательности (Yk, k ≥ 0) при
фиксированном n ≥ 0 назовем случайную величину Ln =

∑Yn
i=1Cn+1,i, а случайную

величину Fn =
∑n

m=0 Lm назовем общим финальным продуктом при фиксированном
n ≥ 0.

Автором будут представлены теоремы о больших уклонениях для финальных продук-
тов Ln и Fn, которые позволяют исследовать предельное поведение не только самих
ветвящихся процессов, но и некоторых аддитивных функционалов от них. Интерпре-
тация полученных результатов и примеры их применения к ветвящимся процессам в
случайной среде также будут отражены в докладе.

Исследование выполнено за счет гранта Российского научного фонда (проект 24-11-
00037) в Математическом институте имени В.А. Стеклова Российской академии наук.

[1] Шкляев А. В., Большие уклонения ветвящегося процесса в случайной среде. I,
Дискрет. матем. – 2019. – Т. 31, № 4. – С. 102–115.

[2] Шкляев А. В., Большие уклонения ветвящегося процесса в случайной среде. II,
Дискрет. матем. – 2020. – Т. 32, № 1. – С. 135–156.

[3] Шкляев А. В., Большие уклонения ветвящегося процесса с частицами двух полов
в случайной среде, Дискрет. матем. – 2023. – Т. 35, № 3. – С. 125–142.

[4] Ватутин В. А., Системы поллинга и многотипные ветвящиеся процессы в слу-
чайной среде с финальным продуктом, Теория вероятн. и ее примен. – 2010. – Т.
55, № 4. – С. 644–679.



Динамическое построение GFF на графе

Панов Даниил Романович, Мозоляко Павел Александрович
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Около 13 лет назад Х. Хеденмальм и П. Ниеминен опубликовали статью [1], в которой
динамически построили гауссовское свободное поле на областях комплексной плоскости
из белого шума при помощи вариационной формулы Адамара. Мы покажем, что ана-
логичный результат можно получить и в дискретном контексте, на графах, при этом
будет получен дискретный аналог формулы Адамара. Как и в непрерывном случае, эта
конструкция дает удобное представление гауссовского поля, из которого легко получа-
ются некоторые его известные свойства.

[1] Hedenmalm H., Nieminen P. J., The Gaussian free field and Hadamard’s variational
formula, Probab. Theory Relat. Fields – 2014. – Vol. 159. – P. 61–73.

Универсальные локально–линейные ядерные оценки для производной ре-
грессионной функции

Петренко Сергей Сергеевич
Новосибирский Государственный Универститет, г. Новосибирск
s.petrenko@g.nsu.ru

Рассматривается задача непараметрической регрессии, состоящая в оценивании произ-
водной регрессионной функции, когда значения регрессионной функции с точностью
до случайных погрешностей наблюдаются в некотором известном наборе детерминиро-
ванных или случайных точек (наборе регрессоров). Решению этой задачи, в том числе
методами ядерного сглаживания, посвящена обширная литература. В докладе будут
приведены условия состоятельности и ассимптотической нормальности нового класса
локально-линейных ядерных оценок, при этом используется более общее и обладающее
рядом преимуществ условие на регрессоры, чем известные ранее в этой задаче.

Отметим, что в работах предшественников модели с детерминированными или случай-
ными регрессорами рассматриваются отдельно. При этом в первом случае относитель-
но регрессоров требуется некоторое условие регулярного заполнения области задания
регрессионной функции, а во втором – та или иная форма слабой зависимости регрес-
соров. В докладе набор регрессоров представляет собой случайные величины в схеме
серий, а в качестве параметра серии выступает объем наблюдений. Последнее позволяет
включить в рассмотрение в качестве частного случая и модели с детерминированными
регрессорами. При изучении асимптотических свойств новой ядерной оценки относи-
тельно набора регрессоров требуется лишь, чтобы эти величины с высокой вероятно-
стью образовывали измельчающееся разбиение области задания регрессионной функ-
ции. Данное условие в терминах плотных данных является по существу необходимым
для восстановления регрессионной функции и ее производных. Оно универсально отно-
сительно стохастической природы регрессоров и позволяет в едином подходе рассмат-
ривать модели с детерминированными и случайными регрессорами, но без требования
регулярности или слабой зависимости. Наконец, данное простое и наглядное условие
позволяет оценить интересующую нас функцию без использования информации и ха-
рактере зависимости регрессоров, что особенно важно для практических приложений.



Метод обрыва степенного ряда для SIS-модели с различными скоростями
миграции восприимчивых и инфицированных

Подолин Дмитрий Алексеевич
Национальный исследовательский университет Высшая школа экономики, г. Москва
d-podolin@mail.ru

Рассмотрим следующую модификацию SIS-модели распространения заболевания:

∂S

∂t
+ V

∂S

∂x
= −βSI + γI,

∂I

∂t
+ U

∂I

∂x
= βSI − γI. (1)

В системе (1) S(x, t) представляет линейную плотность восприимчивых к заболеванию,
а I(x, t) – линейную плотность инфицированных. В момент времени t = 0, восприимчи-
вые начинают мигрировать вдоль оси x с постоянной скоростью V , а инфицированные
– в том же направлении с постоянной скоростью U . Естественно предположить, что
восприимчивые перемещаются быстрее инфицированных, поэтому V > U .

Используя безразмерные переменные, получаем нормированную систему:{
∂S̄
∂t̄

+ ∂S̄
∂x̄

= −S̄Ī + Ī
∂Ī
∂t̄

+ Ū ∂Ī
∂x̄

= S̄Ī − Ī
, Ū =

U

V
< 1. (2)

Для решения задачи Коши применяем метод обрыва степенного ряда. Решения ищутся
в виде степенных рядов:

S(x, t) =
∞∑
k=0

Sk(t)x
k, I(x, t) =

∞∑
k=0

Ik(t)x
k. (3)

Подставляя ряды (3) в систему (2) и обрывая на порядке N , получаем систему обык-
новенных дифференциальных уравнений для коэффициентов Sk(t) и Ik(t).

Для проверки точности используем точное решение типа Бейтмана:

I(x, t) =
1− U

1 + e−2x+(1+U)t
, S(x, t) = U + (1− U)

e−2x+(1+U)t

1 + e−2x+(1+U)t
. (4)

Количественный анализ показывает значительное улучшение точности с увеличением
N . Метод демонстрирует сходимость и применимость для решения SIS-модели с мигра-
цией.

[1] Brauer F., Driessche P., Wu J., eds. Mathematical epidemiology, Springer Berlin, Heidel
berg, (2008).

Рассеяние и излучение акустических волн в дискретных волноводах с несколь-
кими цилиндрическими выходами на бесконечность
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Дискретный волновод – это граф G, состоящий из нескольких дискретных полуцилин-
дров, соединенных конечным числом вершин и ребер. Под дискретным цилиндром мы
понимаем граф, периодический при сдвиге на заданный вектор и имеющий конечную
ячейку периодичности. На графе G рассматривается уравнение вида −diva∇u−µu = f ,
где заданная функция f и неизвестная функция u – это функции на множестве V
вершин графа, а div и ∇ – разностные аналоги соответствующих дифференциальных
операторов. Спектральный параметр µ предполагается вещественным и фиксирован-
ным. Весовая функция a определена на множестве ребер, является положительной и
удовлетворят экспоненциальной стабилизации на бесконечности.

Собственные функции непрерывного спектра определяются как ограниченные решения
однородной задачи, не принадлежащие ℓ2(V ). Мы строим базис собственных функ-
ций непрерывного спектра, удовлетворяющий асимптотике на бесконечности: Y +

j =

u+j +
∑Υ

k=1 Sj,ku
−
k + o(1). Здесь u+1 , . . . , u

+
Υ обозначают приходящие волны, а u−1 , . . . , u

−
Υ –

уходящие. Матрица S = ||Sj,k|| называется матрицей рассеяния.

Мы описываем корректную постановку задачи с естественными условиями излучения
u = c1u

−
1 + . . .+ u−Υ + o(1). Коэффициенты cj считаются по формуле cj = i(f, Y −

j )V , где
(·, ·)V – это расширение скалярного произведения в ℓ2(V ), а Y −

1 , . . . , Y
−
Υ – другой базис

собственных функций непрерывного спектра, связанный с предыдущим соотношениями
Y −
j =

∑Υ
k=1(S

−1)j,kY
+
k .

Доклад основан на результатах, полученных совместно с А.С. Порецким.

Условные меры совершенных мер совершенны

Соколов Игорь Вячеславович
МФТИ, г. Москва
sokolov.igor506@yandex.ru

Главный результат доклада – условная мера детерминантного точечного процесса, со-
вершенного в смысле Г.И. Ольшанского [1], также является совершенной. Доклад ос-
нован на совместной работе с А.И. Буфетовым.

[1] Olshanski G., Determinantal point processes and fermion quasifree states, arXiv:2002.
10723v2.

[2] Bufetov A. I., Quasi-Symmetries of Determinantal Point Processes, arXiv:1409.2068.

[3] Bufetov A. I., Yanqi Qiu, and Alexander Shamov. Kernels of conditional determinantal
measures and the proof of the lyons-peres conjecture, arxiv:1612.06751, 2018.

[4] Bufetov A. I., Conditional measures of determinantal point processes, arxiv:1411.4951,
2016.

Характеристический полином случайной унитарной матрицы: вероятност-



ный подход

Сологубова Ксения Александровна
МФТИ, г. Москва
shushasl@mail.ru

Рассматривается работа Бургада, Хьюза, Никегбали и Йора, в которой предлагается
новый подход к изучению характеристического полинома случайной унитарной мат-
рицы. Ранее для анализа его распределения использовались сложные аналитические
методы, такие как интеграл Сельберга и плотность Вейля. Авторы предлагают более
простой и наглядный вероятностный подход, основанный на рекурсивном построении
меры Хаара.

Основной результат работы — построение двух эквивалентных представлений харак-
теристического полинома: как произведение независимых случайных величин и как
сумма независимых случайных величин, если рассмотреть его логарифм.

Мы разбираем, как такие представления позволяют получить новые, более простые
доказательства известных фактов. В частности, мы останавливаемся на новом доказа-
тельстве центральной предельной теоремы Китинга-Снейта, которое использует только
классические результаты теории вероятностей, такие как многомерная ЦПТ, и позво-
ляет избежать громоздких вычислений.

О моделировании каталитических ветвящихся случайных блужданий

Сусорова Марина Александровна
МГУ имени М.В. Ломоносова, г. Москва
susorovama@gmail.com

Настоящий доклад посвящён компьютерному моделированию непрерывных по времени
каталитических ветвящихся случайных блужданий (КВСБ) на одномерных и двумер-
ных решётках.

В то время как классические исследования подобных систем, как правило, сосредоточе-
ны на их асимптотическом поведении при больших временах [1], данная работа сфокуси-
рована на численном анализе эволюции процессов на конечных временных интервалах.
Ключевой задачей является анализ пространственно-временной динамики плотности
частиц и её распределения по узлам решётки, что требует применения специализиро-
ванных алгоритмов.

Основным результатом работы является разработка и сравнительный анализ двух аль-
тернативных вычислительных подходов — рекурсивного и нерекурсивного алгоритмов,
— позволяющих проводить детальное моделирование КВСБ. В докладе будут представ-
лены принципы реализации этих методов, обсуждены их вычислительные особенности,
а также продемонстрированы результаты моделирования, включая серии визуализаций
и анимации, наглядно иллюстрирующие динамику систем.

[1] Булинская Е. Вл., Вероятностно-геометрические свойства пространственного
ветвящегося случайного блуждания, Докторская диссертация на соискание уче-
ной степени доктора физико-математических наук, Москва (2024).



[2] Ермишкина Е. М., Яровая Е. Б., Моделирование ветвящихся случайных блужда-
ний по многомерной решетке, Фундам. и прикл. матем. – 2018. – Т. 22, № 3. – С.
37–56.

Предельные теоремы для класса максимальных ветвящихся процессов

Талпа Григорий Андреевич
МГУ имени М.В. Ломоносова, г. Москва
grigorii.talpa@math.msu.ru

Пусть {Xi,j} – последовательность независимых одинаково распределенных (н.о.р.) слу-
чайных величин c функцией распределения F . Зададим рекуррентно последователь-
ность {Mn}:

M0 = 1, Mn = max(Xn,1, . . . , Xn,Mn−1), n ≥ 1.

Процесс {Mn} называется максимальным ветвящимся процессом(МВП) и был впервые
введен в работе [1], где также изучалась вероятность его невырождения. По аналогии с
классическими ветвящимися процессами Гальтона–Ватсона(ВП) можно сказать, что в
МВП в каждом поколении выживают потомки только одной частицы – той, у которой
их больше всего.

Добавим в модель случайную среду. Зафиксируем последовательность н.о.р. случайных
величин {ηi} и будем рассматривать {Xi,j} c функцией распределения Fηi , где {Fy} –
некоторое семейство функций распределения. Процесс, определяемый по аналогии с
{Mn}, но в случайной среде, называется максимальным ветвящимся процессом в слу-
чайной среде(МВПСС) и был впервые введен в статье [2].

В данной работе рассматривается случай, когда функция распределения имеет вид

Fy(x) = 1− c(y)

x
+ o

(
1

x

)
, x→ +∞.

В зависимости от значения величины E ln c(η) процессы классифицируются как над-
критические, критические и докритические. Для данного семейства функций {Fy} (при
некоторых дополнительных ограничениях) получена асимптотика вероятностей невы-
рождения P(Mn > 0) ∼ c/

√
n в критическом случае, а также установлены центральная

предельная теорема и асимптотика вероятностей больших уклонений в надкритическом
случае.

[1] Lamperti J., Maximal branching processes and long range percolation, J. Appl. Probab.
– 1970. – Vol. 7, No. 1. – P. 89–96.

[2] Лебедев А. В., Максимальные ветвящиеся процессы в случайной среде, Информ.
и её примен. – 2018. – Т. 12, № 2. – С. 35–43.

Уравнение Колмогорова–Чепмена и его связь с марковским свойством про-
цесса



Филичкина Елена Михайловна
МГУ имени М.В. Ломоносова, г. Москва
elena.filichkina1999@yandex.ru

В докладе рассматриваются примеры процессов, удовлетворяющих уравнению Кол-
могорова–Чепмена, но не являющихся марковскими. Один из первых таких примеров
был предложен Феллером в [1], где рассматривается процесс с тремя и более состо-
яниями. На основе примера Бернштейна о попарно независимых величинах, которые
не являются независимыми в совокупности, можно также построить примеры процес-
сов с двумя состояниями. Показано, что уравнение Колмогорова-Чепмена неоднознач-
но определяет немарковский процесс. А также установлено, что для невырожденного
гауссовского процесса с непрерывной ковариационной функцией выполнение уравне-
ния Колмогорова–Чепмена для его переходных плотностей эквивалентно марковости
процесса.

[1] Feller W., Non-Markovian processes with the semigroup property, Ann. Math. Statist.,
30 (1959).

Энтропийный анализ распределений устойчивых процессов Леви

Хамзин Виктор Олегович
Санкт-Петербургский государственный университет, г. Санкт-Петербург,
ММИ имени Эйлера, г. Санкт-Петербург
viktorkhamzinwork@gmail.com

mm-энтропией метрического пространства с мерой называется величина, показываю-
щая, какое число шаров одинакового радиуса необходимо взять, чтобы покрыть мно-
жество нужной меры. Она была определена еще в классической работе К.Шеннона [2],
но до недавнего времени практически не изучалась. А. М.Вершик и М. А.Лифшиц в
работе [1] нашли значение mm-энтропии банахова пространства с гауссовской мерой.
Доклад будет посвящен последним результатам, полученным в негауссовском случае:
мы рассмотрим пространство траекторий α-устойчивого процесса Леви и найдем его
mm-энтропию.

[1] Вершик А. М., Лифшиц М. А., О mm-энтропии банахова пространства с гаус-
совской мерой, Теория вероятн. и ее примен. – 2023. – Т. 68, № 3. – С. 532–543.

[2] Шеннон К., Математическая теория связи, В кн.: Работы по теории информа-
ции и кибернетике, М.: Изд-во иностр. лит. – 1963. – С. 243–332.

На что нужно умножить ограниченную случайную величину, чтобы ограни-
ченной стала также и её мартингальная квадратичная функция?

Целищев Антон Сергеевич
ПОМИ РАН, г. Санкт-Петербург
celis_anton@pdmi.ras.ru

Ответ на вопрос из заголовка очевиден — на 0. Поэтому опишем задачу несколько по-
дробнее.



Пусть f — функция на вероятностном пространстве (Ω,F ,P) с фиксированной дис-
кретной фильтрацией (Fn), 0 ≤ f ≤ 1 п.в. Хорошо известно, что мартингальная квад-
ратичная функция S(f) в таком случае лежит во всех пространствах Lp, 1 < p < ∞,
но ограниченной она быть не обязана.

Тем не менее, мы покажем, как явно построить другую функцию (“мультипликатор”)
m, такую что 0 ≤ m ≤ 1, у произведения m · f мартингальная квадратичная функция
уже ограничена: ∥S(m · f)∥∞ ≤ C, но при этом это произведение “не слишком мало”:
E(f) ≥ cE(m · f).

Случай фильтрации с непрерывным временем, а также случай дискретной диадиче-
ской фильтрации были рассмотрены ранее Питером Джонсом и Паулем Мюллером.
Мы немного расскажем об истории этой задачи, а также о двух подходах к её решению
для случая произвольной дискретной фильтрации: конструктивном, при котором для
функции m можно написать более-менее явную формулу, и совершенно не конструк-
тивном, который позволяет добиться большего, но имеет свои недостатки.

Новые результаты о распределении Миттаг-Леффлера

Чернышенко Екатерина Глебовна
МГУ имени М.В. Ломоносова, г. Москва
ekaterina.chernyshenko@math.msu.ru

В стохастических моделях с тяжелыми хвостами распределение Миттаг-Леффлера ча-
сто выступает в качестве предельного закона. На примере трех различных случайных
процессов демонстрируется, что имеет место сходимость почти наверное к данному рас-
пределению. В частности, в модели, известной как процесс китайского ресторана (см.
[1]), анализируются случайные разбиения конечного множества 1, 2, ..., n. При устрем-
лении размера множества n к бесконечности, количество образующихся блоков разби-
ения почти наверное сходится к случайной величине, имеющей распределение Миттаг-
Леффлера, что установлено в работе [4]. Затем рассматривается аналогичная модель
для непрерывного времени - процесс Юла чистого рождения (см. [2]). В данной модели
окрашивание частиц подчиняется следующему алгоритму: исходно в системе присут-
ствует единственная частица, обладающая уникальным цветом. Каждая вновь появля-
ющаяся частица с заданной вероятностью либо наследует цвет своей родительской ча-
стицы, либо приобретает абсолютно новый цвет, ранее не существовавший в популяции.
В [2] установлено, что при стремлении t к бесконечности, число образовавшихся раз-
личных цветов сходится почти наверное к величине, имеющей распределение Миттаг-
Леффлера. Мы продемонстрируем, как распределение Миттаг-Леффлера описывает
предельное распределение времени пребывания в начальной точке для симметрично-
го однородного случайного блуждания по одномерной решетке в условиях бесконечной
дисперсии скачков (см. [3]). Затем мы усилим этот результат, доказав сходимость почти
наверное.

[1] Pitman J., Exchangeable and partially exchangeable random partitions, Probab. Theory
Relat. Fields – 1995. – Vol. 102. – P. 145–158.

[2] Pitman J., Combinatorial stochastic processes, Lect. Notes in Math. 1875. Springer,
Berlin (2006).



[3] Апарин А. А., Попов Г. А., Яровая Е. Б., О распределении времени пребывания
случайного блуждания в точке многомерной решетки, Теория вероятн. и ее при-
мен. – 2021. – Т. 66, № 4. – С. 657–675.

[4] Bercu B., Favaro S., A martingale approach to Gaussian fluctuations and laws of
iterated logarithm for Ewens-Pitman model, Stoch. Proc. Appl. – 2024. – Vol. 178.
– P. 1–19.

Предельная теорема для количества частиц второго типа в ветвящемся про-
цессе с мутациями в одном гене

Швайков Михаил Дмитриевич
МГУ имени М.В. Ломоносова, г. Москва
mikhail.shvaikov@math.msu.ru

В докладе будет рассматриваться схема серий для бесконечнотипного ветвящегося про-
цесса. На каждом этапе фиксируется число n – длительность существования ветвяще-
гося процессса, а также зависящие от n вероятности pn и qn. Каждая частица при
рождении может с заданной вероятностью pn изменить свой тип на следующий, более
высокий, или с вероятностью qn на предыдущий, более низкий. Процесс начинается с
одной частицы первого типа, которая имеет математического ожидание числа потомков
µ1 > 1. Частицы каждого типа независимы и одинаково распределены, но частицы бо-
лее высокого типа имеют большее математическое ожидание числа потомков: µi+1 > µi,
i ∈ Z. Всегда считается, что qn = o(1), n → ∞, исследуется предельное распределение
количества частиц каждого типа в зависимости от порядка малости pn.

Подобный процесс (в случайной среде) описан в работе В.А. Ватутина [1], однако его
модель отлична от исследуемой, в частности он рассматривает конечное число типов, и
частицы могут лишь повысить свой тип. В литературе встречаются смежные проблемы.
В частности, Marek Kimmel и David E. Axelrod рассматривают (см. [2]) общие свойства
бесконечнотипных ветвящихся процессов с геномом (вероятности pn и qn можно интер-
претировать как мутацию гена). Встречаются статьи (см. [3]), в которых исследуются
двуполые процессы подобного вида. В свою очередь в данном докладе рассматривается
специфическая задача исследования моментов первого появления частиц каждого типа
и изучения их предельного распределения.

В настоящей работе выясняется, что при значениях pn ∼ Cµ−n
1 , при n→ ∞, где С – это

некоторая константа, можно свести задачу к процессу, в котором значения типов могут
только увеличиваться. Показывается, что за некоторое конечное время до завершения
процесса появляются частицы второго типа, и количество частиц второго типа в этом
случае имеет некоторое невырожденное распределение, кроме того, выводится явный
вид этого распределения.

Список литературы:

[1] Vatutin V. A., The structure of the decomposable reduced branching processes. I. Finite-
dimensional distributions, Theory Probab. Appl. – 2015. – Vol. 59, No. 4. – P. 641–662.

[2] Kimmel M., Axelrod D. E., Branching processes in biology, Springer New York, NY,
(2015).



[3] González M., Hull D. M., Mart́ınez R., Mota M., Bisexual branching processes in a
genetic context: the extinction problem for Y-linked genes, Math Biosci, (2006).

О вероятностях позднего вырождения в надкритических процессах с ветв-
лением

Шкляев Александр Викторович
Математический институт имени В.А. Стеклова, г. Москва,
МГУ имени М.В. Ломоносова, г. Москва
ashklyaev@gmail.com

Надкритический ветвящийся процесс Гальтона-Ватсона, как правило, вырождается в
самом начале, в противном случае размножаясь с экспоненциальной скоростью. Одна-
ко, что случится, если мы потребуем, чтобы процесс выродился в отдаленный момент,
то есть позднее n, где n неограниченно растет?

Оказывается (и это достаточно простой факт), что вероятность такого события имеет
порядок can для некоторых констант c и a, а условное поведение траектории процесса
при этом совпадает с поведением невырождающегося докритического процесса.

Для ветвящихся процессов в случайной среде аналогичный вопрос значительно более
сложен. Прежде всего, надкритический случай распадается на три различных подтипа,
из которых родственное описанному выше поведению, демонстрирует лишь один – так
называемый строго надкритический процесс. Однако, и его изучение оказывается до-
статочно сложным, первые результаты в этом направлении получены лишь в 2024 году
В.И. Афанасьевым ([1]) в частном случае, когда распределение числа потомков одной
частицы является геометрическим.

На наш взгляд, проблема заключается в том, что обусловенный поздним вырождением
процесс, рассматриваемый до момента n, представляет собой не докритический ветвя-
щийся процесс в случайной среде, а некоторую другую марковскую цепь, являющуюся,
впрочем, положительно возвратной. Соответственно, его исследование требует скорее
не работы с производящими функциями, а опоры на хорошо развитую теорию предель-
ных теорем для марковских цепей.

Используя общую теорию R-положительности (см. [2]), удается обобщить результат
В.И. Афанасьева на общее распределение числа потомков, накладывая на него лишь
моментные условия.

Более конкретно, показано, что вероятность позднего вырождения ветвящегося процес-
са в случайной среде также имеет вид cRn для некоторых констант R, c. Известно, что
в случае геометрического количества потомков одной частицы

R = E
1

µ
,

где µ – случайная величина, обозначающая среднее число потомков одной частицы при
фиксации среды, а c – некоторая константа.

В докладе мы обсудим описанные выше результаты, а также мотивацию к исследованию
задачи о позднем вырождении надкритических процессов.
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Скорость сходимости в предельных теоремах о локальном времени пребы-
вания случайного блуждания в точке Zd

Юшкова Ольга Владиславовна
МГУ имени М.В. Ломоносова, г. Москва
olga.ushkova@math.msu.ru

В [1] были доказаны предельные теоремы о распределении времени пребывания слу-
чайного блуждания в точке в зависимости от размерности решетки в предположении
конечной дисперсии и при условии, приводящем к бесконечной дисперсии скачков. В
данной работе доказаны теоремы об оценке скорости сходимости к полученным предель-
ным распределениям методом Стейна в метрике Вассерштейна. С помощью дискретной
аппроксимации времени пребывания, асимптотических свойств переходных вероятно-
стей случайного блуждания и обобщенных гипер-функций Эйри, рассмотренных в [2-3],
получены новые результаты при различных предположениях о дисперсии скачков слу-
чайного блуждания.

В случае конечной дисперсии скачков и размерности d = 1 оценка скорости сходимости
к полунормальному распределению равна O(t−1/2). В случае же бесконечной дисперсии
скачков в размерности d = 1 при значении параметра α ∈ (1, 2) имеет место сходи-
мость к распределению Миттаг-Леффлера, и при условии α

α−1
∈ N справедлива оценка

O(t1/α−1).
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Новое условие однозначной определенности распределения абсолютно непре-
рывной случайной величины своими моментами

Яковенко Максим Анатольевич
МГУ имени М.В. Ломоносова, г. Москва
maksim.iakovenko@math.msu.ru

Рассматриваются две случайные величины: X ∼ F со значениями в R и Y ∼ G со зна-
чениями в R+. Предполагается, что F и G абсолютно непрерывны с плотностями f и



g соответственно. Все моменты случайных величин X и Y предполагаются конечными.
В работе [1] вводятся условия на плотности f и g таким образом, чтобы выполнялось
условие Карлемана, из которого немедленно вытекает M -детерминированность случай-
ных величин X и Y . Данные условия на плотности могут быть ослаблены, что приводит
к обобщению результата. Демонстрируются явные примеры плотностей для граничных
случаев.

[1] Wei Y., Zhang R., A new moment determinacy condition for probability distributions,
Теория вероятн. и ее примен. – 2025. – Т. 70, № 1. – С. 155–168.

Характеризация геометрического распределения по его сильным рекордам

Яковлев Богдан Владимирович
Санкт-Петербургский государственный университет, г. Санкт-Петербург
bogdanrnd1@gmail.com

Пусть X1, X2, . . . – набор независимых одинаково распределенных случайных величин
(распределенных как X), где P (X1 < n) < 1 для любого n.
Пусть

L(0) = 1,

L(n+ 1) = min{j > L(n)|Xj > XL(n)}.

Определим Rn(X) = XL(N) как n−тый сильный рекорд и geom(β) – геометрическое
распределение с носителем натуральные числа с 0.
ПустьAk(β) – распределение, которое порождает k−тый рекорд распределения geom(β).
Тогда справедливы результаты:
1) Пусть k ≥ 2, X – случайная величина с носителем натуральные числа с 0, тогда

Rk(X) ∼ Ak(β1), Rk−1(X) ∼ Ak−1(β2),

β1 = β2, X ∼ geom(β1).

2) Описан класс распределений X таких, что R1(X) = A1(β) для фиксированного β.

Адаптивный критерий хи-квадрат для гипотезы принадлежности семейству
сдвига-масштаба

Якупов Руслан Альбертович
МГУ имени М.В. Ломоносова, г. Москва
ruslan.iakupov@math.msu.ru

Классический критерий хи-квадрат используется для проверки гипотезы согласия на-
блюдаемого распределения с теоретическим в случае дискретных (категориальных)
распределений. Для применения критерия к непрерывным распределениям на R обычно
выполняют дискретизацию: множество наблюдений разбивается на несколько блоков, и
подсчитываются частоты попадания в каждый из них. Однако в стандартной постанов-
ке границы блоков задаются заранее, до получения выборки. Это приводит к тому, что
критерий фактически проверяет не исходную гипотезу о совпадении распределений, а



лишь совпадение вероятностей попадания в заранее выбранные блоки. При этом воз-
можные локальные особенности или аномалии реальных данных могут не отражаться
в выбранном разбиении.

В настоящей работе рассматривается вариация критерия хи-квадрат, в которой ис-
пользуется адаптивное построение разбиений выборки. Границы блоков первоначально
определяются по квантилям, после чего рассматриваются различные объединения этих
блоков. Такой подход позволяет учитывать структуру данных и сохранять чувствитель-
ность критерия к форме эмпирического распределения. Проверяется гипотеза принад-
лежности наблюдаемого распределения параметрическому семейству сдвига-масштаба.

Построение критерия проводится следующим образом. Сначала выборка разбивается
на N блоков по эмпирическим уровням i/N . Далее для полученного дискретизирован-
ного распределения подбираются параметры сдвига и масштаба методом максималь-
ного правдоподобия. Функция правдоподобия в этом случае строится на основе частот
попадания наблюдений в блоки и отражает степень согласия эмпирических и теорети-
ческих вероятностей. Максимизация этой функции позволяет определить параметры,
при которых теоретическое распределение наилучшим образом описывает наблюдаемые
данные.

После этого строится сама статистика критерия. Для заданного числа блоков N рас-
сматриваются все возможные объединения этих блоков по k ячеек. Для каждого та-
кого набора вычисляется статистика хи-квадрат, характеризующая отклонение эмпи-
рических частот от теоретических. Итоговая статистика критерия представляет собой
сумму всех полученных значений по различным разбиениям на k ячеек.

Основным результатом работы является получение предельного распределения постро-
енной статистики. Показано, что статистика имеет предельное взвешенное хи-квадрат
распределение. Этот результат позволяет использовать предложенную конструкцию в
качестве асимптотического критерия проверки принадлежности распределения семей-
ству сдвига-масштаба.




